1 /*-
2 * Copyright (c) 2008-2011 David Schultz <das@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: src/tools/regression/lib/msun/test-ctrig.c,v 1.1 2011/10/21 06:34:38 das Exp $
27 */
28
29 /*
30 * Tests for csin[h](), ccos[h](), and ctan[h]().
31 */
32
33 #include <assert.h>
34 #include <complex.h>
35 #include <fenv.h>
36 #include <float.h>
37 #include <math.h>
38 #include <stdio.h>
39
40 #define ALL_STD_EXCEPT (FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \
41 FE_OVERFLOW | FE_UNDERFLOW)
42 #define OPT_INVALID (ALL_STD_EXCEPT & ~FE_INVALID)
43 #define OPT_INEXACT (ALL_STD_EXCEPT & ~FE_INEXACT)
44 #define FLT_ULP() ldexpl(1.0, 1 - FLT_MANT_DIG)
45 #define DBL_ULP() ldexpl(1.0, 1 - DBL_MANT_DIG)
46 #define LDBL_ULP() ldexpl(1.0, 1 - LDBL_MANT_DIG)
47
48 #pragma STDC FENV_ACCESS ON
49 #pragma STDC CX_LIMITED_RANGE OFF
50
51 /*
52 * XXX gcc implements complex multiplication incorrectly. In
53 * particular, it implements it as if the CX_LIMITED_RANGE pragma
54 * were ON. Consequently, we need this function to form numbers
55 * such as x + INFINITY * I, since gcc evalutes INFINITY * I as
56 * NaN + INFINITY * I.
57 */
58 static inline long double complex
cpackl(long double x,long double y)59 cpackl(long double x, long double y)
60 {
61 long double complex z;
62
63 __real__ z = x;
64 __imag__ z = y;
65 return (z);
66 }
67
68 /* Flags that determine whether to check the signs of the result. */
69 #define CS_REAL 1
70 #define CS_IMAG 2
71 #define CS_BOTH (CS_REAL | CS_IMAG)
72
73 #ifdef DEBUG
74 #define debug(...) printf(__VA_ARGS__)
75 #else
76 #define debug(...) (void)0
77 #endif
78
79 /*
80 * Test that a function returns the correct value and sets the
81 * exception flags correctly. The exceptmask specifies which
82 * exceptions we should check. We need to be lenient for several
83 * reasons, but mainly because on some architectures it's impossible
84 * to raise FE_OVERFLOW without raising FE_INEXACT.
85 *
86 * These are macros instead of functions so that assert provides more
87 * meaningful error messages.
88 *
89 * XXX The volatile here is to avoid gcc's bogus constant folding and work
90 * around the lack of support for the FENV_ACCESS pragma.
91 */
92 #define test_p(func, z, result, exceptmask, excepts, checksign) do { \
93 volatile long double complex _d = z; \
94 debug(" testing %s(%Lg + %Lg I) == %Lg + %Lg I\n", #func, \
95 creall(_d), cimagl(_d), creall(result), cimagl(result)); \
96 assert(feclearexcept(FE_ALL_EXCEPT) == 0); \
97 assert(cfpequal((func)(_d), (result), (checksign))); \
98 assert(((func), fetestexcept(exceptmask) == (excepts))); \
99 } while (0)
100
101 /*
102 * Test within a given tolerance. The tolerance indicates relative error
103 * in ulps. If result is 0, however, it measures absolute error in units
104 * of <format>_EPSILON.
105 */
106 #define test_p_tol(func, z, result, tol) do { \
107 volatile long double complex _d = z; \
108 debug(" testing %s(%Lg + %Lg I) ~= %Lg + %Lg I\n", #func, \
109 creall(_d), cimagl(_d), creall(result), cimagl(result)); \
110 assert(cfpequal_tol((func)(_d), (result), (tol))); \
111 } while (0)
112
113 /* These wrappers apply the identities f(conj(z)) = conj(f(z)). */
114 #define test(func, z, result, exceptmask, excepts, checksign) do { \
115 test_p(func, z, result, exceptmask, excepts, checksign); \
116 test_p(func, conjl(z), conjl(result), exceptmask, excepts, checksign); \
117 } while (0)
118 #define test_tol(func, z, result, tol) do { \
119 test_p_tol(func, z, result, tol); \
120 test_p_tol(func, conjl(z), conjl(result), tol); \
121 } while (0)
122
123 /* Test the given function in all precisions. */
124 #define testall(func, x, result, exceptmask, excepts, checksign) do { \
125 test(func, x, result, exceptmask, excepts, checksign); \
126 test(func##f, x, result, exceptmask, excepts, checksign); \
127 } while (0)
128 #define testall_odd(func, x, result, exceptmask, excepts, checksign) do { \
129 testall(func, x, result, exceptmask, excepts, checksign); \
130 testall(func, -x, -result, exceptmask, excepts, checksign); \
131 } while (0)
132 #define testall_even(func, x, result, exceptmask, excepts, checksign) do { \
133 testall(func, x, result, exceptmask, excepts, checksign); \
134 testall(func, -x, result, exceptmask, excepts, checksign); \
135 } while (0)
136
137 /*
138 * Test the given function in all precisions, within a given tolerance.
139 * The tolerance is specified in ulps.
140 */
141 #define testall_tol(func, x, result, tol) do { \
142 test_tol(func, x, result, tol * DBL_ULP()); \
143 test_tol(func##f, x, result, tol * FLT_ULP()); \
144 } while (0)
145 #define testall_odd_tol(func, x, result, tol) do { \
146 test_tol(func, x, result, tol * DBL_ULP()); \
147 test_tol(func, -x, -result, tol * DBL_ULP()); \
148 } while (0)
149 #define testall_even_tol(func, x, result, tol) do { \
150 test_tol(func, x, result, tol * DBL_ULP()); \
151 test_tol(func, -x, result, tol * DBL_ULP()); \
152 } while (0)
153
154 /*
155 * Determine whether x and y are equal, with two special rules:
156 * +0.0 != -0.0
157 * NaN == NaN
158 * If checksign is 0, we compare the absolute values instead.
159 */
160 static int
fpequal(long double x,long double y,int checksign)161 fpequal(long double x, long double y, int checksign)
162 {
163 if (isnan(x) && isnan(y))
164 return (1);
165 if (checksign)
166 return (x == y && !signbit(x) == !signbit(y));
167 else
168 return (fabsl(x) == fabsl(y));
169 }
170
171 static int
fpequal_tol(long double x,long double y,long double tol)172 fpequal_tol(long double x, long double y, long double tol)
173 {
174 fenv_t env;
175 int ret;
176
177 if (isnan(x) && isnan(y))
178 return (1);
179 if (!signbit(x) != !signbit(y) && tol == 0)
180 return (0);
181 if (x == y)
182 return (1);
183 if (tol == 0)
184 return (0);
185
186 /* Hard case: need to check the tolerance. */
187 feholdexcept(&env);
188 /*
189 * For our purposes here, if y=0, we interpret tol as an absolute
190 * tolerance. This is to account for roundoff in the input, e.g.,
191 * cos(Pi/2) ~= 0.
192 */
193 if (y == 0.0)
194 ret = fabsl(x - y) <= fabsl(tol);
195 else
196 ret = fabsl(x - y) <= fabsl(y * tol);
197 fesetenv(&env);
198 return (ret);
199 }
200
201 static int
cfpequal(long double complex x,long double complex y,int checksign)202 cfpequal(long double complex x, long double complex y, int checksign)
203 {
204 return (fpequal(creal(x), creal(y), checksign & CS_REAL)
205 && fpequal(cimag(x), cimag(y), checksign & CS_IMAG));
206 }
207
208 static int
cfpequal_tol(long double complex x,long double complex y,long double tol)209 cfpequal_tol(long double complex x, long double complex y, long double tol)
210 {
211 return (fpequal_tol(creal(x), creal(y), tol)
212 && fpequal_tol(cimag(x), cimag(y), tol));
213 }
214
215
216 /* Tests for 0 */
217 void
test_zero(void)218 test_zero(void)
219 {
220 long double complex zero = cpackl(0.0, 0.0);
221
222 /* csinh(0) = ctanh(0) = 0; ccosh(0) = 1 (no exceptions raised) */
223 testall_odd(csinh, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
224 testall_odd(csin, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
225 testall_even(ccosh, zero, 1.0, ALL_STD_EXCEPT, 0, CS_BOTH);
226 testall_even(ccos, zero, cpackl(1.0, -0.0), ALL_STD_EXCEPT, 0, CS_BOTH);
227 testall_odd(ctanh, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
228 testall_odd(ctan, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
229 }
230
231 /*
232 * Tests for NaN inputs.
233 */
234 void
test_nan()235 test_nan()
236 {
237 long double complex nan_nan = cpackl(NAN, NAN);
238 long double complex z;
239
240 /*
241 * IN CSINH CCOSH CTANH
242 * NaN,NaN NaN,NaN NaN,NaN NaN,NaN
243 * finite,NaN NaN,NaN [inval] NaN,NaN [inval] NaN,NaN [inval]
244 * NaN,finite NaN,NaN [inval] NaN,NaN [inval] NaN,NaN [inval]
245 * NaN,Inf NaN,NaN [inval] NaN,NaN [inval] NaN,NaN [inval]
246 * Inf,NaN +-Inf,NaN Inf,NaN 1,+-0
247 * 0,NaN +-0,NaN NaN,+-0 NaN,NaN [inval]
248 * NaN,0 NaN,0 NaN,+-0 NaN,0
249 */
250 z = nan_nan;
251 testall_odd(csinh, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
252 testall_even(ccosh, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
253 testall_odd(ctanh, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
254 testall_odd(csin, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
255 testall_even(ccos, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
256 testall_odd(ctan, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
257
258 z = cpackl(42, NAN);
259 testall_odd(csinh, z, nan_nan, OPT_INVALID, 0, 0);
260 testall_even(ccosh, z, nan_nan, OPT_INVALID, 0, 0);
261 /* XXX We allow a spurious inexact exception here. */
262 testall_odd(ctanh, z, nan_nan, OPT_INVALID & ~FE_INEXACT, 0, 0);
263 testall_odd(csin, z, nan_nan, OPT_INVALID, 0, 0);
264 testall_even(ccos, z, nan_nan, OPT_INVALID, 0, 0);
265 testall_odd(ctan, z, nan_nan, OPT_INVALID, 0, 0);
266
267 z = cpackl(NAN, 42);
268 testall_odd(csinh, z, nan_nan, OPT_INVALID, 0, 0);
269 testall_even(ccosh, z, nan_nan, OPT_INVALID, 0, 0);
270 testall_odd(ctanh, z, nan_nan, OPT_INVALID, 0, 0);
271 testall_odd(csin, z, nan_nan, OPT_INVALID, 0, 0);
272 testall_even(ccos, z, nan_nan, OPT_INVALID, 0, 0);
273 /* XXX We allow a spurious inexact exception here. */
274 testall_odd(ctan, z, nan_nan, OPT_INVALID & ~FE_INEXACT, 0, 0);
275
276 z = cpackl(NAN, INFINITY);
277 testall_odd(csinh, z, nan_nan, OPT_INVALID, 0, 0);
278 testall_even(ccosh, z, nan_nan, OPT_INVALID, 0, 0);
279 testall_odd(ctanh, z, nan_nan, OPT_INVALID, 0, 0);
280 testall_odd(csin, z, cpackl(NAN, INFINITY), ALL_STD_EXCEPT, 0, 0);
281 testall_even(ccos, z, cpackl(INFINITY, NAN), ALL_STD_EXCEPT, 0,
282 CS_IMAG);
283 testall_odd(ctan, z, cpackl(0, 1), ALL_STD_EXCEPT, 0, CS_IMAG);
284
285 z = cpackl(INFINITY, NAN);
286 testall_odd(csinh, z, cpackl(INFINITY, NAN), ALL_STD_EXCEPT, 0, 0);
287 testall_even(ccosh, z, cpackl(INFINITY, NAN), ALL_STD_EXCEPT, 0,
288 CS_REAL);
289 testall_odd(ctanh, z, cpackl(1, 0), ALL_STD_EXCEPT, 0, CS_REAL);
290 testall_odd(csin, z, nan_nan, OPT_INVALID, 0, 0);
291 testall_even(ccos, z, nan_nan, OPT_INVALID, 0, 0);
292 testall_odd(ctan, z, nan_nan, OPT_INVALID, 0, 0);
293
294 z = cpackl(0, NAN);
295 testall_odd(csinh, z, cpackl(0, NAN), ALL_STD_EXCEPT, 0, 0);
296 testall_even(ccosh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0);
297 testall_odd(ctanh, z, nan_nan, OPT_INVALID, 0, 0);
298 testall_odd(csin, z, cpackl(0, NAN), ALL_STD_EXCEPT, 0, CS_REAL);
299 testall_even(ccos, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0);
300 testall_odd(ctan, z, cpackl(0, NAN), ALL_STD_EXCEPT, 0, CS_REAL);
301
302 z = cpackl(NAN, 0);
303 testall_odd(csinh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, CS_IMAG);
304 testall_even(ccosh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0);
305 testall_odd(ctanh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, CS_IMAG);
306 testall_odd(csin, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0);
307 testall_even(ccos, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0);
308 testall_odd(ctan, z, nan_nan, OPT_INVALID, 0, 0);
309 }
310
311 void
test_inf(void)312 test_inf(void)
313 {
314 static const long double finites[] = {
315 0, M_PI / 4, 3 * M_PI / 4, 5 * M_PI / 4,
316 };
317 long double complex z, c, s;
318 int i;
319
320 /*
321 * IN CSINH CCOSH CTANH
322 * Inf,Inf +-Inf,NaN inval +-Inf,NaN inval 1,+-0
323 * Inf,finite Inf cis(finite) Inf cis(finite) 1,0 sin(2 finite)
324 * 0,Inf +-0,NaN inval NaN,+-0 inval NaN,NaN inval
325 * finite,Inf NaN,NaN inval NaN,NaN inval NaN,NaN inval
326 */
327 z = cpackl(INFINITY, INFINITY);
328 testall_odd(csinh, z, cpackl(INFINITY, NAN),
329 ALL_STD_EXCEPT, FE_INVALID, 0);
330 testall_even(ccosh, z, cpackl(INFINITY, NAN),
331 ALL_STD_EXCEPT, FE_INVALID, 0);
332 testall_odd(ctanh, z, cpackl(1, 0), ALL_STD_EXCEPT, 0, CS_REAL);
333 testall_odd(csin, z, cpackl(NAN, INFINITY),
334 ALL_STD_EXCEPT, FE_INVALID, 0);
335 testall_even(ccos, z, cpackl(INFINITY, NAN),
336 ALL_STD_EXCEPT, FE_INVALID, 0);
337 testall_odd(ctan, z, cpackl(0, 1), ALL_STD_EXCEPT, 0, CS_REAL);
338
339 /* XXX We allow spurious inexact exceptions here (hard to avoid). */
340 for (i = 0; i < sizeof(finites) / sizeof(finites[0]); i++) {
341 z = cpackl(INFINITY, finites[i]);
342 c = INFINITY * cosl(finites[i]);
343 s = finites[i] == 0 ? finites[i] : INFINITY * sinl(finites[i]);
344 testall_odd(csinh, z, cpackl(c, s), OPT_INEXACT, 0, CS_BOTH);
345 testall_even(ccosh, z, cpackl(c, s), OPT_INEXACT, 0, CS_BOTH);
346 testall_odd(ctanh, z, cpackl(1, 0 * sin(finites[i] * 2)),
347 OPT_INEXACT, 0, CS_BOTH);
348 z = cpackl(finites[i], INFINITY);
349 testall_odd(csin, z, cpackl(s, c), OPT_INEXACT, 0, CS_BOTH);
350 testall_even(ccos, z, cpackl(c, -s), OPT_INEXACT, 0, CS_BOTH);
351 testall_odd(ctan, z, cpackl(0 * sin(finites[i] * 2), 1),
352 OPT_INEXACT, 0, CS_BOTH);
353 }
354
355 z = cpackl(0, INFINITY);
356 testall_odd(csinh, z, cpackl(0, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
357 testall_even(ccosh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, FE_INVALID, 0);
358 testall_odd(ctanh, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
359 z = cpackl(INFINITY, 0);
360 testall_odd(csin, z, cpackl(NAN, 0), ALL_STD_EXCEPT, FE_INVALID, 0);
361 testall_even(ccos, z, cpackl(NAN, 0), ALL_STD_EXCEPT, FE_INVALID, 0);
362 testall_odd(ctan, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
363
364 z = cpackl(42, INFINITY);
365 testall_odd(csinh, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
366 testall_even(ccosh, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
367 /* XXX We allow a spurious inexact exception here. */
368 testall_odd(ctanh, z, cpackl(NAN, NAN), OPT_INEXACT, FE_INVALID, 0);
369 z = cpackl(INFINITY, 42);
370 testall_odd(csin, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
371 testall_even(ccos, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
372 /* XXX We allow a spurious inexact exception here. */
373 testall_odd(ctan, z, cpackl(NAN, NAN), OPT_INEXACT, FE_INVALID, 0);
374 }
375
376 /* Tests along the real and imaginary axes. */
377 void
test_axes(void)378 test_axes(void)
379 {
380 static const long double nums[] = {
381 M_PI / 4, M_PI / 2, 3 * M_PI / 4,
382 5 * M_PI / 4, 3 * M_PI / 2, 7 * M_PI / 4,
383 };
384 long double complex z;
385 int i;
386
387 for (i = 0; i < sizeof(nums) / sizeof(nums[0]); i++) {
388 /* Real axis */
389 z = cpackl(nums[i], 0.0);
390 testall_odd_tol(csinh, z, cpackl(sinh(nums[i]), 0), 0);
391 testall_even_tol(ccosh, z, cpackl(cosh(nums[i]), 0), 0);
392 testall_odd_tol(ctanh, z, cpackl(tanh(nums[i]), 0), 1);
393 testall_odd_tol(csin, z, cpackl(sin(nums[i]),
394 copysign(0, cos(nums[i]))), 0);
395 testall_even_tol(ccos, z, cpackl(cos(nums[i]),
396 -copysign(0, sin(nums[i]))), 0);
397 testall_odd_tol(ctan, z, cpackl(tan(nums[i]), 0), 1);
398
399 /* Imaginary axis */
400 z = cpackl(0.0, nums[i]);
401 testall_odd_tol(csinh, z, cpackl(copysign(0, cos(nums[i])),
402 sin(nums[i])), 0);
403 testall_even_tol(ccosh, z, cpackl(cos(nums[i]),
404 copysign(0, sin(nums[i]))), 0);
405 testall_odd_tol(ctanh, z, cpackl(0, tan(nums[i])), 1);
406 testall_odd_tol(csin, z, cpackl(0, sinh(nums[i])), 0);
407 testall_even_tol(ccos, z, cpackl(cosh(nums[i]), -0.0), 0);
408 testall_odd_tol(ctan, z, cpackl(0, tanh(nums[i])), 1);
409 }
410 }
411
412 void
test_small(void)413 test_small(void)
414 {
415 /*
416 * z = 0.5 + i Pi/4
417 * sinh(z) = (sinh(0.5) + i cosh(0.5)) * sqrt(2)/2
418 * cosh(z) = (cosh(0.5) + i sinh(0.5)) * sqrt(2)/2
419 * tanh(z) = (2cosh(0.5)sinh(0.5) + i) / (2 cosh(0.5)**2 - 1)
420 * z = -0.5 + i Pi/2
421 * sinh(z) = cosh(0.5)
422 * cosh(z) = -i sinh(0.5)
423 * tanh(z) = -coth(0.5)
424 * z = 1.0 + i 3Pi/4
425 * sinh(z) = (-sinh(1) + i cosh(1)) * sqrt(2)/2
426 * cosh(z) = (-cosh(1) + i sinh(1)) * sqrt(2)/2
427 * tanh(z) = (2cosh(1)sinh(1) - i) / (2cosh(1)**2 - 1)
428 */
429 static const struct {
430 long double a, b;
431 long double sinh_a, sinh_b;
432 long double cosh_a, cosh_b;
433 long double tanh_a, tanh_b;
434 } tests[] = {
435 { 0.5L,
436 0.78539816339744830961566084581987572L,
437 0.36847002415910435172083660522240710L,
438 0.79735196663945774996093142586179334L,
439 0.79735196663945774996093142586179334L,
440 0.36847002415910435172083660522240710L,
441 0.76159415595576488811945828260479359L,
442 0.64805427366388539957497735322615032L },
443 { -0.5L,
444 1.57079632679489661923132169163975144L,
445 0.0L,
446 1.12762596520638078522622516140267201L,
447 0.0L,
448 -0.52109530549374736162242562641149156L,
449 -2.16395341373865284877000401021802312L,
450 0.0L },
451 { 1.0L,
452 2.35619449019234492884698253745962716L,
453 -0.83099273328405698212637979852748608L,
454 1.09112278079550143030545602018565236L,
455 -1.09112278079550143030545602018565236L,
456 0.83099273328405698212637979852748609L,
457 0.96402758007581688394641372410092315L,
458 -0.26580222883407969212086273981988897L }
459 };
460 long double complex z;
461 int i;
462
463 for (i = 0; i < sizeof(tests) / sizeof(tests[0]); i++) {
464 z = cpackl(tests[i].a, tests[i].b);
465 testall_odd_tol(csinh, z,
466 cpackl(tests[i].sinh_a, tests[i].sinh_b), 1.1);
467 testall_even_tol(ccosh, z,
468 cpackl(tests[i].cosh_a, tests[i].cosh_b), 1.1);
469 testall_odd_tol(ctanh, z,
470 cpackl(tests[i].tanh_a, tests[i].tanh_b), 1.1);
471 }
472 }
473
474 /* Test inputs that might cause overflow in a sloppy implementation. */
475 void
test_large(void)476 test_large(void)
477 {
478 long double complex z;
479
480 /* tanh() uses a threshold around x=22, so check both sides. */
481 z = cpackl(21, 0.78539816339744830961566084581987572L);
482 testall_odd_tol(ctanh, z,
483 cpackl(1.0, 1.14990445285871196133287617611468468e-18L), 1);
484 z++;
485 testall_odd_tol(ctanh, z,
486 cpackl(1.0, 1.55622644822675930314266334585597964e-19L), 1);
487
488 z = cpackl(355, 0.78539816339744830961566084581987572L);
489 testall_odd_tol(ctanh, z,
490 cpackl(1.0, 8.95257245135025991216632140458264468e-309L), 1);
491 z = cpackl(30, 0x1p1023L);
492 testall_odd_tol(ctanh, z,
493 cpackl(1.0, -1.62994325413993477997492170229268382e-26L), 1);
494 z = cpackl(1, 0x1p1023L);
495 testall_odd_tol(ctanh, z,
496 cpackl(0.878606311888306869546254022621986509L,
497 -0.225462792499754505792678258169527424L), 1);
498
499 z = cpackl(710.6, 0.78539816339744830961566084581987572L);
500 testall_odd_tol(csinh, z,
501 cpackl(1.43917579766621073533185387499658944e308L,
502 1.43917579766621073533185387499658944e308L), 1);
503 testall_even_tol(ccosh, z,
504 cpackl(1.43917579766621073533185387499658944e308L,
505 1.43917579766621073533185387499658944e308L), 1);
506
507 z = cpackl(1500, 0.78539816339744830961566084581987572L);
508 testall_odd(csinh, z, cpackl(INFINITY, INFINITY), OPT_INEXACT,
509 FE_OVERFLOW, CS_BOTH);
510 testall_even(ccosh, z, cpackl(INFINITY, INFINITY), OPT_INEXACT,
511 FE_OVERFLOW, CS_BOTH);
512 }
513
514 int
main(int argc,char * argv[])515 main(int argc, char *argv[])
516 {
517
518 printf("1..6\n");
519
520 test_zero();
521 printf("ok 1 - ctrig zero\n");
522
523 test_nan();
524 printf("ok 2 - ctrig nan\n");
525
526 test_inf();
527 printf("ok 3 - ctrig inf\n");
528
529 test_axes();
530 printf("ok 4 - ctrig axes\n");
531
532 test_small();
533 printf("ok 5 - ctrig small\n");
534
535 test_large();
536 printf("ok 6 - ctrig large\n");
537
538 return (0);
539 }
540