xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
12 /// mechanism.
13 ///
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten.
17 ///
18 /// * Exception handling
19 /// This pass lowers invokes and landingpads into library functions in JS glue
20 /// code. Invokes are lowered into function wrappers called invoke wrappers that
21 /// exist in JS side, which wraps the original function call with JS try-catch.
22 /// If an exception occurred, cxa_throw() function in JS side sets some
23 /// variables (see below) so we can check whether an exception occurred from
24 /// wasm code and handle it appropriately.
25 ///
26 /// * Setjmp-longjmp handling
27 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
28 /// The idea is that each block with a setjmp is broken up into two parts: the
29 /// part containing setjmp and the part right after the setjmp. The latter part
30 /// is either reached from the setjmp, or later from a longjmp. To handle the
31 /// longjmp, all calls that might longjmp are also called using invoke wrappers
32 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
33 /// we can check / whether a longjmp occurred from wasm code. Each block with a
34 /// function call that might longjmp is also split up after the longjmp call.
35 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
36 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
37 /// We assume setjmp-longjmp handling always run after EH handling, which means
38 /// we don't expect any exception-related instructions when SjLj runs.
39 /// FIXME Currently this scheme does not support indirect call of setjmp,
40 /// because of the limitation of the scheme itself. fastcomp does not support it
41 /// either.
42 ///
43 /// In detail, this pass does following things:
44 ///
45 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
46 ///    __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
47 ///    These variables are used for both exceptions and setjmp/longjmps.
48 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
49 ///    means nothing occurred, 1 means an exception occurred, and other numbers
50 ///    mean a longjmp occurred. In the case of longjmp, __THREW__ variable
51 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
52 ///
53 /// * Exception handling
54 ///
55 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
56 ///    at link time. setThrew exists in Emscripten's compiler-rt:
57 ///
58 ///    void setThrew(uintptr_t threw, int value) {
59 ///      if (__THREW__ == 0) {
60 ///        __THREW__ = threw;
61 ///        __threwValue = value;
62 ///      }
63 ///    }
64 //
65 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
66 ///    In exception handling, getTempRet0 indicates the type of an exception
67 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
68 ///    function.
69 ///
70 /// 3) Lower
71 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
72 ///    into
73 ///      __THREW__ = 0;
74 ///      call @__invoke_SIG(func, arg1, arg2)
75 ///      %__THREW__.val = __THREW__;
76 ///      __THREW__ = 0;
77 ///      if (%__THREW__.val == 1)
78 ///        goto %lpad
79 ///      else
80 ///         goto %invoke.cont
81 ///    SIG is a mangled string generated based on the LLVM IR-level function
82 ///    signature. After LLVM IR types are lowered to the target wasm types,
83 ///    the names for these wrappers will change based on wasm types as well,
84 ///    as in invoke_vi (function takes an int and returns void). The bodies of
85 ///    these wrappers will be generated in JS glue code, and inside those
86 ///    wrappers we use JS try-catch to generate actual exception effects. It
87 ///    also calls the original callee function. An example wrapper in JS code
88 ///    would look like this:
89 ///      function invoke_vi(index,a1) {
90 ///        try {
91 ///          Module["dynCall_vi"](index,a1); // This calls original callee
92 ///        } catch(e) {
93 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
94 ///          _setThrew(1, 0); // setThrew is called here
95 ///        }
96 ///      }
97 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
98 ///    so we can jump to the right BB based on this value.
99 ///
100 /// 4) Lower
101 ///      %val = landingpad catch c1 catch c2 catch c3 ...
102 ///      ... use %val ...
103 ///    into
104 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
105 ///      %val = {%fmc, getTempRet0()}
106 ///      ... use %val ...
107 ///    Here N is a number calculated based on the number of clauses.
108 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
109 ///
110 /// 5) Lower
111 ///      resume {%a, %b}
112 ///    into
113 ///      call @__resumeException(%a)
114 ///    where __resumeException() is a function in JS glue code.
115 ///
116 /// 6) Lower
117 ///      call @llvm.eh.typeid.for(type) (intrinsic)
118 ///    into
119 ///      call @llvm_eh_typeid_for(type)
120 ///    llvm_eh_typeid_for function will be generated in JS glue code.
121 ///
122 /// * Setjmp / Longjmp handling
123 ///
124 /// In case calls to longjmp() exists
125 ///
126 /// 1) Lower
127 ///      longjmp(buf, value)
128 ///    into
129 ///      emscripten_longjmp(buf, value)
130 ///
131 /// In case calls to setjmp() exists
132 ///
133 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
134 ///    sejmpTableSize as follows:
135 ///      setjmpTableSize = 4;
136 ///      setjmpTable = (int *) malloc(40);
137 ///      setjmpTable[0] = 0;
138 ///    setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
139 ///    Emscripten compiler-rt.
140 ///
141 /// 3) Lower
142 ///      setjmp(buf)
143 ///    into
144 ///      setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
145 ///      setjmpTableSize = getTempRet0();
146 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
147 ///    is incrementally assigned from 0) and its label (a unique number that
148 ///    represents each callsite of setjmp). When we need more entries in
149 ///    setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
150 ///    compiler-rt and it will return the new table address, and assign the new
151 ///    table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
152 ///    the buffer buf. A BB with setjmp is split into two after setjmp call in
153 ///    order to make the post-setjmp BB the possible destination of longjmp BB.
154 ///
155 ///
156 /// 4) Lower every call that might longjmp into
157 ///      __THREW__ = 0;
158 ///      call @__invoke_SIG(func, arg1, arg2)
159 ///      %__THREW__.val = __THREW__;
160 ///      __THREW__ = 0;
161 ///      if (%__THREW__.val != 0 & __threwValue != 0) {
162 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
163 ///                            setjmpTableSize);
164 ///        if (%label == 0)
165 ///          emscripten_longjmp(%__THREW__.val, __threwValue);
166 ///        setTempRet0(__threwValue);
167 ///      } else {
168 ///        %label = -1;
169 ///      }
170 ///      longjmp_result = getTempRet0();
171 ///      switch label {
172 ///        label 1: goto post-setjmp BB 1
173 ///        label 2: goto post-setjmp BB 2
174 ///        ...
175 ///        default: goto splitted next BB
176 ///      }
177 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
178 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
179 ///    will be the address of matching jmp_buf buffer and __threwValue be the
180 ///    second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
181 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
182 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
183 ///    correspond to one of the setjmp callsites in this function, so in this
184 ///    case we just chain the longjmp to the caller. Label -1 means no longjmp
185 ///    occurred. Otherwise we jump to the right post-setjmp BB based on the
186 ///    label.
187 ///
188 ///===----------------------------------------------------------------------===//
189 
190 #include "WebAssembly.h"
191 #include "WebAssemblyTargetMachine.h"
192 #include "llvm/ADT/StringExtras.h"
193 #include "llvm/CodeGen/TargetPassConfig.h"
194 #include "llvm/IR/DebugInfoMetadata.h"
195 #include "llvm/IR/Dominators.h"
196 #include "llvm/IR/IRBuilder.h"
197 #include "llvm/Support/CommandLine.h"
198 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
199 #include "llvm/Transforms/Utils/SSAUpdater.h"
200 
201 using namespace llvm;
202 
203 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
204 
205 static cl::list<std::string>
206     EHAllowlist("emscripten-cxx-exceptions-allowed",
207                 cl::desc("The list of function names in which Emscripten-style "
208                          "exception handling is enabled (see emscripten "
209                          "EMSCRIPTEN_CATCHING_ALLOWED options)"),
210                 cl::CommaSeparated);
211 
212 namespace {
213 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
214   bool EnableEH;   // Enable exception handling
215   bool EnableSjLj; // Enable setjmp/longjmp handling
216 
217   GlobalVariable *ThrewGV = nullptr;
218   GlobalVariable *ThrewValueGV = nullptr;
219   Function *GetTempRet0Func = nullptr;
220   Function *SetTempRet0Func = nullptr;
221   Function *ResumeF = nullptr;
222   Function *EHTypeIDF = nullptr;
223   Function *EmLongjmpF = nullptr;
224   Function *SaveSetjmpF = nullptr;
225   Function *TestSetjmpF = nullptr;
226 
227   // __cxa_find_matching_catch_N functions.
228   // Indexed by the number of clauses in an original landingpad instruction.
229   DenseMap<int, Function *> FindMatchingCatches;
230   // Map of <function signature string, invoke_ wrappers>
231   StringMap<Function *> InvokeWrappers;
232   // Set of allowed function names for exception handling
233   std::set<std::string> EHAllowlistSet;
234 
getPassName() const235   StringRef getPassName() const override {
236     return "WebAssembly Lower Emscripten Exceptions";
237   }
238 
239   bool runEHOnFunction(Function &F);
240   bool runSjLjOnFunction(Function &F);
241   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
242 
243   Value *wrapInvoke(CallBase *CI);
244   void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
245                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
246                       Value *&LongjmpResult, BasicBlock *&EndBB);
247   Function *getInvokeWrapper(CallBase *CI);
248 
areAllExceptionsAllowed() const249   bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
250   bool canLongjmp(Module &M, const Value *Callee) const;
251   bool isEmAsmCall(Module &M, const Value *Callee) const;
252 
253   void rebuildSSA(Function &F);
254 
255 public:
256   static char ID;
257 
WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH=true,bool EnableSjLj=true)258   WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
259       : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
260     EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
261   }
262   bool runOnModule(Module &M) override;
263 
getAnalysisUsage(AnalysisUsage & AU) const264   void getAnalysisUsage(AnalysisUsage &AU) const override {
265     AU.addRequired<DominatorTreeWrapperPass>();
266   }
267 };
268 } // End anonymous namespace
269 
270 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
271 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
272                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
273                 false, false)
274 
createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,bool EnableSjLj)275 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
276                                                          bool EnableSjLj) {
277   return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
278 }
279 
canThrow(const Value * V)280 static bool canThrow(const Value *V) {
281   if (const auto *F = dyn_cast<const Function>(V)) {
282     // Intrinsics cannot throw
283     if (F->isIntrinsic())
284       return false;
285     StringRef Name = F->getName();
286     // leave setjmp and longjmp (mostly) alone, we process them properly later
287     if (Name == "setjmp" || Name == "longjmp")
288       return false;
289     return !F->doesNotThrow();
290   }
291   // not a function, so an indirect call - can throw, we can't tell
292   return true;
293 }
294 
295 // Get a global variable with the given name. If it doesn't exist declare it,
296 // which will generate an import and assume that it will exist at link time.
getGlobalVariable(Module & M,Type * Ty,WebAssemblyTargetMachine & TM,const char * Name)297 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
298                                          WebAssemblyTargetMachine &TM,
299                                          const char *Name) {
300   auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
301   if (!GV)
302     report_fatal_error(Twine("unable to create global: ") + Name);
303 
304   // If the target supports TLS, make this variable thread-local. We can't just
305   // unconditionally make it thread-local and depend on
306   // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
307   // the side effect of disallowing the object from being linked into a
308   // shared-memory module, which we don't want to be responsible for.
309   auto *Subtarget = TM.getSubtargetImpl();
310   auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
311                  ? GlobalValue::LocalExecTLSModel
312                  : GlobalValue::NotThreadLocal;
313   GV->setThreadLocalMode(TLS);
314   return GV;
315 }
316 
317 // Simple function name mangler.
318 // This function simply takes LLVM's string representation of parameter types
319 // and concatenate them with '_'. There are non-alphanumeric characters but llc
320 // is ok with it, and we need to postprocess these names after the lowering
321 // phase anyway.
getSignature(FunctionType * FTy)322 static std::string getSignature(FunctionType *FTy) {
323   std::string Sig;
324   raw_string_ostream OS(Sig);
325   OS << *FTy->getReturnType();
326   for (Type *ParamTy : FTy->params())
327     OS << "_" << *ParamTy;
328   if (FTy->isVarArg())
329     OS << "_...";
330   Sig = OS.str();
331   erase_if(Sig, isSpace);
332   // When s2wasm parses .s file, a comma means the end of an argument. So a
333   // mangled function name can contain any character but a comma.
334   std::replace(Sig.begin(), Sig.end(), ',', '.');
335   return Sig;
336 }
337 
getEmscriptenFunction(FunctionType * Ty,const Twine & Name,Module * M)338 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
339                                        Module *M) {
340   Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
341   // Tell the linker that this function is expected to be imported from the
342   // 'env' module.
343   if (!F->hasFnAttribute("wasm-import-module")) {
344     llvm::AttrBuilder B;
345     B.addAttribute("wasm-import-module", "env");
346     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
347   }
348   if (!F->hasFnAttribute("wasm-import-name")) {
349     llvm::AttrBuilder B;
350     B.addAttribute("wasm-import-name", F->getName());
351     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
352   }
353   return F;
354 }
355 
356 // Returns an integer type for the target architecture's address space.
357 // i32 for wasm32 and i64 for wasm64.
getAddrIntType(Module * M)358 static Type *getAddrIntType(Module *M) {
359   IRBuilder<> IRB(M->getContext());
360   return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
361 }
362 
363 // Returns an integer pointer type for the target architecture's address space.
364 // i32* for wasm32 and i64* for wasm64.
getAddrPtrType(Module * M)365 static Type *getAddrPtrType(Module *M) {
366   return Type::getIntNPtrTy(M->getContext(),
367                             M->getDataLayout().getPointerSizeInBits());
368 }
369 
370 // Returns an integer whose type is the integer type for the target's address
371 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
372 // integer.
getAddrSizeInt(Module * M,uint64_t C)373 static Value *getAddrSizeInt(Module *M, uint64_t C) {
374   IRBuilder<> IRB(M->getContext());
375   return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
376 }
377 
378 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
379 // This is because a landingpad instruction contains two more arguments, a
380 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
381 // functions are named after the number of arguments in the original landingpad
382 // instruction.
383 Function *
getFindMatchingCatch(Module & M,unsigned NumClauses)384 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
385                                                        unsigned NumClauses) {
386   if (FindMatchingCatches.count(NumClauses))
387     return FindMatchingCatches[NumClauses];
388   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
389   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
390   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
391   Function *F = getEmscriptenFunction(
392       FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
393   FindMatchingCatches[NumClauses] = F;
394   return F;
395 }
396 
397 // Generate invoke wrapper seqence with preamble and postamble
398 // Preamble:
399 // __THREW__ = 0;
400 // Postamble:
401 // %__THREW__.val = __THREW__; __THREW__ = 0;
402 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
403 // whether longjmp occurred), for future use.
wrapInvoke(CallBase * CI)404 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
405   Module *M = CI->getModule();
406   LLVMContext &C = M->getContext();
407 
408   // If we are calling a function that is noreturn, we must remove that
409   // attribute. The code we insert here does expect it to return, after we
410   // catch the exception.
411   if (CI->doesNotReturn()) {
412     if (auto *F = CI->getCalledFunction())
413       F->removeFnAttr(Attribute::NoReturn);
414     CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
415   }
416 
417   IRBuilder<> IRB(C);
418   IRB.SetInsertPoint(CI);
419 
420   // Pre-invoke
421   // __THREW__ = 0;
422   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
423 
424   // Invoke function wrapper in JavaScript
425   SmallVector<Value *, 16> Args;
426   // Put the pointer to the callee as first argument, so it can be called
427   // within the invoke wrapper later
428   Args.push_back(CI->getCalledOperand());
429   Args.append(CI->arg_begin(), CI->arg_end());
430   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
431   NewCall->takeName(CI);
432   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
433   NewCall->setDebugLoc(CI->getDebugLoc());
434 
435   // Because we added the pointer to the callee as first argument, all
436   // argument attribute indices have to be incremented by one.
437   SmallVector<AttributeSet, 8> ArgAttributes;
438   const AttributeList &InvokeAL = CI->getAttributes();
439 
440   // No attributes for the callee pointer.
441   ArgAttributes.push_back(AttributeSet());
442   // Copy the argument attributes from the original
443   for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
444     ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
445 
446   AttrBuilder FnAttrs(InvokeAL.getFnAttributes());
447   if (FnAttrs.contains(Attribute::AllocSize)) {
448     // The allocsize attribute (if any) referes to parameters by index and needs
449     // to be adjusted.
450     unsigned SizeArg;
451     Optional<unsigned> NEltArg;
452     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
453     SizeArg += 1;
454     if (NEltArg.hasValue())
455       NEltArg = NEltArg.getValue() + 1;
456     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
457   }
458 
459   // Reconstruct the AttributesList based on the vector we constructed.
460   AttributeList NewCallAL =
461       AttributeList::get(C, AttributeSet::get(C, FnAttrs),
462                          InvokeAL.getRetAttributes(), ArgAttributes);
463   NewCall->setAttributes(NewCallAL);
464 
465   CI->replaceAllUsesWith(NewCall);
466 
467   // Post-invoke
468   // %__THREW__.val = __THREW__; __THREW__ = 0;
469   Value *Threw =
470       IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
471   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
472   return Threw;
473 }
474 
475 // Get matching invoke wrapper based on callee signature
getInvokeWrapper(CallBase * CI)476 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
477   Module *M = CI->getModule();
478   SmallVector<Type *, 16> ArgTys;
479   FunctionType *CalleeFTy = CI->getFunctionType();
480 
481   std::string Sig = getSignature(CalleeFTy);
482   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
483     return InvokeWrappers[Sig];
484 
485   // Put the pointer to the callee as first argument
486   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
487   // Add argument types
488   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
489 
490   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
491                                         CalleeFTy->isVarArg());
492   Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
493   InvokeWrappers[Sig] = F;
494   return F;
495 }
496 
canLongjmp(Module & M,const Value * Callee) const497 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
498                                                   const Value *Callee) const {
499   if (auto *CalleeF = dyn_cast<Function>(Callee))
500     if (CalleeF->isIntrinsic())
501       return false;
502 
503   // Attempting to transform inline assembly will result in something like:
504   //     call void @__invoke_void(void ()* asm ...)
505   // which is invalid because inline assembly blocks do not have addresses
506   // and can't be passed by pointer. The result is a crash with illegal IR.
507   if (isa<InlineAsm>(Callee))
508     return false;
509   StringRef CalleeName = Callee->getName();
510 
511   // The reason we include malloc/free here is to exclude the malloc/free
512   // calls generated in setjmp prep / cleanup routines.
513   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
514     return false;
515 
516   // There are functions in Emscripten's JS glue code or compiler-rt
517   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
518       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
519       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
520     return false;
521 
522   // __cxa_find_matching_catch_N functions cannot longjmp
523   if (Callee->getName().startswith("__cxa_find_matching_catch_"))
524     return false;
525 
526   // Exception-catching related functions
527   if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
528       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
529       CalleeName == "__clang_call_terminate")
530     return false;
531 
532   // Otherwise we don't know
533   return true;
534 }
535 
isEmAsmCall(Module & M,const Value * Callee) const536 bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M,
537                                                    const Value *Callee) const {
538   StringRef CalleeName = Callee->getName();
539   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
540   return CalleeName == "emscripten_asm_const_int" ||
541          CalleeName == "emscripten_asm_const_double" ||
542          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
543          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
544          CalleeName == "emscripten_asm_const_async_on_main_thread";
545 }
546 
547 // Generate testSetjmp function call seqence with preamble and postamble.
548 // The code this generates is equivalent to the following JavaScript code:
549 // if (%__THREW__.val != 0 & threwValue != 0) {
550 //   %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
551 //   if (%label == 0)
552 //     emscripten_longjmp(%__THREW__.val, threwValue);
553 //   setTempRet0(threwValue);
554 // } else {
555 //   %label = -1;
556 // }
557 // %longjmp_result = getTempRet0();
558 //
559 // As output parameters. returns %label, %longjmp_result, and the BB the last
560 // instruction (%longjmp_result = ...) is in.
wrapTestSetjmp(BasicBlock * BB,DebugLoc DL,Value * Threw,Value * SetjmpTable,Value * SetjmpTableSize,Value * & Label,Value * & LongjmpResult,BasicBlock * & EndBB)561 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
562     BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
563     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
564     BasicBlock *&EndBB) {
565   Function *F = BB->getParent();
566   Module *M = F->getParent();
567   LLVMContext &C = M->getContext();
568   IRBuilder<> IRB(C);
569   IRB.SetCurrentDebugLocation(DL);
570 
571   // if (%__THREW__.val != 0 & threwValue != 0)
572   IRB.SetInsertPoint(BB);
573   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
574   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
575   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
576   Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
577   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
578                                      ThrewValueGV->getName() + ".val");
579   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
580   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
581   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
582 
583   // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
584   // if (%label == 0)
585   IRB.SetInsertPoint(ThenBB1);
586   BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
587   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
588   Value *ThrewPtr =
589       IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
590   Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
591                                       ThrewPtr->getName() + ".loaded");
592   Value *ThenLabel = IRB.CreateCall(
593       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
594   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
595   IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
596 
597   // emscripten_longjmp(%__THREW__.val, threwValue);
598   IRB.SetInsertPoint(ThenBB2);
599   IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
600   IRB.CreateUnreachable();
601 
602   // setTempRet0(threwValue);
603   IRB.SetInsertPoint(EndBB2);
604   IRB.CreateCall(SetTempRet0Func, ThrewValue);
605   IRB.CreateBr(EndBB1);
606 
607   IRB.SetInsertPoint(ElseBB1);
608   IRB.CreateBr(EndBB1);
609 
610   // longjmp_result = getTempRet0();
611   IRB.SetInsertPoint(EndBB1);
612   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
613   LabelPHI->addIncoming(ThenLabel, EndBB2);
614 
615   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
616 
617   // Output parameter assignment
618   Label = LabelPHI;
619   EndBB = EndBB1;
620   LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
621 }
622 
rebuildSSA(Function & F)623 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
624   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
625   DT.recalculate(F); // CFG has been changed
626   SSAUpdater SSA;
627   for (BasicBlock &BB : F) {
628     for (Instruction &I : BB) {
629       SSA.Initialize(I.getType(), I.getName());
630       SSA.AddAvailableValue(&BB, &I);
631       for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
632         Use &U = *UI;
633         ++UI;
634         auto *User = cast<Instruction>(U.getUser());
635         if (auto *UserPN = dyn_cast<PHINode>(User))
636           if (UserPN->getIncomingBlock(U) == &BB)
637             continue;
638 
639         if (DT.dominates(&I, User))
640           continue;
641         SSA.RewriteUseAfterInsertions(U);
642       }
643     }
644   }
645 }
646 
647 // Replace uses of longjmp with emscripten_longjmp. emscripten_longjmp takes
648 // arguments of type {i32, i32} (wasm32) / {i64, i32} (wasm64) and longjmp takes
649 // {jmp_buf*, i32}, so we need a ptrtoint instruction here to make the type
650 // match. jmp_buf* will eventually be lowered to i32 in the wasm backend.
replaceLongjmpWithEmscriptenLongjmp(Function * LongjmpF,Function * EmLongjmpF)651 static void replaceLongjmpWithEmscriptenLongjmp(Function *LongjmpF,
652                                                 Function *EmLongjmpF) {
653   Module *M = LongjmpF->getParent();
654   SmallVector<CallInst *, 8> ToErase;
655   LLVMContext &C = LongjmpF->getParent()->getContext();
656   IRBuilder<> IRB(C);
657 
658   // For calls to longjmp, replace it with emscripten_longjmp and cast its first
659   // argument (jmp_buf*) to int
660   for (User *U : LongjmpF->users()) {
661     auto *CI = dyn_cast<CallInst>(U);
662     if (CI && CI->getCalledFunction() == LongjmpF) {
663       IRB.SetInsertPoint(CI);
664       Value *Jmpbuf =
665           IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "jmpbuf");
666       IRB.CreateCall(EmLongjmpF, {Jmpbuf, CI->getArgOperand(1)});
667       ToErase.push_back(CI);
668     }
669   }
670   for (auto *I : ToErase)
671     I->eraseFromParent();
672 
673   // If we have any remaining uses of longjmp's function pointer, replace it
674   // with (int(*)(jmp_buf*, int))emscripten_longjmp.
675   if (!LongjmpF->uses().empty()) {
676     Value *EmLongjmp =
677         IRB.CreateBitCast(EmLongjmpF, LongjmpF->getType(), "em_longjmp");
678     LongjmpF->replaceAllUsesWith(EmLongjmp);
679   }
680 }
681 
runOnModule(Module & M)682 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
683   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
684 
685   LLVMContext &C = M.getContext();
686   IRBuilder<> IRB(C);
687 
688   Function *SetjmpF = M.getFunction("setjmp");
689   Function *LongjmpF = M.getFunction("longjmp");
690   bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
691   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
692   bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
693 
694   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
695   assert(TPC && "Expected a TargetPassConfig");
696   auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
697 
698   if (EnableEH && TM.Options.ExceptionModel == ExceptionHandling::Wasm)
699     report_fatal_error("-exception-model=wasm not allowed with "
700                        "-enable-emscripten-cxx-exceptions");
701 
702   // Declare (or get) global variables __THREW__, __threwValue, and
703   // getTempRet0/setTempRet0 function which are used in common for both
704   // exception handling and setjmp/longjmp handling
705   ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
706   ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
707   GetTempRet0Func = getEmscriptenFunction(
708       FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
709   SetTempRet0Func = getEmscriptenFunction(
710       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
711       "setTempRet0", &M);
712   GetTempRet0Func->setDoesNotThrow();
713   SetTempRet0Func->setDoesNotThrow();
714 
715   bool Changed = false;
716 
717   // Exception handling
718   if (EnableEH) {
719     // Register __resumeException function
720     FunctionType *ResumeFTy =
721         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
722     ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
723 
724     // Register llvm_eh_typeid_for function
725     FunctionType *EHTypeIDTy =
726         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
727     EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
728 
729     for (Function &F : M) {
730       if (F.isDeclaration())
731         continue;
732       Changed |= runEHOnFunction(F);
733     }
734   }
735 
736   // Setjmp/longjmp handling
737   if (DoSjLj) {
738     Changed = true; // We have setjmp or longjmp somewhere
739 
740     // Register emscripten_longjmp function
741     FunctionType *FTy = FunctionType::get(
742         IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
743     EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
744 
745     if (LongjmpF)
746       replaceLongjmpWithEmscriptenLongjmp(LongjmpF, EmLongjmpF);
747 
748     if (SetjmpF) {
749       // Register saveSetjmp function
750       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
751       FTy = FunctionType::get(Type::getInt32PtrTy(C),
752                               {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
753                                Type::getInt32PtrTy(C), IRB.getInt32Ty()},
754                               false);
755       SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
756 
757       // Register testSetjmp function
758       FTy = FunctionType::get(
759           IRB.getInt32Ty(),
760           {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()},
761           false);
762       TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
763 
764       // Only traverse functions that uses setjmp in order not to insert
765       // unnecessary prep / cleanup code in every function
766       SmallPtrSet<Function *, 8> SetjmpUsers;
767       for (User *U : SetjmpF->users()) {
768         auto *UI = cast<Instruction>(U);
769         SetjmpUsers.insert(UI->getFunction());
770       }
771       for (Function *F : SetjmpUsers)
772         runSjLjOnFunction(*F);
773     }
774   }
775 
776   if (!Changed) {
777     // Delete unused global variables and functions
778     if (ResumeF)
779       ResumeF->eraseFromParent();
780     if (EHTypeIDF)
781       EHTypeIDF->eraseFromParent();
782     if (EmLongjmpF)
783       EmLongjmpF->eraseFromParent();
784     if (SaveSetjmpF)
785       SaveSetjmpF->eraseFromParent();
786     if (TestSetjmpF)
787       TestSetjmpF->eraseFromParent();
788     return false;
789   }
790 
791   return true;
792 }
793 
runEHOnFunction(Function & F)794 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
795   Module &M = *F.getParent();
796   LLVMContext &C = F.getContext();
797   IRBuilder<> IRB(C);
798   bool Changed = false;
799   SmallVector<Instruction *, 64> ToErase;
800   SmallPtrSet<LandingPadInst *, 32> LandingPads;
801   bool AllowExceptions = areAllExceptionsAllowed() ||
802                          EHAllowlistSet.count(std::string(F.getName()));
803 
804   for (BasicBlock &BB : F) {
805     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
806     if (!II)
807       continue;
808     Changed = true;
809     LandingPads.insert(II->getLandingPadInst());
810     IRB.SetInsertPoint(II);
811 
812     bool NeedInvoke = AllowExceptions && canThrow(II->getCalledOperand());
813     if (NeedInvoke) {
814       // Wrap invoke with invoke wrapper and generate preamble/postamble
815       Value *Threw = wrapInvoke(II);
816       ToErase.push_back(II);
817 
818       // Insert a branch based on __THREW__ variable
819       Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
820       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
821 
822     } else {
823       // This can't throw, and we don't need this invoke, just replace it with a
824       // call+branch
825       SmallVector<Value *, 16> Args(II->args());
826       CallInst *NewCall =
827           IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args);
828       NewCall->takeName(II);
829       NewCall->setCallingConv(II->getCallingConv());
830       NewCall->setDebugLoc(II->getDebugLoc());
831       NewCall->setAttributes(II->getAttributes());
832       II->replaceAllUsesWith(NewCall);
833       ToErase.push_back(II);
834 
835       IRB.CreateBr(II->getNormalDest());
836 
837       // Remove any PHI node entries from the exception destination
838       II->getUnwindDest()->removePredecessor(&BB);
839     }
840   }
841 
842   // Process resume instructions
843   for (BasicBlock &BB : F) {
844     // Scan the body of the basic block for resumes
845     for (Instruction &I : BB) {
846       auto *RI = dyn_cast<ResumeInst>(&I);
847       if (!RI)
848         continue;
849       Changed = true;
850 
851       // Split the input into legal values
852       Value *Input = RI->getValue();
853       IRB.SetInsertPoint(RI);
854       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
855       // Create a call to __resumeException function
856       IRB.CreateCall(ResumeF, {Low});
857       // Add a terminator to the block
858       IRB.CreateUnreachable();
859       ToErase.push_back(RI);
860     }
861   }
862 
863   // Process llvm.eh.typeid.for intrinsics
864   for (BasicBlock &BB : F) {
865     for (Instruction &I : BB) {
866       auto *CI = dyn_cast<CallInst>(&I);
867       if (!CI)
868         continue;
869       const Function *Callee = CI->getCalledFunction();
870       if (!Callee)
871         continue;
872       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
873         continue;
874       Changed = true;
875 
876       IRB.SetInsertPoint(CI);
877       CallInst *NewCI =
878           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
879       CI->replaceAllUsesWith(NewCI);
880       ToErase.push_back(CI);
881     }
882   }
883 
884   // Look for orphan landingpads, can occur in blocks with no predecessors
885   for (BasicBlock &BB : F) {
886     Instruction *I = BB.getFirstNonPHI();
887     if (auto *LPI = dyn_cast<LandingPadInst>(I))
888       LandingPads.insert(LPI);
889   }
890   Changed |= !LandingPads.empty();
891 
892   // Handle all the landingpad for this function together, as multiple invokes
893   // may share a single lp
894   for (LandingPadInst *LPI : LandingPads) {
895     IRB.SetInsertPoint(LPI);
896     SmallVector<Value *, 16> FMCArgs;
897     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
898       Constant *Clause = LPI->getClause(I);
899       // TODO Handle filters (= exception specifications).
900       // https://bugs.llvm.org/show_bug.cgi?id=50396
901       if (LPI->isCatch(I))
902         FMCArgs.push_back(Clause);
903     }
904 
905     // Create a call to __cxa_find_matching_catch_N function
906     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
907     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
908     Value *Undef = UndefValue::get(LPI->getType());
909     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
910     Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
911     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
912 
913     LPI->replaceAllUsesWith(Pair1);
914     ToErase.push_back(LPI);
915   }
916 
917   // Erase everything we no longer need in this function
918   for (Instruction *I : ToErase)
919     I->eraseFromParent();
920 
921   return Changed;
922 }
923 
924 // This tries to get debug info from the instruction before which a new
925 // instruction will be inserted, and if there's no debug info in that
926 // instruction, tries to get the info instead from the previous instruction (if
927 // any). If none of these has debug info and a DISubprogram is provided, it
928 // creates a dummy debug info with the first line of the function, because IR
929 // verifier requires all inlinable callsites should have debug info when both a
930 // caller and callee have DISubprogram. If none of these conditions are met,
931 // returns empty info.
getOrCreateDebugLoc(const Instruction * InsertBefore,DISubprogram * SP)932 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
933                                     DISubprogram *SP) {
934   assert(InsertBefore);
935   if (InsertBefore->getDebugLoc())
936     return InsertBefore->getDebugLoc();
937   const Instruction *Prev = InsertBefore->getPrevNode();
938   if (Prev && Prev->getDebugLoc())
939     return Prev->getDebugLoc();
940   if (SP)
941     return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
942   return DebugLoc();
943 }
944 
runSjLjOnFunction(Function & F)945 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
946   Module &M = *F.getParent();
947   LLVMContext &C = F.getContext();
948   IRBuilder<> IRB(C);
949   SmallVector<Instruction *, 64> ToErase;
950   // Vector of %setjmpTable values
951   std::vector<Instruction *> SetjmpTableInsts;
952   // Vector of %setjmpTableSize values
953   std::vector<Instruction *> SetjmpTableSizeInsts;
954 
955   // Setjmp preparation
956 
957   // This instruction effectively means %setjmpTableSize = 4.
958   // We create this as an instruction intentionally, and we don't want to fold
959   // this instruction to a constant 4, because this value will be used in
960   // SSAUpdater.AddAvailableValue(...) later.
961   BasicBlock &EntryBB = F.getEntryBlock();
962   DebugLoc FirstDL = getOrCreateDebugLoc(&*EntryBB.begin(), F.getSubprogram());
963   BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
964       Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
965       &*EntryBB.getFirstInsertionPt());
966   SetjmpTableSize->setDebugLoc(FirstDL);
967   // setjmpTable = (int *) malloc(40);
968   Instruction *SetjmpTable = CallInst::CreateMalloc(
969       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
970       nullptr, nullptr, "setjmpTable");
971   SetjmpTable->setDebugLoc(FirstDL);
972   // CallInst::CreateMalloc may return a bitcast instruction if the result types
973   // mismatch. We need to set the debug loc for the original call too.
974   auto *MallocCall = SetjmpTable->stripPointerCasts();
975   if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
976     MallocCallI->setDebugLoc(FirstDL);
977   }
978   // setjmpTable[0] = 0;
979   IRB.SetInsertPoint(SetjmpTableSize);
980   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
981   SetjmpTableInsts.push_back(SetjmpTable);
982   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
983 
984   // Setjmp transformation
985   std::vector<PHINode *> SetjmpRetPHIs;
986   Function *SetjmpF = M.getFunction("setjmp");
987   for (User *U : SetjmpF->users()) {
988     auto *CI = dyn_cast<CallInst>(U);
989     if (!CI)
990       report_fatal_error("Does not support indirect calls to setjmp");
991 
992     BasicBlock *BB = CI->getParent();
993     if (BB->getParent() != &F) // in other function
994       continue;
995 
996     // The tail is everything right after the call, and will be reached once
997     // when setjmp is called, and later when longjmp returns to the setjmp
998     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
999     // Add a phi to the tail, which will be the output of setjmp, which
1000     // indicates if this is the first call or a longjmp back. The phi directly
1001     // uses the right value based on where we arrive from
1002     IRB.SetInsertPoint(Tail->getFirstNonPHI());
1003     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1004 
1005     // setjmp initial call returns 0
1006     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1007     // The proper output is now this, not the setjmp call itself
1008     CI->replaceAllUsesWith(SetjmpRet);
1009     // longjmp returns to the setjmp will add themselves to this phi
1010     SetjmpRetPHIs.push_back(SetjmpRet);
1011 
1012     // Fix call target
1013     // Our index in the function is our place in the array + 1 to avoid index
1014     // 0, because index 0 means the longjmp is not ours to handle.
1015     IRB.SetInsertPoint(CI);
1016     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1017                      SetjmpTable, SetjmpTableSize};
1018     Instruction *NewSetjmpTable =
1019         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1020     Instruction *NewSetjmpTableSize =
1021         IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
1022     SetjmpTableInsts.push_back(NewSetjmpTable);
1023     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1024     ToErase.push_back(CI);
1025   }
1026 
1027   // Update each call that can longjmp so it can return to a setjmp where
1028   // relevant.
1029 
1030   // Because we are creating new BBs while processing and don't want to make
1031   // all these newly created BBs candidates again for longjmp processing, we
1032   // first make the vector of candidate BBs.
1033   std::vector<BasicBlock *> BBs;
1034   for (BasicBlock &BB : F)
1035     BBs.push_back(&BB);
1036 
1037   // BBs.size() will change within the loop, so we query it every time
1038   for (unsigned I = 0; I < BBs.size(); I++) {
1039     BasicBlock *BB = BBs[I];
1040     for (Instruction &I : *BB) {
1041       assert(!isa<InvokeInst>(&I));
1042       auto *CI = dyn_cast<CallInst>(&I);
1043       if (!CI)
1044         continue;
1045 
1046       const Value *Callee = CI->getCalledOperand();
1047       if (!canLongjmp(M, Callee))
1048         continue;
1049       if (isEmAsmCall(M, Callee))
1050         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1051                                F.getName() +
1052                                ". Please consider using EM_JS, or move the "
1053                                "EM_ASM into another function.",
1054                            false);
1055 
1056       Value *Threw = nullptr;
1057       BasicBlock *Tail;
1058       if (Callee->getName().startswith("__invoke_")) {
1059         // If invoke wrapper has already been generated for this call in
1060         // previous EH phase, search for the load instruction
1061         // %__THREW__.val = __THREW__;
1062         // in postamble after the invoke wrapper call
1063         LoadInst *ThrewLI = nullptr;
1064         StoreInst *ThrewResetSI = nullptr;
1065         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1066              I != IE; ++I) {
1067           if (auto *LI = dyn_cast<LoadInst>(I))
1068             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1069               if (GV == ThrewGV) {
1070                 Threw = ThrewLI = LI;
1071                 break;
1072               }
1073         }
1074         // Search for the store instruction after the load above
1075         // __THREW__ = 0;
1076         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1077              I != IE; ++I) {
1078           if (auto *SI = dyn_cast<StoreInst>(I)) {
1079             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1080               if (GV == ThrewGV &&
1081                   SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1082                 ThrewResetSI = SI;
1083                 break;
1084               }
1085             }
1086           }
1087         }
1088         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1089         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1090         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1091 
1092       } else {
1093         // Wrap call with invoke wrapper and generate preamble/postamble
1094         Threw = wrapInvoke(CI);
1095         ToErase.push_back(CI);
1096         Tail = SplitBlock(BB, CI->getNextNode());
1097       }
1098 
1099       // We need to replace the terminator in Tail - SplitBlock makes BB go
1100       // straight to Tail, we need to check if a longjmp occurred, and go to the
1101       // right setjmp-tail if so
1102       ToErase.push_back(BB->getTerminator());
1103 
1104       // Generate a function call to testSetjmp function and preamble/postamble
1105       // code to figure out (1) whether longjmp occurred (2) if longjmp
1106       // occurred, which setjmp it corresponds to
1107       Value *Label = nullptr;
1108       Value *LongjmpResult = nullptr;
1109       BasicBlock *EndBB = nullptr;
1110       wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1111                      Label, LongjmpResult, EndBB);
1112       assert(Label && LongjmpResult && EndBB);
1113 
1114       // Create switch instruction
1115       IRB.SetInsertPoint(EndBB);
1116       IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1117       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1118       // -1 means no longjmp happened, continue normally (will hit the default
1119       // switch case). 0 means a longjmp that is not ours to handle, needs a
1120       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1121       // 0).
1122       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1123         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1124         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1125       }
1126 
1127       // We are splitting the block here, and must continue to find other calls
1128       // in the block - which is now split. so continue to traverse in the Tail
1129       BBs.push_back(Tail);
1130     }
1131   }
1132 
1133   // Erase everything we no longer need in this function
1134   for (Instruction *I : ToErase)
1135     I->eraseFromParent();
1136 
1137   // Free setjmpTable buffer before each return instruction
1138   for (BasicBlock &BB : F) {
1139     Instruction *TI = BB.getTerminator();
1140     if (isa<ReturnInst>(TI)) {
1141       DebugLoc DL = getOrCreateDebugLoc(TI, F.getSubprogram());
1142       auto *Free = CallInst::CreateFree(SetjmpTable, TI);
1143       Free->setDebugLoc(DL);
1144       // CallInst::CreateFree may create a bitcast instruction if its argument
1145       // types mismatch. We need to set the debug loc for the bitcast too.
1146       if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1147         if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1148           BitCastI->setDebugLoc(DL);
1149       }
1150     }
1151   }
1152 
1153   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1154   // (when buffer reallocation occurs)
1155   // entry:
1156   //   setjmpTableSize = 4;
1157   //   setjmpTable = (int *) malloc(40);
1158   //   setjmpTable[0] = 0;
1159   // ...
1160   // somebb:
1161   //   setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1162   //   setjmpTableSize = getTempRet0();
1163   // So we need to make sure the SSA for these variables is valid so that every
1164   // saveSetjmp and testSetjmp calls have the correct arguments.
1165   SSAUpdater SetjmpTableSSA;
1166   SSAUpdater SetjmpTableSizeSSA;
1167   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1168   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1169   for (Instruction *I : SetjmpTableInsts)
1170     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1171   for (Instruction *I : SetjmpTableSizeInsts)
1172     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1173 
1174   for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1175        UI != UE;) {
1176     // Grab the use before incrementing the iterator.
1177     Use &U = *UI;
1178     // Increment the iterator before removing the use from the list.
1179     ++UI;
1180     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1181       if (I->getParent() != &EntryBB)
1182         SetjmpTableSSA.RewriteUse(U);
1183   }
1184   for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1185        UI != UE;) {
1186     Use &U = *UI;
1187     ++UI;
1188     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1189       if (I->getParent() != &EntryBB)
1190         SetjmpTableSizeSSA.RewriteUse(U);
1191   }
1192 
1193   // Finally, our modifications to the cfg can break dominance of SSA variables.
1194   // For example, in this code,
1195   // if (x()) { .. setjmp() .. }
1196   // if (y()) { .. longjmp() .. }
1197   // We must split the longjmp block, and it can jump into the block splitted
1198   // from setjmp one. But that means that when we split the setjmp block, it's
1199   // first part no longer dominates its second part - there is a theoretically
1200   // possible control flow path where x() is false, then y() is true and we
1201   // reach the second part of the setjmp block, without ever reaching the first
1202   // part. So, we rebuild SSA form here.
1203   rebuildSSA(F);
1204   return true;
1205 }
1206