1 // Bitmap Allocator. -*- C++ -*-
2
3 // Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
11
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
20
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
25
26 /** @file ext/bitmap_allocator.h
27 * This file is a GNU extension to the Standard C++ Library.
28 */
29
30 #ifndef _BITMAP_ALLOCATOR_H
31 #define _BITMAP_ALLOCATOR_H 1
32
33 #include <utility> // For std::pair.
34 #include <bits/functexcept.h> // For __throw_bad_alloc().
35 #include <functional> // For greater_equal, and less_equal.
36 #include <new> // For operator new.
37 #include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
38 #include <ext/concurrence.h>
39 #include <bits/move.h>
40
41 /** @brief The constant in the expression below is the alignment
42 * required in bytes.
43 */
44 #define _BALLOC_ALIGN_BYTES 8
45
_GLIBCXX_VISIBILITY(default)46 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
47 {
48 using std::size_t;
49 using std::ptrdiff_t;
50
51 namespace __detail
52 {
53 _GLIBCXX_BEGIN_NAMESPACE_VERSION
54 /** @class __mini_vector bitmap_allocator.h bitmap_allocator.h
55 *
56 * @brief __mini_vector<> is a stripped down version of the
57 * full-fledged std::vector<>.
58 *
59 * It is to be used only for built-in types or PODs. Notable
60 * differences are:
61 *
62 * 1. Not all accessor functions are present.
63 * 2. Used ONLY for PODs.
64 * 3. No Allocator template argument. Uses ::operator new() to get
65 * memory, and ::operator delete() to free it.
66 * Caveat: The dtor does NOT free the memory allocated, so this a
67 * memory-leaking vector!
68 */
69 template<typename _Tp>
70 class __mini_vector
71 {
72 __mini_vector(const __mini_vector&);
73 __mini_vector& operator=(const __mini_vector&);
74
75 public:
76 typedef _Tp value_type;
77 typedef _Tp* pointer;
78 typedef _Tp& reference;
79 typedef const _Tp& const_reference;
80 typedef size_t size_type;
81 typedef ptrdiff_t difference_type;
82 typedef pointer iterator;
83
84 private:
85 pointer _M_start;
86 pointer _M_finish;
87 pointer _M_end_of_storage;
88
89 size_type
90 _M_space_left() const throw()
91 { return _M_end_of_storage - _M_finish; }
92
93 pointer
94 allocate(size_type __n)
95 { return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
96
97 void
98 deallocate(pointer __p, size_type)
99 { ::operator delete(__p); }
100
101 public:
102 // Members used: size(), push_back(), pop_back(),
103 // insert(iterator, const_reference), erase(iterator),
104 // begin(), end(), back(), operator[].
105
106 __mini_vector()
107 : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
108
109 size_type
110 size() const throw()
111 { return _M_finish - _M_start; }
112
113 iterator
114 begin() const throw()
115 { return this->_M_start; }
116
117 iterator
118 end() const throw()
119 { return this->_M_finish; }
120
121 reference
122 back() const throw()
123 { return *(this->end() - 1); }
124
125 reference
126 operator[](const size_type __pos) const throw()
127 { return this->_M_start[__pos]; }
128
129 void
130 insert(iterator __pos, const_reference __x);
131
132 void
133 push_back(const_reference __x)
134 {
135 if (this->_M_space_left())
136 {
137 *this->end() = __x;
138 ++this->_M_finish;
139 }
140 else
141 this->insert(this->end(), __x);
142 }
143
144 void
145 pop_back() throw()
146 { --this->_M_finish; }
147
148 void
149 erase(iterator __pos) throw();
150
151 void
152 clear() throw()
153 { this->_M_finish = this->_M_start; }
154 };
155
156 // Out of line function definitions.
157 template<typename _Tp>
158 void __mini_vector<_Tp>::
159 insert(iterator __pos, const_reference __x)
160 {
161 if (this->_M_space_left())
162 {
163 size_type __to_move = this->_M_finish - __pos;
164 iterator __dest = this->end();
165 iterator __src = this->end() - 1;
166
167 ++this->_M_finish;
168 while (__to_move)
169 {
170 *__dest = *__src;
171 --__dest; --__src; --__to_move;
172 }
173 *__pos = __x;
174 }
175 else
176 {
177 size_type __new_size = this->size() ? this->size() * 2 : 1;
178 iterator __new_start = this->allocate(__new_size);
179 iterator __first = this->begin();
180 iterator __start = __new_start;
181 while (__first != __pos)
182 {
183 *__start = *__first;
184 ++__start; ++__first;
185 }
186 *__start = __x;
187 ++__start;
188 while (__first != this->end())
189 {
190 *__start = *__first;
191 ++__start; ++__first;
192 }
193 if (this->_M_start)
194 this->deallocate(this->_M_start, this->size());
195
196 this->_M_start = __new_start;
197 this->_M_finish = __start;
198 this->_M_end_of_storage = this->_M_start + __new_size;
199 }
200 }
201
202 template<typename _Tp>
203 void __mini_vector<_Tp>::
204 erase(iterator __pos) throw()
205 {
206 while (__pos + 1 != this->end())
207 {
208 *__pos = __pos[1];
209 ++__pos;
210 }
211 --this->_M_finish;
212 }
213
214
215 template<typename _Tp>
216 struct __mv_iter_traits
217 {
218 typedef typename _Tp::value_type value_type;
219 typedef typename _Tp::difference_type difference_type;
220 };
221
222 template<typename _Tp>
223 struct __mv_iter_traits<_Tp*>
224 {
225 typedef _Tp value_type;
226 typedef ptrdiff_t difference_type;
227 };
228
229 enum
230 {
231 bits_per_byte = 8,
232 bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
233 };
234
235 template<typename _ForwardIterator, typename _Tp, typename _Compare>
236 _ForwardIterator
237 __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
238 const _Tp& __val, _Compare __comp)
239 {
240 typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
241 _DistanceType;
242
243 _DistanceType __len = __last - __first;
244 _DistanceType __half;
245 _ForwardIterator __middle;
246
247 while (__len > 0)
248 {
249 __half = __len >> 1;
250 __middle = __first;
251 __middle += __half;
252 if (__comp(*__middle, __val))
253 {
254 __first = __middle;
255 ++__first;
256 __len = __len - __half - 1;
257 }
258 else
259 __len = __half;
260 }
261 return __first;
262 }
263
264 /** @brief The number of Blocks pointed to by the address pair
265 * passed to the function.
266 */
267 template<typename _AddrPair>
268 inline size_t
269 __num_blocks(_AddrPair __ap)
270 { return (__ap.second - __ap.first) + 1; }
271
272 /** @brief The number of Bit-maps pointed to by the address pair
273 * passed to the function.
274 */
275 template<typename _AddrPair>
276 inline size_t
277 __num_bitmaps(_AddrPair __ap)
278 { return __num_blocks(__ap) / size_t(bits_per_block); }
279
280 // _Tp should be a pointer type.
281 template<typename _Tp>
282 class _Inclusive_between
283 : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
284 {
285 typedef _Tp pointer;
286 pointer _M_ptr_value;
287 typedef typename std::pair<_Tp, _Tp> _Block_pair;
288
289 public:
290 _Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
291 { }
292
293 bool
294 operator()(_Block_pair __bp) const throw()
295 {
296 if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
297 && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
298 return true;
299 else
300 return false;
301 }
302 };
303
304 // Used to pass a Functor to functions by reference.
305 template<typename _Functor>
306 class _Functor_Ref
307 : public std::unary_function<typename _Functor::argument_type,
308 typename _Functor::result_type>
309 {
310 _Functor& _M_fref;
311
312 public:
313 typedef typename _Functor::argument_type argument_type;
314 typedef typename _Functor::result_type result_type;
315
316 _Functor_Ref(_Functor& __fref) : _M_fref(__fref)
317 { }
318
319 result_type
320 operator()(argument_type __arg)
321 { return _M_fref(__arg); }
322 };
323
324 /** @class _Ffit_finder bitmap_allocator.h bitmap_allocator.h
325 *
326 * @brief The class which acts as a predicate for applying the
327 * first-fit memory allocation policy for the bitmap allocator.
328 */
329 // _Tp should be a pointer type, and _Alloc is the Allocator for
330 // the vector.
331 template<typename _Tp>
332 class _Ffit_finder
333 : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
334 {
335 typedef typename std::pair<_Tp, _Tp> _Block_pair;
336 typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
337 typedef typename _BPVector::difference_type _Counter_type;
338
339 size_t* _M_pbitmap;
340 _Counter_type _M_data_offset;
341
342 public:
343 _Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
344 { }
345
346 bool
347 operator()(_Block_pair __bp) throw()
348 {
349 // Set the _rover to the last physical location bitmap,
350 // which is the bitmap which belongs to the first free
351 // block. Thus, the bitmaps are in exact reverse order of
352 // the actual memory layout. So, we count down the bitmaps,
353 // which is the same as moving up the memory.
354
355 // If the used count stored at the start of the Bit Map headers
356 // is equal to the number of Objects that the current Block can
357 // store, then there is definitely no space for another single
358 // object, so just return false.
359 _Counter_type __diff = __detail::__num_bitmaps(__bp);
360
361 if (*(reinterpret_cast<size_t*>
362 (__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
363 return false;
364
365 size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
366
367 for (_Counter_type __i = 0; __i < __diff; ++__i)
368 {
369 _M_data_offset = __i;
370 if (*__rover)
371 {
372 _M_pbitmap = __rover;
373 return true;
374 }
375 --__rover;
376 }
377 return false;
378 }
379
380 size_t*
381 _M_get() const throw()
382 { return _M_pbitmap; }
383
384 _Counter_type
385 _M_offset() const throw()
386 { return _M_data_offset * size_t(bits_per_block); }
387 };
388
389 /** @class _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
390 *
391 * @brief The bitmap counter which acts as the bitmap
392 * manipulator, and manages the bit-manipulation functions and
393 * the searching and identification functions on the bit-map.
394 */
395 // _Tp should be a pointer type.
396 template<typename _Tp>
397 class _Bitmap_counter
398 {
399 typedef typename
400 __detail::__mini_vector<typename std::pair<_Tp, _Tp> > _BPVector;
401 typedef typename _BPVector::size_type _Index_type;
402 typedef _Tp pointer;
403
404 _BPVector& _M_vbp;
405 size_t* _M_curr_bmap;
406 size_t* _M_last_bmap_in_block;
407 _Index_type _M_curr_index;
408
409 public:
410 // Use the 2nd parameter with care. Make sure that such an
411 // entry exists in the vector before passing that particular
412 // index to this ctor.
413 _Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
414 { this->_M_reset(__index); }
415
416 void
417 _M_reset(long __index = -1) throw()
418 {
419 if (__index == -1)
420 {
421 _M_curr_bmap = 0;
422 _M_curr_index = static_cast<_Index_type>(-1);
423 return;
424 }
425
426 _M_curr_index = __index;
427 _M_curr_bmap = reinterpret_cast<size_t*>
428 (_M_vbp[_M_curr_index].first) - 1;
429
430 _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
431
432 _M_last_bmap_in_block = _M_curr_bmap
433 - ((_M_vbp[_M_curr_index].second
434 - _M_vbp[_M_curr_index].first + 1)
435 / size_t(bits_per_block) - 1);
436 }
437
438 // Dangerous Function! Use with extreme care. Pass to this
439 // function ONLY those values that are known to be correct,
440 // otherwise this will mess up big time.
441 void
442 _M_set_internal_bitmap(size_t* __new_internal_marker) throw()
443 { _M_curr_bmap = __new_internal_marker; }
444
445 bool
446 _M_finished() const throw()
447 { return(_M_curr_bmap == 0); }
448
449 _Bitmap_counter&
450 operator++() throw()
451 {
452 if (_M_curr_bmap == _M_last_bmap_in_block)
453 {
454 if (++_M_curr_index == _M_vbp.size())
455 _M_curr_bmap = 0;
456 else
457 this->_M_reset(_M_curr_index);
458 }
459 else
460 --_M_curr_bmap;
461 return *this;
462 }
463
464 size_t*
465 _M_get() const throw()
466 { return _M_curr_bmap; }
467
468 pointer
469 _M_base() const throw()
470 { return _M_vbp[_M_curr_index].first; }
471
472 _Index_type
473 _M_offset() const throw()
474 {
475 return size_t(bits_per_block)
476 * ((reinterpret_cast<size_t*>(this->_M_base())
477 - _M_curr_bmap) - 1);
478 }
479
480 _Index_type
481 _M_where() const throw()
482 { return _M_curr_index; }
483 };
484
485 /** @brief Mark a memory address as allocated by re-setting the
486 * corresponding bit in the bit-map.
487 */
488 inline void
489 __bit_allocate(size_t* __pbmap, size_t __pos) throw()
490 {
491 size_t __mask = 1 << __pos;
492 __mask = ~__mask;
493 *__pbmap &= __mask;
494 }
495
496 /** @brief Mark a memory address as free by setting the
497 * corresponding bit in the bit-map.
498 */
499 inline void
500 __bit_free(size_t* __pbmap, size_t __pos) throw()
501 {
502 size_t __mask = 1 << __pos;
503 *__pbmap |= __mask;
504 }
505
506 _GLIBCXX_END_NAMESPACE_VERSION
507 } // namespace __detail
508
509 _GLIBCXX_BEGIN_NAMESPACE_VERSION
510
511 /** @brief Generic Version of the bsf instruction.
512 */
513 inline size_t
514 _Bit_scan_forward(size_t __num)
515 { return static_cast<size_t>(__builtin_ctzl(__num)); }
516
517 /** @class free_list bitmap_allocator.h bitmap_allocator.h
518 *
519 * @brief The free list class for managing chunks of memory to be
520 * given to and returned by the bitmap_allocator.
521 */
522 class free_list
523 {
524 public:
525 typedef size_t* value_type;
526 typedef __detail::__mini_vector<value_type> vector_type;
527 typedef vector_type::iterator iterator;
528 typedef __mutex __mutex_type;
529
530 private:
531 struct _LT_pointer_compare
532 {
533 bool
534 operator()(const size_t* __pui,
535 const size_t __cui) const throw()
536 { return *__pui < __cui; }
537 };
538
539 #if defined __GTHREADS
540 __mutex_type&
541 _M_get_mutex()
542 {
543 static __mutex_type _S_mutex;
544 return _S_mutex;
545 }
546 #endif
547
548 vector_type&
549 _M_get_free_list()
550 {
551 static vector_type _S_free_list;
552 return _S_free_list;
553 }
554
555 /** @brief Performs validation of memory based on their size.
556 *
557 * @param __addr The pointer to the memory block to be
558 * validated.
559 *
560 * Validates the memory block passed to this function and
561 * appropriately performs the action of managing the free list of
562 * blocks by adding this block to the free list or deleting this
563 * or larger blocks from the free list.
564 */
565 void
566 _M_validate(size_t* __addr) throw()
567 {
568 vector_type& __free_list = _M_get_free_list();
569 const vector_type::size_type __max_size = 64;
570 if (__free_list.size() >= __max_size)
571 {
572 // Ok, the threshold value has been reached. We determine
573 // which block to remove from the list of free blocks.
574 if (*__addr >= *__free_list.back())
575 {
576 // Ok, the new block is greater than or equal to the
577 // last block in the list of free blocks. We just free
578 // the new block.
579 ::operator delete(static_cast<void*>(__addr));
580 return;
581 }
582 else
583 {
584 // Deallocate the last block in the list of free lists,
585 // and insert the new one in its correct position.
586 ::operator delete(static_cast<void*>(__free_list.back()));
587 __free_list.pop_back();
588 }
589 }
590
591 // Just add the block to the list of free lists unconditionally.
592 iterator __temp = __detail::__lower_bound
593 (__free_list.begin(), __free_list.end(),
594 *__addr, _LT_pointer_compare());
595
596 // We may insert the new free list before _temp;
597 __free_list.insert(__temp, __addr);
598 }
599
600 /** @brief Decides whether the wastage of memory is acceptable for
601 * the current memory request and returns accordingly.
602 *
603 * @param __block_size The size of the block available in the free
604 * list.
605 *
606 * @param __required_size The required size of the memory block.
607 *
608 * @return true if the wastage incurred is acceptable, else returns
609 * false.
610 */
611 bool
612 _M_should_i_give(size_t __block_size,
613 size_t __required_size) throw()
614 {
615 const size_t __max_wastage_percentage = 36;
616 if (__block_size >= __required_size &&
617 (((__block_size - __required_size) * 100 / __block_size)
618 < __max_wastage_percentage))
619 return true;
620 else
621 return false;
622 }
623
624 public:
625 /** @brief This function returns the block of memory to the
626 * internal free list.
627 *
628 * @param __addr The pointer to the memory block that was given
629 * by a call to the _M_get function.
630 */
631 inline void
632 _M_insert(size_t* __addr) throw()
633 {
634 #if defined __GTHREADS
635 __scoped_lock __bfl_lock(_M_get_mutex());
636 #endif
637 // Call _M_validate to decide what should be done with
638 // this particular free list.
639 this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
640 // See discussion as to why this is 1!
641 }
642
643 /** @brief This function gets a block of memory of the specified
644 * size from the free list.
645 *
646 * @param __sz The size in bytes of the memory required.
647 *
648 * @return A pointer to the new memory block of size at least
649 * equal to that requested.
650 */
651 size_t*
652 _M_get(size_t __sz) throw(std::bad_alloc);
653
654 /** @brief This function just clears the internal Free List, and
655 * gives back all the memory to the OS.
656 */
657 void
658 _M_clear();
659 };
660
661
662 // Forward declare the class.
663 template<typename _Tp>
664 class bitmap_allocator;
665
666 // Specialize for void:
667 template<>
668 class bitmap_allocator<void>
669 {
670 public:
671 typedef void* pointer;
672 typedef const void* const_pointer;
673
674 // Reference-to-void members are impossible.
675 typedef void value_type;
676 template<typename _Tp1>
677 struct rebind
678 {
679 typedef bitmap_allocator<_Tp1> other;
680 };
681 };
682
683 /**
684 * @brief Bitmap Allocator, primary template.
685 * @ingroup allocators
686 */
687 template<typename _Tp>
688 class bitmap_allocator : private free_list
689 {
690 public:
691 typedef size_t size_type;
692 typedef ptrdiff_t difference_type;
693 typedef _Tp* pointer;
694 typedef const _Tp* const_pointer;
695 typedef _Tp& reference;
696 typedef const _Tp& const_reference;
697 typedef _Tp value_type;
698 typedef free_list::__mutex_type __mutex_type;
699
700 template<typename _Tp1>
701 struct rebind
702 {
703 typedef bitmap_allocator<_Tp1> other;
704 };
705
706 private:
707 template<size_t _BSize, size_t _AlignSize>
708 struct aligned_size
709 {
710 enum
711 {
712 modulus = _BSize % _AlignSize,
713 value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
714 };
715 };
716
717 struct _Alloc_block
718 {
719 char __M_unused[aligned_size<sizeof(value_type),
720 _BALLOC_ALIGN_BYTES>::value];
721 };
722
723
724 typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
725
726 typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
727 typedef typename _BPVector::iterator _BPiter;
728
729 template<typename _Predicate>
730 static _BPiter
731 _S_find(_Predicate __p)
732 {
733 _BPiter __first = _S_mem_blocks.begin();
734 while (__first != _S_mem_blocks.end() && !__p(*__first))
735 ++__first;
736 return __first;
737 }
738
739 #if defined _GLIBCXX_DEBUG
740 // Complexity: O(lg(N)). Where, N is the number of block of size
741 // sizeof(value_type).
742 void
743 _S_check_for_free_blocks() throw()
744 {
745 typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
746 _BPiter __bpi = _S_find(_FFF());
747
748 _GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
749 }
750 #endif
751
752 /** @brief Responsible for exponentially growing the internal
753 * memory pool.
754 *
755 * @throw std::bad_alloc. If memory can not be allocated.
756 *
757 * Complexity: O(1), but internally depends upon the
758 * complexity of the function free_list::_M_get. The part where
759 * the bitmap headers are written has complexity: O(X),where X
760 * is the number of blocks of size sizeof(value_type) within
761 * the newly acquired block. Having a tight bound.
762 */
763 void
764 _S_refill_pool() throw(std::bad_alloc)
765 {
766 #if defined _GLIBCXX_DEBUG
767 _S_check_for_free_blocks();
768 #endif
769
770 const size_t __num_bitmaps = (_S_block_size
771 / size_t(__detail::bits_per_block));
772 const size_t __size_to_allocate = sizeof(size_t)
773 + _S_block_size * sizeof(_Alloc_block)
774 + __num_bitmaps * sizeof(size_t);
775
776 size_t* __temp =
777 reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
778 *__temp = 0;
779 ++__temp;
780
781 // The Header information goes at the Beginning of the Block.
782 _Block_pair __bp =
783 std::make_pair(reinterpret_cast<_Alloc_block*>
784 (__temp + __num_bitmaps),
785 reinterpret_cast<_Alloc_block*>
786 (__temp + __num_bitmaps)
787 + _S_block_size - 1);
788
789 // Fill the Vector with this information.
790 _S_mem_blocks.push_back(__bp);
791
792 for (size_t __i = 0; __i < __num_bitmaps; ++__i)
793 __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
794
795 _S_block_size *= 2;
796 }
797
798 static _BPVector _S_mem_blocks;
799 static size_t _S_block_size;
800 static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
801 static typename _BPVector::size_type _S_last_dealloc_index;
802 #if defined __GTHREADS
803 static __mutex_type _S_mut;
804 #endif
805
806 public:
807
808 /** @brief Allocates memory for a single object of size
809 * sizeof(_Tp).
810 *
811 * @throw std::bad_alloc. If memory can not be allocated.
812 *
813 * Complexity: Worst case complexity is O(N), but that
814 * is hardly ever hit. If and when this particular case is
815 * encountered, the next few cases are guaranteed to have a
816 * worst case complexity of O(1)! That's why this function
817 * performs very well on average. You can consider this
818 * function to have a complexity referred to commonly as:
819 * Amortized Constant time.
820 */
821 pointer
822 _M_allocate_single_object() throw(std::bad_alloc)
823 {
824 #if defined __GTHREADS
825 __scoped_lock __bit_lock(_S_mut);
826 #endif
827
828 // The algorithm is something like this: The last_request
829 // variable points to the last accessed Bit Map. When such a
830 // condition occurs, we try to find a free block in the
831 // current bitmap, or succeeding bitmaps until the last bitmap
832 // is reached. If no free block turns up, we resort to First
833 // Fit method.
834
835 // WARNING: Do not re-order the condition in the while
836 // statement below, because it relies on C++'s short-circuit
837 // evaluation. The return from _S_last_request->_M_get() will
838 // NOT be dereference able if _S_last_request->_M_finished()
839 // returns true. This would inevitably lead to a NULL pointer
840 // dereference if tinkered with.
841 while (_S_last_request._M_finished() == false
842 && (*(_S_last_request._M_get()) == 0))
843 _S_last_request.operator++();
844
845 if (__builtin_expect(_S_last_request._M_finished() == true, false))
846 {
847 // Fall Back to First Fit algorithm.
848 typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
849 _FFF __fff;
850 _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
851
852 if (__bpi != _S_mem_blocks.end())
853 {
854 // Search was successful. Ok, now mark the first bit from
855 // the right as 0, meaning Allocated. This bit is obtained
856 // by calling _M_get() on __fff.
857 size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
858 __detail::__bit_allocate(__fff._M_get(), __nz_bit);
859
860 _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
861
862 // Now, get the address of the bit we marked as allocated.
863 pointer __ret = reinterpret_cast<pointer>
864 (__bpi->first + __fff._M_offset() + __nz_bit);
865 size_t* __puse_count =
866 reinterpret_cast<size_t*>
867 (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
868
869 ++(*__puse_count);
870 return __ret;
871 }
872 else
873 {
874 // Search was unsuccessful. We Add more memory to the
875 // pool by calling _S_refill_pool().
876 _S_refill_pool();
877
878 // _M_Reset the _S_last_request structure to the first
879 // free block's bit map.
880 _S_last_request._M_reset(_S_mem_blocks.size() - 1);
881
882 // Now, mark that bit as allocated.
883 }
884 }
885
886 // _S_last_request holds a pointer to a valid bit map, that
887 // points to a free block in memory.
888 size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
889 __detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
890
891 pointer __ret = reinterpret_cast<pointer>
892 (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
893
894 size_t* __puse_count = reinterpret_cast<size_t*>
895 (_S_mem_blocks[_S_last_request._M_where()].first)
896 - (__detail::
897 __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
898
899 ++(*__puse_count);
900 return __ret;
901 }
902
903 /** @brief Deallocates memory that belongs to a single object of
904 * size sizeof(_Tp).
905 *
906 * Complexity: O(lg(N)), but the worst case is not hit
907 * often! This is because containers usually deallocate memory
908 * close to each other and this case is handled in O(1) time by
909 * the deallocate function.
910 */
911 void
912 _M_deallocate_single_object(pointer __p) throw()
913 {
914 #if defined __GTHREADS
915 __scoped_lock __bit_lock(_S_mut);
916 #endif
917 _Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
918
919 typedef typename _BPVector::iterator _Iterator;
920 typedef typename _BPVector::difference_type _Difference_type;
921
922 _Difference_type __diff;
923 long __displacement;
924
925 _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
926
927 __detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
928 if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
929 {
930 _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
931 <= _S_mem_blocks.size() - 1);
932
933 // Initial Assumption was correct!
934 __diff = _S_last_dealloc_index;
935 __displacement = __real_p - _S_mem_blocks[__diff].first;
936 }
937 else
938 {
939 _Iterator _iter = _S_find(__ibt);
940
941 _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
942
943 __diff = _iter - _S_mem_blocks.begin();
944 __displacement = __real_p - _S_mem_blocks[__diff].first;
945 _S_last_dealloc_index = __diff;
946 }
947
948 // Get the position of the iterator that has been found.
949 const size_t __rotate = (__displacement
950 % size_t(__detail::bits_per_block));
951 size_t* __bitmapC =
952 reinterpret_cast<size_t*>
953 (_S_mem_blocks[__diff].first) - 1;
954 __bitmapC -= (__displacement / size_t(__detail::bits_per_block));
955
956 __detail::__bit_free(__bitmapC, __rotate);
957 size_t* __puse_count = reinterpret_cast<size_t*>
958 (_S_mem_blocks[__diff].first)
959 - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
960
961 _GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
962
963 --(*__puse_count);
964
965 if (__builtin_expect(*__puse_count == 0, false))
966 {
967 _S_block_size /= 2;
968
969 // We can safely remove this block.
970 // _Block_pair __bp = _S_mem_blocks[__diff];
971 this->_M_insert(__puse_count);
972 _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
973
974 // Reset the _S_last_request variable to reflect the
975 // erased block. We do this to protect future requests
976 // after the last block has been removed from a particular
977 // memory Chunk, which in turn has been returned to the
978 // free list, and hence had been erased from the vector,
979 // so the size of the vector gets reduced by 1.
980 if ((_Difference_type)_S_last_request._M_where() >= __diff--)
981 _S_last_request._M_reset(__diff);
982
983 // If the Index into the vector of the region of memory
984 // that might hold the next address that will be passed to
985 // deallocated may have been invalidated due to the above
986 // erase procedure being called on the vector, hence we
987 // try to restore this invariant too.
988 if (_S_last_dealloc_index >= _S_mem_blocks.size())
989 {
990 _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
991 _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
992 }
993 }
994 }
995
996 public:
997 bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
998 { }
999
1000 bitmap_allocator(const bitmap_allocator&) _GLIBCXX_USE_NOEXCEPT
1001 { }
1002
1003 template<typename _Tp1>
1004 bitmap_allocator(const bitmap_allocator<_Tp1>&) _GLIBCXX_USE_NOEXCEPT
1005 { }
1006
1007 ~bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1008 { }
1009
1010 pointer
1011 allocate(size_type __n)
1012 {
1013 if (__n > this->max_size())
1014 std::__throw_bad_alloc();
1015
1016 if (__builtin_expect(__n == 1, true))
1017 return this->_M_allocate_single_object();
1018 else
1019 {
1020 const size_type __b = __n * sizeof(value_type);
1021 return reinterpret_cast<pointer>(::operator new(__b));
1022 }
1023 }
1024
1025 pointer
1026 allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1027 { return allocate(__n); }
1028
1029 void
1030 deallocate(pointer __p, size_type __n) throw()
1031 {
1032 if (__builtin_expect(__p != 0, true))
1033 {
1034 if (__builtin_expect(__n == 1, true))
1035 this->_M_deallocate_single_object(__p);
1036 else
1037 ::operator delete(__p);
1038 }
1039 }
1040
1041 pointer
1042 address(reference __r) const _GLIBCXX_NOEXCEPT
1043 { return std::__addressof(__r); }
1044
1045 const_pointer
1046 address(const_reference __r) const _GLIBCXX_NOEXCEPT
1047 { return std::__addressof(__r); }
1048
1049 size_type
1050 max_size() const _GLIBCXX_USE_NOEXCEPT
1051 { return size_type(-1) / sizeof(value_type); }
1052
1053 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1054 template<typename _Up, typename... _Args>
1055 void
1056 construct(_Up* __p, _Args&&... __args)
1057 { ::new((void *)__p) _Up(std::forward<_Args>(__args)...); }
1058
1059 template<typename _Up>
1060 void
1061 destroy(_Up* __p)
1062 { __p->~_Up(); }
1063 #else
1064 void
1065 construct(pointer __p, const_reference __data)
1066 { ::new((void *)__p) value_type(__data); }
1067
1068 void
1069 destroy(pointer __p)
1070 { __p->~value_type(); }
1071 #endif
1072 };
1073
1074 template<typename _Tp1, typename _Tp2>
1075 bool
1076 operator==(const bitmap_allocator<_Tp1>&,
1077 const bitmap_allocator<_Tp2>&) throw()
1078 { return true; }
1079
1080 template<typename _Tp1, typename _Tp2>
1081 bool
1082 operator!=(const bitmap_allocator<_Tp1>&,
1083 const bitmap_allocator<_Tp2>&) throw()
1084 { return false; }
1085
1086 // Static member definitions.
1087 template<typename _Tp>
1088 typename bitmap_allocator<_Tp>::_BPVector
1089 bitmap_allocator<_Tp>::_S_mem_blocks;
1090
1091 template<typename _Tp>
1092 size_t bitmap_allocator<_Tp>::_S_block_size =
1093 2 * size_t(__detail::bits_per_block);
1094
1095 template<typename _Tp>
1096 typename bitmap_allocator<_Tp>::_BPVector::size_type
1097 bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1098
1099 template<typename _Tp>
1100 __detail::_Bitmap_counter
1101 <typename bitmap_allocator<_Tp>::_Alloc_block*>
1102 bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1103
1104 #if defined __GTHREADS
1105 template<typename _Tp>
1106 typename bitmap_allocator<_Tp>::__mutex_type
1107 bitmap_allocator<_Tp>::_S_mut;
1108 #endif
1109
1110 _GLIBCXX_END_NAMESPACE_VERSION
1111 } // namespace __gnu_cxx
1112
1113 #endif
1114
1115