1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/STLExtras.h" 68 #include "llvm/ADT/ScopeExit.h" 69 #include "llvm/ADT/Sequence.h" 70 #include "llvm/ADT/SmallPtrSet.h" 71 #include "llvm/ADT/SmallSet.h" 72 #include "llvm/ADT/SmallVector.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/ADT/StringExtras.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/Analysis/AssumptionCache.h" 77 #include "llvm/Analysis/ConstantFolding.h" 78 #include "llvm/Analysis/InstructionSimplify.h" 79 #include "llvm/Analysis/LoopInfo.h" 80 #include "llvm/Analysis/MemoryBuiltins.h" 81 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 82 #include "llvm/Analysis/ScalarEvolutionPatternMatch.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/ValueTracking.h" 85 #include "llvm/Config/llvm-config.h" 86 #include "llvm/IR/Argument.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/ConstantRange.h" 91 #include "llvm/IR/Constants.h" 92 #include "llvm/IR/DataLayout.h" 93 #include "llvm/IR/DerivedTypes.h" 94 #include "llvm/IR/Dominators.h" 95 #include "llvm/IR/Function.h" 96 #include "llvm/IR/GlobalAlias.h" 97 #include "llvm/IR/GlobalValue.h" 98 #include "llvm/IR/InstIterator.h" 99 #include "llvm/IR/InstrTypes.h" 100 #include "llvm/IR/Instruction.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/IntrinsicInst.h" 103 #include "llvm/IR/Intrinsics.h" 104 #include "llvm/IR/LLVMContext.h" 105 #include "llvm/IR/Operator.h" 106 #include "llvm/IR/PatternMatch.h" 107 #include "llvm/IR/Type.h" 108 #include "llvm/IR/Use.h" 109 #include "llvm/IR/User.h" 110 #include "llvm/IR/Value.h" 111 #include "llvm/IR/Verifier.h" 112 #include "llvm/InitializePasses.h" 113 #include "llvm/Pass.h" 114 #include "llvm/Support/Casting.h" 115 #include "llvm/Support/CommandLine.h" 116 #include "llvm/Support/Compiler.h" 117 #include "llvm/Support/Debug.h" 118 #include "llvm/Support/ErrorHandling.h" 119 #include "llvm/Support/KnownBits.h" 120 #include "llvm/Support/SaveAndRestore.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <climits> 125 #include <cstdint> 126 #include <cstdlib> 127 #include <map> 128 #include <memory> 129 #include <numeric> 130 #include <optional> 131 #include <tuple> 132 #include <utility> 133 #include <vector> 134 135 using namespace llvm; 136 using namespace PatternMatch; 137 using namespace SCEVPatternMatch; 138 139 #define DEBUG_TYPE "scalar-evolution" 140 141 STATISTIC(NumExitCountsComputed, 142 "Number of loop exits with predictable exit counts"); 143 STATISTIC(NumExitCountsNotComputed, 144 "Number of loop exits without predictable exit counts"); 145 STATISTIC(NumBruteForceTripCountsComputed, 146 "Number of loops with trip counts computed by force"); 147 148 #ifdef EXPENSIVE_CHECKS 149 bool llvm::VerifySCEV = true; 150 #else 151 bool llvm::VerifySCEV = false; 152 #endif 153 154 static cl::opt<unsigned> 155 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 156 cl::desc("Maximum number of iterations SCEV will " 157 "symbolically execute a constant " 158 "derived loop"), 159 cl::init(100)); 160 161 static cl::opt<bool, true> VerifySCEVOpt( 162 "verify-scev", cl::Hidden, cl::location(VerifySCEV), 163 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 164 static cl::opt<bool> VerifySCEVStrict( 165 "verify-scev-strict", cl::Hidden, 166 cl::desc("Enable stricter verification with -verify-scev is passed")); 167 168 static cl::opt<bool> VerifyIR( 169 "scev-verify-ir", cl::Hidden, 170 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 171 cl::init(false)); 172 173 static cl::opt<unsigned> MulOpsInlineThreshold( 174 "scev-mulops-inline-threshold", cl::Hidden, 175 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 176 cl::init(32)); 177 178 static cl::opt<unsigned> AddOpsInlineThreshold( 179 "scev-addops-inline-threshold", cl::Hidden, 180 cl::desc("Threshold for inlining addition operands into a SCEV"), 181 cl::init(500)); 182 183 static cl::opt<unsigned> MaxSCEVCompareDepth( 184 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 185 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 186 cl::init(32)); 187 188 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 189 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 190 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 191 cl::init(2)); 192 193 static cl::opt<unsigned> MaxValueCompareDepth( 194 "scalar-evolution-max-value-compare-depth", cl::Hidden, 195 cl::desc("Maximum depth of recursive value complexity comparisons"), 196 cl::init(2)); 197 198 static cl::opt<unsigned> 199 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 200 cl::desc("Maximum depth of recursive arithmetics"), 201 cl::init(32)); 202 203 static cl::opt<unsigned> MaxConstantEvolvingDepth( 204 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 205 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 206 207 static cl::opt<unsigned> 208 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 209 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 210 cl::init(8)); 211 212 static cl::opt<unsigned> 213 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 214 cl::desc("Max coefficients in AddRec during evolving"), 215 cl::init(8)); 216 217 static cl::opt<unsigned> 218 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 219 cl::desc("Size of the expression which is considered huge"), 220 cl::init(4096)); 221 222 static cl::opt<unsigned> RangeIterThreshold( 223 "scev-range-iter-threshold", cl::Hidden, 224 cl::desc("Threshold for switching to iteratively computing SCEV ranges"), 225 cl::init(32)); 226 227 static cl::opt<unsigned> MaxLoopGuardCollectionDepth( 228 "scalar-evolution-max-loop-guard-collection-depth", cl::Hidden, 229 cl::desc("Maximum depth for recursive loop guard collection"), cl::init(1)); 230 231 static cl::opt<bool> 232 ClassifyExpressions("scalar-evolution-classify-expressions", 233 cl::Hidden, cl::init(true), 234 cl::desc("When printing analysis, include information on every instruction")); 235 236 static cl::opt<bool> UseExpensiveRangeSharpening( 237 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 238 cl::init(false), 239 cl::desc("Use more powerful methods of sharpening expression ranges. May " 240 "be costly in terms of compile time")); 241 242 static cl::opt<unsigned> MaxPhiSCCAnalysisSize( 243 "scalar-evolution-max-scc-analysis-depth", cl::Hidden, 244 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " 245 "Phi strongly connected components"), 246 cl::init(8)); 247 248 static cl::opt<bool> 249 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden, 250 cl::desc("Handle <= and >= in finite loops"), 251 cl::init(true)); 252 253 static cl::opt<bool> UseContextForNoWrapFlagInference( 254 "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden, 255 cl::desc("Infer nuw/nsw flags using context where suitable"), 256 cl::init(true)); 257 258 //===----------------------------------------------------------------------===// 259 // SCEV class definitions 260 //===----------------------------------------------------------------------===// 261 262 //===----------------------------------------------------------------------===// 263 // Implementation of the SCEV class. 264 // 265 266 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 267 LLVM_DUMP_METHOD void SCEV::dump() const { 268 print(dbgs()); 269 dbgs() << '\n'; 270 } 271 #endif 272 273 void SCEV::print(raw_ostream &OS) const { 274 switch (getSCEVType()) { 275 case scConstant: 276 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 277 return; 278 case scVScale: 279 OS << "vscale"; 280 return; 281 case scPtrToInt: { 282 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 283 const SCEV *Op = PtrToInt->getOperand(); 284 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 285 << *PtrToInt->getType() << ")"; 286 return; 287 } 288 case scTruncate: { 289 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 290 const SCEV *Op = Trunc->getOperand(); 291 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 292 << *Trunc->getType() << ")"; 293 return; 294 } 295 case scZeroExtend: { 296 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 297 const SCEV *Op = ZExt->getOperand(); 298 OS << "(zext " << *Op->getType() << " " << *Op << " to " 299 << *ZExt->getType() << ")"; 300 return; 301 } 302 case scSignExtend: { 303 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 304 const SCEV *Op = SExt->getOperand(); 305 OS << "(sext " << *Op->getType() << " " << *Op << " to " 306 << *SExt->getType() << ")"; 307 return; 308 } 309 case scAddRecExpr: { 310 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 311 OS << "{" << *AR->getOperand(0); 312 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 313 OS << ",+," << *AR->getOperand(i); 314 OS << "}<"; 315 if (AR->hasNoUnsignedWrap()) 316 OS << "nuw><"; 317 if (AR->hasNoSignedWrap()) 318 OS << "nsw><"; 319 if (AR->hasNoSelfWrap() && 320 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 321 OS << "nw><"; 322 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 323 OS << ">"; 324 return; 325 } 326 case scAddExpr: 327 case scMulExpr: 328 case scUMaxExpr: 329 case scSMaxExpr: 330 case scUMinExpr: 331 case scSMinExpr: 332 case scSequentialUMinExpr: { 333 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 334 const char *OpStr = nullptr; 335 switch (NAry->getSCEVType()) { 336 case scAddExpr: OpStr = " + "; break; 337 case scMulExpr: OpStr = " * "; break; 338 case scUMaxExpr: OpStr = " umax "; break; 339 case scSMaxExpr: OpStr = " smax "; break; 340 case scUMinExpr: 341 OpStr = " umin "; 342 break; 343 case scSMinExpr: 344 OpStr = " smin "; 345 break; 346 case scSequentialUMinExpr: 347 OpStr = " umin_seq "; 348 break; 349 default: 350 llvm_unreachable("There are no other nary expression types."); 351 } 352 OS << "("; 353 ListSeparator LS(OpStr); 354 for (const SCEV *Op : NAry->operands()) 355 OS << LS << *Op; 356 OS << ")"; 357 switch (NAry->getSCEVType()) { 358 case scAddExpr: 359 case scMulExpr: 360 if (NAry->hasNoUnsignedWrap()) 361 OS << "<nuw>"; 362 if (NAry->hasNoSignedWrap()) 363 OS << "<nsw>"; 364 break; 365 default: 366 // Nothing to print for other nary expressions. 367 break; 368 } 369 return; 370 } 371 case scUDivExpr: { 372 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 373 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 374 return; 375 } 376 case scUnknown: 377 cast<SCEVUnknown>(this)->getValue()->printAsOperand(OS, false); 378 return; 379 case scCouldNotCompute: 380 OS << "***COULDNOTCOMPUTE***"; 381 return; 382 } 383 llvm_unreachable("Unknown SCEV kind!"); 384 } 385 386 Type *SCEV::getType() const { 387 switch (getSCEVType()) { 388 case scConstant: 389 return cast<SCEVConstant>(this)->getType(); 390 case scVScale: 391 return cast<SCEVVScale>(this)->getType(); 392 case scPtrToInt: 393 case scTruncate: 394 case scZeroExtend: 395 case scSignExtend: 396 return cast<SCEVCastExpr>(this)->getType(); 397 case scAddRecExpr: 398 return cast<SCEVAddRecExpr>(this)->getType(); 399 case scMulExpr: 400 return cast<SCEVMulExpr>(this)->getType(); 401 case scUMaxExpr: 402 case scSMaxExpr: 403 case scUMinExpr: 404 case scSMinExpr: 405 return cast<SCEVMinMaxExpr>(this)->getType(); 406 case scSequentialUMinExpr: 407 return cast<SCEVSequentialMinMaxExpr>(this)->getType(); 408 case scAddExpr: 409 return cast<SCEVAddExpr>(this)->getType(); 410 case scUDivExpr: 411 return cast<SCEVUDivExpr>(this)->getType(); 412 case scUnknown: 413 return cast<SCEVUnknown>(this)->getType(); 414 case scCouldNotCompute: 415 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 416 } 417 llvm_unreachable("Unknown SCEV kind!"); 418 } 419 420 ArrayRef<const SCEV *> SCEV::operands() const { 421 switch (getSCEVType()) { 422 case scConstant: 423 case scVScale: 424 case scUnknown: 425 return {}; 426 case scPtrToInt: 427 case scTruncate: 428 case scZeroExtend: 429 case scSignExtend: 430 return cast<SCEVCastExpr>(this)->operands(); 431 case scAddRecExpr: 432 case scAddExpr: 433 case scMulExpr: 434 case scUMaxExpr: 435 case scSMaxExpr: 436 case scUMinExpr: 437 case scSMinExpr: 438 case scSequentialUMinExpr: 439 return cast<SCEVNAryExpr>(this)->operands(); 440 case scUDivExpr: 441 return cast<SCEVUDivExpr>(this)->operands(); 442 case scCouldNotCompute: 443 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 444 } 445 llvm_unreachable("Unknown SCEV kind!"); 446 } 447 448 bool SCEV::isZero() const { return match(this, m_scev_Zero()); } 449 450 bool SCEV::isOne() const { return match(this, m_scev_One()); } 451 452 bool SCEV::isAllOnesValue() const { return match(this, m_scev_AllOnes()); } 453 454 bool SCEV::isNonConstantNegative() const { 455 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 456 if (!Mul) return false; 457 458 // If there is a constant factor, it will be first. 459 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 460 if (!SC) return false; 461 462 // Return true if the value is negative, this matches things like (-42 * V). 463 return SC->getAPInt().isNegative(); 464 } 465 466 SCEVCouldNotCompute::SCEVCouldNotCompute() : 467 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 468 469 bool SCEVCouldNotCompute::classof(const SCEV *S) { 470 return S->getSCEVType() == scCouldNotCompute; 471 } 472 473 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 474 FoldingSetNodeID ID; 475 ID.AddInteger(scConstant); 476 ID.AddPointer(V); 477 void *IP = nullptr; 478 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 479 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 480 UniqueSCEVs.InsertNode(S, IP); 481 return S; 482 } 483 484 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 485 return getConstant(ConstantInt::get(getContext(), Val)); 486 } 487 488 const SCEV * 489 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 490 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 491 return getConstant(ConstantInt::get(ITy, V, isSigned)); 492 } 493 494 const SCEV *ScalarEvolution::getVScale(Type *Ty) { 495 FoldingSetNodeID ID; 496 ID.AddInteger(scVScale); 497 ID.AddPointer(Ty); 498 void *IP = nullptr; 499 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 500 return S; 501 SCEV *S = new (SCEVAllocator) SCEVVScale(ID.Intern(SCEVAllocator), Ty); 502 UniqueSCEVs.InsertNode(S, IP); 503 return S; 504 } 505 506 const SCEV *ScalarEvolution::getElementCount(Type *Ty, ElementCount EC) { 507 const SCEV *Res = getConstant(Ty, EC.getKnownMinValue()); 508 if (EC.isScalable()) 509 Res = getMulExpr(Res, getVScale(Ty)); 510 return Res; 511 } 512 513 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 514 const SCEV *op, Type *ty) 515 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {} 516 517 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 518 Type *ITy) 519 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 520 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 521 "Must be a non-bit-width-changing pointer-to-integer cast!"); 522 } 523 524 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 525 SCEVTypes SCEVTy, const SCEV *op, 526 Type *ty) 527 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 528 529 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 530 Type *ty) 531 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 532 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 533 "Cannot truncate non-integer value!"); 534 } 535 536 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 537 const SCEV *op, Type *ty) 538 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 539 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 540 "Cannot zero extend non-integer value!"); 541 } 542 543 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 544 const SCEV *op, Type *ty) 545 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 546 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 547 "Cannot sign extend non-integer value!"); 548 } 549 550 void SCEVUnknown::deleted() { 551 // Clear this SCEVUnknown from various maps. 552 SE->forgetMemoizedResults(this); 553 554 // Remove this SCEVUnknown from the uniquing map. 555 SE->UniqueSCEVs.RemoveNode(this); 556 557 // Release the value. 558 setValPtr(nullptr); 559 } 560 561 void SCEVUnknown::allUsesReplacedWith(Value *New) { 562 // Clear this SCEVUnknown from various maps. 563 SE->forgetMemoizedResults(this); 564 565 // Remove this SCEVUnknown from the uniquing map. 566 SE->UniqueSCEVs.RemoveNode(this); 567 568 // Replace the value pointer in case someone is still using this SCEVUnknown. 569 setValPtr(New); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // SCEV Utilities 574 //===----------------------------------------------------------------------===// 575 576 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 577 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 578 /// operands in SCEV expressions. 579 static int CompareValueComplexity(const LoopInfo *const LI, Value *LV, 580 Value *RV, unsigned Depth) { 581 if (Depth > MaxValueCompareDepth) 582 return 0; 583 584 // Order pointer values after integer values. This helps SCEVExpander form 585 // GEPs. 586 bool LIsPointer = LV->getType()->isPointerTy(), 587 RIsPointer = RV->getType()->isPointerTy(); 588 if (LIsPointer != RIsPointer) 589 return (int)LIsPointer - (int)RIsPointer; 590 591 // Compare getValueID values. 592 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 593 if (LID != RID) 594 return (int)LID - (int)RID; 595 596 // Sort arguments by their position. 597 if (const auto *LA = dyn_cast<Argument>(LV)) { 598 const auto *RA = cast<Argument>(RV); 599 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 600 return (int)LArgNo - (int)RArgNo; 601 } 602 603 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 604 const auto *RGV = cast<GlobalValue>(RV); 605 606 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 607 auto LT = GV->getLinkage(); 608 return !(GlobalValue::isPrivateLinkage(LT) || 609 GlobalValue::isInternalLinkage(LT)); 610 }; 611 612 // Use the names to distinguish the two values, but only if the 613 // names are semantically important. 614 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 615 return LGV->getName().compare(RGV->getName()); 616 } 617 618 // For instructions, compare their loop depth, and their operand count. This 619 // is pretty loose. 620 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 621 const auto *RInst = cast<Instruction>(RV); 622 623 // Compare loop depths. 624 const BasicBlock *LParent = LInst->getParent(), 625 *RParent = RInst->getParent(); 626 if (LParent != RParent) { 627 unsigned LDepth = LI->getLoopDepth(LParent), 628 RDepth = LI->getLoopDepth(RParent); 629 if (LDepth != RDepth) 630 return (int)LDepth - (int)RDepth; 631 } 632 633 // Compare the number of operands. 634 unsigned LNumOps = LInst->getNumOperands(), 635 RNumOps = RInst->getNumOperands(); 636 if (LNumOps != RNumOps) 637 return (int)LNumOps - (int)RNumOps; 638 639 for (unsigned Idx : seq(LNumOps)) { 640 int Result = CompareValueComplexity(LI, LInst->getOperand(Idx), 641 RInst->getOperand(Idx), Depth + 1); 642 if (Result != 0) 643 return Result; 644 } 645 } 646 647 return 0; 648 } 649 650 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 651 // than RHS, respectively. A three-way result allows recursive comparisons to be 652 // more efficient. 653 // If the max analysis depth was reached, return std::nullopt, assuming we do 654 // not know if they are equivalent for sure. 655 static std::optional<int> 656 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 657 const LoopInfo *const LI, const SCEV *LHS, 658 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 659 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 660 if (LHS == RHS) 661 return 0; 662 663 // Primarily, sort the SCEVs by their getSCEVType(). 664 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 665 if (LType != RType) 666 return (int)LType - (int)RType; 667 668 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 669 return 0; 670 671 if (Depth > MaxSCEVCompareDepth) 672 return std::nullopt; 673 674 // Aside from the getSCEVType() ordering, the particular ordering 675 // isn't very important except that it's beneficial to be consistent, 676 // so that (a + b) and (b + a) don't end up as different expressions. 677 switch (LType) { 678 case scUnknown: { 679 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 680 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 681 682 int X = 683 CompareValueComplexity(LI, LU->getValue(), RU->getValue(), Depth + 1); 684 if (X == 0) 685 EqCacheSCEV.unionSets(LHS, RHS); 686 return X; 687 } 688 689 case scConstant: { 690 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 691 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 692 693 // Compare constant values. 694 const APInt &LA = LC->getAPInt(); 695 const APInt &RA = RC->getAPInt(); 696 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 697 if (LBitWidth != RBitWidth) 698 return (int)LBitWidth - (int)RBitWidth; 699 return LA.ult(RA) ? -1 : 1; 700 } 701 702 case scVScale: { 703 const auto *LTy = cast<IntegerType>(cast<SCEVVScale>(LHS)->getType()); 704 const auto *RTy = cast<IntegerType>(cast<SCEVVScale>(RHS)->getType()); 705 return LTy->getBitWidth() - RTy->getBitWidth(); 706 } 707 708 case scAddRecExpr: { 709 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 710 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 711 712 // There is always a dominance between two recs that are used by one SCEV, 713 // so we can safely sort recs by loop header dominance. We require such 714 // order in getAddExpr. 715 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 716 if (LLoop != RLoop) { 717 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 718 assert(LHead != RHead && "Two loops share the same header?"); 719 if (DT.dominates(LHead, RHead)) 720 return 1; 721 assert(DT.dominates(RHead, LHead) && 722 "No dominance between recurrences used by one SCEV?"); 723 return -1; 724 } 725 726 [[fallthrough]]; 727 } 728 729 case scTruncate: 730 case scZeroExtend: 731 case scSignExtend: 732 case scPtrToInt: 733 case scAddExpr: 734 case scMulExpr: 735 case scUDivExpr: 736 case scSMaxExpr: 737 case scUMaxExpr: 738 case scSMinExpr: 739 case scUMinExpr: 740 case scSequentialUMinExpr: { 741 ArrayRef<const SCEV *> LOps = LHS->operands(); 742 ArrayRef<const SCEV *> ROps = RHS->operands(); 743 744 // Lexicographically compare n-ary-like expressions. 745 unsigned LNumOps = LOps.size(), RNumOps = ROps.size(); 746 if (LNumOps != RNumOps) 747 return (int)LNumOps - (int)RNumOps; 748 749 for (unsigned i = 0; i != LNumOps; ++i) { 750 auto X = CompareSCEVComplexity(EqCacheSCEV, LI, LOps[i], ROps[i], DT, 751 Depth + 1); 752 if (X != 0) 753 return X; 754 } 755 EqCacheSCEV.unionSets(LHS, RHS); 756 return 0; 757 } 758 759 case scCouldNotCompute: 760 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 761 } 762 llvm_unreachable("Unknown SCEV kind!"); 763 } 764 765 /// Given a list of SCEV objects, order them by their complexity, and group 766 /// objects of the same complexity together by value. When this routine is 767 /// finished, we know that any duplicates in the vector are consecutive and that 768 /// complexity is monotonically increasing. 769 /// 770 /// Note that we go take special precautions to ensure that we get deterministic 771 /// results from this routine. In other words, we don't want the results of 772 /// this to depend on where the addresses of various SCEV objects happened to 773 /// land in memory. 774 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 775 LoopInfo *LI, DominatorTree &DT) { 776 if (Ops.size() < 2) return; // Noop 777 778 EquivalenceClasses<const SCEV *> EqCacheSCEV; 779 780 // Whether LHS has provably less complexity than RHS. 781 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 782 auto Complexity = CompareSCEVComplexity(EqCacheSCEV, LI, LHS, RHS, DT); 783 return Complexity && *Complexity < 0; 784 }; 785 if (Ops.size() == 2) { 786 // This is the common case, which also happens to be trivially simple. 787 // Special case it. 788 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 789 if (IsLessComplex(RHS, LHS)) 790 std::swap(LHS, RHS); 791 return; 792 } 793 794 // Do the rough sort by complexity. 795 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 796 return IsLessComplex(LHS, RHS); 797 }); 798 799 // Now that we are sorted by complexity, group elements of the same 800 // complexity. Note that this is, at worst, N^2, but the vector is likely to 801 // be extremely short in practice. Note that we take this approach because we 802 // do not want to depend on the addresses of the objects we are grouping. 803 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 804 const SCEV *S = Ops[i]; 805 unsigned Complexity = S->getSCEVType(); 806 807 // If there are any objects of the same complexity and same value as this 808 // one, group them. 809 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 810 if (Ops[j] == S) { // Found a duplicate. 811 // Move it to immediately after i'th element. 812 std::swap(Ops[i+1], Ops[j]); 813 ++i; // no need to rescan it. 814 if (i == e-2) return; // Done! 815 } 816 } 817 } 818 } 819 820 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 821 /// least HugeExprThreshold nodes). 822 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 823 return any_of(Ops, [](const SCEV *S) { 824 return S->getExpressionSize() >= HugeExprThreshold; 825 }); 826 } 827 828 /// Performs a number of common optimizations on the passed \p Ops. If the 829 /// whole expression reduces down to a single operand, it will be returned. 830 /// 831 /// The following optimizations are performed: 832 /// * Fold constants using the \p Fold function. 833 /// * Remove identity constants satisfying \p IsIdentity. 834 /// * If a constant satisfies \p IsAbsorber, return it. 835 /// * Sort operands by complexity. 836 template <typename FoldT, typename IsIdentityT, typename IsAbsorberT> 837 static const SCEV * 838 constantFoldAndGroupOps(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, 839 SmallVectorImpl<const SCEV *> &Ops, FoldT Fold, 840 IsIdentityT IsIdentity, IsAbsorberT IsAbsorber) { 841 const SCEVConstant *Folded = nullptr; 842 for (unsigned Idx = 0; Idx < Ops.size();) { 843 const SCEV *Op = Ops[Idx]; 844 if (const auto *C = dyn_cast<SCEVConstant>(Op)) { 845 if (!Folded) 846 Folded = C; 847 else 848 Folded = cast<SCEVConstant>( 849 SE.getConstant(Fold(Folded->getAPInt(), C->getAPInt()))); 850 Ops.erase(Ops.begin() + Idx); 851 continue; 852 } 853 ++Idx; 854 } 855 856 if (Ops.empty()) { 857 assert(Folded && "Must have folded value"); 858 return Folded; 859 } 860 861 if (Folded && IsAbsorber(Folded->getAPInt())) 862 return Folded; 863 864 GroupByComplexity(Ops, &LI, DT); 865 if (Folded && !IsIdentity(Folded->getAPInt())) 866 Ops.insert(Ops.begin(), Folded); 867 868 return Ops.size() == 1 ? Ops[0] : nullptr; 869 } 870 871 //===----------------------------------------------------------------------===// 872 // Simple SCEV method implementations 873 //===----------------------------------------------------------------------===// 874 875 /// Compute BC(It, K). The result has width W. Assume, K > 0. 876 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 877 ScalarEvolution &SE, 878 Type *ResultTy) { 879 // Handle the simplest case efficiently. 880 if (K == 1) 881 return SE.getTruncateOrZeroExtend(It, ResultTy); 882 883 // We are using the following formula for BC(It, K): 884 // 885 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 886 // 887 // Suppose, W is the bitwidth of the return value. We must be prepared for 888 // overflow. Hence, we must assure that the result of our computation is 889 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 890 // safe in modular arithmetic. 891 // 892 // However, this code doesn't use exactly that formula; the formula it uses 893 // is something like the following, where T is the number of factors of 2 in 894 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 895 // exponentiation: 896 // 897 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 898 // 899 // This formula is trivially equivalent to the previous formula. However, 900 // this formula can be implemented much more efficiently. The trick is that 901 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 902 // arithmetic. To do exact division in modular arithmetic, all we have 903 // to do is multiply by the inverse. Therefore, this step can be done at 904 // width W. 905 // 906 // The next issue is how to safely do the division by 2^T. The way this 907 // is done is by doing the multiplication step at a width of at least W + T 908 // bits. This way, the bottom W+T bits of the product are accurate. Then, 909 // when we perform the division by 2^T (which is equivalent to a right shift 910 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 911 // truncated out after the division by 2^T. 912 // 913 // In comparison to just directly using the first formula, this technique 914 // is much more efficient; using the first formula requires W * K bits, 915 // but this formula less than W + K bits. Also, the first formula requires 916 // a division step, whereas this formula only requires multiplies and shifts. 917 // 918 // It doesn't matter whether the subtraction step is done in the calculation 919 // width or the input iteration count's width; if the subtraction overflows, 920 // the result must be zero anyway. We prefer here to do it in the width of 921 // the induction variable because it helps a lot for certain cases; CodeGen 922 // isn't smart enough to ignore the overflow, which leads to much less 923 // efficient code if the width of the subtraction is wider than the native 924 // register width. 925 // 926 // (It's possible to not widen at all by pulling out factors of 2 before 927 // the multiplication; for example, K=2 can be calculated as 928 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 929 // extra arithmetic, so it's not an obvious win, and it gets 930 // much more complicated for K > 3.) 931 932 // Protection from insane SCEVs; this bound is conservative, 933 // but it probably doesn't matter. 934 if (K > 1000) 935 return SE.getCouldNotCompute(); 936 937 unsigned W = SE.getTypeSizeInBits(ResultTy); 938 939 // Calculate K! / 2^T and T; we divide out the factors of two before 940 // multiplying for calculating K! / 2^T to avoid overflow. 941 // Other overflow doesn't matter because we only care about the bottom 942 // W bits of the result. 943 APInt OddFactorial(W, 1); 944 unsigned T = 1; 945 for (unsigned i = 3; i <= K; ++i) { 946 unsigned TwoFactors = countr_zero(i); 947 T += TwoFactors; 948 OddFactorial *= (i >> TwoFactors); 949 } 950 951 // We need at least W + T bits for the multiplication step 952 unsigned CalculationBits = W + T; 953 954 // Calculate 2^T, at width T+W. 955 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 956 957 // Calculate the multiplicative inverse of K! / 2^T; 958 // this multiplication factor will perform the exact division by 959 // K! / 2^T. 960 APInt MultiplyFactor = OddFactorial.multiplicativeInverse(); 961 962 // Calculate the product, at width T+W 963 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 964 CalculationBits); 965 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 966 for (unsigned i = 1; i != K; ++i) { 967 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 968 Dividend = SE.getMulExpr(Dividend, 969 SE.getTruncateOrZeroExtend(S, CalculationTy)); 970 } 971 972 // Divide by 2^T 973 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 974 975 // Truncate the result, and divide by K! / 2^T. 976 977 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 978 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 979 } 980 981 /// Return the value of this chain of recurrences at the specified iteration 982 /// number. We can evaluate this recurrence by multiplying each element in the 983 /// chain by the binomial coefficient corresponding to it. In other words, we 984 /// can evaluate {A,+,B,+,C,+,D} as: 985 /// 986 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 987 /// 988 /// where BC(It, k) stands for binomial coefficient. 989 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 990 ScalarEvolution &SE) const { 991 return evaluateAtIteration(operands(), It, SE); 992 } 993 994 const SCEV * 995 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 996 const SCEV *It, ScalarEvolution &SE) { 997 assert(Operands.size() > 0); 998 const SCEV *Result = Operands[0]; 999 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1000 // The computation is correct in the face of overflow provided that the 1001 // multiplication is performed _after_ the evaluation of the binomial 1002 // coefficient. 1003 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1004 if (isa<SCEVCouldNotCompute>(Coeff)) 1005 return Coeff; 1006 1007 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1008 } 1009 return Result; 1010 } 1011 1012 //===----------------------------------------------------------------------===// 1013 // SCEV Expression folder implementations 1014 //===----------------------------------------------------------------------===// 1015 1016 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1017 unsigned Depth) { 1018 assert(Depth <= 1 && 1019 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1020 1021 // We could be called with an integer-typed operands during SCEV rewrites. 1022 // Since the operand is an integer already, just perform zext/trunc/self cast. 1023 if (!Op->getType()->isPointerTy()) 1024 return Op; 1025 1026 // What would be an ID for such a SCEV cast expression? 1027 FoldingSetNodeID ID; 1028 ID.AddInteger(scPtrToInt); 1029 ID.AddPointer(Op); 1030 1031 void *IP = nullptr; 1032 1033 // Is there already an expression for such a cast? 1034 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1035 return S; 1036 1037 // It isn't legal for optimizations to construct new ptrtoint expressions 1038 // for non-integral pointers. 1039 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1040 return getCouldNotCompute(); 1041 1042 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1043 1044 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1045 // is sufficiently wide to represent all possible pointer values. 1046 // We could theoretically teach SCEV to truncate wider pointers, but 1047 // that isn't implemented for now. 1048 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1049 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1050 return getCouldNotCompute(); 1051 1052 // If not, is this expression something we can't reduce any further? 1053 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1054 // Perform some basic constant folding. If the operand of the ptr2int cast 1055 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1056 // left as-is), but produce a zero constant. 1057 // NOTE: We could handle a more general case, but lack motivational cases. 1058 if (isa<ConstantPointerNull>(U->getValue())) 1059 return getZero(IntPtrTy); 1060 1061 // Create an explicit cast node. 1062 // We can reuse the existing insert position since if we get here, 1063 // we won't have made any changes which would invalidate it. 1064 SCEV *S = new (SCEVAllocator) 1065 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1066 UniqueSCEVs.InsertNode(S, IP); 1067 registerUser(S, Op); 1068 return S; 1069 } 1070 1071 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1072 "non-SCEVUnknown's."); 1073 1074 // Otherwise, we've got some expression that is more complex than just a 1075 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1076 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1077 // only, and the expressions must otherwise be integer-typed. 1078 // So sink the cast down to the SCEVUnknown's. 1079 1080 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1081 /// which computes a pointer-typed value, and rewrites the whole expression 1082 /// tree so that *all* the computations are done on integers, and the only 1083 /// pointer-typed operands in the expression are SCEVUnknown. 1084 class SCEVPtrToIntSinkingRewriter 1085 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1086 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1087 1088 public: 1089 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1090 1091 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1092 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1093 return Rewriter.visit(Scev); 1094 } 1095 1096 const SCEV *visit(const SCEV *S) { 1097 Type *STy = S->getType(); 1098 // If the expression is not pointer-typed, just keep it as-is. 1099 if (!STy->isPointerTy()) 1100 return S; 1101 // Else, recursively sink the cast down into it. 1102 return Base::visit(S); 1103 } 1104 1105 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1106 SmallVector<const SCEV *, 2> Operands; 1107 bool Changed = false; 1108 for (const auto *Op : Expr->operands()) { 1109 Operands.push_back(visit(Op)); 1110 Changed |= Op != Operands.back(); 1111 } 1112 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1113 } 1114 1115 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1116 SmallVector<const SCEV *, 2> Operands; 1117 bool Changed = false; 1118 for (const auto *Op : Expr->operands()) { 1119 Operands.push_back(visit(Op)); 1120 Changed |= Op != Operands.back(); 1121 } 1122 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1123 } 1124 1125 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1126 assert(Expr->getType()->isPointerTy() && 1127 "Should only reach pointer-typed SCEVUnknown's."); 1128 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1129 } 1130 }; 1131 1132 // And actually perform the cast sinking. 1133 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1134 assert(IntOp->getType()->isIntegerTy() && 1135 "We must have succeeded in sinking the cast, " 1136 "and ending up with an integer-typed expression!"); 1137 return IntOp; 1138 } 1139 1140 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1141 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1142 1143 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1144 if (isa<SCEVCouldNotCompute>(IntOp)) 1145 return IntOp; 1146 1147 return getTruncateOrZeroExtend(IntOp, Ty); 1148 } 1149 1150 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1151 unsigned Depth) { 1152 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1153 "This is not a truncating conversion!"); 1154 assert(isSCEVable(Ty) && 1155 "This is not a conversion to a SCEVable type!"); 1156 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1157 Ty = getEffectiveSCEVType(Ty); 1158 1159 FoldingSetNodeID ID; 1160 ID.AddInteger(scTruncate); 1161 ID.AddPointer(Op); 1162 ID.AddPointer(Ty); 1163 void *IP = nullptr; 1164 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1165 1166 // Fold if the operand is constant. 1167 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1168 return getConstant( 1169 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1170 1171 // trunc(trunc(x)) --> trunc(x) 1172 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1173 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1174 1175 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1176 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1177 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1178 1179 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1180 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1181 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1182 1183 if (Depth > MaxCastDepth) { 1184 SCEV *S = 1185 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1186 UniqueSCEVs.InsertNode(S, IP); 1187 registerUser(S, Op); 1188 return S; 1189 } 1190 1191 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1192 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1193 // if after transforming we have at most one truncate, not counting truncates 1194 // that replace other casts. 1195 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1196 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1197 SmallVector<const SCEV *, 4> Operands; 1198 unsigned numTruncs = 0; 1199 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1200 ++i) { 1201 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1202 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1203 isa<SCEVTruncateExpr>(S)) 1204 numTruncs++; 1205 Operands.push_back(S); 1206 } 1207 if (numTruncs < 2) { 1208 if (isa<SCEVAddExpr>(Op)) 1209 return getAddExpr(Operands); 1210 if (isa<SCEVMulExpr>(Op)) 1211 return getMulExpr(Operands); 1212 llvm_unreachable("Unexpected SCEV type for Op."); 1213 } 1214 // Although we checked in the beginning that ID is not in the cache, it is 1215 // possible that during recursion and different modification ID was inserted 1216 // into the cache. So if we find it, just return it. 1217 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1218 return S; 1219 } 1220 1221 // If the input value is a chrec scev, truncate the chrec's operands. 1222 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1223 SmallVector<const SCEV *, 4> Operands; 1224 for (const SCEV *Op : AddRec->operands()) 1225 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1226 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1227 } 1228 1229 // Return zero if truncating to known zeros. 1230 uint32_t MinTrailingZeros = getMinTrailingZeros(Op); 1231 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1232 return getZero(Ty); 1233 1234 // The cast wasn't folded; create an explicit cast node. We can reuse 1235 // the existing insert position since if we get here, we won't have 1236 // made any changes which would invalidate it. 1237 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1238 Op, Ty); 1239 UniqueSCEVs.InsertNode(S, IP); 1240 registerUser(S, Op); 1241 return S; 1242 } 1243 1244 // Get the limit of a recurrence such that incrementing by Step cannot cause 1245 // signed overflow as long as the value of the recurrence within the 1246 // loop does not exceed this limit before incrementing. 1247 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1248 ICmpInst::Predicate *Pred, 1249 ScalarEvolution *SE) { 1250 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1251 if (SE->isKnownPositive(Step)) { 1252 *Pred = ICmpInst::ICMP_SLT; 1253 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1254 SE->getSignedRangeMax(Step)); 1255 } 1256 if (SE->isKnownNegative(Step)) { 1257 *Pred = ICmpInst::ICMP_SGT; 1258 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1259 SE->getSignedRangeMin(Step)); 1260 } 1261 return nullptr; 1262 } 1263 1264 // Get the limit of a recurrence such that incrementing by Step cannot cause 1265 // unsigned overflow as long as the value of the recurrence within the loop does 1266 // not exceed this limit before incrementing. 1267 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1268 ICmpInst::Predicate *Pred, 1269 ScalarEvolution *SE) { 1270 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1271 *Pred = ICmpInst::ICMP_ULT; 1272 1273 return SE->getConstant(APInt::getMinValue(BitWidth) - 1274 SE->getUnsignedRangeMax(Step)); 1275 } 1276 1277 namespace { 1278 1279 struct ExtendOpTraitsBase { 1280 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1281 unsigned); 1282 }; 1283 1284 // Used to make code generic over signed and unsigned overflow. 1285 template <typename ExtendOp> struct ExtendOpTraits { 1286 // Members present: 1287 // 1288 // static const SCEV::NoWrapFlags WrapType; 1289 // 1290 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1291 // 1292 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1293 // ICmpInst::Predicate *Pred, 1294 // ScalarEvolution *SE); 1295 }; 1296 1297 template <> 1298 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1299 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1300 1301 static const GetExtendExprTy GetExtendExpr; 1302 1303 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1304 ICmpInst::Predicate *Pred, 1305 ScalarEvolution *SE) { 1306 return getSignedOverflowLimitForStep(Step, Pred, SE); 1307 } 1308 }; 1309 1310 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1311 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1312 1313 template <> 1314 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1315 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1316 1317 static const GetExtendExprTy GetExtendExpr; 1318 1319 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1320 ICmpInst::Predicate *Pred, 1321 ScalarEvolution *SE) { 1322 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1323 } 1324 }; 1325 1326 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1327 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1328 1329 } // end anonymous namespace 1330 1331 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1332 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1333 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1334 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1335 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1336 // expression "Step + sext/zext(PreIncAR)" is congruent with 1337 // "sext/zext(PostIncAR)" 1338 template <typename ExtendOpTy> 1339 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1340 ScalarEvolution *SE, unsigned Depth) { 1341 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1342 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1343 1344 const Loop *L = AR->getLoop(); 1345 const SCEV *Start = AR->getStart(); 1346 const SCEV *Step = AR->getStepRecurrence(*SE); 1347 1348 // Check for a simple looking step prior to loop entry. 1349 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1350 if (!SA) 1351 return nullptr; 1352 1353 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1354 // subtraction is expensive. For this purpose, perform a quick and dirty 1355 // difference, by checking for Step in the operand list. Note, that 1356 // SA might have repeated ops, like %a + %a + ..., so only remove one. 1357 SmallVector<const SCEV *, 4> DiffOps(SA->operands()); 1358 for (auto It = DiffOps.begin(); It != DiffOps.end(); ++It) 1359 if (*It == Step) { 1360 DiffOps.erase(It); 1361 break; 1362 } 1363 1364 if (DiffOps.size() == SA->getNumOperands()) 1365 return nullptr; 1366 1367 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1368 // `Step`: 1369 1370 // 1. NSW/NUW flags on the step increment. 1371 auto PreStartFlags = 1372 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1373 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1374 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1375 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1376 1377 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1378 // "S+X does not sign/unsign-overflow". 1379 // 1380 1381 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1382 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1383 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1384 return PreStart; 1385 1386 // 2. Direct overflow check on the step operation's expression. 1387 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1388 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1389 const SCEV *OperandExtendedStart = 1390 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1391 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1392 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1393 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1394 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1395 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1396 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1397 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1398 } 1399 return PreStart; 1400 } 1401 1402 // 3. Loop precondition. 1403 ICmpInst::Predicate Pred; 1404 const SCEV *OverflowLimit = 1405 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1406 1407 if (OverflowLimit && 1408 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1409 return PreStart; 1410 1411 return nullptr; 1412 } 1413 1414 // Get the normalized zero or sign extended expression for this AddRec's Start. 1415 template <typename ExtendOpTy> 1416 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1417 ScalarEvolution *SE, 1418 unsigned Depth) { 1419 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1420 1421 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1422 if (!PreStart) 1423 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1424 1425 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1426 Depth), 1427 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1428 } 1429 1430 // Try to prove away overflow by looking at "nearby" add recurrences. A 1431 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1432 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1433 // 1434 // Formally: 1435 // 1436 // {S,+,X} == {S-T,+,X} + T 1437 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1438 // 1439 // If ({S-T,+,X} + T) does not overflow ... (1) 1440 // 1441 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1442 // 1443 // If {S-T,+,X} does not overflow ... (2) 1444 // 1445 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1446 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1447 // 1448 // If (S-T)+T does not overflow ... (3) 1449 // 1450 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1451 // == {Ext(S),+,Ext(X)} == LHS 1452 // 1453 // Thus, if (1), (2) and (3) are true for some T, then 1454 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1455 // 1456 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1457 // does not overflow" restricted to the 0th iteration. Therefore we only need 1458 // to check for (1) and (2). 1459 // 1460 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1461 // is `Delta` (defined below). 1462 template <typename ExtendOpTy> 1463 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1464 const SCEV *Step, 1465 const Loop *L) { 1466 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1467 1468 // We restrict `Start` to a constant to prevent SCEV from spending too much 1469 // time here. It is correct (but more expensive) to continue with a 1470 // non-constant `Start` and do a general SCEV subtraction to compute 1471 // `PreStart` below. 1472 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1473 if (!StartC) 1474 return false; 1475 1476 APInt StartAI = StartC->getAPInt(); 1477 1478 for (unsigned Delta : {-2, -1, 1, 2}) { 1479 const SCEV *PreStart = getConstant(StartAI - Delta); 1480 1481 FoldingSetNodeID ID; 1482 ID.AddInteger(scAddRecExpr); 1483 ID.AddPointer(PreStart); 1484 ID.AddPointer(Step); 1485 ID.AddPointer(L); 1486 void *IP = nullptr; 1487 const auto *PreAR = 1488 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1489 1490 // Give up if we don't already have the add recurrence we need because 1491 // actually constructing an add recurrence is relatively expensive. 1492 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1493 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1494 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1495 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1496 DeltaS, &Pred, this); 1497 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1498 return true; 1499 } 1500 } 1501 1502 return false; 1503 } 1504 1505 // Finds an integer D for an expression (C + x + y + ...) such that the top 1506 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1507 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1508 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1509 // the (C + x + y + ...) expression is \p WholeAddExpr. 1510 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1511 const SCEVConstant *ConstantTerm, 1512 const SCEVAddExpr *WholeAddExpr) { 1513 const APInt &C = ConstantTerm->getAPInt(); 1514 const unsigned BitWidth = C.getBitWidth(); 1515 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1516 uint32_t TZ = BitWidth; 1517 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1518 TZ = std::min(TZ, SE.getMinTrailingZeros(WholeAddExpr->getOperand(I))); 1519 if (TZ) { 1520 // Set D to be as many least significant bits of C as possible while still 1521 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1522 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1523 } 1524 return APInt(BitWidth, 0); 1525 } 1526 1527 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1528 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1529 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1530 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1531 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1532 const APInt &ConstantStart, 1533 const SCEV *Step) { 1534 const unsigned BitWidth = ConstantStart.getBitWidth(); 1535 const uint32_t TZ = SE.getMinTrailingZeros(Step); 1536 if (TZ) 1537 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1538 : ConstantStart; 1539 return APInt(BitWidth, 0); 1540 } 1541 1542 static void insertFoldCacheEntry( 1543 const ScalarEvolution::FoldID &ID, const SCEV *S, 1544 DenseMap<ScalarEvolution::FoldID, const SCEV *> &FoldCache, 1545 DenseMap<const SCEV *, SmallVector<ScalarEvolution::FoldID, 2>> 1546 &FoldCacheUser) { 1547 auto I = FoldCache.insert({ID, S}); 1548 if (!I.second) { 1549 // Remove FoldCacheUser entry for ID when replacing an existing FoldCache 1550 // entry. 1551 auto &UserIDs = FoldCacheUser[I.first->second]; 1552 assert(count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs"); 1553 for (unsigned I = 0; I != UserIDs.size(); ++I) 1554 if (UserIDs[I] == ID) { 1555 std::swap(UserIDs[I], UserIDs.back()); 1556 break; 1557 } 1558 UserIDs.pop_back(); 1559 I.first->second = S; 1560 } 1561 FoldCacheUser[S].push_back(ID); 1562 } 1563 1564 const SCEV * 1565 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1566 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1567 "This is not an extending conversion!"); 1568 assert(isSCEVable(Ty) && 1569 "This is not a conversion to a SCEVable type!"); 1570 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1571 Ty = getEffectiveSCEVType(Ty); 1572 1573 FoldID ID(scZeroExtend, Op, Ty); 1574 auto Iter = FoldCache.find(ID); 1575 if (Iter != FoldCache.end()) 1576 return Iter->second; 1577 1578 const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth); 1579 if (!isa<SCEVZeroExtendExpr>(S)) 1580 insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser); 1581 return S; 1582 } 1583 1584 const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty, 1585 unsigned Depth) { 1586 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1587 "This is not an extending conversion!"); 1588 assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"); 1589 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1590 1591 // Fold if the operand is constant. 1592 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1593 return getConstant(SC->getAPInt().zext(getTypeSizeInBits(Ty))); 1594 1595 // zext(zext(x)) --> zext(x) 1596 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1597 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1598 1599 // Before doing any expensive analysis, check to see if we've already 1600 // computed a SCEV for this Op and Ty. 1601 FoldingSetNodeID ID; 1602 ID.AddInteger(scZeroExtend); 1603 ID.AddPointer(Op); 1604 ID.AddPointer(Ty); 1605 void *IP = nullptr; 1606 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1607 if (Depth > MaxCastDepth) { 1608 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1609 Op, Ty); 1610 UniqueSCEVs.InsertNode(S, IP); 1611 registerUser(S, Op); 1612 return S; 1613 } 1614 1615 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1616 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1617 // It's possible the bits taken off by the truncate were all zero bits. If 1618 // so, we should be able to simplify this further. 1619 const SCEV *X = ST->getOperand(); 1620 ConstantRange CR = getUnsignedRange(X); 1621 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1622 unsigned NewBits = getTypeSizeInBits(Ty); 1623 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1624 CR.zextOrTrunc(NewBits))) 1625 return getTruncateOrZeroExtend(X, Ty, Depth); 1626 } 1627 1628 // If the input value is a chrec scev, and we can prove that the value 1629 // did not overflow the old, smaller, value, we can zero extend all of the 1630 // operands (often constants). This allows analysis of something like 1631 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1632 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1633 if (AR->isAffine()) { 1634 const SCEV *Start = AR->getStart(); 1635 const SCEV *Step = AR->getStepRecurrence(*this); 1636 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1637 const Loop *L = AR->getLoop(); 1638 1639 // If we have special knowledge that this addrec won't overflow, 1640 // we don't need to do any further analysis. 1641 if (AR->hasNoUnsignedWrap()) { 1642 Start = 1643 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1644 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1645 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1646 } 1647 1648 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1649 // Note that this serves two purposes: It filters out loops that are 1650 // simply not analyzable, and it covers the case where this code is 1651 // being called from within backedge-taken count analysis, such that 1652 // attempting to ask for the backedge-taken count would likely result 1653 // in infinite recursion. In the later case, the analysis code will 1654 // cope with a conservative value, and it will take care to purge 1655 // that value once it has finished. 1656 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1657 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1658 // Manually compute the final value for AR, checking for overflow. 1659 1660 // Check whether the backedge-taken count can be losslessly casted to 1661 // the addrec's type. The count is always unsigned. 1662 const SCEV *CastedMaxBECount = 1663 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1664 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1665 CastedMaxBECount, MaxBECount->getType(), Depth); 1666 if (MaxBECount == RecastedMaxBECount) { 1667 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1668 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1669 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1670 SCEV::FlagAnyWrap, Depth + 1); 1671 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1672 SCEV::FlagAnyWrap, 1673 Depth + 1), 1674 WideTy, Depth + 1); 1675 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1676 const SCEV *WideMaxBECount = 1677 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1678 const SCEV *OperandExtendedAdd = 1679 getAddExpr(WideStart, 1680 getMulExpr(WideMaxBECount, 1681 getZeroExtendExpr(Step, WideTy, Depth + 1), 1682 SCEV::FlagAnyWrap, Depth + 1), 1683 SCEV::FlagAnyWrap, Depth + 1); 1684 if (ZAdd == OperandExtendedAdd) { 1685 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1686 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1687 // Return the expression with the addrec on the outside. 1688 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1689 Depth + 1); 1690 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1691 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1692 } 1693 // Similar to above, only this time treat the step value as signed. 1694 // This covers loops that count down. 1695 OperandExtendedAdd = 1696 getAddExpr(WideStart, 1697 getMulExpr(WideMaxBECount, 1698 getSignExtendExpr(Step, WideTy, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1), 1700 SCEV::FlagAnyWrap, Depth + 1); 1701 if (ZAdd == OperandExtendedAdd) { 1702 // Cache knowledge of AR NW, which is propagated to this AddRec. 1703 // Negative step causes unsigned wrap, but it still can't self-wrap. 1704 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1705 // Return the expression with the addrec on the outside. 1706 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1707 Depth + 1); 1708 Step = getSignExtendExpr(Step, Ty, Depth + 1); 1709 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1710 } 1711 } 1712 } 1713 1714 // Normally, in the cases we can prove no-overflow via a 1715 // backedge guarding condition, we can also compute a backedge 1716 // taken count for the loop. The exceptions are assumptions and 1717 // guards present in the loop -- SCEV is not great at exploiting 1718 // these to compute max backedge taken counts, but can still use 1719 // these to prove lack of overflow. Use this fact to avoid 1720 // doing extra work that may not pay off. 1721 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1722 !AC.assumptions().empty()) { 1723 1724 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1725 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1726 if (AR->hasNoUnsignedWrap()) { 1727 // Same as nuw case above - duplicated here to avoid a compile time 1728 // issue. It's not clear that the order of checks does matter, but 1729 // it's one of two issue possible causes for a change which was 1730 // reverted. Be conservative for the moment. 1731 Start = 1732 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1733 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1734 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1735 } 1736 1737 // For a negative step, we can extend the operands iff doing so only 1738 // traverses values in the range zext([0,UINT_MAX]). 1739 if (isKnownNegative(Step)) { 1740 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1741 getSignedRangeMin(Step)); 1742 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1743 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1744 // Cache knowledge of AR NW, which is propagated to this 1745 // AddRec. Negative step causes unsigned wrap, but it 1746 // still can't self-wrap. 1747 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1748 // Return the expression with the addrec on the outside. 1749 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1750 Depth + 1); 1751 Step = getSignExtendExpr(Step, Ty, Depth + 1); 1752 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1753 } 1754 } 1755 } 1756 1757 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1758 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1759 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1760 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1761 const APInt &C = SC->getAPInt(); 1762 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1763 if (D != 0) { 1764 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1765 const SCEV *SResidual = 1766 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1767 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1768 return getAddExpr(SZExtD, SZExtR, 1769 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1770 Depth + 1); 1771 } 1772 } 1773 1774 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1775 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1776 Start = 1777 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1778 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1779 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1780 } 1781 } 1782 1783 // zext(A % B) --> zext(A) % zext(B) 1784 { 1785 const SCEV *LHS; 1786 const SCEV *RHS; 1787 if (matchURem(Op, LHS, RHS)) 1788 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1789 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1790 } 1791 1792 // zext(A / B) --> zext(A) / zext(B). 1793 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1794 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1795 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1796 1797 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1798 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1799 if (SA->hasNoUnsignedWrap()) { 1800 // If the addition does not unsign overflow then we can, by definition, 1801 // commute the zero extension with the addition operation. 1802 SmallVector<const SCEV *, 4> Ops; 1803 for (const auto *Op : SA->operands()) 1804 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1805 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1806 } 1807 1808 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1809 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1810 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1811 // 1812 // Often address arithmetics contain expressions like 1813 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1814 // This transformation is useful while proving that such expressions are 1815 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1816 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1817 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1818 if (D != 0) { 1819 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1820 const SCEV *SResidual = 1821 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1822 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1823 return getAddExpr(SZExtD, SZExtR, 1824 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1825 Depth + 1); 1826 } 1827 } 1828 } 1829 1830 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1831 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1832 if (SM->hasNoUnsignedWrap()) { 1833 // If the multiply does not unsign overflow then we can, by definition, 1834 // commute the zero extension with the multiply operation. 1835 SmallVector<const SCEV *, 4> Ops; 1836 for (const auto *Op : SM->operands()) 1837 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1838 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1839 } 1840 1841 // zext(2^K * (trunc X to iN)) to iM -> 1842 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1843 // 1844 // Proof: 1845 // 1846 // zext(2^K * (trunc X to iN)) to iM 1847 // = zext((trunc X to iN) << K) to iM 1848 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1849 // (because shl removes the top K bits) 1850 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1851 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1852 // 1853 if (SM->getNumOperands() == 2) 1854 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1855 if (MulLHS->getAPInt().isPowerOf2()) 1856 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1857 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1858 MulLHS->getAPInt().logBase2(); 1859 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1860 return getMulExpr( 1861 getZeroExtendExpr(MulLHS, Ty), 1862 getZeroExtendExpr( 1863 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1864 SCEV::FlagNUW, Depth + 1); 1865 } 1866 } 1867 1868 // zext(umin(x, y)) -> umin(zext(x), zext(y)) 1869 // zext(umax(x, y)) -> umax(zext(x), zext(y)) 1870 if (isa<SCEVUMinExpr>(Op) || isa<SCEVUMaxExpr>(Op)) { 1871 auto *MinMax = cast<SCEVMinMaxExpr>(Op); 1872 SmallVector<const SCEV *, 4> Operands; 1873 for (auto *Operand : MinMax->operands()) 1874 Operands.push_back(getZeroExtendExpr(Operand, Ty)); 1875 if (isa<SCEVUMinExpr>(MinMax)) 1876 return getUMinExpr(Operands); 1877 return getUMaxExpr(Operands); 1878 } 1879 1880 // zext(umin_seq(x, y)) -> umin_seq(zext(x), zext(y)) 1881 if (auto *MinMax = dyn_cast<SCEVSequentialMinMaxExpr>(Op)) { 1882 assert(isa<SCEVSequentialUMinExpr>(MinMax) && "Not supported!"); 1883 SmallVector<const SCEV *, 4> Operands; 1884 for (auto *Operand : MinMax->operands()) 1885 Operands.push_back(getZeroExtendExpr(Operand, Ty)); 1886 return getUMinExpr(Operands, /*Sequential*/ true); 1887 } 1888 1889 // The cast wasn't folded; create an explicit cast node. 1890 // Recompute the insert position, as it may have been invalidated. 1891 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1892 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1893 Op, Ty); 1894 UniqueSCEVs.InsertNode(S, IP); 1895 registerUser(S, Op); 1896 return S; 1897 } 1898 1899 const SCEV * 1900 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1901 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1902 "This is not an extending conversion!"); 1903 assert(isSCEVable(Ty) && 1904 "This is not a conversion to a SCEVable type!"); 1905 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1906 Ty = getEffectiveSCEVType(Ty); 1907 1908 FoldID ID(scSignExtend, Op, Ty); 1909 auto Iter = FoldCache.find(ID); 1910 if (Iter != FoldCache.end()) 1911 return Iter->second; 1912 1913 const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth); 1914 if (!isa<SCEVSignExtendExpr>(S)) 1915 insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser); 1916 return S; 1917 } 1918 1919 const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty, 1920 unsigned Depth) { 1921 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1922 "This is not an extending conversion!"); 1923 assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"); 1924 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1925 Ty = getEffectiveSCEVType(Ty); 1926 1927 // Fold if the operand is constant. 1928 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1929 return getConstant(SC->getAPInt().sext(getTypeSizeInBits(Ty))); 1930 1931 // sext(sext(x)) --> sext(x) 1932 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1933 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1934 1935 // sext(zext(x)) --> zext(x) 1936 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1937 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1938 1939 // Before doing any expensive analysis, check to see if we've already 1940 // computed a SCEV for this Op and Ty. 1941 FoldingSetNodeID ID; 1942 ID.AddInteger(scSignExtend); 1943 ID.AddPointer(Op); 1944 ID.AddPointer(Ty); 1945 void *IP = nullptr; 1946 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1947 // Limit recursion depth. 1948 if (Depth > MaxCastDepth) { 1949 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1950 Op, Ty); 1951 UniqueSCEVs.InsertNode(S, IP); 1952 registerUser(S, Op); 1953 return S; 1954 } 1955 1956 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1957 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1958 // It's possible the bits taken off by the truncate were all sign bits. If 1959 // so, we should be able to simplify this further. 1960 const SCEV *X = ST->getOperand(); 1961 ConstantRange CR = getSignedRange(X); 1962 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1963 unsigned NewBits = getTypeSizeInBits(Ty); 1964 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1965 CR.sextOrTrunc(NewBits))) 1966 return getTruncateOrSignExtend(X, Ty, Depth); 1967 } 1968 1969 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1970 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1971 if (SA->hasNoSignedWrap()) { 1972 // If the addition does not sign overflow then we can, by definition, 1973 // commute the sign extension with the addition operation. 1974 SmallVector<const SCEV *, 4> Ops; 1975 for (const auto *Op : SA->operands()) 1976 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1977 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1978 } 1979 1980 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1981 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1982 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1983 // 1984 // For instance, this will bring two seemingly different expressions: 1985 // 1 + sext(5 + 20 * %x + 24 * %y) and 1986 // sext(6 + 20 * %x + 24 * %y) 1987 // to the same form: 1988 // 2 + sext(4 + 20 * %x + 24 * %y) 1989 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1990 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1991 if (D != 0) { 1992 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1993 const SCEV *SResidual = 1994 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1995 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1996 return getAddExpr(SSExtD, SSExtR, 1997 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1998 Depth + 1); 1999 } 2000 } 2001 } 2002 // If the input value is a chrec scev, and we can prove that the value 2003 // did not overflow the old, smaller, value, we can sign extend all of the 2004 // operands (often constants). This allows analysis of something like 2005 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 2006 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 2007 if (AR->isAffine()) { 2008 const SCEV *Start = AR->getStart(); 2009 const SCEV *Step = AR->getStepRecurrence(*this); 2010 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 2011 const Loop *L = AR->getLoop(); 2012 2013 // If we have special knowledge that this addrec won't overflow, 2014 // we don't need to do any further analysis. 2015 if (AR->hasNoSignedWrap()) { 2016 Start = 2017 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2018 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2019 return getAddRecExpr(Start, Step, L, SCEV::FlagNSW); 2020 } 2021 2022 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2023 // Note that this serves two purposes: It filters out loops that are 2024 // simply not analyzable, and it covers the case where this code is 2025 // being called from within backedge-taken count analysis, such that 2026 // attempting to ask for the backedge-taken count would likely result 2027 // in infinite recursion. In the later case, the analysis code will 2028 // cope with a conservative value, and it will take care to purge 2029 // that value once it has finished. 2030 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2031 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2032 // Manually compute the final value for AR, checking for 2033 // overflow. 2034 2035 // Check whether the backedge-taken count can be losslessly casted to 2036 // the addrec's type. The count is always unsigned. 2037 const SCEV *CastedMaxBECount = 2038 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2039 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2040 CastedMaxBECount, MaxBECount->getType(), Depth); 2041 if (MaxBECount == RecastedMaxBECount) { 2042 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2043 // Check whether Start+Step*MaxBECount has no signed overflow. 2044 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2045 SCEV::FlagAnyWrap, Depth + 1); 2046 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2047 SCEV::FlagAnyWrap, 2048 Depth + 1), 2049 WideTy, Depth + 1); 2050 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2051 const SCEV *WideMaxBECount = 2052 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2053 const SCEV *OperandExtendedAdd = 2054 getAddExpr(WideStart, 2055 getMulExpr(WideMaxBECount, 2056 getSignExtendExpr(Step, WideTy, Depth + 1), 2057 SCEV::FlagAnyWrap, Depth + 1), 2058 SCEV::FlagAnyWrap, Depth + 1); 2059 if (SAdd == OperandExtendedAdd) { 2060 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2061 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2062 // Return the expression with the addrec on the outside. 2063 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2064 Depth + 1); 2065 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2066 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2067 } 2068 // Similar to above, only this time treat the step value as unsigned. 2069 // This covers loops that count up with an unsigned step. 2070 OperandExtendedAdd = 2071 getAddExpr(WideStart, 2072 getMulExpr(WideMaxBECount, 2073 getZeroExtendExpr(Step, WideTy, Depth + 1), 2074 SCEV::FlagAnyWrap, Depth + 1), 2075 SCEV::FlagAnyWrap, Depth + 1); 2076 if (SAdd == OperandExtendedAdd) { 2077 // If AR wraps around then 2078 // 2079 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2080 // => SAdd != OperandExtendedAdd 2081 // 2082 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2083 // (SAdd == OperandExtendedAdd => AR is NW) 2084 2085 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2086 2087 // Return the expression with the addrec on the outside. 2088 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2089 Depth + 1); 2090 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 2091 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2092 } 2093 } 2094 } 2095 2096 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2097 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2098 if (AR->hasNoSignedWrap()) { 2099 // Same as nsw case above - duplicated here to avoid a compile time 2100 // issue. It's not clear that the order of checks does matter, but 2101 // it's one of two issue possible causes for a change which was 2102 // reverted. Be conservative for the moment. 2103 Start = 2104 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2105 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2106 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2107 } 2108 2109 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2110 // if D + (C - D + Step * n) could be proven to not signed wrap 2111 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2112 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2113 const APInt &C = SC->getAPInt(); 2114 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2115 if (D != 0) { 2116 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2117 const SCEV *SResidual = 2118 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2119 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2120 return getAddExpr(SSExtD, SSExtR, 2121 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2122 Depth + 1); 2123 } 2124 } 2125 2126 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2127 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2128 Start = 2129 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2130 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2131 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2132 } 2133 } 2134 2135 // If the input value is provably positive and we could not simplify 2136 // away the sext build a zext instead. 2137 if (isKnownNonNegative(Op)) 2138 return getZeroExtendExpr(Op, Ty, Depth + 1); 2139 2140 // sext(smin(x, y)) -> smin(sext(x), sext(y)) 2141 // sext(smax(x, y)) -> smax(sext(x), sext(y)) 2142 if (isa<SCEVSMinExpr>(Op) || isa<SCEVSMaxExpr>(Op)) { 2143 auto *MinMax = cast<SCEVMinMaxExpr>(Op); 2144 SmallVector<const SCEV *, 4> Operands; 2145 for (auto *Operand : MinMax->operands()) 2146 Operands.push_back(getSignExtendExpr(Operand, Ty)); 2147 if (isa<SCEVSMinExpr>(MinMax)) 2148 return getSMinExpr(Operands); 2149 return getSMaxExpr(Operands); 2150 } 2151 2152 // The cast wasn't folded; create an explicit cast node. 2153 // Recompute the insert position, as it may have been invalidated. 2154 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2155 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2156 Op, Ty); 2157 UniqueSCEVs.InsertNode(S, IP); 2158 registerUser(S, { Op }); 2159 return S; 2160 } 2161 2162 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, 2163 Type *Ty) { 2164 switch (Kind) { 2165 case scTruncate: 2166 return getTruncateExpr(Op, Ty); 2167 case scZeroExtend: 2168 return getZeroExtendExpr(Op, Ty); 2169 case scSignExtend: 2170 return getSignExtendExpr(Op, Ty); 2171 case scPtrToInt: 2172 return getPtrToIntExpr(Op, Ty); 2173 default: 2174 llvm_unreachable("Not a SCEV cast expression!"); 2175 } 2176 } 2177 2178 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2179 /// unspecified bits out to the given type. 2180 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2181 Type *Ty) { 2182 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2183 "This is not an extending conversion!"); 2184 assert(isSCEVable(Ty) && 2185 "This is not a conversion to a SCEVable type!"); 2186 Ty = getEffectiveSCEVType(Ty); 2187 2188 // Sign-extend negative constants. 2189 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2190 if (SC->getAPInt().isNegative()) 2191 return getSignExtendExpr(Op, Ty); 2192 2193 // Peel off a truncate cast. 2194 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2195 const SCEV *NewOp = T->getOperand(); 2196 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2197 return getAnyExtendExpr(NewOp, Ty); 2198 return getTruncateOrNoop(NewOp, Ty); 2199 } 2200 2201 // Next try a zext cast. If the cast is folded, use it. 2202 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2203 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2204 return ZExt; 2205 2206 // Next try a sext cast. If the cast is folded, use it. 2207 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2208 if (!isa<SCEVSignExtendExpr>(SExt)) 2209 return SExt; 2210 2211 // Force the cast to be folded into the operands of an addrec. 2212 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2213 SmallVector<const SCEV *, 4> Ops; 2214 for (const SCEV *Op : AR->operands()) 2215 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2216 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2217 } 2218 2219 // If the expression is obviously signed, use the sext cast value. 2220 if (isa<SCEVSMaxExpr>(Op)) 2221 return SExt; 2222 2223 // Absent any other information, use the zext cast value. 2224 return ZExt; 2225 } 2226 2227 /// Process the given Ops list, which is a list of operands to be added under 2228 /// the given scale, update the given map. This is a helper function for 2229 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2230 /// that would form an add expression like this: 2231 /// 2232 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2233 /// 2234 /// where A and B are constants, update the map with these values: 2235 /// 2236 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2237 /// 2238 /// and add 13 + A*B*29 to AccumulatedConstant. 2239 /// This will allow getAddRecExpr to produce this: 2240 /// 2241 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2242 /// 2243 /// This form often exposes folding opportunities that are hidden in 2244 /// the original operand list. 2245 /// 2246 /// Return true iff it appears that any interesting folding opportunities 2247 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2248 /// the common case where no interesting opportunities are present, and 2249 /// is also used as a check to avoid infinite recursion. 2250 static bool 2251 CollectAddOperandsWithScales(SmallDenseMap<const SCEV *, APInt, 16> &M, 2252 SmallVectorImpl<const SCEV *> &NewOps, 2253 APInt &AccumulatedConstant, 2254 ArrayRef<const SCEV *> Ops, const APInt &Scale, 2255 ScalarEvolution &SE) { 2256 bool Interesting = false; 2257 2258 // Iterate over the add operands. They are sorted, with constants first. 2259 unsigned i = 0; 2260 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2261 ++i; 2262 // Pull a buried constant out to the outside. 2263 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2264 Interesting = true; 2265 AccumulatedConstant += Scale * C->getAPInt(); 2266 } 2267 2268 // Next comes everything else. We're especially interested in multiplies 2269 // here, but they're in the middle, so just visit the rest with one loop. 2270 for (; i != Ops.size(); ++i) { 2271 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2272 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2273 APInt NewScale = 2274 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2275 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2276 // A multiplication of a constant with another add; recurse. 2277 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2278 Interesting |= 2279 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2280 Add->operands(), NewScale, SE); 2281 } else { 2282 // A multiplication of a constant with some other value. Update 2283 // the map. 2284 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2285 const SCEV *Key = SE.getMulExpr(MulOps); 2286 auto Pair = M.insert({Key, NewScale}); 2287 if (Pair.second) { 2288 NewOps.push_back(Pair.first->first); 2289 } else { 2290 Pair.first->second += NewScale; 2291 // The map already had an entry for this value, which may indicate 2292 // a folding opportunity. 2293 Interesting = true; 2294 } 2295 } 2296 } else { 2297 // An ordinary operand. Update the map. 2298 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2299 M.insert({Ops[i], Scale}); 2300 if (Pair.second) { 2301 NewOps.push_back(Pair.first->first); 2302 } else { 2303 Pair.first->second += Scale; 2304 // The map already had an entry for this value, which may indicate 2305 // a folding opportunity. 2306 Interesting = true; 2307 } 2308 } 2309 } 2310 2311 return Interesting; 2312 } 2313 2314 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2315 const SCEV *LHS, const SCEV *RHS, 2316 const Instruction *CtxI) { 2317 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2318 SCEV::NoWrapFlags, unsigned); 2319 switch (BinOp) { 2320 default: 2321 llvm_unreachable("Unsupported binary op"); 2322 case Instruction::Add: 2323 Operation = &ScalarEvolution::getAddExpr; 2324 break; 2325 case Instruction::Sub: 2326 Operation = &ScalarEvolution::getMinusSCEV; 2327 break; 2328 case Instruction::Mul: 2329 Operation = &ScalarEvolution::getMulExpr; 2330 break; 2331 } 2332 2333 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2334 Signed ? &ScalarEvolution::getSignExtendExpr 2335 : &ScalarEvolution::getZeroExtendExpr; 2336 2337 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2338 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2339 auto *WideTy = 2340 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2341 2342 const SCEV *A = (this->*Extension)( 2343 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2344 const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0); 2345 const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0); 2346 const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0); 2347 if (A == B) 2348 return true; 2349 // Can we use context to prove the fact we need? 2350 if (!CtxI) 2351 return false; 2352 // TODO: Support mul. 2353 if (BinOp == Instruction::Mul) 2354 return false; 2355 auto *RHSC = dyn_cast<SCEVConstant>(RHS); 2356 // TODO: Lift this limitation. 2357 if (!RHSC) 2358 return false; 2359 APInt C = RHSC->getAPInt(); 2360 unsigned NumBits = C.getBitWidth(); 2361 bool IsSub = (BinOp == Instruction::Sub); 2362 bool IsNegativeConst = (Signed && C.isNegative()); 2363 // Compute the direction and magnitude by which we need to check overflow. 2364 bool OverflowDown = IsSub ^ IsNegativeConst; 2365 APInt Magnitude = C; 2366 if (IsNegativeConst) { 2367 if (C == APInt::getSignedMinValue(NumBits)) 2368 // TODO: SINT_MIN on inversion gives the same negative value, we don't 2369 // want to deal with that. 2370 return false; 2371 Magnitude = -C; 2372 } 2373 2374 ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 2375 if (OverflowDown) { 2376 // To avoid overflow down, we need to make sure that MIN + Magnitude <= LHS. 2377 APInt Min = Signed ? APInt::getSignedMinValue(NumBits) 2378 : APInt::getMinValue(NumBits); 2379 APInt Limit = Min + Magnitude; 2380 return isKnownPredicateAt(Pred, getConstant(Limit), LHS, CtxI); 2381 } else { 2382 // To avoid overflow up, we need to make sure that LHS <= MAX - Magnitude. 2383 APInt Max = Signed ? APInt::getSignedMaxValue(NumBits) 2384 : APInt::getMaxValue(NumBits); 2385 APInt Limit = Max - Magnitude; 2386 return isKnownPredicateAt(Pred, LHS, getConstant(Limit), CtxI); 2387 } 2388 } 2389 2390 std::optional<SCEV::NoWrapFlags> 2391 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2392 const OverflowingBinaryOperator *OBO) { 2393 // It cannot be done any better. 2394 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2395 return std::nullopt; 2396 2397 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2398 2399 if (OBO->hasNoUnsignedWrap()) 2400 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2401 if (OBO->hasNoSignedWrap()) 2402 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2403 2404 bool Deduced = false; 2405 2406 if (OBO->getOpcode() != Instruction::Add && 2407 OBO->getOpcode() != Instruction::Sub && 2408 OBO->getOpcode() != Instruction::Mul) 2409 return std::nullopt; 2410 2411 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2412 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2413 2414 const Instruction *CtxI = 2415 UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(OBO) : nullptr; 2416 if (!OBO->hasNoUnsignedWrap() && 2417 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2418 /* Signed */ false, LHS, RHS, CtxI)) { 2419 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2420 Deduced = true; 2421 } 2422 2423 if (!OBO->hasNoSignedWrap() && 2424 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2425 /* Signed */ true, LHS, RHS, CtxI)) { 2426 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2427 Deduced = true; 2428 } 2429 2430 if (Deduced) 2431 return Flags; 2432 return std::nullopt; 2433 } 2434 2435 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2436 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2437 // can't-overflow flags for the operation if possible. 2438 static SCEV::NoWrapFlags 2439 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2440 const ArrayRef<const SCEV *> Ops, 2441 SCEV::NoWrapFlags Flags) { 2442 using namespace std::placeholders; 2443 2444 using OBO = OverflowingBinaryOperator; 2445 2446 bool CanAnalyze = 2447 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2448 (void)CanAnalyze; 2449 assert(CanAnalyze && "don't call from other places!"); 2450 2451 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2452 SCEV::NoWrapFlags SignOrUnsignWrap = 2453 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2454 2455 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2456 auto IsKnownNonNegative = [&](const SCEV *S) { 2457 return SE->isKnownNonNegative(S); 2458 }; 2459 2460 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2461 Flags = 2462 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2463 2464 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2465 2466 if (SignOrUnsignWrap != SignOrUnsignMask && 2467 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2468 isa<SCEVConstant>(Ops[0])) { 2469 2470 auto Opcode = [&] { 2471 switch (Type) { 2472 case scAddExpr: 2473 return Instruction::Add; 2474 case scMulExpr: 2475 return Instruction::Mul; 2476 default: 2477 llvm_unreachable("Unexpected SCEV op."); 2478 } 2479 }(); 2480 2481 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2482 2483 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2484 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2485 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2486 Opcode, C, OBO::NoSignedWrap); 2487 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2488 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2489 } 2490 2491 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2492 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2493 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2494 Opcode, C, OBO::NoUnsignedWrap); 2495 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2496 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2497 } 2498 } 2499 2500 // <0,+,nonnegative><nw> is also nuw 2501 // TODO: Add corresponding nsw case 2502 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2503 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2504 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2505 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2506 2507 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2508 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2509 Ops.size() == 2) { 2510 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2511 if (UDiv->getOperand(1) == Ops[1]) 2512 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2513 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2514 if (UDiv->getOperand(1) == Ops[0]) 2515 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2516 } 2517 2518 return Flags; 2519 } 2520 2521 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2522 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2523 } 2524 2525 /// Get a canonical add expression, or something simpler if possible. 2526 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2527 SCEV::NoWrapFlags OrigFlags, 2528 unsigned Depth) { 2529 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2530 "only nuw or nsw allowed"); 2531 assert(!Ops.empty() && "Cannot get empty add!"); 2532 if (Ops.size() == 1) return Ops[0]; 2533 #ifndef NDEBUG 2534 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2535 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2536 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2537 "SCEVAddExpr operand types don't match!"); 2538 unsigned NumPtrs = count_if( 2539 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2540 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2541 #endif 2542 2543 const SCEV *Folded = constantFoldAndGroupOps( 2544 *this, LI, DT, Ops, 2545 [](const APInt &C1, const APInt &C2) { return C1 + C2; }, 2546 [](const APInt &C) { return C.isZero(); }, // identity 2547 [](const APInt &C) { return false; }); // absorber 2548 if (Folded) 2549 return Folded; 2550 2551 unsigned Idx = isa<SCEVConstant>(Ops[0]) ? 1 : 0; 2552 2553 // Delay expensive flag strengthening until necessary. 2554 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2555 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2556 }; 2557 2558 // Limit recursion calls depth. 2559 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2560 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2561 2562 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2563 // Don't strengthen flags if we have no new information. 2564 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2565 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2566 Add->setNoWrapFlags(ComputeFlags(Ops)); 2567 return S; 2568 } 2569 2570 // Okay, check to see if the same value occurs in the operand list more than 2571 // once. If so, merge them together into an multiply expression. Since we 2572 // sorted the list, these values are required to be adjacent. 2573 Type *Ty = Ops[0]->getType(); 2574 bool FoundMatch = false; 2575 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2576 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2577 // Scan ahead to count how many equal operands there are. 2578 unsigned Count = 2; 2579 while (i+Count != e && Ops[i+Count] == Ops[i]) 2580 ++Count; 2581 // Merge the values into a multiply. 2582 const SCEV *Scale = getConstant(Ty, Count); 2583 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2584 if (Ops.size() == Count) 2585 return Mul; 2586 Ops[i] = Mul; 2587 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2588 --i; e -= Count - 1; 2589 FoundMatch = true; 2590 } 2591 if (FoundMatch) 2592 return getAddExpr(Ops, OrigFlags, Depth + 1); 2593 2594 // Check for truncates. If all the operands are truncated from the same 2595 // type, see if factoring out the truncate would permit the result to be 2596 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2597 // if the contents of the resulting outer trunc fold to something simple. 2598 auto FindTruncSrcType = [&]() -> Type * { 2599 // We're ultimately looking to fold an addrec of truncs and muls of only 2600 // constants and truncs, so if we find any other types of SCEV 2601 // as operands of the addrec then we bail and return nullptr here. 2602 // Otherwise, we return the type of the operand of a trunc that we find. 2603 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2604 return T->getOperand()->getType(); 2605 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2606 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2607 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2608 return T->getOperand()->getType(); 2609 } 2610 return nullptr; 2611 }; 2612 if (auto *SrcType = FindTruncSrcType()) { 2613 SmallVector<const SCEV *, 8> LargeOps; 2614 bool Ok = true; 2615 // Check all the operands to see if they can be represented in the 2616 // source type of the truncate. 2617 for (const SCEV *Op : Ops) { 2618 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2619 if (T->getOperand()->getType() != SrcType) { 2620 Ok = false; 2621 break; 2622 } 2623 LargeOps.push_back(T->getOperand()); 2624 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Op)) { 2625 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2626 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Op)) { 2627 SmallVector<const SCEV *, 8> LargeMulOps; 2628 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2629 if (const SCEVTruncateExpr *T = 2630 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2631 if (T->getOperand()->getType() != SrcType) { 2632 Ok = false; 2633 break; 2634 } 2635 LargeMulOps.push_back(T->getOperand()); 2636 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2637 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2638 } else { 2639 Ok = false; 2640 break; 2641 } 2642 } 2643 if (Ok) 2644 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2645 } else { 2646 Ok = false; 2647 break; 2648 } 2649 } 2650 if (Ok) { 2651 // Evaluate the expression in the larger type. 2652 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2653 // If it folds to something simple, use it. Otherwise, don't. 2654 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2655 return getTruncateExpr(Fold, Ty); 2656 } 2657 } 2658 2659 if (Ops.size() == 2) { 2660 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2661 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2662 // C1). 2663 const SCEV *A = Ops[0]; 2664 const SCEV *B = Ops[1]; 2665 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2666 auto *C = dyn_cast<SCEVConstant>(A); 2667 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2668 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2669 auto C2 = C->getAPInt(); 2670 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2671 2672 APInt ConstAdd = C1 + C2; 2673 auto AddFlags = AddExpr->getNoWrapFlags(); 2674 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2675 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2676 ConstAdd.ule(C1)) { 2677 PreservedFlags = 2678 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2679 } 2680 2681 // Adding a constant with the same sign and small magnitude is NSW, if the 2682 // original AddExpr was NSW. 2683 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2684 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2685 ConstAdd.abs().ule(C1.abs())) { 2686 PreservedFlags = 2687 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2688 } 2689 2690 if (PreservedFlags != SCEV::FlagAnyWrap) { 2691 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2692 NewOps[0] = getConstant(ConstAdd); 2693 return getAddExpr(NewOps, PreservedFlags); 2694 } 2695 } 2696 } 2697 2698 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2699 if (Ops.size() == 2) { 2700 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2701 if (Mul && Mul->getNumOperands() == 2 && 2702 Mul->getOperand(0)->isAllOnesValue()) { 2703 const SCEV *X; 2704 const SCEV *Y; 2705 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2706 return getMulExpr(Y, getUDivExpr(X, Y)); 2707 } 2708 } 2709 } 2710 2711 // Skip past any other cast SCEVs. 2712 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2713 ++Idx; 2714 2715 // If there are add operands they would be next. 2716 if (Idx < Ops.size()) { 2717 bool DeletedAdd = false; 2718 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2719 // common NUW flag for expression after inlining. Other flags cannot be 2720 // preserved, because they may depend on the original order of operations. 2721 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2722 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2723 if (Ops.size() > AddOpsInlineThreshold || 2724 Add->getNumOperands() > AddOpsInlineThreshold) 2725 break; 2726 // If we have an add, expand the add operands onto the end of the operands 2727 // list. 2728 Ops.erase(Ops.begin()+Idx); 2729 append_range(Ops, Add->operands()); 2730 DeletedAdd = true; 2731 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2732 } 2733 2734 // If we deleted at least one add, we added operands to the end of the list, 2735 // and they are not necessarily sorted. Recurse to resort and resimplify 2736 // any operands we just acquired. 2737 if (DeletedAdd) 2738 return getAddExpr(Ops, CommonFlags, Depth + 1); 2739 } 2740 2741 // Skip over the add expression until we get to a multiply. 2742 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2743 ++Idx; 2744 2745 // Check to see if there are any folding opportunities present with 2746 // operands multiplied by constant values. 2747 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2748 uint64_t BitWidth = getTypeSizeInBits(Ty); 2749 SmallDenseMap<const SCEV *, APInt, 16> M; 2750 SmallVector<const SCEV *, 8> NewOps; 2751 APInt AccumulatedConstant(BitWidth, 0); 2752 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2753 Ops, APInt(BitWidth, 1), *this)) { 2754 struct APIntCompare { 2755 bool operator()(const APInt &LHS, const APInt &RHS) const { 2756 return LHS.ult(RHS); 2757 } 2758 }; 2759 2760 // Some interesting folding opportunity is present, so its worthwhile to 2761 // re-generate the operands list. Group the operands by constant scale, 2762 // to avoid multiplying by the same constant scale multiple times. 2763 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2764 for (const SCEV *NewOp : NewOps) 2765 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2766 // Re-generate the operands list. 2767 Ops.clear(); 2768 if (AccumulatedConstant != 0) 2769 Ops.push_back(getConstant(AccumulatedConstant)); 2770 for (auto &MulOp : MulOpLists) { 2771 if (MulOp.first == 1) { 2772 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2773 } else if (MulOp.first != 0) { 2774 Ops.push_back(getMulExpr( 2775 getConstant(MulOp.first), 2776 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2777 SCEV::FlagAnyWrap, Depth + 1)); 2778 } 2779 } 2780 if (Ops.empty()) 2781 return getZero(Ty); 2782 if (Ops.size() == 1) 2783 return Ops[0]; 2784 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2785 } 2786 } 2787 2788 // If we are adding something to a multiply expression, make sure the 2789 // something is not already an operand of the multiply. If so, merge it into 2790 // the multiply. 2791 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2792 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2793 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2794 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2795 if (isa<SCEVConstant>(MulOpSCEV)) 2796 continue; 2797 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2798 if (MulOpSCEV == Ops[AddOp]) { 2799 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2800 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2801 if (Mul->getNumOperands() != 2) { 2802 // If the multiply has more than two operands, we must get the 2803 // Y*Z term. 2804 SmallVector<const SCEV *, 4> MulOps( 2805 Mul->operands().take_front(MulOp)); 2806 append_range(MulOps, Mul->operands().drop_front(MulOp + 1)); 2807 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2808 } 2809 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2810 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2811 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2812 SCEV::FlagAnyWrap, Depth + 1); 2813 if (Ops.size() == 2) return OuterMul; 2814 if (AddOp < Idx) { 2815 Ops.erase(Ops.begin()+AddOp); 2816 Ops.erase(Ops.begin()+Idx-1); 2817 } else { 2818 Ops.erase(Ops.begin()+Idx); 2819 Ops.erase(Ops.begin()+AddOp-1); 2820 } 2821 Ops.push_back(OuterMul); 2822 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2823 } 2824 2825 // Check this multiply against other multiplies being added together. 2826 for (unsigned OtherMulIdx = Idx+1; 2827 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2828 ++OtherMulIdx) { 2829 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2830 // If MulOp occurs in OtherMul, we can fold the two multiplies 2831 // together. 2832 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2833 OMulOp != e; ++OMulOp) 2834 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2835 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2836 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2837 if (Mul->getNumOperands() != 2) { 2838 SmallVector<const SCEV *, 4> MulOps( 2839 Mul->operands().take_front(MulOp)); 2840 append_range(MulOps, Mul->operands().drop_front(MulOp+1)); 2841 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2842 } 2843 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2844 if (OtherMul->getNumOperands() != 2) { 2845 SmallVector<const SCEV *, 4> MulOps( 2846 OtherMul->operands().take_front(OMulOp)); 2847 append_range(MulOps, OtherMul->operands().drop_front(OMulOp+1)); 2848 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2849 } 2850 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2851 const SCEV *InnerMulSum = 2852 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2853 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2854 SCEV::FlagAnyWrap, Depth + 1); 2855 if (Ops.size() == 2) return OuterMul; 2856 Ops.erase(Ops.begin()+Idx); 2857 Ops.erase(Ops.begin()+OtherMulIdx-1); 2858 Ops.push_back(OuterMul); 2859 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2860 } 2861 } 2862 } 2863 } 2864 2865 // If there are any add recurrences in the operands list, see if any other 2866 // added values are loop invariant. If so, we can fold them into the 2867 // recurrence. 2868 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2869 ++Idx; 2870 2871 // Scan over all recurrences, trying to fold loop invariants into them. 2872 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2873 // Scan all of the other operands to this add and add them to the vector if 2874 // they are loop invariant w.r.t. the recurrence. 2875 SmallVector<const SCEV *, 8> LIOps; 2876 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2877 const Loop *AddRecLoop = AddRec->getLoop(); 2878 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2879 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2880 LIOps.push_back(Ops[i]); 2881 Ops.erase(Ops.begin()+i); 2882 --i; --e; 2883 } 2884 2885 // If we found some loop invariants, fold them into the recurrence. 2886 if (!LIOps.empty()) { 2887 // Compute nowrap flags for the addition of the loop-invariant ops and 2888 // the addrec. Temporarily push it as an operand for that purpose. These 2889 // flags are valid in the scope of the addrec only. 2890 LIOps.push_back(AddRec); 2891 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2892 LIOps.pop_back(); 2893 2894 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2895 LIOps.push_back(AddRec->getStart()); 2896 2897 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2898 2899 // It is not in general safe to propagate flags valid on an add within 2900 // the addrec scope to one outside it. We must prove that the inner 2901 // scope is guaranteed to execute if the outer one does to be able to 2902 // safely propagate. We know the program is undefined if poison is 2903 // produced on the inner scoped addrec. We also know that *for this use* 2904 // the outer scoped add can't overflow (because of the flags we just 2905 // computed for the inner scoped add) without the program being undefined. 2906 // Proving that entry to the outer scope neccesitates entry to the inner 2907 // scope, thus proves the program undefined if the flags would be violated 2908 // in the outer scope. 2909 SCEV::NoWrapFlags AddFlags = Flags; 2910 if (AddFlags != SCEV::FlagAnyWrap) { 2911 auto *DefI = getDefiningScopeBound(LIOps); 2912 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2913 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2914 AddFlags = SCEV::FlagAnyWrap; 2915 } 2916 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2917 2918 // Build the new addrec. Propagate the NUW and NSW flags if both the 2919 // outer add and the inner addrec are guaranteed to have no overflow. 2920 // Always propagate NW. 2921 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2922 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2923 2924 // If all of the other operands were loop invariant, we are done. 2925 if (Ops.size() == 1) return NewRec; 2926 2927 // Otherwise, add the folded AddRec by the non-invariant parts. 2928 for (unsigned i = 0;; ++i) 2929 if (Ops[i] == AddRec) { 2930 Ops[i] = NewRec; 2931 break; 2932 } 2933 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2934 } 2935 2936 // Okay, if there weren't any loop invariants to be folded, check to see if 2937 // there are multiple AddRec's with the same loop induction variable being 2938 // added together. If so, we can fold them. 2939 for (unsigned OtherIdx = Idx+1; 2940 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2941 ++OtherIdx) { 2942 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2943 // so that the 1st found AddRecExpr is dominated by all others. 2944 assert(DT.dominates( 2945 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2946 AddRec->getLoop()->getHeader()) && 2947 "AddRecExprs are not sorted in reverse dominance order?"); 2948 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2949 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2950 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2951 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2952 ++OtherIdx) { 2953 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2954 if (OtherAddRec->getLoop() == AddRecLoop) { 2955 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2956 i != e; ++i) { 2957 if (i >= AddRecOps.size()) { 2958 append_range(AddRecOps, OtherAddRec->operands().drop_front(i)); 2959 break; 2960 } 2961 SmallVector<const SCEV *, 2> TwoOps = { 2962 AddRecOps[i], OtherAddRec->getOperand(i)}; 2963 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2964 } 2965 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2966 } 2967 } 2968 // Step size has changed, so we cannot guarantee no self-wraparound. 2969 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2970 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2971 } 2972 } 2973 2974 // Otherwise couldn't fold anything into this recurrence. Move onto the 2975 // next one. 2976 } 2977 2978 // Okay, it looks like we really DO need an add expr. Check to see if we 2979 // already have one, otherwise create a new one. 2980 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2981 } 2982 2983 const SCEV * 2984 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2985 SCEV::NoWrapFlags Flags) { 2986 FoldingSetNodeID ID; 2987 ID.AddInteger(scAddExpr); 2988 for (const SCEV *Op : Ops) 2989 ID.AddPointer(Op); 2990 void *IP = nullptr; 2991 SCEVAddExpr *S = 2992 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2993 if (!S) { 2994 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2995 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2996 S = new (SCEVAllocator) 2997 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2998 UniqueSCEVs.InsertNode(S, IP); 2999 registerUser(S, Ops); 3000 } 3001 S->setNoWrapFlags(Flags); 3002 return S; 3003 } 3004 3005 const SCEV * 3006 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 3007 const Loop *L, SCEV::NoWrapFlags Flags) { 3008 FoldingSetNodeID ID; 3009 ID.AddInteger(scAddRecExpr); 3010 for (const SCEV *Op : Ops) 3011 ID.AddPointer(Op); 3012 ID.AddPointer(L); 3013 void *IP = nullptr; 3014 SCEVAddRecExpr *S = 3015 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3016 if (!S) { 3017 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3018 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3019 S = new (SCEVAllocator) 3020 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 3021 UniqueSCEVs.InsertNode(S, IP); 3022 LoopUsers[L].push_back(S); 3023 registerUser(S, Ops); 3024 } 3025 setNoWrapFlags(S, Flags); 3026 return S; 3027 } 3028 3029 const SCEV * 3030 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 3031 SCEV::NoWrapFlags Flags) { 3032 FoldingSetNodeID ID; 3033 ID.AddInteger(scMulExpr); 3034 for (const SCEV *Op : Ops) 3035 ID.AddPointer(Op); 3036 void *IP = nullptr; 3037 SCEVMulExpr *S = 3038 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3039 if (!S) { 3040 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3041 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3042 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 3043 O, Ops.size()); 3044 UniqueSCEVs.InsertNode(S, IP); 3045 registerUser(S, Ops); 3046 } 3047 S->setNoWrapFlags(Flags); 3048 return S; 3049 } 3050 3051 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 3052 uint64_t k = i*j; 3053 if (j > 1 && k / j != i) Overflow = true; 3054 return k; 3055 } 3056 3057 /// Compute the result of "n choose k", the binomial coefficient. If an 3058 /// intermediate computation overflows, Overflow will be set and the return will 3059 /// be garbage. Overflow is not cleared on absence of overflow. 3060 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 3061 // We use the multiplicative formula: 3062 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 3063 // At each iteration, we take the n-th term of the numeral and divide by the 3064 // (k-n)th term of the denominator. This division will always produce an 3065 // integral result, and helps reduce the chance of overflow in the 3066 // intermediate computations. However, we can still overflow even when the 3067 // final result would fit. 3068 3069 if (n == 0 || n == k) return 1; 3070 if (k > n) return 0; 3071 3072 if (k > n/2) 3073 k = n-k; 3074 3075 uint64_t r = 1; 3076 for (uint64_t i = 1; i <= k; ++i) { 3077 r = umul_ov(r, n-(i-1), Overflow); 3078 r /= i; 3079 } 3080 return r; 3081 } 3082 3083 /// Determine if any of the operands in this SCEV are a constant or if 3084 /// any of the add or multiply expressions in this SCEV contain a constant. 3085 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 3086 struct FindConstantInAddMulChain { 3087 bool FoundConstant = false; 3088 3089 bool follow(const SCEV *S) { 3090 FoundConstant |= isa<SCEVConstant>(S); 3091 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3092 } 3093 3094 bool isDone() const { 3095 return FoundConstant; 3096 } 3097 }; 3098 3099 FindConstantInAddMulChain F; 3100 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3101 ST.visitAll(StartExpr); 3102 return F.FoundConstant; 3103 } 3104 3105 /// Get a canonical multiply expression, or something simpler if possible. 3106 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3107 SCEV::NoWrapFlags OrigFlags, 3108 unsigned Depth) { 3109 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3110 "only nuw or nsw allowed"); 3111 assert(!Ops.empty() && "Cannot get empty mul!"); 3112 if (Ops.size() == 1) return Ops[0]; 3113 #ifndef NDEBUG 3114 Type *ETy = Ops[0]->getType(); 3115 assert(!ETy->isPointerTy()); 3116 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3117 assert(Ops[i]->getType() == ETy && 3118 "SCEVMulExpr operand types don't match!"); 3119 #endif 3120 3121 const SCEV *Folded = constantFoldAndGroupOps( 3122 *this, LI, DT, Ops, 3123 [](const APInt &C1, const APInt &C2) { return C1 * C2; }, 3124 [](const APInt &C) { return C.isOne(); }, // identity 3125 [](const APInt &C) { return C.isZero(); }); // absorber 3126 if (Folded) 3127 return Folded; 3128 3129 // Delay expensive flag strengthening until necessary. 3130 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3131 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3132 }; 3133 3134 // Limit recursion calls depth. 3135 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3136 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3137 3138 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3139 // Don't strengthen flags if we have no new information. 3140 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3141 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3142 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3143 return S; 3144 } 3145 3146 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3147 if (Ops.size() == 2) { 3148 // C1*(C2+V) -> C1*C2 + C1*V 3149 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3150 // If any of Add's ops are Adds or Muls with a constant, apply this 3151 // transformation as well. 3152 // 3153 // TODO: There are some cases where this transformation is not 3154 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3155 // this transformation should be narrowed down. 3156 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) { 3157 const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0), 3158 SCEV::FlagAnyWrap, Depth + 1); 3159 const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1), 3160 SCEV::FlagAnyWrap, Depth + 1); 3161 return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1); 3162 } 3163 3164 if (Ops[0]->isAllOnesValue()) { 3165 // If we have a mul by -1 of an add, try distributing the -1 among the 3166 // add operands. 3167 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3168 SmallVector<const SCEV *, 4> NewOps; 3169 bool AnyFolded = false; 3170 for (const SCEV *AddOp : Add->operands()) { 3171 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3172 Depth + 1); 3173 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3174 NewOps.push_back(Mul); 3175 } 3176 if (AnyFolded) 3177 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3178 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3179 // Negation preserves a recurrence's no self-wrap property. 3180 SmallVector<const SCEV *, 4> Operands; 3181 for (const SCEV *AddRecOp : AddRec->operands()) 3182 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3183 Depth + 1)); 3184 // Let M be the minimum representable signed value. AddRec with nsw 3185 // multiplied by -1 can have signed overflow if and only if it takes a 3186 // value of M: M * (-1) would stay M and (M + 1) * (-1) would be the 3187 // maximum signed value. In all other cases signed overflow is 3188 // impossible. 3189 auto FlagsMask = SCEV::FlagNW; 3190 if (hasFlags(AddRec->getNoWrapFlags(), SCEV::FlagNSW)) { 3191 auto MinInt = 3192 APInt::getSignedMinValue(getTypeSizeInBits(AddRec->getType())); 3193 if (getSignedRangeMin(AddRec) != MinInt) 3194 FlagsMask = setFlags(FlagsMask, SCEV::FlagNSW); 3195 } 3196 return getAddRecExpr(Operands, AddRec->getLoop(), 3197 AddRec->getNoWrapFlags(FlagsMask)); 3198 } 3199 } 3200 } 3201 } 3202 3203 // Skip over the add expression until we get to a multiply. 3204 unsigned Idx = 0; 3205 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3206 ++Idx; 3207 3208 // If there are mul operands inline them all into this expression. 3209 if (Idx < Ops.size()) { 3210 bool DeletedMul = false; 3211 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3212 if (Ops.size() > MulOpsInlineThreshold) 3213 break; 3214 // If we have an mul, expand the mul operands onto the end of the 3215 // operands list. 3216 Ops.erase(Ops.begin()+Idx); 3217 append_range(Ops, Mul->operands()); 3218 DeletedMul = true; 3219 } 3220 3221 // If we deleted at least one mul, we added operands to the end of the 3222 // list, and they are not necessarily sorted. Recurse to resort and 3223 // resimplify any operands we just acquired. 3224 if (DeletedMul) 3225 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3226 } 3227 3228 // If there are any add recurrences in the operands list, see if any other 3229 // added values are loop invariant. If so, we can fold them into the 3230 // recurrence. 3231 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3232 ++Idx; 3233 3234 // Scan over all recurrences, trying to fold loop invariants into them. 3235 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3236 // Scan all of the other operands to this mul and add them to the vector 3237 // if they are loop invariant w.r.t. the recurrence. 3238 SmallVector<const SCEV *, 8> LIOps; 3239 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3240 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3241 if (isAvailableAtLoopEntry(Ops[i], AddRec->getLoop())) { 3242 LIOps.push_back(Ops[i]); 3243 Ops.erase(Ops.begin()+i); 3244 --i; --e; 3245 } 3246 3247 // If we found some loop invariants, fold them into the recurrence. 3248 if (!LIOps.empty()) { 3249 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3250 SmallVector<const SCEV *, 4> NewOps; 3251 NewOps.reserve(AddRec->getNumOperands()); 3252 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3253 3254 // If both the mul and addrec are nuw, we can preserve nuw. 3255 // If both the mul and addrec are nsw, we can only preserve nsw if either 3256 // a) they are also nuw, or 3257 // b) all multiplications of addrec operands with scale are nsw. 3258 SCEV::NoWrapFlags Flags = 3259 AddRec->getNoWrapFlags(ComputeFlags({Scale, AddRec})); 3260 3261 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3262 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3263 SCEV::FlagAnyWrap, Depth + 1)); 3264 3265 if (hasFlags(Flags, SCEV::FlagNSW) && !hasFlags(Flags, SCEV::FlagNUW)) { 3266 ConstantRange NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3267 Instruction::Mul, getSignedRange(Scale), 3268 OverflowingBinaryOperator::NoSignedWrap); 3269 if (!NSWRegion.contains(getSignedRange(AddRec->getOperand(i)))) 3270 Flags = clearFlags(Flags, SCEV::FlagNSW); 3271 } 3272 } 3273 3274 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), Flags); 3275 3276 // If all of the other operands were loop invariant, we are done. 3277 if (Ops.size() == 1) return NewRec; 3278 3279 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3280 for (unsigned i = 0;; ++i) 3281 if (Ops[i] == AddRec) { 3282 Ops[i] = NewRec; 3283 break; 3284 } 3285 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3286 } 3287 3288 // Okay, if there weren't any loop invariants to be folded, check to see 3289 // if there are multiple AddRec's with the same loop induction variable 3290 // being multiplied together. If so, we can fold them. 3291 3292 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3293 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3294 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3295 // ]]],+,...up to x=2n}. 3296 // Note that the arguments to choose() are always integers with values 3297 // known at compile time, never SCEV objects. 3298 // 3299 // The implementation avoids pointless extra computations when the two 3300 // addrec's are of different length (mathematically, it's equivalent to 3301 // an infinite stream of zeros on the right). 3302 bool OpsModified = false; 3303 for (unsigned OtherIdx = Idx+1; 3304 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3305 ++OtherIdx) { 3306 const SCEVAddRecExpr *OtherAddRec = 3307 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3308 if (!OtherAddRec || OtherAddRec->getLoop() != AddRec->getLoop()) 3309 continue; 3310 3311 // Limit max number of arguments to avoid creation of unreasonably big 3312 // SCEVAddRecs with very complex operands. 3313 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3314 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3315 continue; 3316 3317 bool Overflow = false; 3318 Type *Ty = AddRec->getType(); 3319 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3320 SmallVector<const SCEV*, 7> AddRecOps; 3321 for (int x = 0, xe = AddRec->getNumOperands() + 3322 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3323 SmallVector <const SCEV *, 7> SumOps; 3324 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3325 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3326 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3327 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3328 z < ze && !Overflow; ++z) { 3329 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3330 uint64_t Coeff; 3331 if (LargerThan64Bits) 3332 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3333 else 3334 Coeff = Coeff1*Coeff2; 3335 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3336 const SCEV *Term1 = AddRec->getOperand(y-z); 3337 const SCEV *Term2 = OtherAddRec->getOperand(z); 3338 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3339 SCEV::FlagAnyWrap, Depth + 1)); 3340 } 3341 } 3342 if (SumOps.empty()) 3343 SumOps.push_back(getZero(Ty)); 3344 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3345 } 3346 if (!Overflow) { 3347 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 3348 SCEV::FlagAnyWrap); 3349 if (Ops.size() == 2) return NewAddRec; 3350 Ops[Idx] = NewAddRec; 3351 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3352 OpsModified = true; 3353 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3354 if (!AddRec) 3355 break; 3356 } 3357 } 3358 if (OpsModified) 3359 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3360 3361 // Otherwise couldn't fold anything into this recurrence. Move onto the 3362 // next one. 3363 } 3364 3365 // Okay, it looks like we really DO need an mul expr. Check to see if we 3366 // already have one, otherwise create a new one. 3367 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3368 } 3369 3370 /// Represents an unsigned remainder expression based on unsigned division. 3371 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3372 const SCEV *RHS) { 3373 assert(getEffectiveSCEVType(LHS->getType()) == 3374 getEffectiveSCEVType(RHS->getType()) && 3375 "SCEVURemExpr operand types don't match!"); 3376 3377 // Short-circuit easy cases 3378 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3379 // If constant is one, the result is trivial 3380 if (RHSC->getValue()->isOne()) 3381 return getZero(LHS->getType()); // X urem 1 --> 0 3382 3383 // If constant is a power of two, fold into a zext(trunc(LHS)). 3384 if (RHSC->getAPInt().isPowerOf2()) { 3385 Type *FullTy = LHS->getType(); 3386 Type *TruncTy = 3387 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3388 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3389 } 3390 } 3391 3392 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3393 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3394 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3395 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3396 } 3397 3398 /// Get a canonical unsigned division expression, or something simpler if 3399 /// possible. 3400 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3401 const SCEV *RHS) { 3402 assert(!LHS->getType()->isPointerTy() && 3403 "SCEVUDivExpr operand can't be pointer!"); 3404 assert(LHS->getType() == RHS->getType() && 3405 "SCEVUDivExpr operand types don't match!"); 3406 3407 FoldingSetNodeID ID; 3408 ID.AddInteger(scUDivExpr); 3409 ID.AddPointer(LHS); 3410 ID.AddPointer(RHS); 3411 void *IP = nullptr; 3412 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3413 return S; 3414 3415 // 0 udiv Y == 0 3416 if (match(LHS, m_scev_Zero())) 3417 return LHS; 3418 3419 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3420 if (RHSC->getValue()->isOne()) 3421 return LHS; // X udiv 1 --> x 3422 // If the denominator is zero, the result of the udiv is undefined. Don't 3423 // try to analyze it, because the resolution chosen here may differ from 3424 // the resolution chosen in other parts of the compiler. 3425 if (!RHSC->getValue()->isZero()) { 3426 // Determine if the division can be folded into the operands of 3427 // its operands. 3428 // TODO: Generalize this to non-constants by using known-bits information. 3429 Type *Ty = LHS->getType(); 3430 unsigned LZ = RHSC->getAPInt().countl_zero(); 3431 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3432 // For non-power-of-two values, effectively round the value up to the 3433 // nearest power of two. 3434 if (!RHSC->getAPInt().isPowerOf2()) 3435 ++MaxShiftAmt; 3436 IntegerType *ExtTy = 3437 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3438 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3439 if (const SCEVConstant *Step = 3440 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3441 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3442 const APInt &StepInt = Step->getAPInt(); 3443 const APInt &DivInt = RHSC->getAPInt(); 3444 if (!StepInt.urem(DivInt) && 3445 getZeroExtendExpr(AR, ExtTy) == 3446 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3447 getZeroExtendExpr(Step, ExtTy), 3448 AR->getLoop(), SCEV::FlagAnyWrap)) { 3449 SmallVector<const SCEV *, 4> Operands; 3450 for (const SCEV *Op : AR->operands()) 3451 Operands.push_back(getUDivExpr(Op, RHS)); 3452 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3453 } 3454 /// Get a canonical UDivExpr for a recurrence. 3455 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3456 // We can currently only fold X%N if X is constant. 3457 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3458 if (StartC && !DivInt.urem(StepInt) && 3459 getZeroExtendExpr(AR, ExtTy) == 3460 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3461 getZeroExtendExpr(Step, ExtTy), 3462 AR->getLoop(), SCEV::FlagAnyWrap)) { 3463 const APInt &StartInt = StartC->getAPInt(); 3464 const APInt &StartRem = StartInt.urem(StepInt); 3465 if (StartRem != 0) { 3466 const SCEV *NewLHS = 3467 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3468 AR->getLoop(), SCEV::FlagNW); 3469 if (LHS != NewLHS) { 3470 LHS = NewLHS; 3471 3472 // Reset the ID to include the new LHS, and check if it is 3473 // already cached. 3474 ID.clear(); 3475 ID.AddInteger(scUDivExpr); 3476 ID.AddPointer(LHS); 3477 ID.AddPointer(RHS); 3478 IP = nullptr; 3479 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3480 return S; 3481 } 3482 } 3483 } 3484 } 3485 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3486 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3487 SmallVector<const SCEV *, 4> Operands; 3488 for (const SCEV *Op : M->operands()) 3489 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3490 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3491 // Find an operand that's safely divisible. 3492 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3493 const SCEV *Op = M->getOperand(i); 3494 const SCEV *Div = getUDivExpr(Op, RHSC); 3495 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3496 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3497 Operands[i] = Div; 3498 return getMulExpr(Operands); 3499 } 3500 } 3501 } 3502 3503 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3504 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3505 if (auto *DivisorConstant = 3506 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3507 bool Overflow = false; 3508 APInt NewRHS = 3509 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3510 if (Overflow) { 3511 return getConstant(RHSC->getType(), 0, false); 3512 } 3513 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3514 } 3515 } 3516 3517 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3518 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3519 SmallVector<const SCEV *, 4> Operands; 3520 for (const SCEV *Op : A->operands()) 3521 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3522 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3523 Operands.clear(); 3524 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3525 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3526 if (isa<SCEVUDivExpr>(Op) || 3527 getMulExpr(Op, RHS) != A->getOperand(i)) 3528 break; 3529 Operands.push_back(Op); 3530 } 3531 if (Operands.size() == A->getNumOperands()) 3532 return getAddExpr(Operands); 3533 } 3534 } 3535 3536 // Fold if both operands are constant. 3537 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3538 return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt())); 3539 } 3540 } 3541 3542 // ((-C + (C smax %x)) /u %x) evaluates to zero, for any positive constant C. 3543 if (const auto *AE = dyn_cast<SCEVAddExpr>(LHS); 3544 AE && AE->getNumOperands() == 2) { 3545 if (const auto *VC = dyn_cast<SCEVConstant>(AE->getOperand(0))) { 3546 const APInt &NegC = VC->getAPInt(); 3547 if (NegC.isNegative() && !NegC.isMinSignedValue()) { 3548 const auto *MME = dyn_cast<SCEVSMaxExpr>(AE->getOperand(1)); 3549 if (MME && MME->getNumOperands() == 2 && 3550 isa<SCEVConstant>(MME->getOperand(0)) && 3551 cast<SCEVConstant>(MME->getOperand(0))->getAPInt() == -NegC && 3552 MME->getOperand(1) == RHS) 3553 return getZero(LHS->getType()); 3554 } 3555 } 3556 } 3557 3558 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3559 // changes). Make sure we get a new one. 3560 IP = nullptr; 3561 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3562 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3563 LHS, RHS); 3564 UniqueSCEVs.InsertNode(S, IP); 3565 registerUser(S, {LHS, RHS}); 3566 return S; 3567 } 3568 3569 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3570 APInt A = C1->getAPInt().abs(); 3571 APInt B = C2->getAPInt().abs(); 3572 uint32_t ABW = A.getBitWidth(); 3573 uint32_t BBW = B.getBitWidth(); 3574 3575 if (ABW > BBW) 3576 B = B.zext(ABW); 3577 else if (ABW < BBW) 3578 A = A.zext(BBW); 3579 3580 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3581 } 3582 3583 /// Get a canonical unsigned division expression, or something simpler if 3584 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3585 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3586 /// it's not exact because the udiv may be clearing bits. 3587 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3588 const SCEV *RHS) { 3589 // TODO: we could try to find factors in all sorts of things, but for now we 3590 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3591 // end of this file for inspiration. 3592 3593 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3594 if (!Mul || !Mul->hasNoUnsignedWrap()) 3595 return getUDivExpr(LHS, RHS); 3596 3597 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3598 // If the mulexpr multiplies by a constant, then that constant must be the 3599 // first element of the mulexpr. 3600 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3601 if (LHSCst == RHSCst) { 3602 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3603 return getMulExpr(Operands); 3604 } 3605 3606 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3607 // that there's a factor provided by one of the other terms. We need to 3608 // check. 3609 APInt Factor = gcd(LHSCst, RHSCst); 3610 if (!Factor.isIntN(1)) { 3611 LHSCst = 3612 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3613 RHSCst = 3614 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3615 SmallVector<const SCEV *, 2> Operands; 3616 Operands.push_back(LHSCst); 3617 append_range(Operands, Mul->operands().drop_front()); 3618 LHS = getMulExpr(Operands); 3619 RHS = RHSCst; 3620 Mul = dyn_cast<SCEVMulExpr>(LHS); 3621 if (!Mul) 3622 return getUDivExactExpr(LHS, RHS); 3623 } 3624 } 3625 } 3626 3627 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3628 if (Mul->getOperand(i) == RHS) { 3629 SmallVector<const SCEV *, 2> Operands; 3630 append_range(Operands, Mul->operands().take_front(i)); 3631 append_range(Operands, Mul->operands().drop_front(i + 1)); 3632 return getMulExpr(Operands); 3633 } 3634 } 3635 3636 return getUDivExpr(LHS, RHS); 3637 } 3638 3639 /// Get an add recurrence expression for the specified loop. Simplify the 3640 /// expression as much as possible. 3641 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3642 const Loop *L, 3643 SCEV::NoWrapFlags Flags) { 3644 SmallVector<const SCEV *, 4> Operands; 3645 Operands.push_back(Start); 3646 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3647 if (StepChrec->getLoop() == L) { 3648 append_range(Operands, StepChrec->operands()); 3649 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3650 } 3651 3652 Operands.push_back(Step); 3653 return getAddRecExpr(Operands, L, Flags); 3654 } 3655 3656 /// Get an add recurrence expression for the specified loop. Simplify the 3657 /// expression as much as possible. 3658 const SCEV * 3659 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3660 const Loop *L, SCEV::NoWrapFlags Flags) { 3661 if (Operands.size() == 1) return Operands[0]; 3662 #ifndef NDEBUG 3663 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3664 for (const SCEV *Op : llvm::drop_begin(Operands)) { 3665 assert(getEffectiveSCEVType(Op->getType()) == ETy && 3666 "SCEVAddRecExpr operand types don't match!"); 3667 assert(!Op->getType()->isPointerTy() && "Step must be integer"); 3668 } 3669 for (const SCEV *Op : Operands) 3670 assert(isAvailableAtLoopEntry(Op, L) && 3671 "SCEVAddRecExpr operand is not available at loop entry!"); 3672 #endif 3673 3674 if (Operands.back()->isZero()) { 3675 Operands.pop_back(); 3676 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3677 } 3678 3679 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3680 // use that information to infer NUW and NSW flags. However, computing a 3681 // BE count requires calling getAddRecExpr, so we may not yet have a 3682 // meaningful BE count at this point (and if we don't, we'd be stuck 3683 // with a SCEVCouldNotCompute as the cached BE count). 3684 3685 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3686 3687 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3688 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3689 const Loop *NestedLoop = NestedAR->getLoop(); 3690 if (L->contains(NestedLoop) 3691 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3692 : (!NestedLoop->contains(L) && 3693 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3694 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3695 Operands[0] = NestedAR->getStart(); 3696 // AddRecs require their operands be loop-invariant with respect to their 3697 // loops. Don't perform this transformation if it would break this 3698 // requirement. 3699 bool AllInvariant = all_of( 3700 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3701 3702 if (AllInvariant) { 3703 // Create a recurrence for the outer loop with the same step size. 3704 // 3705 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3706 // inner recurrence has the same property. 3707 SCEV::NoWrapFlags OuterFlags = 3708 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3709 3710 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3711 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3712 return isLoopInvariant(Op, NestedLoop); 3713 }); 3714 3715 if (AllInvariant) { 3716 // Ok, both add recurrences are valid after the transformation. 3717 // 3718 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3719 // the outer recurrence has the same property. 3720 SCEV::NoWrapFlags InnerFlags = 3721 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3722 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3723 } 3724 } 3725 // Reset Operands to its original state. 3726 Operands[0] = NestedAR; 3727 } 3728 } 3729 3730 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3731 // already have one, otherwise create a new one. 3732 return getOrCreateAddRecExpr(Operands, L, Flags); 3733 } 3734 3735 const SCEV * 3736 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3737 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3738 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3739 // getSCEV(Base)->getType() has the same address space as Base->getType() 3740 // because SCEV::getType() preserves the address space. 3741 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3742 GEPNoWrapFlags NW = GEP->getNoWrapFlags(); 3743 if (NW != GEPNoWrapFlags::none()) { 3744 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3745 // but to do that, we have to ensure that said flag is valid in the entire 3746 // defined scope of the SCEV. 3747 // TODO: non-instructions have global scope. We might be able to prove 3748 // some global scope cases 3749 auto *GEPI = dyn_cast<Instruction>(GEP); 3750 if (!GEPI || !isSCEVExprNeverPoison(GEPI)) 3751 NW = GEPNoWrapFlags::none(); 3752 } 3753 3754 SCEV::NoWrapFlags OffsetWrap = SCEV::FlagAnyWrap; 3755 if (NW.hasNoUnsignedSignedWrap()) 3756 OffsetWrap = setFlags(OffsetWrap, SCEV::FlagNSW); 3757 if (NW.hasNoUnsignedWrap()) 3758 OffsetWrap = setFlags(OffsetWrap, SCEV::FlagNUW); 3759 3760 Type *CurTy = GEP->getType(); 3761 bool FirstIter = true; 3762 SmallVector<const SCEV *, 4> Offsets; 3763 for (const SCEV *IndexExpr : IndexExprs) { 3764 // Compute the (potentially symbolic) offset in bytes for this index. 3765 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3766 // For a struct, add the member offset. 3767 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3768 unsigned FieldNo = Index->getZExtValue(); 3769 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3770 Offsets.push_back(FieldOffset); 3771 3772 // Update CurTy to the type of the field at Index. 3773 CurTy = STy->getTypeAtIndex(Index); 3774 } else { 3775 // Update CurTy to its element type. 3776 if (FirstIter) { 3777 assert(isa<PointerType>(CurTy) && 3778 "The first index of a GEP indexes a pointer"); 3779 CurTy = GEP->getSourceElementType(); 3780 FirstIter = false; 3781 } else { 3782 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3783 } 3784 // For an array, add the element offset, explicitly scaled. 3785 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3786 // Getelementptr indices are signed. 3787 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3788 3789 // Multiply the index by the element size to compute the element offset. 3790 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3791 Offsets.push_back(LocalOffset); 3792 } 3793 } 3794 3795 // Handle degenerate case of GEP without offsets. 3796 if (Offsets.empty()) 3797 return BaseExpr; 3798 3799 // Add the offsets together, assuming nsw if inbounds. 3800 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3801 // Add the base address and the offset. We cannot use the nsw flag, as the 3802 // base address is unsigned. However, if we know that the offset is 3803 // non-negative, we can use nuw. 3804 bool NUW = NW.hasNoUnsignedWrap() || 3805 (NW.hasNoUnsignedSignedWrap() && isKnownNonNegative(Offset)); 3806 SCEV::NoWrapFlags BaseWrap = NUW ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3807 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3808 assert(BaseExpr->getType() == GEPExpr->getType() && 3809 "GEP should not change type mid-flight."); 3810 return GEPExpr; 3811 } 3812 3813 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3814 ArrayRef<const SCEV *> Ops) { 3815 FoldingSetNodeID ID; 3816 ID.AddInteger(SCEVType); 3817 for (const SCEV *Op : Ops) 3818 ID.AddPointer(Op); 3819 void *IP = nullptr; 3820 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3821 } 3822 3823 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3824 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3825 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3826 } 3827 3828 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3829 SmallVectorImpl<const SCEV *> &Ops) { 3830 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!"); 3831 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3832 if (Ops.size() == 1) return Ops[0]; 3833 #ifndef NDEBUG 3834 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3835 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3836 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3837 "Operand types don't match!"); 3838 assert(Ops[0]->getType()->isPointerTy() == 3839 Ops[i]->getType()->isPointerTy() && 3840 "min/max should be consistently pointerish"); 3841 } 3842 #endif 3843 3844 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3845 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3846 3847 const SCEV *Folded = constantFoldAndGroupOps( 3848 *this, LI, DT, Ops, 3849 [&](const APInt &C1, const APInt &C2) { 3850 switch (Kind) { 3851 case scSMaxExpr: 3852 return APIntOps::smax(C1, C2); 3853 case scSMinExpr: 3854 return APIntOps::smin(C1, C2); 3855 case scUMaxExpr: 3856 return APIntOps::umax(C1, C2); 3857 case scUMinExpr: 3858 return APIntOps::umin(C1, C2); 3859 default: 3860 llvm_unreachable("Unknown SCEV min/max opcode"); 3861 } 3862 }, 3863 [&](const APInt &C) { 3864 // identity 3865 if (IsMax) 3866 return IsSigned ? C.isMinSignedValue() : C.isMinValue(); 3867 else 3868 return IsSigned ? C.isMaxSignedValue() : C.isMaxValue(); 3869 }, 3870 [&](const APInt &C) { 3871 // absorber 3872 if (IsMax) 3873 return IsSigned ? C.isMaxSignedValue() : C.isMaxValue(); 3874 else 3875 return IsSigned ? C.isMinSignedValue() : C.isMinValue(); 3876 }); 3877 if (Folded) 3878 return Folded; 3879 3880 // Check if we have created the same expression before. 3881 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3882 return S; 3883 } 3884 3885 // Find the first operation of the same kind 3886 unsigned Idx = 0; 3887 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3888 ++Idx; 3889 3890 // Check to see if one of the operands is of the same kind. If so, expand its 3891 // operands onto our operand list, and recurse to simplify. 3892 if (Idx < Ops.size()) { 3893 bool DeletedAny = false; 3894 while (Ops[Idx]->getSCEVType() == Kind) { 3895 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3896 Ops.erase(Ops.begin()+Idx); 3897 append_range(Ops, SMME->operands()); 3898 DeletedAny = true; 3899 } 3900 3901 if (DeletedAny) 3902 return getMinMaxExpr(Kind, Ops); 3903 } 3904 3905 // Okay, check to see if the same value occurs in the operand list twice. If 3906 // so, delete one. Since we sorted the list, these values are required to 3907 // be adjacent. 3908 llvm::CmpInst::Predicate GEPred = 3909 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3910 llvm::CmpInst::Predicate LEPred = 3911 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3912 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3913 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3914 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3915 if (Ops[i] == Ops[i + 1] || 3916 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3917 // X op Y op Y --> X op Y 3918 // X op Y --> X, if we know X, Y are ordered appropriately 3919 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3920 --i; 3921 --e; 3922 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3923 Ops[i + 1])) { 3924 // X op Y --> Y, if we know X, Y are ordered appropriately 3925 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3926 --i; 3927 --e; 3928 } 3929 } 3930 3931 if (Ops.size() == 1) return Ops[0]; 3932 3933 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3934 3935 // Okay, it looks like we really DO need an expr. Check to see if we 3936 // already have one, otherwise create a new one. 3937 FoldingSetNodeID ID; 3938 ID.AddInteger(Kind); 3939 for (const SCEV *Op : Ops) 3940 ID.AddPointer(Op); 3941 void *IP = nullptr; 3942 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3943 if (ExistingSCEV) 3944 return ExistingSCEV; 3945 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3946 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3947 SCEV *S = new (SCEVAllocator) 3948 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3949 3950 UniqueSCEVs.InsertNode(S, IP); 3951 registerUser(S, Ops); 3952 return S; 3953 } 3954 3955 namespace { 3956 3957 class SCEVSequentialMinMaxDeduplicatingVisitor final 3958 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, 3959 std::optional<const SCEV *>> { 3960 using RetVal = std::optional<const SCEV *>; 3961 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; 3962 3963 ScalarEvolution &SE; 3964 const SCEVTypes RootKind; // Must be a sequential min/max expression. 3965 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. 3966 SmallPtrSet<const SCEV *, 16> SeenOps; 3967 3968 bool canRecurseInto(SCEVTypes Kind) const { 3969 // We can only recurse into the SCEV expression of the same effective type 3970 // as the type of our root SCEV expression. 3971 return RootKind == Kind || NonSequentialRootKind == Kind; 3972 }; 3973 3974 RetVal visitAnyMinMaxExpr(const SCEV *S) { 3975 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && 3976 "Only for min/max expressions."); 3977 SCEVTypes Kind = S->getSCEVType(); 3978 3979 if (!canRecurseInto(Kind)) 3980 return S; 3981 3982 auto *NAry = cast<SCEVNAryExpr>(S); 3983 SmallVector<const SCEV *> NewOps; 3984 bool Changed = visit(Kind, NAry->operands(), NewOps); 3985 3986 if (!Changed) 3987 return S; 3988 if (NewOps.empty()) 3989 return std::nullopt; 3990 3991 return isa<SCEVSequentialMinMaxExpr>(S) 3992 ? SE.getSequentialMinMaxExpr(Kind, NewOps) 3993 : SE.getMinMaxExpr(Kind, NewOps); 3994 } 3995 3996 RetVal visit(const SCEV *S) { 3997 // Has the whole operand been seen already? 3998 if (!SeenOps.insert(S).second) 3999 return std::nullopt; 4000 return Base::visit(S); 4001 } 4002 4003 public: 4004 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, 4005 SCEVTypes RootKind) 4006 : SE(SE), RootKind(RootKind), 4007 NonSequentialRootKind( 4008 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 4009 RootKind)) {} 4010 4011 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, 4012 SmallVectorImpl<const SCEV *> &NewOps) { 4013 bool Changed = false; 4014 SmallVector<const SCEV *> Ops; 4015 Ops.reserve(OrigOps.size()); 4016 4017 for (const SCEV *Op : OrigOps) { 4018 RetVal NewOp = visit(Op); 4019 if (NewOp != Op) 4020 Changed = true; 4021 if (NewOp) 4022 Ops.emplace_back(*NewOp); 4023 } 4024 4025 if (Changed) 4026 NewOps = std::move(Ops); 4027 return Changed; 4028 } 4029 4030 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } 4031 4032 RetVal visitVScale(const SCEVVScale *VScale) { return VScale; } 4033 4034 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } 4035 4036 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } 4037 4038 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } 4039 4040 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } 4041 4042 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } 4043 4044 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } 4045 4046 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } 4047 4048 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 4049 4050 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { 4051 return visitAnyMinMaxExpr(Expr); 4052 } 4053 4054 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { 4055 return visitAnyMinMaxExpr(Expr); 4056 } 4057 4058 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { 4059 return visitAnyMinMaxExpr(Expr); 4060 } 4061 4062 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { 4063 return visitAnyMinMaxExpr(Expr); 4064 } 4065 4066 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { 4067 return visitAnyMinMaxExpr(Expr); 4068 } 4069 4070 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } 4071 4072 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } 4073 }; 4074 4075 } // namespace 4076 4077 static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind) { 4078 switch (Kind) { 4079 case scConstant: 4080 case scVScale: 4081 case scTruncate: 4082 case scZeroExtend: 4083 case scSignExtend: 4084 case scPtrToInt: 4085 case scAddExpr: 4086 case scMulExpr: 4087 case scUDivExpr: 4088 case scAddRecExpr: 4089 case scUMaxExpr: 4090 case scSMaxExpr: 4091 case scUMinExpr: 4092 case scSMinExpr: 4093 case scUnknown: 4094 // If any operand is poison, the whole expression is poison. 4095 return true; 4096 case scSequentialUMinExpr: 4097 // FIXME: if the *first* operand is poison, the whole expression is poison. 4098 return false; // Pessimistically, say that it does not propagate poison. 4099 case scCouldNotCompute: 4100 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 4101 } 4102 llvm_unreachable("Unknown SCEV kind!"); 4103 } 4104 4105 namespace { 4106 // The only way poison may be introduced in a SCEV expression is from a 4107 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown, 4108 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not* 4109 // introduce poison -- they encode guaranteed, non-speculated knowledge. 4110 // 4111 // Additionally, all SCEV nodes propagate poison from inputs to outputs, 4112 // with the notable exception of umin_seq, where only poison from the first 4113 // operand is (unconditionally) propagated. 4114 struct SCEVPoisonCollector { 4115 bool LookThroughMaybePoisonBlocking; 4116 SmallPtrSet<const SCEVUnknown *, 4> MaybePoison; 4117 SCEVPoisonCollector(bool LookThroughMaybePoisonBlocking) 4118 : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking) {} 4119 4120 bool follow(const SCEV *S) { 4121 if (!LookThroughMaybePoisonBlocking && 4122 !scevUnconditionallyPropagatesPoisonFromOperands(S->getSCEVType())) 4123 return false; 4124 4125 if (auto *SU = dyn_cast<SCEVUnknown>(S)) { 4126 if (!isGuaranteedNotToBePoison(SU->getValue())) 4127 MaybePoison.insert(SU); 4128 } 4129 return true; 4130 } 4131 bool isDone() const { return false; } 4132 }; 4133 } // namespace 4134 4135 /// Return true if V is poison given that AssumedPoison is already poison. 4136 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) { 4137 // First collect all SCEVs that might result in AssumedPoison to be poison. 4138 // We need to look through potentially poison-blocking operations here, 4139 // because we want to find all SCEVs that *might* result in poison, not only 4140 // those that are *required* to. 4141 SCEVPoisonCollector PC1(/* LookThroughMaybePoisonBlocking */ true); 4142 visitAll(AssumedPoison, PC1); 4143 4144 // AssumedPoison is never poison. As the assumption is false, the implication 4145 // is true. Don't bother walking the other SCEV in this case. 4146 if (PC1.MaybePoison.empty()) 4147 return true; 4148 4149 // Collect all SCEVs in S that, if poison, *will* result in S being poison 4150 // as well. We cannot look through potentially poison-blocking operations 4151 // here, as their arguments only *may* make the result poison. 4152 SCEVPoisonCollector PC2(/* LookThroughMaybePoisonBlocking */ false); 4153 visitAll(S, PC2); 4154 4155 // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison, 4156 // it will also make S poison by being part of PC2.MaybePoison. 4157 return llvm::set_is_subset(PC1.MaybePoison, PC2.MaybePoison); 4158 } 4159 4160 void ScalarEvolution::getPoisonGeneratingValues( 4161 SmallPtrSetImpl<const Value *> &Result, const SCEV *S) { 4162 SCEVPoisonCollector PC(/* LookThroughMaybePoisonBlocking */ false); 4163 visitAll(S, PC); 4164 for (const SCEVUnknown *SU : PC.MaybePoison) 4165 Result.insert(SU->getValue()); 4166 } 4167 4168 bool ScalarEvolution::canReuseInstruction( 4169 const SCEV *S, Instruction *I, 4170 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 4171 // If the instruction cannot be poison, it's always safe to reuse. 4172 if (programUndefinedIfPoison(I)) 4173 return true; 4174 4175 // Otherwise, it is possible that I is more poisonous that S. Collect the 4176 // poison-contributors of S, and then check whether I has any additional 4177 // poison-contributors. Poison that is contributed through poison-generating 4178 // flags is handled by dropping those flags instead. 4179 SmallPtrSet<const Value *, 8> PoisonVals; 4180 getPoisonGeneratingValues(PoisonVals, S); 4181 4182 SmallVector<Value *> Worklist; 4183 SmallPtrSet<Value *, 8> Visited; 4184 Worklist.push_back(I); 4185 while (!Worklist.empty()) { 4186 Value *V = Worklist.pop_back_val(); 4187 if (!Visited.insert(V).second) 4188 continue; 4189 4190 // Avoid walking large instruction graphs. 4191 if (Visited.size() > 16) 4192 return false; 4193 4194 // Either the value can't be poison, or the S would also be poison if it 4195 // is. 4196 if (PoisonVals.contains(V) || ::isGuaranteedNotToBePoison(V)) 4197 continue; 4198 4199 auto *I = dyn_cast<Instruction>(V); 4200 if (!I) 4201 return false; 4202 4203 // Disjoint or instructions are interpreted as adds by SCEV. However, we 4204 // can't replace an arbitrary add with disjoint or, even if we drop the 4205 // flag. We would need to convert the or into an add. 4206 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I)) 4207 if (PDI->isDisjoint()) 4208 return false; 4209 4210 // FIXME: Ignore vscale, even though it technically could be poison. Do this 4211 // because SCEV currently assumes it can't be poison. Remove this special 4212 // case once we proper model when vscale can be poison. 4213 if (auto *II = dyn_cast<IntrinsicInst>(I); 4214 II && II->getIntrinsicID() == Intrinsic::vscale) 4215 continue; 4216 4217 if (canCreatePoison(cast<Operator>(I), /*ConsiderFlagsAndMetadata*/ false)) 4218 return false; 4219 4220 // If the instruction can't create poison, we can recurse to its operands. 4221 if (I->hasPoisonGeneratingAnnotations()) 4222 DropPoisonGeneratingInsts.push_back(I); 4223 4224 for (Value *Op : I->operands()) 4225 Worklist.push_back(Op); 4226 } 4227 return true; 4228 } 4229 4230 const SCEV * 4231 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, 4232 SmallVectorImpl<const SCEV *> &Ops) { 4233 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && 4234 "Not a SCEVSequentialMinMaxExpr!"); 4235 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 4236 if (Ops.size() == 1) 4237 return Ops[0]; 4238 #ifndef NDEBUG 4239 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 4240 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4241 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 4242 "Operand types don't match!"); 4243 assert(Ops[0]->getType()->isPointerTy() == 4244 Ops[i]->getType()->isPointerTy() && 4245 "min/max should be consistently pointerish"); 4246 } 4247 #endif 4248 4249 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, 4250 // so we can *NOT* do any kind of sorting of the expressions! 4251 4252 // Check if we have created the same expression before. 4253 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) 4254 return S; 4255 4256 // FIXME: there are *some* simplifications that we can do here. 4257 4258 // Keep only the first instance of an operand. 4259 { 4260 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); 4261 bool Changed = Deduplicator.visit(Kind, Ops, Ops); 4262 if (Changed) 4263 return getSequentialMinMaxExpr(Kind, Ops); 4264 } 4265 4266 // Check to see if one of the operands is of the same kind. If so, expand its 4267 // operands onto our operand list, and recurse to simplify. 4268 { 4269 unsigned Idx = 0; 4270 bool DeletedAny = false; 4271 while (Idx < Ops.size()) { 4272 if (Ops[Idx]->getSCEVType() != Kind) { 4273 ++Idx; 4274 continue; 4275 } 4276 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); 4277 Ops.erase(Ops.begin() + Idx); 4278 Ops.insert(Ops.begin() + Idx, SMME->operands().begin(), 4279 SMME->operands().end()); 4280 DeletedAny = true; 4281 } 4282 4283 if (DeletedAny) 4284 return getSequentialMinMaxExpr(Kind, Ops); 4285 } 4286 4287 const SCEV *SaturationPoint; 4288 ICmpInst::Predicate Pred; 4289 switch (Kind) { 4290 case scSequentialUMinExpr: 4291 SaturationPoint = getZero(Ops[0]->getType()); 4292 Pred = ICmpInst::ICMP_ULE; 4293 break; 4294 default: 4295 llvm_unreachable("Not a sequential min/max type."); 4296 } 4297 4298 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4299 if (!isGuaranteedNotToCauseUB(Ops[i])) 4300 continue; 4301 // We can replace %x umin_seq %y with %x umin %y if either: 4302 // * %y being poison implies %x is also poison. 4303 // * %x cannot be the saturating value (e.g. zero for umin). 4304 if (::impliesPoison(Ops[i], Ops[i - 1]) || 4305 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1], 4306 SaturationPoint)) { 4307 SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]}; 4308 Ops[i - 1] = getMinMaxExpr( 4309 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), 4310 SeqOps); 4311 Ops.erase(Ops.begin() + i); 4312 return getSequentialMinMaxExpr(Kind, Ops); 4313 } 4314 // Fold %x umin_seq %y to %x if %x ule %y. 4315 // TODO: We might be able to prove the predicate for a later operand. 4316 if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) { 4317 Ops.erase(Ops.begin() + i); 4318 return getSequentialMinMaxExpr(Kind, Ops); 4319 } 4320 } 4321 4322 // Okay, it looks like we really DO need an expr. Check to see if we 4323 // already have one, otherwise create a new one. 4324 FoldingSetNodeID ID; 4325 ID.AddInteger(Kind); 4326 for (const SCEV *Op : Ops) 4327 ID.AddPointer(Op); 4328 void *IP = nullptr; 4329 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 4330 if (ExistingSCEV) 4331 return ExistingSCEV; 4332 4333 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 4334 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 4335 SCEV *S = new (SCEVAllocator) 4336 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 4337 4338 UniqueSCEVs.InsertNode(S, IP); 4339 registerUser(S, Ops); 4340 return S; 4341 } 4342 4343 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4344 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4345 return getSMaxExpr(Ops); 4346 } 4347 4348 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4349 return getMinMaxExpr(scSMaxExpr, Ops); 4350 } 4351 4352 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4353 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4354 return getUMaxExpr(Ops); 4355 } 4356 4357 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4358 return getMinMaxExpr(scUMaxExpr, Ops); 4359 } 4360 4361 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 4362 const SCEV *RHS) { 4363 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4364 return getSMinExpr(Ops); 4365 } 4366 4367 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 4368 return getMinMaxExpr(scSMinExpr, Ops); 4369 } 4370 4371 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, 4372 bool Sequential) { 4373 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4374 return getUMinExpr(Ops, Sequential); 4375 } 4376 4377 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, 4378 bool Sequential) { 4379 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) 4380 : getMinMaxExpr(scUMinExpr, Ops); 4381 } 4382 4383 const SCEV * 4384 ScalarEvolution::getSizeOfExpr(Type *IntTy, TypeSize Size) { 4385 const SCEV *Res = getConstant(IntTy, Size.getKnownMinValue()); 4386 if (Size.isScalable()) 4387 Res = getMulExpr(Res, getVScale(IntTy)); 4388 return Res; 4389 } 4390 4391 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 4392 return getSizeOfExpr(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 4393 } 4394 4395 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 4396 return getSizeOfExpr(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 4397 } 4398 4399 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 4400 StructType *STy, 4401 unsigned FieldNo) { 4402 // We can bypass creating a target-independent constant expression and then 4403 // folding it back into a ConstantInt. This is just a compile-time 4404 // optimization. 4405 const StructLayout *SL = getDataLayout().getStructLayout(STy); 4406 assert(!SL->getSizeInBits().isScalable() && 4407 "Cannot get offset for structure containing scalable vector types"); 4408 return getConstant(IntTy, SL->getElementOffset(FieldNo)); 4409 } 4410 4411 const SCEV *ScalarEvolution::getUnknown(Value *V) { 4412 // Don't attempt to do anything other than create a SCEVUnknown object 4413 // here. createSCEV only calls getUnknown after checking for all other 4414 // interesting possibilities, and any other code that calls getUnknown 4415 // is doing so in order to hide a value from SCEV canonicalization. 4416 4417 FoldingSetNodeID ID; 4418 ID.AddInteger(scUnknown); 4419 ID.AddPointer(V); 4420 void *IP = nullptr; 4421 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 4422 assert(cast<SCEVUnknown>(S)->getValue() == V && 4423 "Stale SCEVUnknown in uniquing map!"); 4424 return S; 4425 } 4426 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 4427 FirstUnknown); 4428 FirstUnknown = cast<SCEVUnknown>(S); 4429 UniqueSCEVs.InsertNode(S, IP); 4430 return S; 4431 } 4432 4433 //===----------------------------------------------------------------------===// 4434 // Basic SCEV Analysis and PHI Idiom Recognition Code 4435 // 4436 4437 /// Test if values of the given type are analyzable within the SCEV 4438 /// framework. This primarily includes integer types, and it can optionally 4439 /// include pointer types if the ScalarEvolution class has access to 4440 /// target-specific information. 4441 bool ScalarEvolution::isSCEVable(Type *Ty) const { 4442 // Integers and pointers are always SCEVable. 4443 return Ty->isIntOrPtrTy(); 4444 } 4445 4446 /// Return the size in bits of the specified type, for which isSCEVable must 4447 /// return true. 4448 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 4449 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4450 if (Ty->isPointerTy()) 4451 return getDataLayout().getIndexTypeSizeInBits(Ty); 4452 return getDataLayout().getTypeSizeInBits(Ty); 4453 } 4454 4455 /// Return a type with the same bitwidth as the given type and which represents 4456 /// how SCEV will treat the given type, for which isSCEVable must return 4457 /// true. For pointer types, this is the pointer index sized integer type. 4458 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 4459 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4460 4461 if (Ty->isIntegerTy()) 4462 return Ty; 4463 4464 // The only other support type is pointer. 4465 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 4466 return getDataLayout().getIndexType(Ty); 4467 } 4468 4469 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 4470 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 4471 } 4472 4473 bool ScalarEvolution::instructionCouldExistWithOperands(const SCEV *A, 4474 const SCEV *B) { 4475 /// For a valid use point to exist, the defining scope of one operand 4476 /// must dominate the other. 4477 bool PreciseA, PreciseB; 4478 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4479 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4480 if (!PreciseA || !PreciseB) 4481 // Can't tell. 4482 return false; 4483 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4484 DT.dominates(ScopeB, ScopeA); 4485 } 4486 4487 const SCEV *ScalarEvolution::getCouldNotCompute() { 4488 return CouldNotCompute.get(); 4489 } 4490 4491 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4492 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4493 auto *SU = dyn_cast<SCEVUnknown>(S); 4494 return SU && SU->getValue() == nullptr; 4495 }); 4496 4497 return !ContainsNulls; 4498 } 4499 4500 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4501 HasRecMapType::iterator I = HasRecMap.find(S); 4502 if (I != HasRecMap.end()) 4503 return I->second; 4504 4505 bool FoundAddRec = 4506 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4507 HasRecMap.insert({S, FoundAddRec}); 4508 return FoundAddRec; 4509 } 4510 4511 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4512 /// by the value and offset from any ValueOffsetPair in the set. 4513 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) { 4514 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4515 if (SI == ExprValueMap.end()) 4516 return {}; 4517 return SI->second.getArrayRef(); 4518 } 4519 4520 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4521 /// cannot be used separately. eraseValueFromMap should be used to remove 4522 /// V from ValueExprMap and ExprValueMap at the same time. 4523 void ScalarEvolution::eraseValueFromMap(Value *V) { 4524 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4525 if (I != ValueExprMap.end()) { 4526 auto EVIt = ExprValueMap.find(I->second); 4527 bool Removed = EVIt->second.remove(V); 4528 (void) Removed; 4529 assert(Removed && "Value not in ExprValueMap?"); 4530 ValueExprMap.erase(I); 4531 } 4532 } 4533 4534 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4535 // A recursive query may have already computed the SCEV. It should be 4536 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4537 // inferred nowrap flags. 4538 auto It = ValueExprMap.find_as(V); 4539 if (It == ValueExprMap.end()) { 4540 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4541 ExprValueMap[S].insert(V); 4542 } 4543 } 4544 4545 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4546 /// create a new one. 4547 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4548 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4549 4550 if (const SCEV *S = getExistingSCEV(V)) 4551 return S; 4552 return createSCEVIter(V); 4553 } 4554 4555 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4556 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4557 4558 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4559 if (I != ValueExprMap.end()) { 4560 const SCEV *S = I->second; 4561 assert(checkValidity(S) && 4562 "existing SCEV has not been properly invalidated"); 4563 return S; 4564 } 4565 return nullptr; 4566 } 4567 4568 /// Return a SCEV corresponding to -V = -1*V 4569 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4570 SCEV::NoWrapFlags Flags) { 4571 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4572 return getConstant( 4573 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4574 4575 Type *Ty = V->getType(); 4576 Ty = getEffectiveSCEVType(Ty); 4577 return getMulExpr(V, getMinusOne(Ty), Flags); 4578 } 4579 4580 /// If Expr computes ~A, return A else return nullptr 4581 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4582 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4583 if (!Add || Add->getNumOperands() != 2 || 4584 !Add->getOperand(0)->isAllOnesValue()) 4585 return nullptr; 4586 4587 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4588 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4589 !AddRHS->getOperand(0)->isAllOnesValue()) 4590 return nullptr; 4591 4592 return AddRHS->getOperand(1); 4593 } 4594 4595 /// Return a SCEV corresponding to ~V = -1-V 4596 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4597 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4598 4599 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4600 return getConstant( 4601 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4602 4603 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4604 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4605 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4606 SmallVector<const SCEV *, 2> MatchedOperands; 4607 for (const SCEV *Operand : MME->operands()) { 4608 const SCEV *Matched = MatchNotExpr(Operand); 4609 if (!Matched) 4610 return (const SCEV *)nullptr; 4611 MatchedOperands.push_back(Matched); 4612 } 4613 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4614 MatchedOperands); 4615 }; 4616 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4617 return Replaced; 4618 } 4619 4620 Type *Ty = V->getType(); 4621 Ty = getEffectiveSCEVType(Ty); 4622 return getMinusSCEV(getMinusOne(Ty), V); 4623 } 4624 4625 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4626 assert(P->getType()->isPointerTy()); 4627 4628 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4629 // The base of an AddRec is the first operand. 4630 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4631 Ops[0] = removePointerBase(Ops[0]); 4632 // Don't try to transfer nowrap flags for now. We could in some cases 4633 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4634 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4635 } 4636 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4637 // The base of an Add is the pointer operand. 4638 SmallVector<const SCEV *> Ops{Add->operands()}; 4639 const SCEV **PtrOp = nullptr; 4640 for (const SCEV *&AddOp : Ops) { 4641 if (AddOp->getType()->isPointerTy()) { 4642 assert(!PtrOp && "Cannot have multiple pointer ops"); 4643 PtrOp = &AddOp; 4644 } 4645 } 4646 *PtrOp = removePointerBase(*PtrOp); 4647 // Don't try to transfer nowrap flags for now. We could in some cases 4648 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4649 return getAddExpr(Ops); 4650 } 4651 // Any other expression must be a pointer base. 4652 return getZero(P->getType()); 4653 } 4654 4655 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4656 SCEV::NoWrapFlags Flags, 4657 unsigned Depth) { 4658 // Fast path: X - X --> 0. 4659 if (LHS == RHS) 4660 return getZero(LHS->getType()); 4661 4662 // If we subtract two pointers with different pointer bases, bail. 4663 // Eventually, we're going to add an assertion to getMulExpr that we 4664 // can't multiply by a pointer. 4665 if (RHS->getType()->isPointerTy()) { 4666 if (!LHS->getType()->isPointerTy() || 4667 getPointerBase(LHS) != getPointerBase(RHS)) 4668 return getCouldNotCompute(); 4669 LHS = removePointerBase(LHS); 4670 RHS = removePointerBase(RHS); 4671 } 4672 4673 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4674 // makes it so that we cannot make much use of NUW. 4675 auto AddFlags = SCEV::FlagAnyWrap; 4676 const bool RHSIsNotMinSigned = 4677 !getSignedRangeMin(RHS).isMinSignedValue(); 4678 if (hasFlags(Flags, SCEV::FlagNSW)) { 4679 // Let M be the minimum representable signed value. Then (-1)*RHS 4680 // signed-wraps if and only if RHS is M. That can happen even for 4681 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4682 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4683 // (-1)*RHS, we need to prove that RHS != M. 4684 // 4685 // If LHS is non-negative and we know that LHS - RHS does not 4686 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4687 // either by proving that RHS > M or that LHS >= 0. 4688 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4689 AddFlags = SCEV::FlagNSW; 4690 } 4691 } 4692 4693 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4694 // RHS is NSW and LHS >= 0. 4695 // 4696 // The difficulty here is that the NSW flag may have been proven 4697 // relative to a loop that is to be found in a recurrence in LHS and 4698 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4699 // larger scope than intended. 4700 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4701 4702 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4703 } 4704 4705 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4706 unsigned Depth) { 4707 Type *SrcTy = V->getType(); 4708 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4709 "Cannot truncate or zero extend with non-integer arguments!"); 4710 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4711 return V; // No conversion 4712 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4713 return getTruncateExpr(V, Ty, Depth); 4714 return getZeroExtendExpr(V, Ty, Depth); 4715 } 4716 4717 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4718 unsigned Depth) { 4719 Type *SrcTy = V->getType(); 4720 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4721 "Cannot truncate or zero extend with non-integer arguments!"); 4722 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4723 return V; // No conversion 4724 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4725 return getTruncateExpr(V, Ty, Depth); 4726 return getSignExtendExpr(V, Ty, Depth); 4727 } 4728 4729 const SCEV * 4730 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4731 Type *SrcTy = V->getType(); 4732 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4733 "Cannot noop or zero extend with non-integer arguments!"); 4734 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4735 "getNoopOrZeroExtend cannot truncate!"); 4736 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4737 return V; // No conversion 4738 return getZeroExtendExpr(V, Ty); 4739 } 4740 4741 const SCEV * 4742 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4743 Type *SrcTy = V->getType(); 4744 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4745 "Cannot noop or sign extend with non-integer arguments!"); 4746 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4747 "getNoopOrSignExtend cannot truncate!"); 4748 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4749 return V; // No conversion 4750 return getSignExtendExpr(V, Ty); 4751 } 4752 4753 const SCEV * 4754 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4755 Type *SrcTy = V->getType(); 4756 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4757 "Cannot noop or any extend with non-integer arguments!"); 4758 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4759 "getNoopOrAnyExtend cannot truncate!"); 4760 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4761 return V; // No conversion 4762 return getAnyExtendExpr(V, Ty); 4763 } 4764 4765 const SCEV * 4766 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4767 Type *SrcTy = V->getType(); 4768 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4769 "Cannot truncate or noop with non-integer arguments!"); 4770 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4771 "getTruncateOrNoop cannot extend!"); 4772 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4773 return V; // No conversion 4774 return getTruncateExpr(V, Ty); 4775 } 4776 4777 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4778 const SCEV *RHS) { 4779 const SCEV *PromotedLHS = LHS; 4780 const SCEV *PromotedRHS = RHS; 4781 4782 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4783 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4784 else 4785 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4786 4787 return getUMaxExpr(PromotedLHS, PromotedRHS); 4788 } 4789 4790 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4791 const SCEV *RHS, 4792 bool Sequential) { 4793 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4794 return getUMinFromMismatchedTypes(Ops, Sequential); 4795 } 4796 4797 const SCEV * 4798 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 4799 bool Sequential) { 4800 assert(!Ops.empty() && "At least one operand must be!"); 4801 // Trivial case. 4802 if (Ops.size() == 1) 4803 return Ops[0]; 4804 4805 // Find the max type first. 4806 Type *MaxType = nullptr; 4807 for (const auto *S : Ops) 4808 if (MaxType) 4809 MaxType = getWiderType(MaxType, S->getType()); 4810 else 4811 MaxType = S->getType(); 4812 assert(MaxType && "Failed to find maximum type!"); 4813 4814 // Extend all ops to max type. 4815 SmallVector<const SCEV *, 2> PromotedOps; 4816 for (const auto *S : Ops) 4817 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4818 4819 // Generate umin. 4820 return getUMinExpr(PromotedOps, Sequential); 4821 } 4822 4823 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4824 // A pointer operand may evaluate to a nonpointer expression, such as null. 4825 if (!V->getType()->isPointerTy()) 4826 return V; 4827 4828 while (true) { 4829 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4830 V = AddRec->getStart(); 4831 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4832 const SCEV *PtrOp = nullptr; 4833 for (const SCEV *AddOp : Add->operands()) { 4834 if (AddOp->getType()->isPointerTy()) { 4835 assert(!PtrOp && "Cannot have multiple pointer ops"); 4836 PtrOp = AddOp; 4837 } 4838 } 4839 assert(PtrOp && "Must have pointer op"); 4840 V = PtrOp; 4841 } else // Not something we can look further into. 4842 return V; 4843 } 4844 } 4845 4846 /// Push users of the given Instruction onto the given Worklist. 4847 static void PushDefUseChildren(Instruction *I, 4848 SmallVectorImpl<Instruction *> &Worklist, 4849 SmallPtrSetImpl<Instruction *> &Visited) { 4850 // Push the def-use children onto the Worklist stack. 4851 for (User *U : I->users()) { 4852 auto *UserInsn = cast<Instruction>(U); 4853 if (Visited.insert(UserInsn).second) 4854 Worklist.push_back(UserInsn); 4855 } 4856 } 4857 4858 namespace { 4859 4860 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4861 /// expression in case its Loop is L. If it is not L then 4862 /// if IgnoreOtherLoops is true then use AddRec itself 4863 /// otherwise rewrite cannot be done. 4864 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4865 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4866 public: 4867 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4868 bool IgnoreOtherLoops = true) { 4869 SCEVInitRewriter Rewriter(L, SE); 4870 const SCEV *Result = Rewriter.visit(S); 4871 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4872 return SE.getCouldNotCompute(); 4873 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4874 ? SE.getCouldNotCompute() 4875 : Result; 4876 } 4877 4878 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4879 if (!SE.isLoopInvariant(Expr, L)) 4880 SeenLoopVariantSCEVUnknown = true; 4881 return Expr; 4882 } 4883 4884 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4885 // Only re-write AddRecExprs for this loop. 4886 if (Expr->getLoop() == L) 4887 return Expr->getStart(); 4888 SeenOtherLoops = true; 4889 return Expr; 4890 } 4891 4892 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4893 4894 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4895 4896 private: 4897 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4898 : SCEVRewriteVisitor(SE), L(L) {} 4899 4900 const Loop *L; 4901 bool SeenLoopVariantSCEVUnknown = false; 4902 bool SeenOtherLoops = false; 4903 }; 4904 4905 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4906 /// increment expression in case its Loop is L. If it is not L then 4907 /// use AddRec itself. 4908 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4909 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4910 public: 4911 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4912 SCEVPostIncRewriter Rewriter(L, SE); 4913 const SCEV *Result = Rewriter.visit(S); 4914 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4915 ? SE.getCouldNotCompute() 4916 : Result; 4917 } 4918 4919 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4920 if (!SE.isLoopInvariant(Expr, L)) 4921 SeenLoopVariantSCEVUnknown = true; 4922 return Expr; 4923 } 4924 4925 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4926 // Only re-write AddRecExprs for this loop. 4927 if (Expr->getLoop() == L) 4928 return Expr->getPostIncExpr(SE); 4929 SeenOtherLoops = true; 4930 return Expr; 4931 } 4932 4933 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4934 4935 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4936 4937 private: 4938 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4939 : SCEVRewriteVisitor(SE), L(L) {} 4940 4941 const Loop *L; 4942 bool SeenLoopVariantSCEVUnknown = false; 4943 bool SeenOtherLoops = false; 4944 }; 4945 4946 /// This class evaluates the compare condition by matching it against the 4947 /// condition of loop latch. If there is a match we assume a true value 4948 /// for the condition while building SCEV nodes. 4949 class SCEVBackedgeConditionFolder 4950 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4951 public: 4952 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4953 ScalarEvolution &SE) { 4954 bool IsPosBECond = false; 4955 Value *BECond = nullptr; 4956 if (BasicBlock *Latch = L->getLoopLatch()) { 4957 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4958 if (BI && BI->isConditional()) { 4959 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4960 "Both outgoing branches should not target same header!"); 4961 BECond = BI->getCondition(); 4962 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4963 } else { 4964 return S; 4965 } 4966 } 4967 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4968 return Rewriter.visit(S); 4969 } 4970 4971 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4972 const SCEV *Result = Expr; 4973 bool InvariantF = SE.isLoopInvariant(Expr, L); 4974 4975 if (!InvariantF) { 4976 Instruction *I = cast<Instruction>(Expr->getValue()); 4977 switch (I->getOpcode()) { 4978 case Instruction::Select: { 4979 SelectInst *SI = cast<SelectInst>(I); 4980 std::optional<const SCEV *> Res = 4981 compareWithBackedgeCondition(SI->getCondition()); 4982 if (Res) { 4983 bool IsOne = cast<SCEVConstant>(*Res)->getValue()->isOne(); 4984 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4985 } 4986 break; 4987 } 4988 default: { 4989 std::optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4990 if (Res) 4991 Result = *Res; 4992 break; 4993 } 4994 } 4995 } 4996 return Result; 4997 } 4998 4999 private: 5000 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 5001 bool IsPosBECond, ScalarEvolution &SE) 5002 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 5003 IsPositiveBECond(IsPosBECond) {} 5004 5005 std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 5006 5007 const Loop *L; 5008 /// Loop back condition. 5009 Value *BackedgeCond = nullptr; 5010 /// Set to true if loop back is on positive branch condition. 5011 bool IsPositiveBECond; 5012 }; 5013 5014 std::optional<const SCEV *> 5015 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 5016 5017 // If value matches the backedge condition for loop latch, 5018 // then return a constant evolution node based on loopback 5019 // branch taken. 5020 if (BackedgeCond == IC) 5021 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 5022 : SE.getZero(Type::getInt1Ty(SE.getContext())); 5023 return std::nullopt; 5024 } 5025 5026 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 5027 public: 5028 static const SCEV *rewrite(const SCEV *S, const Loop *L, 5029 ScalarEvolution &SE) { 5030 SCEVShiftRewriter Rewriter(L, SE); 5031 const SCEV *Result = Rewriter.visit(S); 5032 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 5033 } 5034 5035 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 5036 // Only allow AddRecExprs for this loop. 5037 if (!SE.isLoopInvariant(Expr, L)) 5038 Valid = false; 5039 return Expr; 5040 } 5041 5042 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 5043 if (Expr->getLoop() == L && Expr->isAffine()) 5044 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 5045 Valid = false; 5046 return Expr; 5047 } 5048 5049 bool isValid() { return Valid; } 5050 5051 private: 5052 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 5053 : SCEVRewriteVisitor(SE), L(L) {} 5054 5055 const Loop *L; 5056 bool Valid = true; 5057 }; 5058 5059 } // end anonymous namespace 5060 5061 SCEV::NoWrapFlags 5062 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 5063 if (!AR->isAffine()) 5064 return SCEV::FlagAnyWrap; 5065 5066 using OBO = OverflowingBinaryOperator; 5067 5068 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 5069 5070 if (!AR->hasNoSelfWrap()) { 5071 const SCEV *BECount = getConstantMaxBackedgeTakenCount(AR->getLoop()); 5072 if (const SCEVConstant *BECountMax = dyn_cast<SCEVConstant>(BECount)) { 5073 ConstantRange StepCR = getSignedRange(AR->getStepRecurrence(*this)); 5074 const APInt &BECountAP = BECountMax->getAPInt(); 5075 unsigned NoOverflowBitWidth = 5076 BECountAP.getActiveBits() + StepCR.getMinSignedBits(); 5077 if (NoOverflowBitWidth <= getTypeSizeInBits(AR->getType())) 5078 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNW); 5079 } 5080 } 5081 5082 if (!AR->hasNoSignedWrap()) { 5083 ConstantRange AddRecRange = getSignedRange(AR); 5084 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 5085 5086 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 5087 Instruction::Add, IncRange, OBO::NoSignedWrap); 5088 if (NSWRegion.contains(AddRecRange)) 5089 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 5090 } 5091 5092 if (!AR->hasNoUnsignedWrap()) { 5093 ConstantRange AddRecRange = getUnsignedRange(AR); 5094 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 5095 5096 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 5097 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 5098 if (NUWRegion.contains(AddRecRange)) 5099 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 5100 } 5101 5102 return Result; 5103 } 5104 5105 SCEV::NoWrapFlags 5106 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 5107 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 5108 5109 if (AR->hasNoSignedWrap()) 5110 return Result; 5111 5112 if (!AR->isAffine()) 5113 return Result; 5114 5115 // This function can be expensive, only try to prove NSW once per AddRec. 5116 if (!SignedWrapViaInductionTried.insert(AR).second) 5117 return Result; 5118 5119 const SCEV *Step = AR->getStepRecurrence(*this); 5120 const Loop *L = AR->getLoop(); 5121 5122 // Check whether the backedge-taken count is SCEVCouldNotCompute. 5123 // Note that this serves two purposes: It filters out loops that are 5124 // simply not analyzable, and it covers the case where this code is 5125 // being called from within backedge-taken count analysis, such that 5126 // attempting to ask for the backedge-taken count would likely result 5127 // in infinite recursion. In the later case, the analysis code will 5128 // cope with a conservative value, and it will take care to purge 5129 // that value once it has finished. 5130 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 5131 5132 // Normally, in the cases we can prove no-overflow via a 5133 // backedge guarding condition, we can also compute a backedge 5134 // taken count for the loop. The exceptions are assumptions and 5135 // guards present in the loop -- SCEV is not great at exploiting 5136 // these to compute max backedge taken counts, but can still use 5137 // these to prove lack of overflow. Use this fact to avoid 5138 // doing extra work that may not pay off. 5139 5140 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 5141 AC.assumptions().empty()) 5142 return Result; 5143 5144 // If the backedge is guarded by a comparison with the pre-inc value the 5145 // addrec is safe. Also, if the entry is guarded by a comparison with the 5146 // start value and the backedge is guarded by a comparison with the post-inc 5147 // value, the addrec is safe. 5148 ICmpInst::Predicate Pred; 5149 const SCEV *OverflowLimit = 5150 getSignedOverflowLimitForStep(Step, &Pred, this); 5151 if (OverflowLimit && 5152 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 5153 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 5154 Result = setFlags(Result, SCEV::FlagNSW); 5155 } 5156 return Result; 5157 } 5158 SCEV::NoWrapFlags 5159 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 5160 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 5161 5162 if (AR->hasNoUnsignedWrap()) 5163 return Result; 5164 5165 if (!AR->isAffine()) 5166 return Result; 5167 5168 // This function can be expensive, only try to prove NUW once per AddRec. 5169 if (!UnsignedWrapViaInductionTried.insert(AR).second) 5170 return Result; 5171 5172 const SCEV *Step = AR->getStepRecurrence(*this); 5173 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 5174 const Loop *L = AR->getLoop(); 5175 5176 // Check whether the backedge-taken count is SCEVCouldNotCompute. 5177 // Note that this serves two purposes: It filters out loops that are 5178 // simply not analyzable, and it covers the case where this code is 5179 // being called from within backedge-taken count analysis, such that 5180 // attempting to ask for the backedge-taken count would likely result 5181 // in infinite recursion. In the later case, the analysis code will 5182 // cope with a conservative value, and it will take care to purge 5183 // that value once it has finished. 5184 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 5185 5186 // Normally, in the cases we can prove no-overflow via a 5187 // backedge guarding condition, we can also compute a backedge 5188 // taken count for the loop. The exceptions are assumptions and 5189 // guards present in the loop -- SCEV is not great at exploiting 5190 // these to compute max backedge taken counts, but can still use 5191 // these to prove lack of overflow. Use this fact to avoid 5192 // doing extra work that may not pay off. 5193 5194 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 5195 AC.assumptions().empty()) 5196 return Result; 5197 5198 // If the backedge is guarded by a comparison with the pre-inc value the 5199 // addrec is safe. Also, if the entry is guarded by a comparison with the 5200 // start value and the backedge is guarded by a comparison with the post-inc 5201 // value, the addrec is safe. 5202 if (isKnownPositive(Step)) { 5203 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 5204 getUnsignedRangeMax(Step)); 5205 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 5206 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 5207 Result = setFlags(Result, SCEV::FlagNUW); 5208 } 5209 } 5210 5211 return Result; 5212 } 5213 5214 namespace { 5215 5216 /// Represents an abstract binary operation. This may exist as a 5217 /// normal instruction or constant expression, or may have been 5218 /// derived from an expression tree. 5219 struct BinaryOp { 5220 unsigned Opcode; 5221 Value *LHS; 5222 Value *RHS; 5223 bool IsNSW = false; 5224 bool IsNUW = false; 5225 5226 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 5227 /// constant expression. 5228 Operator *Op = nullptr; 5229 5230 explicit BinaryOp(Operator *Op) 5231 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 5232 Op(Op) { 5233 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 5234 IsNSW = OBO->hasNoSignedWrap(); 5235 IsNUW = OBO->hasNoUnsignedWrap(); 5236 } 5237 } 5238 5239 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 5240 bool IsNUW = false) 5241 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 5242 }; 5243 5244 } // end anonymous namespace 5245 5246 /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure. 5247 static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL, 5248 AssumptionCache &AC, 5249 const DominatorTree &DT, 5250 const Instruction *CxtI) { 5251 auto *Op = dyn_cast<Operator>(V); 5252 if (!Op) 5253 return std::nullopt; 5254 5255 // Implementation detail: all the cleverness here should happen without 5256 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 5257 // SCEV expressions when possible, and we should not break that. 5258 5259 switch (Op->getOpcode()) { 5260 case Instruction::Add: 5261 case Instruction::Sub: 5262 case Instruction::Mul: 5263 case Instruction::UDiv: 5264 case Instruction::URem: 5265 case Instruction::And: 5266 case Instruction::AShr: 5267 case Instruction::Shl: 5268 return BinaryOp(Op); 5269 5270 case Instruction::Or: { 5271 // Convert or disjoint into add nuw nsw. 5272 if (cast<PossiblyDisjointInst>(Op)->isDisjoint()) 5273 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1), 5274 /*IsNSW=*/true, /*IsNUW=*/true); 5275 return BinaryOp(Op); 5276 } 5277 5278 case Instruction::Xor: 5279 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 5280 // If the RHS of the xor is a signmask, then this is just an add. 5281 // Instcombine turns add of signmask into xor as a strength reduction step. 5282 if (RHSC->getValue().isSignMask()) 5283 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5284 // Binary `xor` is a bit-wise `add`. 5285 if (V->getType()->isIntegerTy(1)) 5286 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5287 return BinaryOp(Op); 5288 5289 case Instruction::LShr: 5290 // Turn logical shift right of a constant into a unsigned divide. 5291 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 5292 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 5293 5294 // If the shift count is not less than the bitwidth, the result of 5295 // the shift is undefined. Don't try to analyze it, because the 5296 // resolution chosen here may differ from the resolution chosen in 5297 // other parts of the compiler. 5298 if (SA->getValue().ult(BitWidth)) { 5299 Constant *X = 5300 ConstantInt::get(SA->getContext(), 5301 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5302 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 5303 } 5304 } 5305 return BinaryOp(Op); 5306 5307 case Instruction::ExtractValue: { 5308 auto *EVI = cast<ExtractValueInst>(Op); 5309 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 5310 break; 5311 5312 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 5313 if (!WO) 5314 break; 5315 5316 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 5317 bool Signed = WO->isSigned(); 5318 // TODO: Should add nuw/nsw flags for mul as well. 5319 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 5320 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 5321 5322 // Now that we know that all uses of the arithmetic-result component of 5323 // CI are guarded by the overflow check, we can go ahead and pretend 5324 // that the arithmetic is non-overflowing. 5325 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 5326 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 5327 } 5328 5329 default: 5330 break; 5331 } 5332 5333 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 5334 // semantics as a Sub, return a binary sub expression. 5335 if (auto *II = dyn_cast<IntrinsicInst>(V)) 5336 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 5337 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 5338 5339 return std::nullopt; 5340 } 5341 5342 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 5343 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 5344 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 5345 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 5346 /// follows one of the following patterns: 5347 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5348 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5349 /// If the SCEV expression of \p Op conforms with one of the expected patterns 5350 /// we return the type of the truncation operation, and indicate whether the 5351 /// truncated type should be treated as signed/unsigned by setting 5352 /// \p Signed to true/false, respectively. 5353 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 5354 bool &Signed, ScalarEvolution &SE) { 5355 // The case where Op == SymbolicPHI (that is, with no type conversions on 5356 // the way) is handled by the regular add recurrence creating logic and 5357 // would have already been triggered in createAddRecForPHI. Reaching it here 5358 // means that createAddRecFromPHI had failed for this PHI before (e.g., 5359 // because one of the other operands of the SCEVAddExpr updating this PHI is 5360 // not invariant). 5361 // 5362 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 5363 // this case predicates that allow us to prove that Op == SymbolicPHI will 5364 // be added. 5365 if (Op == SymbolicPHI) 5366 return nullptr; 5367 5368 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 5369 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 5370 if (SourceBits != NewBits) 5371 return nullptr; 5372 5373 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 5374 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 5375 if (!SExt && !ZExt) 5376 return nullptr; 5377 const SCEVTruncateExpr *Trunc = 5378 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 5379 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 5380 if (!Trunc) 5381 return nullptr; 5382 const SCEV *X = Trunc->getOperand(); 5383 if (X != SymbolicPHI) 5384 return nullptr; 5385 Signed = SExt != nullptr; 5386 return Trunc->getType(); 5387 } 5388 5389 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 5390 if (!PN->getType()->isIntegerTy()) 5391 return nullptr; 5392 const Loop *L = LI.getLoopFor(PN->getParent()); 5393 if (!L || L->getHeader() != PN->getParent()) 5394 return nullptr; 5395 return L; 5396 } 5397 5398 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 5399 // computation that updates the phi follows the following pattern: 5400 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 5401 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 5402 // If so, try to see if it can be rewritten as an AddRecExpr under some 5403 // Predicates. If successful, return them as a pair. Also cache the results 5404 // of the analysis. 5405 // 5406 // Example usage scenario: 5407 // Say the Rewriter is called for the following SCEV: 5408 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5409 // where: 5410 // %X = phi i64 (%Start, %BEValue) 5411 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 5412 // and call this function with %SymbolicPHI = %X. 5413 // 5414 // The analysis will find that the value coming around the backedge has 5415 // the following SCEV: 5416 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5417 // Upon concluding that this matches the desired pattern, the function 5418 // will return the pair {NewAddRec, SmallPredsVec} where: 5419 // NewAddRec = {%Start,+,%Step} 5420 // SmallPredsVec = {P1, P2, P3} as follows: 5421 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5422 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5423 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5424 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5425 // under the predicates {P1,P2,P3}. 5426 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5427 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5428 // 5429 // TODO's: 5430 // 5431 // 1) Extend the Induction descriptor to also support inductions that involve 5432 // casts: When needed (namely, when we are called in the context of the 5433 // vectorizer induction analysis), a Set of cast instructions will be 5434 // populated by this method, and provided back to isInductionPHI. This is 5435 // needed to allow the vectorizer to properly record them to be ignored by 5436 // the cost model and to avoid vectorizing them (otherwise these casts, 5437 // which are redundant under the runtime overflow checks, will be 5438 // vectorized, which can be costly). 5439 // 5440 // 2) Support additional induction/PHISCEV patterns: We also want to support 5441 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5442 // after the induction update operation (the induction increment): 5443 // 5444 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5445 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5446 // 5447 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5448 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5449 // 5450 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5451 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5452 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5453 SmallVector<const SCEVPredicate *, 3> Predicates; 5454 5455 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5456 // return an AddRec expression under some predicate. 5457 5458 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5459 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5460 assert(L && "Expecting an integer loop header phi"); 5461 5462 // The loop may have multiple entrances or multiple exits; we can analyze 5463 // this phi as an addrec if it has a unique entry value and a unique 5464 // backedge value. 5465 Value *BEValueV = nullptr, *StartValueV = nullptr; 5466 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5467 Value *V = PN->getIncomingValue(i); 5468 if (L->contains(PN->getIncomingBlock(i))) { 5469 if (!BEValueV) { 5470 BEValueV = V; 5471 } else if (BEValueV != V) { 5472 BEValueV = nullptr; 5473 break; 5474 } 5475 } else if (!StartValueV) { 5476 StartValueV = V; 5477 } else if (StartValueV != V) { 5478 StartValueV = nullptr; 5479 break; 5480 } 5481 } 5482 if (!BEValueV || !StartValueV) 5483 return std::nullopt; 5484 5485 const SCEV *BEValue = getSCEV(BEValueV); 5486 5487 // If the value coming around the backedge is an add with the symbolic 5488 // value we just inserted, possibly with casts that we can ignore under 5489 // an appropriate runtime guard, then we found a simple induction variable! 5490 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5491 if (!Add) 5492 return std::nullopt; 5493 5494 // If there is a single occurrence of the symbolic value, possibly 5495 // casted, replace it with a recurrence. 5496 unsigned FoundIndex = Add->getNumOperands(); 5497 Type *TruncTy = nullptr; 5498 bool Signed; 5499 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5500 if ((TruncTy = 5501 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5502 if (FoundIndex == e) { 5503 FoundIndex = i; 5504 break; 5505 } 5506 5507 if (FoundIndex == Add->getNumOperands()) 5508 return std::nullopt; 5509 5510 // Create an add with everything but the specified operand. 5511 SmallVector<const SCEV *, 8> Ops; 5512 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5513 if (i != FoundIndex) 5514 Ops.push_back(Add->getOperand(i)); 5515 const SCEV *Accum = getAddExpr(Ops); 5516 5517 // The runtime checks will not be valid if the step amount is 5518 // varying inside the loop. 5519 if (!isLoopInvariant(Accum, L)) 5520 return std::nullopt; 5521 5522 // *** Part2: Create the predicates 5523 5524 // Analysis was successful: we have a phi-with-cast pattern for which we 5525 // can return an AddRec expression under the following predicates: 5526 // 5527 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5528 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5529 // P2: An Equal predicate that guarantees that 5530 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5531 // P3: An Equal predicate that guarantees that 5532 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5533 // 5534 // As we next prove, the above predicates guarantee that: 5535 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5536 // 5537 // 5538 // More formally, we want to prove that: 5539 // Expr(i+1) = Start + (i+1) * Accum 5540 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5541 // 5542 // Given that: 5543 // 1) Expr(0) = Start 5544 // 2) Expr(1) = Start + Accum 5545 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5546 // 3) Induction hypothesis (step i): 5547 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5548 // 5549 // Proof: 5550 // Expr(i+1) = 5551 // = Start + (i+1)*Accum 5552 // = (Start + i*Accum) + Accum 5553 // = Expr(i) + Accum 5554 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5555 // :: from step i 5556 // 5557 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5558 // 5559 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5560 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5561 // + Accum :: from P3 5562 // 5563 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5564 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5565 // 5566 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5567 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5568 // 5569 // By induction, the same applies to all iterations 1<=i<n: 5570 // 5571 5572 // Create a truncated addrec for which we will add a no overflow check (P1). 5573 const SCEV *StartVal = getSCEV(StartValueV); 5574 const SCEV *PHISCEV = 5575 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5576 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5577 5578 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5579 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5580 // will be constant. 5581 // 5582 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5583 // add P1. 5584 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5585 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5586 Signed ? SCEVWrapPredicate::IncrementNSSW 5587 : SCEVWrapPredicate::IncrementNUSW; 5588 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5589 Predicates.push_back(AddRecPred); 5590 } 5591 5592 // Create the Equal Predicates P2,P3: 5593 5594 // It is possible that the predicates P2 and/or P3 are computable at 5595 // compile time due to StartVal and/or Accum being constants. 5596 // If either one is, then we can check that now and escape if either P2 5597 // or P3 is false. 5598 5599 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5600 // for each of StartVal and Accum 5601 auto getExtendedExpr = [&](const SCEV *Expr, 5602 bool CreateSignExtend) -> const SCEV * { 5603 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5604 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5605 const SCEV *ExtendedExpr = 5606 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5607 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5608 return ExtendedExpr; 5609 }; 5610 5611 // Given: 5612 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5613 // = getExtendedExpr(Expr) 5614 // Determine whether the predicate P: Expr == ExtendedExpr 5615 // is known to be false at compile time 5616 auto PredIsKnownFalse = [&](const SCEV *Expr, 5617 const SCEV *ExtendedExpr) -> bool { 5618 return Expr != ExtendedExpr && 5619 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5620 }; 5621 5622 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5623 if (PredIsKnownFalse(StartVal, StartExtended)) { 5624 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5625 return std::nullopt; 5626 } 5627 5628 // The Step is always Signed (because the overflow checks are either 5629 // NSSW or NUSW) 5630 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5631 if (PredIsKnownFalse(Accum, AccumExtended)) { 5632 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5633 return std::nullopt; 5634 } 5635 5636 auto AppendPredicate = [&](const SCEV *Expr, 5637 const SCEV *ExtendedExpr) -> void { 5638 if (Expr != ExtendedExpr && 5639 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5640 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5641 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5642 Predicates.push_back(Pred); 5643 } 5644 }; 5645 5646 AppendPredicate(StartVal, StartExtended); 5647 AppendPredicate(Accum, AccumExtended); 5648 5649 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5650 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5651 // into NewAR if it will also add the runtime overflow checks specified in 5652 // Predicates. 5653 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5654 5655 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5656 std::make_pair(NewAR, Predicates); 5657 // Remember the result of the analysis for this SCEV at this locayyytion. 5658 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5659 return PredRewrite; 5660 } 5661 5662 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5663 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5664 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5665 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5666 if (!L) 5667 return std::nullopt; 5668 5669 // Check to see if we already analyzed this PHI. 5670 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5671 if (I != PredicatedSCEVRewrites.end()) { 5672 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5673 I->second; 5674 // Analysis was done before and failed to create an AddRec: 5675 if (Rewrite.first == SymbolicPHI) 5676 return std::nullopt; 5677 // Analysis was done before and succeeded to create an AddRec under 5678 // a predicate: 5679 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5680 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5681 return Rewrite; 5682 } 5683 5684 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5685 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5686 5687 // Record in the cache that the analysis failed 5688 if (!Rewrite) { 5689 SmallVector<const SCEVPredicate *, 3> Predicates; 5690 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5691 return std::nullopt; 5692 } 5693 5694 return Rewrite; 5695 } 5696 5697 // FIXME: This utility is currently required because the Rewriter currently 5698 // does not rewrite this expression: 5699 // {0, +, (sext ix (trunc iy to ix) to iy)} 5700 // into {0, +, %step}, 5701 // even when the following Equal predicate exists: 5702 // "%step == (sext ix (trunc iy to ix) to iy)". 5703 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5704 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5705 if (AR1 == AR2) 5706 return true; 5707 5708 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5709 if (Expr1 != Expr2 && 5710 !Preds->implies(SE.getEqualPredicate(Expr1, Expr2), SE) && 5711 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1), SE)) 5712 return false; 5713 return true; 5714 }; 5715 5716 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5717 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5718 return false; 5719 return true; 5720 } 5721 5722 /// A helper function for createAddRecFromPHI to handle simple cases. 5723 /// 5724 /// This function tries to find an AddRec expression for the simplest (yet most 5725 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5726 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5727 /// technique for finding the AddRec expression. 5728 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5729 Value *BEValueV, 5730 Value *StartValueV) { 5731 const Loop *L = LI.getLoopFor(PN->getParent()); 5732 assert(L && L->getHeader() == PN->getParent()); 5733 assert(BEValueV && StartValueV); 5734 5735 auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN); 5736 if (!BO) 5737 return nullptr; 5738 5739 if (BO->Opcode != Instruction::Add) 5740 return nullptr; 5741 5742 const SCEV *Accum = nullptr; 5743 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5744 Accum = getSCEV(BO->RHS); 5745 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5746 Accum = getSCEV(BO->LHS); 5747 5748 if (!Accum) 5749 return nullptr; 5750 5751 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5752 if (BO->IsNUW) 5753 Flags = setFlags(Flags, SCEV::FlagNUW); 5754 if (BO->IsNSW) 5755 Flags = setFlags(Flags, SCEV::FlagNSW); 5756 5757 const SCEV *StartVal = getSCEV(StartValueV); 5758 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5759 insertValueToMap(PN, PHISCEV); 5760 5761 if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5762 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), 5763 (SCEV::NoWrapFlags)(AR->getNoWrapFlags() | 5764 proveNoWrapViaConstantRanges(AR))); 5765 } 5766 5767 // We can add Flags to the post-inc expression only if we 5768 // know that it is *undefined behavior* for BEValueV to 5769 // overflow. 5770 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5771 assert(isLoopInvariant(Accum, L) && 5772 "Accum is defined outside L, but is not invariant?"); 5773 if (isAddRecNeverPoison(BEInst, L)) 5774 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5775 } 5776 5777 return PHISCEV; 5778 } 5779 5780 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5781 const Loop *L = LI.getLoopFor(PN->getParent()); 5782 if (!L || L->getHeader() != PN->getParent()) 5783 return nullptr; 5784 5785 // The loop may have multiple entrances or multiple exits; we can analyze 5786 // this phi as an addrec if it has a unique entry value and a unique 5787 // backedge value. 5788 Value *BEValueV = nullptr, *StartValueV = nullptr; 5789 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5790 Value *V = PN->getIncomingValue(i); 5791 if (L->contains(PN->getIncomingBlock(i))) { 5792 if (!BEValueV) { 5793 BEValueV = V; 5794 } else if (BEValueV != V) { 5795 BEValueV = nullptr; 5796 break; 5797 } 5798 } else if (!StartValueV) { 5799 StartValueV = V; 5800 } else if (StartValueV != V) { 5801 StartValueV = nullptr; 5802 break; 5803 } 5804 } 5805 if (!BEValueV || !StartValueV) 5806 return nullptr; 5807 5808 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5809 "PHI node already processed?"); 5810 5811 // First, try to find AddRec expression without creating a fictituos symbolic 5812 // value for PN. 5813 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5814 return S; 5815 5816 // Handle PHI node value symbolically. 5817 const SCEV *SymbolicName = getUnknown(PN); 5818 insertValueToMap(PN, SymbolicName); 5819 5820 // Using this symbolic name for the PHI, analyze the value coming around 5821 // the back-edge. 5822 const SCEV *BEValue = getSCEV(BEValueV); 5823 5824 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5825 // has a special value for the first iteration of the loop. 5826 5827 // If the value coming around the backedge is an add with the symbolic 5828 // value we just inserted, then we found a simple induction variable! 5829 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5830 // If there is a single occurrence of the symbolic value, replace it 5831 // with a recurrence. 5832 unsigned FoundIndex = Add->getNumOperands(); 5833 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5834 if (Add->getOperand(i) == SymbolicName) 5835 if (FoundIndex == e) { 5836 FoundIndex = i; 5837 break; 5838 } 5839 5840 if (FoundIndex != Add->getNumOperands()) { 5841 // Create an add with everything but the specified operand. 5842 SmallVector<const SCEV *, 8> Ops; 5843 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5844 if (i != FoundIndex) 5845 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5846 L, *this)); 5847 const SCEV *Accum = getAddExpr(Ops); 5848 5849 // This is not a valid addrec if the step amount is varying each 5850 // loop iteration, but is not itself an addrec in this loop. 5851 if (isLoopInvariant(Accum, L) || 5852 (isa<SCEVAddRecExpr>(Accum) && 5853 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5854 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5855 5856 if (auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN)) { 5857 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5858 if (BO->IsNUW) 5859 Flags = setFlags(Flags, SCEV::FlagNUW); 5860 if (BO->IsNSW) 5861 Flags = setFlags(Flags, SCEV::FlagNSW); 5862 } 5863 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5864 if (GEP->getOperand(0) == PN) { 5865 GEPNoWrapFlags NW = GEP->getNoWrapFlags(); 5866 // If the increment has any nowrap flags, then we know the address 5867 // space cannot be wrapped around. 5868 if (NW != GEPNoWrapFlags::none()) 5869 Flags = setFlags(Flags, SCEV::FlagNW); 5870 // If the GEP is nuw or nusw with non-negative offset, we know that 5871 // no unsigned wrap occurs. We cannot set the nsw flag as only the 5872 // offset is treated as signed, while the base is unsigned. 5873 if (NW.hasNoUnsignedWrap() || 5874 (NW.hasNoUnsignedSignedWrap() && isKnownNonNegative(Accum))) 5875 Flags = setFlags(Flags, SCEV::FlagNUW); 5876 } 5877 5878 // We cannot transfer nuw and nsw flags from subtraction 5879 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5880 // for instance. 5881 } 5882 5883 const SCEV *StartVal = getSCEV(StartValueV); 5884 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5885 5886 // Okay, for the entire analysis of this edge we assumed the PHI 5887 // to be symbolic. We now need to go back and purge all of the 5888 // entries for the scalars that use the symbolic expression. 5889 forgetMemoizedResults(SymbolicName); 5890 insertValueToMap(PN, PHISCEV); 5891 5892 if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5893 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), 5894 (SCEV::NoWrapFlags)(AR->getNoWrapFlags() | 5895 proveNoWrapViaConstantRanges(AR))); 5896 } 5897 5898 // We can add Flags to the post-inc expression only if we 5899 // know that it is *undefined behavior* for BEValueV to 5900 // overflow. 5901 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5902 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5903 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5904 5905 return PHISCEV; 5906 } 5907 } 5908 } else { 5909 // Otherwise, this could be a loop like this: 5910 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5911 // In this case, j = {1,+,1} and BEValue is j. 5912 // Because the other in-value of i (0) fits the evolution of BEValue 5913 // i really is an addrec evolution. 5914 // 5915 // We can generalize this saying that i is the shifted value of BEValue 5916 // by one iteration: 5917 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5918 5919 // Do not allow refinement in rewriting of BEValue. 5920 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5921 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5922 if (Shifted != getCouldNotCompute() && Start != getCouldNotCompute() && 5923 isGuaranteedNotToCauseUB(Shifted) && ::impliesPoison(Shifted, Start)) { 5924 const SCEV *StartVal = getSCEV(StartValueV); 5925 if (Start == StartVal) { 5926 // Okay, for the entire analysis of this edge we assumed the PHI 5927 // to be symbolic. We now need to go back and purge all of the 5928 // entries for the scalars that use the symbolic expression. 5929 forgetMemoizedResults(SymbolicName); 5930 insertValueToMap(PN, Shifted); 5931 return Shifted; 5932 } 5933 } 5934 } 5935 5936 // Remove the temporary PHI node SCEV that has been inserted while intending 5937 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5938 // as it will prevent later (possibly simpler) SCEV expressions to be added 5939 // to the ValueExprMap. 5940 eraseValueFromMap(PN); 5941 5942 return nullptr; 5943 } 5944 5945 // Try to match a control flow sequence that branches out at BI and merges back 5946 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5947 // match. 5948 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5949 Value *&C, Value *&LHS, Value *&RHS) { 5950 C = BI->getCondition(); 5951 5952 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5953 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5954 5955 if (!LeftEdge.isSingleEdge()) 5956 return false; 5957 5958 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5959 5960 Use &LeftUse = Merge->getOperandUse(0); 5961 Use &RightUse = Merge->getOperandUse(1); 5962 5963 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5964 LHS = LeftUse; 5965 RHS = RightUse; 5966 return true; 5967 } 5968 5969 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5970 LHS = RightUse; 5971 RHS = LeftUse; 5972 return true; 5973 } 5974 5975 return false; 5976 } 5977 5978 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5979 auto IsReachable = 5980 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5981 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5982 // Try to match 5983 // 5984 // br %cond, label %left, label %right 5985 // left: 5986 // br label %merge 5987 // right: 5988 // br label %merge 5989 // merge: 5990 // V = phi [ %x, %left ], [ %y, %right ] 5991 // 5992 // as "select %cond, %x, %y" 5993 5994 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5995 assert(IDom && "At least the entry block should dominate PN"); 5996 5997 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5998 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5999 6000 if (BI && BI->isConditional() && 6001 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 6002 properlyDominates(getSCEV(LHS), PN->getParent()) && 6003 properlyDominates(getSCEV(RHS), PN->getParent())) 6004 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 6005 } 6006 6007 return nullptr; 6008 } 6009 6010 /// Returns SCEV for the first operand of a phi if all phi operands have 6011 /// identical opcodes and operands 6012 /// eg. 6013 /// a: %add = %a + %b 6014 /// br %c 6015 /// b: %add1 = %a + %b 6016 /// br %c 6017 /// c: %phi = phi [%add, a], [%add1, b] 6018 /// scev(%phi) => scev(%add) 6019 const SCEV * 6020 ScalarEvolution::createNodeForPHIWithIdenticalOperands(PHINode *PN) { 6021 BinaryOperator *CommonInst = nullptr; 6022 // Check if instructions are identical. 6023 for (Value *Incoming : PN->incoming_values()) { 6024 auto *IncomingInst = dyn_cast<BinaryOperator>(Incoming); 6025 if (!IncomingInst) 6026 return nullptr; 6027 if (CommonInst) { 6028 if (!CommonInst->isIdenticalToWhenDefined(IncomingInst)) 6029 return nullptr; // Not identical, give up 6030 } else { 6031 // Remember binary operator 6032 CommonInst = IncomingInst; 6033 } 6034 } 6035 if (!CommonInst) 6036 return nullptr; 6037 6038 // Check if SCEV exprs for instructions are identical. 6039 const SCEV *CommonSCEV = getSCEV(CommonInst); 6040 bool SCEVExprsIdentical = 6041 all_of(drop_begin(PN->incoming_values()), 6042 [this, CommonSCEV](Value *V) { return CommonSCEV == getSCEV(V); }); 6043 return SCEVExprsIdentical ? CommonSCEV : nullptr; 6044 } 6045 6046 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 6047 if (const SCEV *S = createAddRecFromPHI(PN)) 6048 return S; 6049 6050 // We do not allow simplifying phi (undef, X) to X here, to avoid reusing the 6051 // phi node for X. 6052 if (Value *V = simplifyInstruction( 6053 PN, {getDataLayout(), &TLI, &DT, &AC, /*CtxI=*/nullptr, 6054 /*UseInstrInfo=*/true, /*CanUseUndef=*/false})) 6055 return getSCEV(V); 6056 6057 if (const SCEV *S = createNodeForPHIWithIdenticalOperands(PN)) 6058 return S; 6059 6060 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 6061 return S; 6062 6063 // If it's not a loop phi, we can't handle it yet. 6064 return getUnknown(PN); 6065 } 6066 6067 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, 6068 SCEVTypes RootKind) { 6069 struct FindClosure { 6070 const SCEV *OperandToFind; 6071 const SCEVTypes RootKind; // Must be a sequential min/max expression. 6072 const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. 6073 6074 bool Found = false; 6075 6076 bool canRecurseInto(SCEVTypes Kind) const { 6077 // We can only recurse into the SCEV expression of the same effective type 6078 // as the type of our root SCEV expression, and into zero-extensions. 6079 return RootKind == Kind || NonSequentialRootKind == Kind || 6080 scZeroExtend == Kind; 6081 }; 6082 6083 FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) 6084 : OperandToFind(OperandToFind), RootKind(RootKind), 6085 NonSequentialRootKind( 6086 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 6087 RootKind)) {} 6088 6089 bool follow(const SCEV *S) { 6090 Found = S == OperandToFind; 6091 6092 return !isDone() && canRecurseInto(S->getSCEVType()); 6093 } 6094 6095 bool isDone() const { return Found; } 6096 }; 6097 6098 FindClosure FC(OperandToFind, RootKind); 6099 visitAll(Root, FC); 6100 return FC.Found; 6101 } 6102 6103 std::optional<const SCEV *> 6104 ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, 6105 ICmpInst *Cond, 6106 Value *TrueVal, 6107 Value *FalseVal) { 6108 // Try to match some simple smax or umax patterns. 6109 auto *ICI = Cond; 6110 6111 Value *LHS = ICI->getOperand(0); 6112 Value *RHS = ICI->getOperand(1); 6113 6114 switch (ICI->getPredicate()) { 6115 case ICmpInst::ICMP_SLT: 6116 case ICmpInst::ICMP_SLE: 6117 case ICmpInst::ICMP_ULT: 6118 case ICmpInst::ICMP_ULE: 6119 std::swap(LHS, RHS); 6120 [[fallthrough]]; 6121 case ICmpInst::ICMP_SGT: 6122 case ICmpInst::ICMP_SGE: 6123 case ICmpInst::ICMP_UGT: 6124 case ICmpInst::ICMP_UGE: 6125 // a > b ? a+x : b+x -> max(a, b)+x 6126 // a > b ? b+x : a+x -> min(a, b)+x 6127 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty)) { 6128 bool Signed = ICI->isSigned(); 6129 const SCEV *LA = getSCEV(TrueVal); 6130 const SCEV *RA = getSCEV(FalseVal); 6131 const SCEV *LS = getSCEV(LHS); 6132 const SCEV *RS = getSCEV(RHS); 6133 if (LA->getType()->isPointerTy()) { 6134 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 6135 // Need to make sure we can't produce weird expressions involving 6136 // negated pointers. 6137 if (LA == LS && RA == RS) 6138 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 6139 if (LA == RS && RA == LS) 6140 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 6141 } 6142 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 6143 if (Op->getType()->isPointerTy()) { 6144 Op = getLosslessPtrToIntExpr(Op); 6145 if (isa<SCEVCouldNotCompute>(Op)) 6146 return Op; 6147 } 6148 if (Signed) 6149 Op = getNoopOrSignExtend(Op, Ty); 6150 else 6151 Op = getNoopOrZeroExtend(Op, Ty); 6152 return Op; 6153 }; 6154 LS = CoerceOperand(LS); 6155 RS = CoerceOperand(RS); 6156 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 6157 break; 6158 const SCEV *LDiff = getMinusSCEV(LA, LS); 6159 const SCEV *RDiff = getMinusSCEV(RA, RS); 6160 if (LDiff == RDiff) 6161 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 6162 LDiff); 6163 LDiff = getMinusSCEV(LA, RS); 6164 RDiff = getMinusSCEV(RA, LS); 6165 if (LDiff == RDiff) 6166 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 6167 LDiff); 6168 } 6169 break; 6170 case ICmpInst::ICMP_NE: 6171 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y 6172 std::swap(TrueVal, FalseVal); 6173 [[fallthrough]]; 6174 case ICmpInst::ICMP_EQ: 6175 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 6176 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty) && 6177 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 6178 const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), Ty); 6179 const SCEV *TrueValExpr = getSCEV(TrueVal); // C+y 6180 const SCEV *FalseValExpr = getSCEV(FalseVal); // x+y 6181 const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x 6182 const SCEV *C = getMinusSCEV(TrueValExpr, Y); // C = (C+y)-y 6183 if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1)) 6184 return getAddExpr(getUMaxExpr(X, C), Y); 6185 } 6186 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) 6187 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) 6188 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) 6189 // -> umin_seq(x, umin (..., umin_seq(...), ...)) 6190 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() && 6191 isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) { 6192 const SCEV *X = getSCEV(LHS); 6193 while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X)) 6194 X = ZExt->getOperand(); 6195 if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(Ty)) { 6196 const SCEV *FalseValExpr = getSCEV(FalseVal); 6197 if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr)) 6198 return getUMinExpr(getNoopOrZeroExtend(X, Ty), FalseValExpr, 6199 /*Sequential=*/true); 6200 } 6201 } 6202 break; 6203 default: 6204 break; 6205 } 6206 6207 return std::nullopt; 6208 } 6209 6210 static std::optional<const SCEV *> 6211 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr, 6212 const SCEV *TrueExpr, const SCEV *FalseExpr) { 6213 assert(CondExpr->getType()->isIntegerTy(1) && 6214 TrueExpr->getType() == FalseExpr->getType() && 6215 TrueExpr->getType()->isIntegerTy(1) && 6216 "Unexpected operands of a select."); 6217 6218 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) 6219 // --> C + (umin_seq cond, x - C) 6220 // 6221 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) 6222 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) 6223 // --> C + (umin_seq ~cond, x - C) 6224 6225 // FIXME: while we can't legally model the case where both of the hands 6226 // are fully variable, we only require that the *difference* is constant. 6227 if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr)) 6228 return std::nullopt; 6229 6230 const SCEV *X, *C; 6231 if (isa<SCEVConstant>(TrueExpr)) { 6232 CondExpr = SE->getNotSCEV(CondExpr); 6233 X = FalseExpr; 6234 C = TrueExpr; 6235 } else { 6236 X = TrueExpr; 6237 C = FalseExpr; 6238 } 6239 return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C), 6240 /*Sequential=*/true)); 6241 } 6242 6243 static std::optional<const SCEV *> 6244 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal, 6245 Value *FalseVal) { 6246 if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal)) 6247 return std::nullopt; 6248 6249 const auto *SECond = SE->getSCEV(Cond); 6250 const auto *SETrue = SE->getSCEV(TrueVal); 6251 const auto *SEFalse = SE->getSCEV(FalseVal); 6252 return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse); 6253 } 6254 6255 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( 6256 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { 6257 assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?"); 6258 assert(TrueVal->getType() == FalseVal->getType() && 6259 V->getType() == TrueVal->getType() && 6260 "Types of select hands and of the result must match."); 6261 6262 // For now, only deal with i1-typed `select`s. 6263 if (!V->getType()->isIntegerTy(1)) 6264 return getUnknown(V); 6265 6266 if (std::optional<const SCEV *> S = 6267 createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal)) 6268 return *S; 6269 6270 return getUnknown(V); 6271 } 6272 6273 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, 6274 Value *TrueVal, 6275 Value *FalseVal) { 6276 // Handle "constant" branch or select. This can occur for instance when a 6277 // loop pass transforms an inner loop and moves on to process the outer loop. 6278 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 6279 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 6280 6281 if (auto *I = dyn_cast<Instruction>(V)) { 6282 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 6283 if (std::optional<const SCEV *> S = 6284 createNodeForSelectOrPHIInstWithICmpInstCond(I->getType(), ICI, 6285 TrueVal, FalseVal)) 6286 return *S; 6287 } 6288 } 6289 6290 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); 6291 } 6292 6293 /// Expand GEP instructions into add and multiply operations. This allows them 6294 /// to be analyzed by regular SCEV code. 6295 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 6296 assert(GEP->getSourceElementType()->isSized() && 6297 "GEP source element type must be sized"); 6298 6299 SmallVector<const SCEV *, 4> IndexExprs; 6300 for (Value *Index : GEP->indices()) 6301 IndexExprs.push_back(getSCEV(Index)); 6302 return getGEPExpr(GEP, IndexExprs); 6303 } 6304 6305 APInt ScalarEvolution::getConstantMultipleImpl(const SCEV *S) { 6306 uint64_t BitWidth = getTypeSizeInBits(S->getType()); 6307 auto GetShiftedByZeros = [BitWidth](uint32_t TrailingZeros) { 6308 return TrailingZeros >= BitWidth 6309 ? APInt::getZero(BitWidth) 6310 : APInt::getOneBitSet(BitWidth, TrailingZeros); 6311 }; 6312 auto GetGCDMultiple = [this](const SCEVNAryExpr *N) { 6313 // The result is GCD of all operands results. 6314 APInt Res = getConstantMultiple(N->getOperand(0)); 6315 for (unsigned I = 1, E = N->getNumOperands(); I < E && Res != 1; ++I) 6316 Res = APIntOps::GreatestCommonDivisor( 6317 Res, getConstantMultiple(N->getOperand(I))); 6318 return Res; 6319 }; 6320 6321 switch (S->getSCEVType()) { 6322 case scConstant: 6323 return cast<SCEVConstant>(S)->getAPInt(); 6324 case scPtrToInt: 6325 return getConstantMultiple(cast<SCEVPtrToIntExpr>(S)->getOperand()); 6326 case scUDivExpr: 6327 case scVScale: 6328 return APInt(BitWidth, 1); 6329 case scTruncate: { 6330 // Only multiples that are a power of 2 will hold after truncation. 6331 const SCEVTruncateExpr *T = cast<SCEVTruncateExpr>(S); 6332 uint32_t TZ = getMinTrailingZeros(T->getOperand()); 6333 return GetShiftedByZeros(TZ); 6334 } 6335 case scZeroExtend: { 6336 const SCEVZeroExtendExpr *Z = cast<SCEVZeroExtendExpr>(S); 6337 return getConstantMultiple(Z->getOperand()).zext(BitWidth); 6338 } 6339 case scSignExtend: { 6340 // Only multiples that are a power of 2 will hold after sext. 6341 const SCEVSignExtendExpr *E = cast<SCEVSignExtendExpr>(S); 6342 uint32_t TZ = getMinTrailingZeros(E->getOperand()); 6343 return GetShiftedByZeros(TZ); 6344 } 6345 case scMulExpr: { 6346 const SCEVMulExpr *M = cast<SCEVMulExpr>(S); 6347 if (M->hasNoUnsignedWrap()) { 6348 // The result is the product of all operand results. 6349 APInt Res = getConstantMultiple(M->getOperand(0)); 6350 for (const SCEV *Operand : M->operands().drop_front()) 6351 Res = Res * getConstantMultiple(Operand); 6352 return Res; 6353 } 6354 6355 // If there are no wrap guarentees, find the trailing zeros, which is the 6356 // sum of trailing zeros for all its operands. 6357 uint32_t TZ = 0; 6358 for (const SCEV *Operand : M->operands()) 6359 TZ += getMinTrailingZeros(Operand); 6360 return GetShiftedByZeros(TZ); 6361 } 6362 case scAddExpr: 6363 case scAddRecExpr: { 6364 const SCEVNAryExpr *N = cast<SCEVNAryExpr>(S); 6365 if (N->hasNoUnsignedWrap()) 6366 return GetGCDMultiple(N); 6367 // Find the trailing bits, which is the minimum of its operands. 6368 uint32_t TZ = getMinTrailingZeros(N->getOperand(0)); 6369 for (const SCEV *Operand : N->operands().drop_front()) 6370 TZ = std::min(TZ, getMinTrailingZeros(Operand)); 6371 return GetShiftedByZeros(TZ); 6372 } 6373 case scUMaxExpr: 6374 case scSMaxExpr: 6375 case scUMinExpr: 6376 case scSMinExpr: 6377 case scSequentialUMinExpr: 6378 return GetGCDMultiple(cast<SCEVNAryExpr>(S)); 6379 case scUnknown: { 6380 // ask ValueTracking for known bits 6381 const SCEVUnknown *U = cast<SCEVUnknown>(S); 6382 unsigned Known = 6383 computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT) 6384 .countMinTrailingZeros(); 6385 return GetShiftedByZeros(Known); 6386 } 6387 case scCouldNotCompute: 6388 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6389 } 6390 llvm_unreachable("Unknown SCEV kind!"); 6391 } 6392 6393 APInt ScalarEvolution::getConstantMultiple(const SCEV *S) { 6394 auto I = ConstantMultipleCache.find(S); 6395 if (I != ConstantMultipleCache.end()) 6396 return I->second; 6397 6398 APInt Result = getConstantMultipleImpl(S); 6399 auto InsertPair = ConstantMultipleCache.insert({S, Result}); 6400 assert(InsertPair.second && "Should insert a new key"); 6401 return InsertPair.first->second; 6402 } 6403 6404 APInt ScalarEvolution::getNonZeroConstantMultiple(const SCEV *S) { 6405 APInt Multiple = getConstantMultiple(S); 6406 return Multiple == 0 ? APInt(Multiple.getBitWidth(), 1) : Multiple; 6407 } 6408 6409 uint32_t ScalarEvolution::getMinTrailingZeros(const SCEV *S) { 6410 return std::min(getConstantMultiple(S).countTrailingZeros(), 6411 (unsigned)getTypeSizeInBits(S->getType())); 6412 } 6413 6414 /// Helper method to assign a range to V from metadata present in the IR. 6415 static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) { 6416 if (Instruction *I = dyn_cast<Instruction>(V)) { 6417 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 6418 return getConstantRangeFromMetadata(*MD); 6419 if (const auto *CB = dyn_cast<CallBase>(V)) 6420 if (std::optional<ConstantRange> Range = CB->getRange()) 6421 return Range; 6422 } 6423 if (auto *A = dyn_cast<Argument>(V)) 6424 if (std::optional<ConstantRange> Range = A->getRange()) 6425 return Range; 6426 6427 return std::nullopt; 6428 } 6429 6430 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 6431 SCEV::NoWrapFlags Flags) { 6432 if (AddRec->getNoWrapFlags(Flags) != Flags) { 6433 AddRec->setNoWrapFlags(Flags); 6434 UnsignedRanges.erase(AddRec); 6435 SignedRanges.erase(AddRec); 6436 ConstantMultipleCache.erase(AddRec); 6437 } 6438 } 6439 6440 ConstantRange ScalarEvolution:: 6441 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 6442 const DataLayout &DL = getDataLayout(); 6443 6444 unsigned BitWidth = getTypeSizeInBits(U->getType()); 6445 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 6446 6447 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 6448 // use information about the trip count to improve our available range. Note 6449 // that the trip count independent cases are already handled by known bits. 6450 // WARNING: The definition of recurrence used here is subtly different than 6451 // the one used by AddRec (and thus most of this file). Step is allowed to 6452 // be arbitrarily loop varying here, where AddRec allows only loop invariant 6453 // and other addrecs in the same loop (for non-affine addrecs). The code 6454 // below intentionally handles the case where step is not loop invariant. 6455 auto *P = dyn_cast<PHINode>(U->getValue()); 6456 if (!P) 6457 return FullSet; 6458 6459 // Make sure that no Phi input comes from an unreachable block. Otherwise, 6460 // even the values that are not available in these blocks may come from them, 6461 // and this leads to false-positive recurrence test. 6462 for (auto *Pred : predecessors(P->getParent())) 6463 if (!DT.isReachableFromEntry(Pred)) 6464 return FullSet; 6465 6466 BinaryOperator *BO; 6467 Value *Start, *Step; 6468 if (!matchSimpleRecurrence(P, BO, Start, Step)) 6469 return FullSet; 6470 6471 // If we found a recurrence in reachable code, we must be in a loop. Note 6472 // that BO might be in some subloop of L, and that's completely okay. 6473 auto *L = LI.getLoopFor(P->getParent()); 6474 assert(L && L->getHeader() == P->getParent()); 6475 if (!L->contains(BO->getParent())) 6476 // NOTE: This bailout should be an assert instead. However, asserting 6477 // the condition here exposes a case where LoopFusion is querying SCEV 6478 // with malformed loop information during the midst of the transform. 6479 // There doesn't appear to be an obvious fix, so for the moment bailout 6480 // until the caller issue can be fixed. PR49566 tracks the bug. 6481 return FullSet; 6482 6483 // TODO: Extend to other opcodes such as mul, and div 6484 switch (BO->getOpcode()) { 6485 default: 6486 return FullSet; 6487 case Instruction::AShr: 6488 case Instruction::LShr: 6489 case Instruction::Shl: 6490 break; 6491 }; 6492 6493 if (BO->getOperand(0) != P) 6494 // TODO: Handle the power function forms some day. 6495 return FullSet; 6496 6497 unsigned TC = getSmallConstantMaxTripCount(L); 6498 if (!TC || TC >= BitWidth) 6499 return FullSet; 6500 6501 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 6502 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 6503 assert(KnownStart.getBitWidth() == BitWidth && 6504 KnownStep.getBitWidth() == BitWidth); 6505 6506 // Compute total shift amount, being careful of overflow and bitwidths. 6507 auto MaxShiftAmt = KnownStep.getMaxValue(); 6508 APInt TCAP(BitWidth, TC-1); 6509 bool Overflow = false; 6510 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 6511 if (Overflow) 6512 return FullSet; 6513 6514 switch (BO->getOpcode()) { 6515 default: 6516 llvm_unreachable("filtered out above"); 6517 case Instruction::AShr: { 6518 // For each ashr, three cases: 6519 // shift = 0 => unchanged value 6520 // saturation => 0 or -1 6521 // other => a value closer to zero (of the same sign) 6522 // Thus, the end value is closer to zero than the start. 6523 auto KnownEnd = KnownBits::ashr(KnownStart, 6524 KnownBits::makeConstant(TotalShift)); 6525 if (KnownStart.isNonNegative()) 6526 // Analogous to lshr (simply not yet canonicalized) 6527 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6528 KnownStart.getMaxValue() + 1); 6529 if (KnownStart.isNegative()) 6530 // End >=u Start && End <=s Start 6531 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6532 KnownEnd.getMaxValue() + 1); 6533 break; 6534 } 6535 case Instruction::LShr: { 6536 // For each lshr, three cases: 6537 // shift = 0 => unchanged value 6538 // saturation => 0 6539 // other => a smaller positive number 6540 // Thus, the low end of the unsigned range is the last value produced. 6541 auto KnownEnd = KnownBits::lshr(KnownStart, 6542 KnownBits::makeConstant(TotalShift)); 6543 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6544 KnownStart.getMaxValue() + 1); 6545 } 6546 case Instruction::Shl: { 6547 // Iff no bits are shifted out, value increases on every shift. 6548 auto KnownEnd = KnownBits::shl(KnownStart, 6549 KnownBits::makeConstant(TotalShift)); 6550 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6551 return ConstantRange(KnownStart.getMinValue(), 6552 KnownEnd.getMaxValue() + 1); 6553 break; 6554 } 6555 }; 6556 return FullSet; 6557 } 6558 6559 const ConstantRange & 6560 ScalarEvolution::getRangeRefIter(const SCEV *S, 6561 ScalarEvolution::RangeSignHint SignHint) { 6562 DenseMap<const SCEV *, ConstantRange> &Cache = 6563 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6564 : SignedRanges; 6565 SmallVector<const SCEV *> WorkList; 6566 SmallPtrSet<const SCEV *, 8> Seen; 6567 6568 // Add Expr to the worklist, if Expr is either an N-ary expression or a 6569 // SCEVUnknown PHI node. 6570 auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) { 6571 if (!Seen.insert(Expr).second) 6572 return; 6573 if (Cache.contains(Expr)) 6574 return; 6575 switch (Expr->getSCEVType()) { 6576 case scUnknown: 6577 if (!isa<PHINode>(cast<SCEVUnknown>(Expr)->getValue())) 6578 break; 6579 [[fallthrough]]; 6580 case scConstant: 6581 case scVScale: 6582 case scTruncate: 6583 case scZeroExtend: 6584 case scSignExtend: 6585 case scPtrToInt: 6586 case scAddExpr: 6587 case scMulExpr: 6588 case scUDivExpr: 6589 case scAddRecExpr: 6590 case scUMaxExpr: 6591 case scSMaxExpr: 6592 case scUMinExpr: 6593 case scSMinExpr: 6594 case scSequentialUMinExpr: 6595 WorkList.push_back(Expr); 6596 break; 6597 case scCouldNotCompute: 6598 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6599 } 6600 }; 6601 AddToWorklist(S); 6602 6603 // Build worklist by queuing operands of N-ary expressions and phi nodes. 6604 for (unsigned I = 0; I != WorkList.size(); ++I) { 6605 const SCEV *P = WorkList[I]; 6606 auto *UnknownS = dyn_cast<SCEVUnknown>(P); 6607 // If it is not a `SCEVUnknown`, just recurse into operands. 6608 if (!UnknownS) { 6609 for (const SCEV *Op : P->operands()) 6610 AddToWorklist(Op); 6611 continue; 6612 } 6613 // `SCEVUnknown`'s require special treatment. 6614 if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) { 6615 if (!PendingPhiRangesIter.insert(P).second) 6616 continue; 6617 for (auto &Op : reverse(P->operands())) 6618 AddToWorklist(getSCEV(Op)); 6619 } 6620 } 6621 6622 if (!WorkList.empty()) { 6623 // Use getRangeRef to compute ranges for items in the worklist in reverse 6624 // order. This will force ranges for earlier operands to be computed before 6625 // their users in most cases. 6626 for (const SCEV *P : reverse(drop_begin(WorkList))) { 6627 getRangeRef(P, SignHint); 6628 6629 if (auto *UnknownS = dyn_cast<SCEVUnknown>(P)) 6630 if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) 6631 PendingPhiRangesIter.erase(P); 6632 } 6633 } 6634 6635 return getRangeRef(S, SignHint, 0); 6636 } 6637 6638 /// Determine the range for a particular SCEV. If SignHint is 6639 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6640 /// with a "cleaner" unsigned (resp. signed) representation. 6641 const ConstantRange &ScalarEvolution::getRangeRef( 6642 const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) { 6643 DenseMap<const SCEV *, ConstantRange> &Cache = 6644 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6645 : SignedRanges; 6646 ConstantRange::PreferredRangeType RangeType = 6647 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned 6648 : ConstantRange::Signed; 6649 6650 // See if we've computed this range already. 6651 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6652 if (I != Cache.end()) 6653 return I->second; 6654 6655 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6656 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6657 6658 // Switch to iteratively computing the range for S, if it is part of a deeply 6659 // nested expression. 6660 if (Depth > RangeIterThreshold) 6661 return getRangeRefIter(S, SignHint); 6662 6663 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6664 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6665 using OBO = OverflowingBinaryOperator; 6666 6667 // If the value has known zeros, the maximum value will have those known zeros 6668 // as well. 6669 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 6670 APInt Multiple = getNonZeroConstantMultiple(S); 6671 APInt Remainder = APInt::getMaxValue(BitWidth).urem(Multiple); 6672 if (!Remainder.isZero()) 6673 ConservativeResult = 6674 ConstantRange(APInt::getMinValue(BitWidth), 6675 APInt::getMaxValue(BitWidth) - Remainder + 1); 6676 } 6677 else { 6678 uint32_t TZ = getMinTrailingZeros(S); 6679 if (TZ != 0) { 6680 ConservativeResult = ConstantRange( 6681 APInt::getSignedMinValue(BitWidth), 6682 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6683 } 6684 } 6685 6686 switch (S->getSCEVType()) { 6687 case scConstant: 6688 llvm_unreachable("Already handled above."); 6689 case scVScale: 6690 return setRange(S, SignHint, getVScaleRange(&F, BitWidth)); 6691 case scTruncate: { 6692 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(S); 6693 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint, Depth + 1); 6694 return setRange( 6695 Trunc, SignHint, 6696 ConservativeResult.intersectWith(X.truncate(BitWidth), RangeType)); 6697 } 6698 case scZeroExtend: { 6699 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(S); 6700 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint, Depth + 1); 6701 return setRange( 6702 ZExt, SignHint, 6703 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), RangeType)); 6704 } 6705 case scSignExtend: { 6706 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(S); 6707 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint, Depth + 1); 6708 return setRange( 6709 SExt, SignHint, 6710 ConservativeResult.intersectWith(X.signExtend(BitWidth), RangeType)); 6711 } 6712 case scPtrToInt: { 6713 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(S); 6714 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint, Depth + 1); 6715 return setRange(PtrToInt, SignHint, X); 6716 } 6717 case scAddExpr: { 6718 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 6719 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint, Depth + 1); 6720 unsigned WrapType = OBO::AnyWrap; 6721 if (Add->hasNoSignedWrap()) 6722 WrapType |= OBO::NoSignedWrap; 6723 if (Add->hasNoUnsignedWrap()) 6724 WrapType |= OBO::NoUnsignedWrap; 6725 for (const SCEV *Op : drop_begin(Add->operands())) 6726 X = X.addWithNoWrap(getRangeRef(Op, SignHint, Depth + 1), WrapType, 6727 RangeType); 6728 return setRange(Add, SignHint, 6729 ConservativeResult.intersectWith(X, RangeType)); 6730 } 6731 case scMulExpr: { 6732 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(S); 6733 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint, Depth + 1); 6734 for (const SCEV *Op : drop_begin(Mul->operands())) 6735 X = X.multiply(getRangeRef(Op, SignHint, Depth + 1)); 6736 return setRange(Mul, SignHint, 6737 ConservativeResult.intersectWith(X, RangeType)); 6738 } 6739 case scUDivExpr: { 6740 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6741 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint, Depth + 1); 6742 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint, Depth + 1); 6743 return setRange(UDiv, SignHint, 6744 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6745 } 6746 case scAddRecExpr: { 6747 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(S); 6748 // If there's no unsigned wrap, the value will never be less than its 6749 // initial value. 6750 if (AddRec->hasNoUnsignedWrap()) { 6751 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6752 if (!UnsignedMinValue.isZero()) 6753 ConservativeResult = ConservativeResult.intersectWith( 6754 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6755 } 6756 6757 // If there's no signed wrap, and all the operands except initial value have 6758 // the same sign or zero, the value won't ever be: 6759 // 1: smaller than initial value if operands are non negative, 6760 // 2: bigger than initial value if operands are non positive. 6761 // For both cases, value can not cross signed min/max boundary. 6762 if (AddRec->hasNoSignedWrap()) { 6763 bool AllNonNeg = true; 6764 bool AllNonPos = true; 6765 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6766 if (!isKnownNonNegative(AddRec->getOperand(i))) 6767 AllNonNeg = false; 6768 if (!isKnownNonPositive(AddRec->getOperand(i))) 6769 AllNonPos = false; 6770 } 6771 if (AllNonNeg) 6772 ConservativeResult = ConservativeResult.intersectWith( 6773 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6774 APInt::getSignedMinValue(BitWidth)), 6775 RangeType); 6776 else if (AllNonPos) 6777 ConservativeResult = ConservativeResult.intersectWith( 6778 ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth), 6779 getSignedRangeMax(AddRec->getStart()) + 6780 1), 6781 RangeType); 6782 } 6783 6784 // TODO: non-affine addrec 6785 if (AddRec->isAffine()) { 6786 const SCEV *MaxBEScev = 6787 getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6788 if (!isa<SCEVCouldNotCompute>(MaxBEScev)) { 6789 APInt MaxBECount = cast<SCEVConstant>(MaxBEScev)->getAPInt(); 6790 6791 // Adjust MaxBECount to the same bitwidth as AddRec. We can truncate if 6792 // MaxBECount's active bits are all <= AddRec's bit width. 6793 if (MaxBECount.getBitWidth() > BitWidth && 6794 MaxBECount.getActiveBits() <= BitWidth) 6795 MaxBECount = MaxBECount.trunc(BitWidth); 6796 else if (MaxBECount.getBitWidth() < BitWidth) 6797 MaxBECount = MaxBECount.zext(BitWidth); 6798 6799 if (MaxBECount.getBitWidth() == BitWidth) { 6800 auto RangeFromAffine = getRangeForAffineAR( 6801 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount); 6802 ConservativeResult = 6803 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6804 6805 auto RangeFromFactoring = getRangeViaFactoring( 6806 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount); 6807 ConservativeResult = 6808 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6809 } 6810 } 6811 6812 // Now try symbolic BE count and more powerful methods. 6813 if (UseExpensiveRangeSharpening) { 6814 const SCEV *SymbolicMaxBECount = 6815 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6816 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6817 getTypeSizeInBits(MaxBEScev->getType()) <= BitWidth && 6818 AddRec->hasNoSelfWrap()) { 6819 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6820 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6821 ConservativeResult = 6822 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6823 } 6824 } 6825 } 6826 6827 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6828 } 6829 case scUMaxExpr: 6830 case scSMaxExpr: 6831 case scUMinExpr: 6832 case scSMinExpr: 6833 case scSequentialUMinExpr: { 6834 Intrinsic::ID ID; 6835 switch (S->getSCEVType()) { 6836 case scUMaxExpr: 6837 ID = Intrinsic::umax; 6838 break; 6839 case scSMaxExpr: 6840 ID = Intrinsic::smax; 6841 break; 6842 case scUMinExpr: 6843 case scSequentialUMinExpr: 6844 ID = Intrinsic::umin; 6845 break; 6846 case scSMinExpr: 6847 ID = Intrinsic::smin; 6848 break; 6849 default: 6850 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."); 6851 } 6852 6853 const auto *NAry = cast<SCEVNAryExpr>(S); 6854 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint, Depth + 1); 6855 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) 6856 X = X.intrinsic( 6857 ID, {X, getRangeRef(NAry->getOperand(i), SignHint, Depth + 1)}); 6858 return setRange(S, SignHint, 6859 ConservativeResult.intersectWith(X, RangeType)); 6860 } 6861 case scUnknown: { 6862 const SCEVUnknown *U = cast<SCEVUnknown>(S); 6863 Value *V = U->getValue(); 6864 6865 // Check if the IR explicitly contains !range metadata. 6866 std::optional<ConstantRange> MDRange = GetRangeFromMetadata(V); 6867 if (MDRange) 6868 ConservativeResult = 6869 ConservativeResult.intersectWith(*MDRange, RangeType); 6870 6871 // Use facts about recurrences in the underlying IR. Note that add 6872 // recurrences are AddRecExprs and thus don't hit this path. This 6873 // primarily handles shift recurrences. 6874 auto CR = getRangeForUnknownRecurrence(U); 6875 ConservativeResult = ConservativeResult.intersectWith(CR); 6876 6877 // See if ValueTracking can give us a useful range. 6878 const DataLayout &DL = getDataLayout(); 6879 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, &DT); 6880 if (Known.getBitWidth() != BitWidth) 6881 Known = Known.zextOrTrunc(BitWidth); 6882 6883 // ValueTracking may be able to compute a tighter result for the number of 6884 // sign bits than for the value of those sign bits. 6885 unsigned NS = ComputeNumSignBits(V, DL, 0, &AC, nullptr, &DT); 6886 if (U->getType()->isPointerTy()) { 6887 // If the pointer size is larger than the index size type, this can cause 6888 // NS to be larger than BitWidth. So compensate for this. 6889 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6890 int ptrIdxDiff = ptrSize - BitWidth; 6891 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6892 NS -= ptrIdxDiff; 6893 } 6894 6895 if (NS > 1) { 6896 // If we know any of the sign bits, we know all of the sign bits. 6897 if (!Known.Zero.getHiBits(NS).isZero()) 6898 Known.Zero.setHighBits(NS); 6899 if (!Known.One.getHiBits(NS).isZero()) 6900 Known.One.setHighBits(NS); 6901 } 6902 6903 if (Known.getMinValue() != Known.getMaxValue() + 1) 6904 ConservativeResult = ConservativeResult.intersectWith( 6905 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6906 RangeType); 6907 if (NS > 1) 6908 ConservativeResult = ConservativeResult.intersectWith( 6909 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6910 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6911 RangeType); 6912 6913 if (U->getType()->isPointerTy() && SignHint == HINT_RANGE_UNSIGNED) { 6914 // Strengthen the range if the underlying IR value is a 6915 // global/alloca/heap allocation using the size of the object. 6916 bool CanBeNull, CanBeFreed; 6917 uint64_t DerefBytes = 6918 V->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); 6919 if (DerefBytes > 1 && isUIntN(BitWidth, DerefBytes)) { 6920 // The highest address the object can start is DerefBytes bytes before 6921 // the end (unsigned max value). If this value is not a multiple of the 6922 // alignment, the last possible start value is the next lowest multiple 6923 // of the alignment. Note: The computations below cannot overflow, 6924 // because if they would there's no possible start address for the 6925 // object. 6926 APInt MaxVal = 6927 APInt::getMaxValue(BitWidth) - APInt(BitWidth, DerefBytes); 6928 uint64_t Align = U->getValue()->getPointerAlignment(DL).value(); 6929 uint64_t Rem = MaxVal.urem(Align); 6930 MaxVal -= APInt(BitWidth, Rem); 6931 APInt MinVal = APInt::getZero(BitWidth); 6932 if (llvm::isKnownNonZero(V, DL)) 6933 MinVal = Align; 6934 ConservativeResult = ConservativeResult.intersectWith( 6935 ConstantRange::getNonEmpty(MinVal, MaxVal + 1), RangeType); 6936 } 6937 } 6938 6939 // A range of Phi is a subset of union of all ranges of its input. 6940 if (PHINode *Phi = dyn_cast<PHINode>(V)) { 6941 // Make sure that we do not run over cycled Phis. 6942 if (PendingPhiRanges.insert(Phi).second) { 6943 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6944 6945 for (const auto &Op : Phi->operands()) { 6946 auto OpRange = getRangeRef(getSCEV(Op), SignHint, Depth + 1); 6947 RangeFromOps = RangeFromOps.unionWith(OpRange); 6948 // No point to continue if we already have a full set. 6949 if (RangeFromOps.isFullSet()) 6950 break; 6951 } 6952 ConservativeResult = 6953 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6954 bool Erased = PendingPhiRanges.erase(Phi); 6955 assert(Erased && "Failed to erase Phi properly?"); 6956 (void)Erased; 6957 } 6958 } 6959 6960 // vscale can't be equal to zero 6961 if (const auto *II = dyn_cast<IntrinsicInst>(V)) 6962 if (II->getIntrinsicID() == Intrinsic::vscale) { 6963 ConstantRange Disallowed = APInt::getZero(BitWidth); 6964 ConservativeResult = ConservativeResult.difference(Disallowed); 6965 } 6966 6967 return setRange(U, SignHint, std::move(ConservativeResult)); 6968 } 6969 case scCouldNotCompute: 6970 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6971 } 6972 6973 return setRange(S, SignHint, std::move(ConservativeResult)); 6974 } 6975 6976 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6977 // values that the expression can take. Initially, the expression has a value 6978 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6979 // argument defines if we treat Step as signed or unsigned. 6980 static ConstantRange getRangeForAffineARHelper(APInt Step, 6981 const ConstantRange &StartRange, 6982 const APInt &MaxBECount, 6983 bool Signed) { 6984 unsigned BitWidth = Step.getBitWidth(); 6985 assert(BitWidth == StartRange.getBitWidth() && 6986 BitWidth == MaxBECount.getBitWidth() && "mismatched bit widths"); 6987 // If either Step or MaxBECount is 0, then the expression won't change, and we 6988 // just need to return the initial range. 6989 if (Step == 0 || MaxBECount == 0) 6990 return StartRange; 6991 6992 // If we don't know anything about the initial value (i.e. StartRange is 6993 // FullRange), then we don't know anything about the final range either. 6994 // Return FullRange. 6995 if (StartRange.isFullSet()) 6996 return ConstantRange::getFull(BitWidth); 6997 6998 // If Step is signed and negative, then we use its absolute value, but we also 6999 // note that we're moving in the opposite direction. 7000 bool Descending = Signed && Step.isNegative(); 7001 7002 if (Signed) 7003 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 7004 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 7005 // This equations hold true due to the well-defined wrap-around behavior of 7006 // APInt. 7007 Step = Step.abs(); 7008 7009 // Check if Offset is more than full span of BitWidth. If it is, the 7010 // expression is guaranteed to overflow. 7011 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 7012 return ConstantRange::getFull(BitWidth); 7013 7014 // Offset is by how much the expression can change. Checks above guarantee no 7015 // overflow here. 7016 APInt Offset = Step * MaxBECount; 7017 7018 // Minimum value of the final range will match the minimal value of StartRange 7019 // if the expression is increasing and will be decreased by Offset otherwise. 7020 // Maximum value of the final range will match the maximal value of StartRange 7021 // if the expression is decreasing and will be increased by Offset otherwise. 7022 APInt StartLower = StartRange.getLower(); 7023 APInt StartUpper = StartRange.getUpper() - 1; 7024 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 7025 : (StartUpper + std::move(Offset)); 7026 7027 // It's possible that the new minimum/maximum value will fall into the initial 7028 // range (due to wrap around). This means that the expression can take any 7029 // value in this bitwidth, and we have to return full range. 7030 if (StartRange.contains(MovedBoundary)) 7031 return ConstantRange::getFull(BitWidth); 7032 7033 APInt NewLower = 7034 Descending ? std::move(MovedBoundary) : std::move(StartLower); 7035 APInt NewUpper = 7036 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 7037 NewUpper += 1; 7038 7039 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 7040 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 7041 } 7042 7043 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 7044 const SCEV *Step, 7045 const APInt &MaxBECount) { 7046 assert(getTypeSizeInBits(Start->getType()) == 7047 getTypeSizeInBits(Step->getType()) && 7048 getTypeSizeInBits(Start->getType()) == MaxBECount.getBitWidth() && 7049 "mismatched bit widths"); 7050 7051 // First, consider step signed. 7052 ConstantRange StartSRange = getSignedRange(Start); 7053 ConstantRange StepSRange = getSignedRange(Step); 7054 7055 // If Step can be both positive and negative, we need to find ranges for the 7056 // maximum absolute step values in both directions and union them. 7057 ConstantRange SR = getRangeForAffineARHelper( 7058 StepSRange.getSignedMin(), StartSRange, MaxBECount, /* Signed = */ true); 7059 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 7060 StartSRange, MaxBECount, 7061 /* Signed = */ true)); 7062 7063 // Next, consider step unsigned. 7064 ConstantRange UR = getRangeForAffineARHelper( 7065 getUnsignedRangeMax(Step), getUnsignedRange(Start), MaxBECount, 7066 /* Signed = */ false); 7067 7068 // Finally, intersect signed and unsigned ranges. 7069 return SR.intersectWith(UR, ConstantRange::Smallest); 7070 } 7071 7072 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 7073 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 7074 ScalarEvolution::RangeSignHint SignHint) { 7075 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 7076 assert(AddRec->hasNoSelfWrap() && 7077 "This only works for non-self-wrapping AddRecs!"); 7078 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 7079 const SCEV *Step = AddRec->getStepRecurrence(*this); 7080 // Only deal with constant step to save compile time. 7081 if (!isa<SCEVConstant>(Step)) 7082 return ConstantRange::getFull(BitWidth); 7083 // Let's make sure that we can prove that we do not self-wrap during 7084 // MaxBECount iterations. We need this because MaxBECount is a maximum 7085 // iteration count estimate, and we might infer nw from some exit for which we 7086 // do not know max exit count (or any other side reasoning). 7087 // TODO: Turn into assert at some point. 7088 if (getTypeSizeInBits(MaxBECount->getType()) > 7089 getTypeSizeInBits(AddRec->getType())) 7090 return ConstantRange::getFull(BitWidth); 7091 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 7092 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 7093 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 7094 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 7095 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 7096 MaxItersWithoutWrap)) 7097 return ConstantRange::getFull(BitWidth); 7098 7099 ICmpInst::Predicate LEPred = 7100 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 7101 ICmpInst::Predicate GEPred = 7102 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 7103 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 7104 7105 // We know that there is no self-wrap. Let's take Start and End values and 7106 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 7107 // the iteration. They either lie inside the range [Min(Start, End), 7108 // Max(Start, End)] or outside it: 7109 // 7110 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 7111 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 7112 // 7113 // No self wrap flag guarantees that the intermediate values cannot be BOTH 7114 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 7115 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 7116 // Start <= End and step is positive, or Start >= End and step is negative. 7117 const SCEV *Start = applyLoopGuards(AddRec->getStart(), AddRec->getLoop()); 7118 ConstantRange StartRange = getRangeRef(Start, SignHint); 7119 ConstantRange EndRange = getRangeRef(End, SignHint); 7120 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 7121 // If they already cover full iteration space, we will know nothing useful 7122 // even if we prove what we want to prove. 7123 if (RangeBetween.isFullSet()) 7124 return RangeBetween; 7125 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 7126 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 7127 : RangeBetween.isWrappedSet(); 7128 if (IsWrappedSet) 7129 return ConstantRange::getFull(BitWidth); 7130 7131 if (isKnownPositive(Step) && 7132 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 7133 return RangeBetween; 7134 if (isKnownNegative(Step) && 7135 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 7136 return RangeBetween; 7137 return ConstantRange::getFull(BitWidth); 7138 } 7139 7140 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 7141 const SCEV *Step, 7142 const APInt &MaxBECount) { 7143 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 7144 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 7145 7146 unsigned BitWidth = MaxBECount.getBitWidth(); 7147 assert(getTypeSizeInBits(Start->getType()) == BitWidth && 7148 getTypeSizeInBits(Step->getType()) == BitWidth && 7149 "mismatched bit widths"); 7150 7151 struct SelectPattern { 7152 Value *Condition = nullptr; 7153 APInt TrueValue; 7154 APInt FalseValue; 7155 7156 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 7157 const SCEV *S) { 7158 std::optional<unsigned> CastOp; 7159 APInt Offset(BitWidth, 0); 7160 7161 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 7162 "Should be!"); 7163 7164 // Peel off a constant offset: 7165 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 7166 // In the future we could consider being smarter here and handle 7167 // {Start+Step,+,Step} too. 7168 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 7169 return; 7170 7171 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 7172 S = SA->getOperand(1); 7173 } 7174 7175 // Peel off a cast operation 7176 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 7177 CastOp = SCast->getSCEVType(); 7178 S = SCast->getOperand(); 7179 } 7180 7181 using namespace llvm::PatternMatch; 7182 7183 auto *SU = dyn_cast<SCEVUnknown>(S); 7184 const APInt *TrueVal, *FalseVal; 7185 if (!SU || 7186 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 7187 m_APInt(FalseVal)))) { 7188 Condition = nullptr; 7189 return; 7190 } 7191 7192 TrueValue = *TrueVal; 7193 FalseValue = *FalseVal; 7194 7195 // Re-apply the cast we peeled off earlier 7196 if (CastOp) 7197 switch (*CastOp) { 7198 default: 7199 llvm_unreachable("Unknown SCEV cast type!"); 7200 7201 case scTruncate: 7202 TrueValue = TrueValue.trunc(BitWidth); 7203 FalseValue = FalseValue.trunc(BitWidth); 7204 break; 7205 case scZeroExtend: 7206 TrueValue = TrueValue.zext(BitWidth); 7207 FalseValue = FalseValue.zext(BitWidth); 7208 break; 7209 case scSignExtend: 7210 TrueValue = TrueValue.sext(BitWidth); 7211 FalseValue = FalseValue.sext(BitWidth); 7212 break; 7213 } 7214 7215 // Re-apply the constant offset we peeled off earlier 7216 TrueValue += Offset; 7217 FalseValue += Offset; 7218 } 7219 7220 bool isRecognized() { return Condition != nullptr; } 7221 }; 7222 7223 SelectPattern StartPattern(*this, BitWidth, Start); 7224 if (!StartPattern.isRecognized()) 7225 return ConstantRange::getFull(BitWidth); 7226 7227 SelectPattern StepPattern(*this, BitWidth, Step); 7228 if (!StepPattern.isRecognized()) 7229 return ConstantRange::getFull(BitWidth); 7230 7231 if (StartPattern.Condition != StepPattern.Condition) { 7232 // We don't handle this case today; but we could, by considering four 7233 // possibilities below instead of two. I'm not sure if there are cases where 7234 // that will help over what getRange already does, though. 7235 return ConstantRange::getFull(BitWidth); 7236 } 7237 7238 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 7239 // construct arbitrary general SCEV expressions here. This function is called 7240 // from deep in the call stack, and calling getSCEV (on a sext instruction, 7241 // say) can end up caching a suboptimal value. 7242 7243 // FIXME: without the explicit `this` receiver below, MSVC errors out with 7244 // C2352 and C2512 (otherwise it isn't needed). 7245 7246 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 7247 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 7248 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 7249 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 7250 7251 ConstantRange TrueRange = 7252 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount); 7253 ConstantRange FalseRange = 7254 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount); 7255 7256 return TrueRange.unionWith(FalseRange); 7257 } 7258 7259 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 7260 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 7261 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 7262 7263 // Return early if there are no flags to propagate to the SCEV. 7264 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7265 if (BinOp->hasNoUnsignedWrap()) 7266 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 7267 if (BinOp->hasNoSignedWrap()) 7268 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 7269 if (Flags == SCEV::FlagAnyWrap) 7270 return SCEV::FlagAnyWrap; 7271 7272 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 7273 } 7274 7275 const Instruction * 7276 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 7277 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 7278 return &*AddRec->getLoop()->getHeader()->begin(); 7279 if (auto *U = dyn_cast<SCEVUnknown>(S)) 7280 if (auto *I = dyn_cast<Instruction>(U->getValue())) 7281 return I; 7282 return nullptr; 7283 } 7284 7285 const Instruction * 7286 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 7287 bool &Precise) { 7288 Precise = true; 7289 // Do a bounded search of the def relation of the requested SCEVs. 7290 SmallSet<const SCEV *, 16> Visited; 7291 SmallVector<const SCEV *> Worklist; 7292 auto pushOp = [&](const SCEV *S) { 7293 if (!Visited.insert(S).second) 7294 return; 7295 // Threshold of 30 here is arbitrary. 7296 if (Visited.size() > 30) { 7297 Precise = false; 7298 return; 7299 } 7300 Worklist.push_back(S); 7301 }; 7302 7303 for (const auto *S : Ops) 7304 pushOp(S); 7305 7306 const Instruction *Bound = nullptr; 7307 while (!Worklist.empty()) { 7308 auto *S = Worklist.pop_back_val(); 7309 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 7310 if (!Bound || DT.dominates(Bound, DefI)) 7311 Bound = DefI; 7312 } else { 7313 for (const auto *Op : S->operands()) 7314 pushOp(Op); 7315 } 7316 } 7317 return Bound ? Bound : &*F.getEntryBlock().begin(); 7318 } 7319 7320 const Instruction * 7321 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 7322 bool Discard; 7323 return getDefiningScopeBound(Ops, Discard); 7324 } 7325 7326 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 7327 const Instruction *B) { 7328 if (A->getParent() == B->getParent() && 7329 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7330 B->getIterator())) 7331 return true; 7332 7333 auto *BLoop = LI.getLoopFor(B->getParent()); 7334 if (BLoop && BLoop->getHeader() == B->getParent() && 7335 BLoop->getLoopPreheader() == A->getParent() && 7336 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7337 A->getParent()->end()) && 7338 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 7339 B->getIterator())) 7340 return true; 7341 return false; 7342 } 7343 7344 bool ScalarEvolution::isGuaranteedNotToBePoison(const SCEV *Op) { 7345 SCEVPoisonCollector PC(/* LookThroughMaybePoisonBlocking */ true); 7346 visitAll(Op, PC); 7347 return PC.MaybePoison.empty(); 7348 } 7349 7350 bool ScalarEvolution::isGuaranteedNotToCauseUB(const SCEV *Op) { 7351 return !SCEVExprContains(Op, [this](const SCEV *S) { 7352 auto *UDiv = dyn_cast<SCEVUDivExpr>(S); 7353 // The UDiv may be UB if the divisor is poison or zero. Unless the divisor 7354 // is a non-zero constant, we have to assume the UDiv may be UB. 7355 return UDiv && (!isKnownNonZero(UDiv->getOperand(1)) || 7356 !isGuaranteedNotToBePoison(UDiv->getOperand(1))); 7357 }); 7358 } 7359 7360 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 7361 // Only proceed if we can prove that I does not yield poison. 7362 if (!programUndefinedIfPoison(I)) 7363 return false; 7364 7365 // At this point we know that if I is executed, then it does not wrap 7366 // according to at least one of NSW or NUW. If I is not executed, then we do 7367 // not know if the calculation that I represents would wrap. Multiple 7368 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 7369 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 7370 // derived from other instructions that map to the same SCEV. We cannot make 7371 // that guarantee for cases where I is not executed. So we need to find a 7372 // upper bound on the defining scope for the SCEV, and prove that I is 7373 // executed every time we enter that scope. When the bounding scope is a 7374 // loop (the common case), this is equivalent to proving I executes on every 7375 // iteration of that loop. 7376 SmallVector<const SCEV *> SCEVOps; 7377 for (const Use &Op : I->operands()) { 7378 // I could be an extractvalue from a call to an overflow intrinsic. 7379 // TODO: We can do better here in some cases. 7380 if (isSCEVable(Op->getType())) 7381 SCEVOps.push_back(getSCEV(Op)); 7382 } 7383 auto *DefI = getDefiningScopeBound(SCEVOps); 7384 return isGuaranteedToTransferExecutionTo(DefI, I); 7385 } 7386 7387 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 7388 // If we know that \c I can never be poison period, then that's enough. 7389 if (isSCEVExprNeverPoison(I)) 7390 return true; 7391 7392 // If the loop only has one exit, then we know that, if the loop is entered, 7393 // any instruction dominating that exit will be executed. If any such 7394 // instruction would result in UB, the addrec cannot be poison. 7395 // 7396 // This is basically the same reasoning as in isSCEVExprNeverPoison(), but 7397 // also handles uses outside the loop header (they just need to dominate the 7398 // single exit). 7399 7400 auto *ExitingBB = L->getExitingBlock(); 7401 if (!ExitingBB || !loopHasNoAbnormalExits(L)) 7402 return false; 7403 7404 SmallPtrSet<const Value *, 16> KnownPoison; 7405 SmallVector<const Instruction *, 8> Worklist; 7406 7407 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 7408 // things that are known to be poison under that assumption go on the 7409 // Worklist. 7410 KnownPoison.insert(I); 7411 Worklist.push_back(I); 7412 7413 while (!Worklist.empty()) { 7414 const Instruction *Poison = Worklist.pop_back_val(); 7415 7416 for (const Use &U : Poison->uses()) { 7417 const Instruction *PoisonUser = cast<Instruction>(U.getUser()); 7418 if (mustTriggerUB(PoisonUser, KnownPoison) && 7419 DT.dominates(PoisonUser->getParent(), ExitingBB)) 7420 return true; 7421 7422 if (propagatesPoison(U) && L->contains(PoisonUser)) 7423 if (KnownPoison.insert(PoisonUser).second) 7424 Worklist.push_back(PoisonUser); 7425 } 7426 } 7427 7428 return false; 7429 } 7430 7431 ScalarEvolution::LoopProperties 7432 ScalarEvolution::getLoopProperties(const Loop *L) { 7433 using LoopProperties = ScalarEvolution::LoopProperties; 7434 7435 auto Itr = LoopPropertiesCache.find(L); 7436 if (Itr == LoopPropertiesCache.end()) { 7437 auto HasSideEffects = [](Instruction *I) { 7438 if (auto *SI = dyn_cast<StoreInst>(I)) 7439 return !SI->isSimple(); 7440 7441 return I->mayThrow() || I->mayWriteToMemory(); 7442 }; 7443 7444 LoopProperties LP = {/* HasNoAbnormalExits */ true, 7445 /*HasNoSideEffects*/ true}; 7446 7447 for (auto *BB : L->getBlocks()) 7448 for (auto &I : *BB) { 7449 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7450 LP.HasNoAbnormalExits = false; 7451 if (HasSideEffects(&I)) 7452 LP.HasNoSideEffects = false; 7453 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 7454 break; // We're already as pessimistic as we can get. 7455 } 7456 7457 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 7458 assert(InsertPair.second && "We just checked!"); 7459 Itr = InsertPair.first; 7460 } 7461 7462 return Itr->second; 7463 } 7464 7465 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 7466 // A mustprogress loop without side effects must be finite. 7467 // TODO: The check used here is very conservative. It's only *specific* 7468 // side effects which are well defined in infinite loops. 7469 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); 7470 } 7471 7472 const SCEV *ScalarEvolution::createSCEVIter(Value *V) { 7473 // Worklist item with a Value and a bool indicating whether all operands have 7474 // been visited already. 7475 using PointerTy = PointerIntPair<Value *, 1, bool>; 7476 SmallVector<PointerTy> Stack; 7477 7478 Stack.emplace_back(V, true); 7479 Stack.emplace_back(V, false); 7480 while (!Stack.empty()) { 7481 auto E = Stack.pop_back_val(); 7482 Value *CurV = E.getPointer(); 7483 7484 if (getExistingSCEV(CurV)) 7485 continue; 7486 7487 SmallVector<Value *> Ops; 7488 const SCEV *CreatedSCEV = nullptr; 7489 // If all operands have been visited already, create the SCEV. 7490 if (E.getInt()) { 7491 CreatedSCEV = createSCEV(CurV); 7492 } else { 7493 // Otherwise get the operands we need to create SCEV's for before creating 7494 // the SCEV for CurV. If the SCEV for CurV can be constructed trivially, 7495 // just use it. 7496 CreatedSCEV = getOperandsToCreate(CurV, Ops); 7497 } 7498 7499 if (CreatedSCEV) { 7500 insertValueToMap(CurV, CreatedSCEV); 7501 } else { 7502 // Queue CurV for SCEV creation, followed by its's operands which need to 7503 // be constructed first. 7504 Stack.emplace_back(CurV, true); 7505 for (Value *Op : Ops) 7506 Stack.emplace_back(Op, false); 7507 } 7508 } 7509 7510 return getExistingSCEV(V); 7511 } 7512 7513 const SCEV * 7514 ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) { 7515 if (!isSCEVable(V->getType())) 7516 return getUnknown(V); 7517 7518 if (Instruction *I = dyn_cast<Instruction>(V)) { 7519 // Don't attempt to analyze instructions in blocks that aren't 7520 // reachable. Such instructions don't matter, and they aren't required 7521 // to obey basic rules for definitions dominating uses which this 7522 // analysis depends on. 7523 if (!DT.isReachableFromEntry(I->getParent())) 7524 return getUnknown(PoisonValue::get(V->getType())); 7525 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7526 return getConstant(CI); 7527 else if (isa<GlobalAlias>(V)) 7528 return getUnknown(V); 7529 else if (!isa<ConstantExpr>(V)) 7530 return getUnknown(V); 7531 7532 Operator *U = cast<Operator>(V); 7533 if (auto BO = 7534 MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) { 7535 bool IsConstArg = isa<ConstantInt>(BO->RHS); 7536 switch (BO->Opcode) { 7537 case Instruction::Add: 7538 case Instruction::Mul: { 7539 // For additions and multiplications, traverse add/mul chains for which we 7540 // can potentially create a single SCEV, to reduce the number of 7541 // get{Add,Mul}Expr calls. 7542 do { 7543 if (BO->Op) { 7544 if (BO->Op != V && getExistingSCEV(BO->Op)) { 7545 Ops.push_back(BO->Op); 7546 break; 7547 } 7548 } 7549 Ops.push_back(BO->RHS); 7550 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, 7551 dyn_cast<Instruction>(V)); 7552 if (!NewBO || 7553 (BO->Opcode == Instruction::Add && 7554 (NewBO->Opcode != Instruction::Add && 7555 NewBO->Opcode != Instruction::Sub)) || 7556 (BO->Opcode == Instruction::Mul && 7557 NewBO->Opcode != Instruction::Mul)) { 7558 Ops.push_back(BO->LHS); 7559 break; 7560 } 7561 // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions 7562 // requires a SCEV for the LHS. 7563 if (BO->Op && (BO->IsNSW || BO->IsNUW)) { 7564 auto *I = dyn_cast<Instruction>(BO->Op); 7565 if (I && programUndefinedIfPoison(I)) { 7566 Ops.push_back(BO->LHS); 7567 break; 7568 } 7569 } 7570 BO = NewBO; 7571 } while (true); 7572 return nullptr; 7573 } 7574 case Instruction::Sub: 7575 case Instruction::UDiv: 7576 case Instruction::URem: 7577 break; 7578 case Instruction::AShr: 7579 case Instruction::Shl: 7580 case Instruction::Xor: 7581 if (!IsConstArg) 7582 return nullptr; 7583 break; 7584 case Instruction::And: 7585 case Instruction::Or: 7586 if (!IsConstArg && !BO->LHS->getType()->isIntegerTy(1)) 7587 return nullptr; 7588 break; 7589 case Instruction::LShr: 7590 return getUnknown(V); 7591 default: 7592 llvm_unreachable("Unhandled binop"); 7593 break; 7594 } 7595 7596 Ops.push_back(BO->LHS); 7597 Ops.push_back(BO->RHS); 7598 return nullptr; 7599 } 7600 7601 switch (U->getOpcode()) { 7602 case Instruction::Trunc: 7603 case Instruction::ZExt: 7604 case Instruction::SExt: 7605 case Instruction::PtrToInt: 7606 Ops.push_back(U->getOperand(0)); 7607 return nullptr; 7608 7609 case Instruction::BitCast: 7610 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) { 7611 Ops.push_back(U->getOperand(0)); 7612 return nullptr; 7613 } 7614 return getUnknown(V); 7615 7616 case Instruction::SDiv: 7617 case Instruction::SRem: 7618 Ops.push_back(U->getOperand(0)); 7619 Ops.push_back(U->getOperand(1)); 7620 return nullptr; 7621 7622 case Instruction::GetElementPtr: 7623 assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() && 7624 "GEP source element type must be sized"); 7625 for (Value *Index : U->operands()) 7626 Ops.push_back(Index); 7627 return nullptr; 7628 7629 case Instruction::IntToPtr: 7630 return getUnknown(V); 7631 7632 case Instruction::PHI: 7633 // Keep constructing SCEVs' for phis recursively for now. 7634 return nullptr; 7635 7636 case Instruction::Select: { 7637 // Check if U is a select that can be simplified to a SCEVUnknown. 7638 auto CanSimplifyToUnknown = [this, U]() { 7639 if (U->getType()->isIntegerTy(1) || isa<ConstantInt>(U->getOperand(0))) 7640 return false; 7641 7642 auto *ICI = dyn_cast<ICmpInst>(U->getOperand(0)); 7643 if (!ICI) 7644 return false; 7645 Value *LHS = ICI->getOperand(0); 7646 Value *RHS = ICI->getOperand(1); 7647 if (ICI->getPredicate() == CmpInst::ICMP_EQ || 7648 ICI->getPredicate() == CmpInst::ICMP_NE) { 7649 if (!(isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero())) 7650 return true; 7651 } else if (getTypeSizeInBits(LHS->getType()) > 7652 getTypeSizeInBits(U->getType())) 7653 return true; 7654 return false; 7655 }; 7656 if (CanSimplifyToUnknown()) 7657 return getUnknown(U); 7658 7659 for (Value *Inc : U->operands()) 7660 Ops.push_back(Inc); 7661 return nullptr; 7662 break; 7663 } 7664 case Instruction::Call: 7665 case Instruction::Invoke: 7666 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) { 7667 Ops.push_back(RV); 7668 return nullptr; 7669 } 7670 7671 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7672 switch (II->getIntrinsicID()) { 7673 case Intrinsic::abs: 7674 Ops.push_back(II->getArgOperand(0)); 7675 return nullptr; 7676 case Intrinsic::umax: 7677 case Intrinsic::umin: 7678 case Intrinsic::smax: 7679 case Intrinsic::smin: 7680 case Intrinsic::usub_sat: 7681 case Intrinsic::uadd_sat: 7682 Ops.push_back(II->getArgOperand(0)); 7683 Ops.push_back(II->getArgOperand(1)); 7684 return nullptr; 7685 case Intrinsic::start_loop_iterations: 7686 case Intrinsic::annotation: 7687 case Intrinsic::ptr_annotation: 7688 Ops.push_back(II->getArgOperand(0)); 7689 return nullptr; 7690 default: 7691 break; 7692 } 7693 } 7694 break; 7695 } 7696 7697 return nullptr; 7698 } 7699 7700 const SCEV *ScalarEvolution::createSCEV(Value *V) { 7701 if (!isSCEVable(V->getType())) 7702 return getUnknown(V); 7703 7704 if (Instruction *I = dyn_cast<Instruction>(V)) { 7705 // Don't attempt to analyze instructions in blocks that aren't 7706 // reachable. Such instructions don't matter, and they aren't required 7707 // to obey basic rules for definitions dominating uses which this 7708 // analysis depends on. 7709 if (!DT.isReachableFromEntry(I->getParent())) 7710 return getUnknown(PoisonValue::get(V->getType())); 7711 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7712 return getConstant(CI); 7713 else if (isa<GlobalAlias>(V)) 7714 return getUnknown(V); 7715 else if (!isa<ConstantExpr>(V)) 7716 return getUnknown(V); 7717 7718 const SCEV *LHS; 7719 const SCEV *RHS; 7720 7721 Operator *U = cast<Operator>(V); 7722 if (auto BO = 7723 MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) { 7724 switch (BO->Opcode) { 7725 case Instruction::Add: { 7726 // The simple thing to do would be to just call getSCEV on both operands 7727 // and call getAddExpr with the result. However if we're looking at a 7728 // bunch of things all added together, this can be quite inefficient, 7729 // because it leads to N-1 getAddExpr calls for N ultimate operands. 7730 // Instead, gather up all the operands and make a single getAddExpr call. 7731 // LLVM IR canonical form means we need only traverse the left operands. 7732 SmallVector<const SCEV *, 4> AddOps; 7733 do { 7734 if (BO->Op) { 7735 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7736 AddOps.push_back(OpSCEV); 7737 break; 7738 } 7739 7740 // If a NUW or NSW flag can be applied to the SCEV for this 7741 // addition, then compute the SCEV for this addition by itself 7742 // with a separate call to getAddExpr. We need to do that 7743 // instead of pushing the operands of the addition onto AddOps, 7744 // since the flags are only known to apply to this particular 7745 // addition - they may not apply to other additions that can be 7746 // formed with operands from AddOps. 7747 const SCEV *RHS = getSCEV(BO->RHS); 7748 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7749 if (Flags != SCEV::FlagAnyWrap) { 7750 const SCEV *LHS = getSCEV(BO->LHS); 7751 if (BO->Opcode == Instruction::Sub) 7752 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 7753 else 7754 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 7755 break; 7756 } 7757 } 7758 7759 if (BO->Opcode == Instruction::Sub) 7760 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 7761 else 7762 AddOps.push_back(getSCEV(BO->RHS)); 7763 7764 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, 7765 dyn_cast<Instruction>(V)); 7766 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7767 NewBO->Opcode != Instruction::Sub)) { 7768 AddOps.push_back(getSCEV(BO->LHS)); 7769 break; 7770 } 7771 BO = NewBO; 7772 } while (true); 7773 7774 return getAddExpr(AddOps); 7775 } 7776 7777 case Instruction::Mul: { 7778 SmallVector<const SCEV *, 4> MulOps; 7779 do { 7780 if (BO->Op) { 7781 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7782 MulOps.push_back(OpSCEV); 7783 break; 7784 } 7785 7786 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7787 if (Flags != SCEV::FlagAnyWrap) { 7788 LHS = getSCEV(BO->LHS); 7789 RHS = getSCEV(BO->RHS); 7790 MulOps.push_back(getMulExpr(LHS, RHS, Flags)); 7791 break; 7792 } 7793 } 7794 7795 MulOps.push_back(getSCEV(BO->RHS)); 7796 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, 7797 dyn_cast<Instruction>(V)); 7798 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7799 MulOps.push_back(getSCEV(BO->LHS)); 7800 break; 7801 } 7802 BO = NewBO; 7803 } while (true); 7804 7805 return getMulExpr(MulOps); 7806 } 7807 case Instruction::UDiv: 7808 LHS = getSCEV(BO->LHS); 7809 RHS = getSCEV(BO->RHS); 7810 return getUDivExpr(LHS, RHS); 7811 case Instruction::URem: 7812 LHS = getSCEV(BO->LHS); 7813 RHS = getSCEV(BO->RHS); 7814 return getURemExpr(LHS, RHS); 7815 case Instruction::Sub: { 7816 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7817 if (BO->Op) 7818 Flags = getNoWrapFlagsFromUB(BO->Op); 7819 LHS = getSCEV(BO->LHS); 7820 RHS = getSCEV(BO->RHS); 7821 return getMinusSCEV(LHS, RHS, Flags); 7822 } 7823 case Instruction::And: 7824 // For an expression like x&255 that merely masks off the high bits, 7825 // use zext(trunc(x)) as the SCEV expression. 7826 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7827 if (CI->isZero()) 7828 return getSCEV(BO->RHS); 7829 if (CI->isMinusOne()) 7830 return getSCEV(BO->LHS); 7831 const APInt &A = CI->getValue(); 7832 7833 // Instcombine's ShrinkDemandedConstant may strip bits out of 7834 // constants, obscuring what would otherwise be a low-bits mask. 7835 // Use computeKnownBits to compute what ShrinkDemandedConstant 7836 // knew about to reconstruct a low-bits mask value. 7837 unsigned LZ = A.countl_zero(); 7838 unsigned TZ = A.countr_zero(); 7839 unsigned BitWidth = A.getBitWidth(); 7840 KnownBits Known(BitWidth); 7841 computeKnownBits(BO->LHS, Known, getDataLayout(), 7842 0, &AC, nullptr, &DT); 7843 7844 APInt EffectiveMask = 7845 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 7846 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 7847 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 7848 const SCEV *LHS = getSCEV(BO->LHS); 7849 const SCEV *ShiftedLHS = nullptr; 7850 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 7851 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 7852 // For an expression like (x * 8) & 8, simplify the multiply. 7853 unsigned MulZeros = OpC->getAPInt().countr_zero(); 7854 unsigned GCD = std::min(MulZeros, TZ); 7855 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 7856 SmallVector<const SCEV*, 4> MulOps; 7857 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 7858 append_range(MulOps, LHSMul->operands().drop_front()); 7859 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 7860 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 7861 } 7862 } 7863 if (!ShiftedLHS) 7864 ShiftedLHS = getUDivExpr(LHS, MulCount); 7865 return getMulExpr( 7866 getZeroExtendExpr( 7867 getTruncateExpr(ShiftedLHS, 7868 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 7869 BO->LHS->getType()), 7870 MulCount); 7871 } 7872 } 7873 // Binary `and` is a bit-wise `umin`. 7874 if (BO->LHS->getType()->isIntegerTy(1)) { 7875 LHS = getSCEV(BO->LHS); 7876 RHS = getSCEV(BO->RHS); 7877 return getUMinExpr(LHS, RHS); 7878 } 7879 break; 7880 7881 case Instruction::Or: 7882 // Binary `or` is a bit-wise `umax`. 7883 if (BO->LHS->getType()->isIntegerTy(1)) { 7884 LHS = getSCEV(BO->LHS); 7885 RHS = getSCEV(BO->RHS); 7886 return getUMaxExpr(LHS, RHS); 7887 } 7888 break; 7889 7890 case Instruction::Xor: 7891 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7892 // If the RHS of xor is -1, then this is a not operation. 7893 if (CI->isMinusOne()) 7894 return getNotSCEV(getSCEV(BO->LHS)); 7895 7896 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7897 // This is a variant of the check for xor with -1, and it handles 7898 // the case where instcombine has trimmed non-demanded bits out 7899 // of an xor with -1. 7900 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7901 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7902 if (LBO->getOpcode() == Instruction::And && 7903 LCI->getValue() == CI->getValue()) 7904 if (const SCEVZeroExtendExpr *Z = 7905 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7906 Type *UTy = BO->LHS->getType(); 7907 const SCEV *Z0 = Z->getOperand(); 7908 Type *Z0Ty = Z0->getType(); 7909 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7910 7911 // If C is a low-bits mask, the zero extend is serving to 7912 // mask off the high bits. Complement the operand and 7913 // re-apply the zext. 7914 if (CI->getValue().isMask(Z0TySize)) 7915 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7916 7917 // If C is a single bit, it may be in the sign-bit position 7918 // before the zero-extend. In this case, represent the xor 7919 // using an add, which is equivalent, and re-apply the zext. 7920 APInt Trunc = CI->getValue().trunc(Z0TySize); 7921 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7922 Trunc.isSignMask()) 7923 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7924 UTy); 7925 } 7926 } 7927 break; 7928 7929 case Instruction::Shl: 7930 // Turn shift left of a constant amount into a multiply. 7931 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7932 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7933 7934 // If the shift count is not less than the bitwidth, the result of 7935 // the shift is undefined. Don't try to analyze it, because the 7936 // resolution chosen here may differ from the resolution chosen in 7937 // other parts of the compiler. 7938 if (SA->getValue().uge(BitWidth)) 7939 break; 7940 7941 // We can safely preserve the nuw flag in all cases. It's also safe to 7942 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7943 // requires special handling. It can be preserved as long as we're not 7944 // left shifting by bitwidth - 1. 7945 auto Flags = SCEV::FlagAnyWrap; 7946 if (BO->Op) { 7947 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7948 if ((MulFlags & SCEV::FlagNSW) && 7949 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7950 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7951 if (MulFlags & SCEV::FlagNUW) 7952 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7953 } 7954 7955 ConstantInt *X = ConstantInt::get( 7956 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7957 return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags); 7958 } 7959 break; 7960 7961 case Instruction::AShr: 7962 // AShr X, C, where C is a constant. 7963 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7964 if (!CI) 7965 break; 7966 7967 Type *OuterTy = BO->LHS->getType(); 7968 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7969 // If the shift count is not less than the bitwidth, the result of 7970 // the shift is undefined. Don't try to analyze it, because the 7971 // resolution chosen here may differ from the resolution chosen in 7972 // other parts of the compiler. 7973 if (CI->getValue().uge(BitWidth)) 7974 break; 7975 7976 if (CI->isZero()) 7977 return getSCEV(BO->LHS); // shift by zero --> noop 7978 7979 uint64_t AShrAmt = CI->getZExtValue(); 7980 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7981 7982 Operator *L = dyn_cast<Operator>(BO->LHS); 7983 const SCEV *AddTruncateExpr = nullptr; 7984 ConstantInt *ShlAmtCI = nullptr; 7985 const SCEV *AddConstant = nullptr; 7986 7987 if (L && L->getOpcode() == Instruction::Add) { 7988 // X = Shl A, n 7989 // Y = Add X, c 7990 // Z = AShr Y, m 7991 // n, c and m are constants. 7992 7993 Operator *LShift = dyn_cast<Operator>(L->getOperand(0)); 7994 ConstantInt *AddOperandCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7995 if (LShift && LShift->getOpcode() == Instruction::Shl) { 7996 if (AddOperandCI) { 7997 const SCEV *ShlOp0SCEV = getSCEV(LShift->getOperand(0)); 7998 ShlAmtCI = dyn_cast<ConstantInt>(LShift->getOperand(1)); 7999 // since we truncate to TruncTy, the AddConstant should be of the 8000 // same type, so create a new Constant with type same as TruncTy. 8001 // Also, the Add constant should be shifted right by AShr amount. 8002 APInt AddOperand = AddOperandCI->getValue().ashr(AShrAmt); 8003 AddConstant = getConstant(AddOperand.trunc(BitWidth - AShrAmt)); 8004 // we model the expression as sext(add(trunc(A), c << n)), since the 8005 // sext(trunc) part is already handled below, we create a 8006 // AddExpr(TruncExp) which will be used later. 8007 AddTruncateExpr = getTruncateExpr(ShlOp0SCEV, TruncTy); 8008 } 8009 } 8010 } else if (L && L->getOpcode() == Instruction::Shl) { 8011 // X = Shl A, n 8012 // Y = AShr X, m 8013 // Both n and m are constant. 8014 8015 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 8016 ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 8017 AddTruncateExpr = getTruncateExpr(ShlOp0SCEV, TruncTy); 8018 } 8019 8020 if (AddTruncateExpr && ShlAmtCI) { 8021 // We can merge the two given cases into a single SCEV statement, 8022 // incase n = m, the mul expression will be 2^0, so it gets resolved to 8023 // a simpler case. The following code handles the two cases: 8024 // 8025 // 1) For a two-shift sext-inreg, i.e. n = m, 8026 // use sext(trunc(x)) as the SCEV expression. 8027 // 8028 // 2) When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 8029 // expression. We already checked that ShlAmt < BitWidth, so 8030 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 8031 // ShlAmt - AShrAmt < Amt. 8032 const APInt &ShlAmt = ShlAmtCI->getValue(); 8033 if (ShlAmt.ult(BitWidth) && ShlAmt.uge(AShrAmt)) { 8034 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 8035 ShlAmtCI->getZExtValue() - AShrAmt); 8036 const SCEV *CompositeExpr = 8037 getMulExpr(AddTruncateExpr, getConstant(Mul)); 8038 if (L->getOpcode() != Instruction::Shl) 8039 CompositeExpr = getAddExpr(CompositeExpr, AddConstant); 8040 8041 return getSignExtendExpr(CompositeExpr, OuterTy); 8042 } 8043 } 8044 break; 8045 } 8046 } 8047 8048 switch (U->getOpcode()) { 8049 case Instruction::Trunc: 8050 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 8051 8052 case Instruction::ZExt: 8053 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 8054 8055 case Instruction::SExt: 8056 if (auto BO = MatchBinaryOp(U->getOperand(0), getDataLayout(), AC, DT, 8057 dyn_cast<Instruction>(V))) { 8058 // The NSW flag of a subtract does not always survive the conversion to 8059 // A + (-1)*B. By pushing sign extension onto its operands we are much 8060 // more likely to preserve NSW and allow later AddRec optimisations. 8061 // 8062 // NOTE: This is effectively duplicating this logic from getSignExtend: 8063 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 8064 // but by that point the NSW information has potentially been lost. 8065 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 8066 Type *Ty = U->getType(); 8067 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 8068 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 8069 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 8070 } 8071 } 8072 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 8073 8074 case Instruction::BitCast: 8075 // BitCasts are no-op casts so we just eliminate the cast. 8076 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 8077 return getSCEV(U->getOperand(0)); 8078 break; 8079 8080 case Instruction::PtrToInt: { 8081 // Pointer to integer cast is straight-forward, so do model it. 8082 const SCEV *Op = getSCEV(U->getOperand(0)); 8083 Type *DstIntTy = U->getType(); 8084 // But only if effective SCEV (integer) type is wide enough to represent 8085 // all possible pointer values. 8086 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 8087 if (isa<SCEVCouldNotCompute>(IntOp)) 8088 return getUnknown(V); 8089 return IntOp; 8090 } 8091 case Instruction::IntToPtr: 8092 // Just don't deal with inttoptr casts. 8093 return getUnknown(V); 8094 8095 case Instruction::SDiv: 8096 // If both operands are non-negative, this is just an udiv. 8097 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 8098 isKnownNonNegative(getSCEV(U->getOperand(1)))) 8099 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 8100 break; 8101 8102 case Instruction::SRem: 8103 // If both operands are non-negative, this is just an urem. 8104 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 8105 isKnownNonNegative(getSCEV(U->getOperand(1)))) 8106 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 8107 break; 8108 8109 case Instruction::GetElementPtr: 8110 return createNodeForGEP(cast<GEPOperator>(U)); 8111 8112 case Instruction::PHI: 8113 return createNodeForPHI(cast<PHINode>(U)); 8114 8115 case Instruction::Select: 8116 return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1), 8117 U->getOperand(2)); 8118 8119 case Instruction::Call: 8120 case Instruction::Invoke: 8121 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 8122 return getSCEV(RV); 8123 8124 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 8125 switch (II->getIntrinsicID()) { 8126 case Intrinsic::abs: 8127 return getAbsExpr( 8128 getSCEV(II->getArgOperand(0)), 8129 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 8130 case Intrinsic::umax: 8131 LHS = getSCEV(II->getArgOperand(0)); 8132 RHS = getSCEV(II->getArgOperand(1)); 8133 return getUMaxExpr(LHS, RHS); 8134 case Intrinsic::umin: 8135 LHS = getSCEV(II->getArgOperand(0)); 8136 RHS = getSCEV(II->getArgOperand(1)); 8137 return getUMinExpr(LHS, RHS); 8138 case Intrinsic::smax: 8139 LHS = getSCEV(II->getArgOperand(0)); 8140 RHS = getSCEV(II->getArgOperand(1)); 8141 return getSMaxExpr(LHS, RHS); 8142 case Intrinsic::smin: 8143 LHS = getSCEV(II->getArgOperand(0)); 8144 RHS = getSCEV(II->getArgOperand(1)); 8145 return getSMinExpr(LHS, RHS); 8146 case Intrinsic::usub_sat: { 8147 const SCEV *X = getSCEV(II->getArgOperand(0)); 8148 const SCEV *Y = getSCEV(II->getArgOperand(1)); 8149 const SCEV *ClampedY = getUMinExpr(X, Y); 8150 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 8151 } 8152 case Intrinsic::uadd_sat: { 8153 const SCEV *X = getSCEV(II->getArgOperand(0)); 8154 const SCEV *Y = getSCEV(II->getArgOperand(1)); 8155 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 8156 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 8157 } 8158 case Intrinsic::start_loop_iterations: 8159 case Intrinsic::annotation: 8160 case Intrinsic::ptr_annotation: 8161 // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is 8162 // just eqivalent to the first operand for SCEV purposes. 8163 return getSCEV(II->getArgOperand(0)); 8164 case Intrinsic::vscale: 8165 return getVScale(II->getType()); 8166 default: 8167 break; 8168 } 8169 } 8170 break; 8171 } 8172 8173 return getUnknown(V); 8174 } 8175 8176 //===----------------------------------------------------------------------===// 8177 // Iteration Count Computation Code 8178 // 8179 8180 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) { 8181 if (isa<SCEVCouldNotCompute>(ExitCount)) 8182 return getCouldNotCompute(); 8183 8184 auto *ExitCountType = ExitCount->getType(); 8185 assert(ExitCountType->isIntegerTy()); 8186 auto *EvalTy = Type::getIntNTy(ExitCountType->getContext(), 8187 1 + ExitCountType->getScalarSizeInBits()); 8188 return getTripCountFromExitCount(ExitCount, EvalTy, nullptr); 8189 } 8190 8191 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 8192 Type *EvalTy, 8193 const Loop *L) { 8194 if (isa<SCEVCouldNotCompute>(ExitCount)) 8195 return getCouldNotCompute(); 8196 8197 unsigned ExitCountSize = getTypeSizeInBits(ExitCount->getType()); 8198 unsigned EvalSize = EvalTy->getPrimitiveSizeInBits(); 8199 8200 auto CanAddOneWithoutOverflow = [&]() { 8201 ConstantRange ExitCountRange = 8202 getRangeRef(ExitCount, RangeSignHint::HINT_RANGE_UNSIGNED); 8203 if (!ExitCountRange.contains(APInt::getMaxValue(ExitCountSize))) 8204 return true; 8205 8206 return L && isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, ExitCount, 8207 getMinusOne(ExitCount->getType())); 8208 }; 8209 8210 // If we need to zero extend the backedge count, check if we can add one to 8211 // it prior to zero extending without overflow. Provided this is safe, it 8212 // allows better simplification of the +1. 8213 if (EvalSize > ExitCountSize && CanAddOneWithoutOverflow()) 8214 return getZeroExtendExpr( 8215 getAddExpr(ExitCount, getOne(ExitCount->getType())), EvalTy); 8216 8217 // Get the total trip count from the count by adding 1. This may wrap. 8218 return getAddExpr(getTruncateOrZeroExtend(ExitCount, EvalTy), getOne(EvalTy)); 8219 } 8220 8221 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 8222 if (!ExitCount) 8223 return 0; 8224 8225 ConstantInt *ExitConst = ExitCount->getValue(); 8226 8227 // Guard against huge trip counts. 8228 if (ExitConst->getValue().getActiveBits() > 32) 8229 return 0; 8230 8231 // In case of integer overflow, this returns 0, which is correct. 8232 return ((unsigned)ExitConst->getZExtValue()) + 1; 8233 } 8234 8235 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 8236 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 8237 return getConstantTripCount(ExitCount); 8238 } 8239 8240 unsigned 8241 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 8242 const BasicBlock *ExitingBlock) { 8243 assert(ExitingBlock && "Must pass a non-null exiting block!"); 8244 assert(L->isLoopExiting(ExitingBlock) && 8245 "Exiting block must actually branch out of the loop!"); 8246 const SCEVConstant *ExitCount = 8247 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 8248 return getConstantTripCount(ExitCount); 8249 } 8250 8251 unsigned ScalarEvolution::getSmallConstantMaxTripCount( 8252 const Loop *L, SmallVectorImpl<const SCEVPredicate *> *Predicates) { 8253 8254 const auto *MaxExitCount = 8255 Predicates ? getPredicatedConstantMaxBackedgeTakenCount(L, *Predicates) 8256 : getConstantMaxBackedgeTakenCount(L); 8257 return getConstantTripCount(dyn_cast<SCEVConstant>(MaxExitCount)); 8258 } 8259 8260 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 8261 SmallVector<BasicBlock *, 8> ExitingBlocks; 8262 L->getExitingBlocks(ExitingBlocks); 8263 8264 std::optional<unsigned> Res; 8265 for (auto *ExitingBB : ExitingBlocks) { 8266 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 8267 if (!Res) 8268 Res = Multiple; 8269 Res = (unsigned)std::gcd(*Res, Multiple); 8270 } 8271 return Res.value_or(1); 8272 } 8273 8274 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 8275 const SCEV *ExitCount) { 8276 if (ExitCount == getCouldNotCompute()) 8277 return 1; 8278 8279 // Get the trip count 8280 const SCEV *TCExpr = getTripCountFromExitCount(applyLoopGuards(ExitCount, L)); 8281 8282 APInt Multiple = getNonZeroConstantMultiple(TCExpr); 8283 // If a trip multiple is huge (>=2^32), the trip count is still divisible by 8284 // the greatest power of 2 divisor less than 2^32. 8285 return Multiple.getActiveBits() > 32 8286 ? 1U << std::min((unsigned)31, Multiple.countTrailingZeros()) 8287 : (unsigned)Multiple.zextOrTrunc(32).getZExtValue(); 8288 } 8289 8290 /// Returns the largest constant divisor of the trip count of this loop as a 8291 /// normal unsigned value, if possible. This means that the actual trip count is 8292 /// always a multiple of the returned value (don't forget the trip count could 8293 /// very well be zero as well!). 8294 /// 8295 /// Returns 1 if the trip count is unknown or not guaranteed to be the 8296 /// multiple of a constant (which is also the case if the trip count is simply 8297 /// constant, use getSmallConstantTripCount for that case), Will also return 1 8298 /// if the trip count is very large (>= 2^32). 8299 /// 8300 /// As explained in the comments for getSmallConstantTripCount, this assumes 8301 /// that control exits the loop via ExitingBlock. 8302 unsigned 8303 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 8304 const BasicBlock *ExitingBlock) { 8305 assert(ExitingBlock && "Must pass a non-null exiting block!"); 8306 assert(L->isLoopExiting(ExitingBlock) && 8307 "Exiting block must actually branch out of the loop!"); 8308 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 8309 return getSmallConstantTripMultiple(L, ExitCount); 8310 } 8311 8312 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 8313 const BasicBlock *ExitingBlock, 8314 ExitCountKind Kind) { 8315 switch (Kind) { 8316 case Exact: 8317 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 8318 case SymbolicMaximum: 8319 return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, this); 8320 case ConstantMaximum: 8321 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 8322 }; 8323 llvm_unreachable("Invalid ExitCountKind!"); 8324 } 8325 8326 const SCEV *ScalarEvolution::getPredicatedExitCount( 8327 const Loop *L, const BasicBlock *ExitingBlock, 8328 SmallVectorImpl<const SCEVPredicate *> *Predicates, ExitCountKind Kind) { 8329 switch (Kind) { 8330 case Exact: 8331 return getPredicatedBackedgeTakenInfo(L).getExact(ExitingBlock, this, 8332 Predicates); 8333 case SymbolicMaximum: 8334 return getPredicatedBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, this, 8335 Predicates); 8336 case ConstantMaximum: 8337 return getPredicatedBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this, 8338 Predicates); 8339 }; 8340 llvm_unreachable("Invalid ExitCountKind!"); 8341 } 8342 8343 const SCEV *ScalarEvolution::getPredicatedBackedgeTakenCount( 8344 const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Preds) { 8345 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 8346 } 8347 8348 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 8349 ExitCountKind Kind) { 8350 switch (Kind) { 8351 case Exact: 8352 return getBackedgeTakenInfo(L).getExact(L, this); 8353 case ConstantMaximum: 8354 return getBackedgeTakenInfo(L).getConstantMax(this); 8355 case SymbolicMaximum: 8356 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 8357 }; 8358 llvm_unreachable("Invalid ExitCountKind!"); 8359 } 8360 8361 const SCEV *ScalarEvolution::getPredicatedSymbolicMaxBackedgeTakenCount( 8362 const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Preds) { 8363 return getPredicatedBackedgeTakenInfo(L).getSymbolicMax(L, this, &Preds); 8364 } 8365 8366 const SCEV *ScalarEvolution::getPredicatedConstantMaxBackedgeTakenCount( 8367 const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Preds) { 8368 return getPredicatedBackedgeTakenInfo(L).getConstantMax(this, &Preds); 8369 } 8370 8371 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 8372 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 8373 } 8374 8375 /// Push PHI nodes in the header of the given loop onto the given Worklist. 8376 static void PushLoopPHIs(const Loop *L, 8377 SmallVectorImpl<Instruction *> &Worklist, 8378 SmallPtrSetImpl<Instruction *> &Visited) { 8379 BasicBlock *Header = L->getHeader(); 8380 8381 // Push all Loop-header PHIs onto the Worklist stack. 8382 for (PHINode &PN : Header->phis()) 8383 if (Visited.insert(&PN).second) 8384 Worklist.push_back(&PN); 8385 } 8386 8387 ScalarEvolution::BackedgeTakenInfo & 8388 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 8389 auto &BTI = getBackedgeTakenInfo(L); 8390 if (BTI.hasFullInfo()) 8391 return BTI; 8392 8393 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 8394 8395 if (!Pair.second) 8396 return Pair.first->second; 8397 8398 BackedgeTakenInfo Result = 8399 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 8400 8401 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 8402 } 8403 8404 ScalarEvolution::BackedgeTakenInfo & 8405 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 8406 // Initially insert an invalid entry for this loop. If the insertion 8407 // succeeds, proceed to actually compute a backedge-taken count and 8408 // update the value. The temporary CouldNotCompute value tells SCEV 8409 // code elsewhere that it shouldn't attempt to request a new 8410 // backedge-taken count, which could result in infinite recursion. 8411 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 8412 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 8413 if (!Pair.second) 8414 return Pair.first->second; 8415 8416 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 8417 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 8418 // must be cleared in this scope. 8419 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 8420 8421 // Now that we know more about the trip count for this loop, forget any 8422 // existing SCEV values for PHI nodes in this loop since they are only 8423 // conservative estimates made without the benefit of trip count 8424 // information. This invalidation is not necessary for correctness, and is 8425 // only done to produce more precise results. 8426 if (Result.hasAnyInfo()) { 8427 // Invalidate any expression using an addrec in this loop. 8428 SmallVector<const SCEV *, 8> ToForget; 8429 auto LoopUsersIt = LoopUsers.find(L); 8430 if (LoopUsersIt != LoopUsers.end()) 8431 append_range(ToForget, LoopUsersIt->second); 8432 forgetMemoizedResults(ToForget); 8433 8434 // Invalidate constant-evolved loop header phis. 8435 for (PHINode &PN : L->getHeader()->phis()) 8436 ConstantEvolutionLoopExitValue.erase(&PN); 8437 } 8438 8439 // Re-lookup the insert position, since the call to 8440 // computeBackedgeTakenCount above could result in a 8441 // recusive call to getBackedgeTakenInfo (on a different 8442 // loop), which would invalidate the iterator computed 8443 // earlier. 8444 return BackedgeTakenCounts.find(L)->second = std::move(Result); 8445 } 8446 8447 void ScalarEvolution::forgetAllLoops() { 8448 // This method is intended to forget all info about loops. It should 8449 // invalidate caches as if the following happened: 8450 // - The trip counts of all loops have changed arbitrarily 8451 // - Every llvm::Value has been updated in place to produce a different 8452 // result. 8453 BackedgeTakenCounts.clear(); 8454 PredicatedBackedgeTakenCounts.clear(); 8455 BECountUsers.clear(); 8456 LoopPropertiesCache.clear(); 8457 ConstantEvolutionLoopExitValue.clear(); 8458 ValueExprMap.clear(); 8459 ValuesAtScopes.clear(); 8460 ValuesAtScopesUsers.clear(); 8461 LoopDispositions.clear(); 8462 BlockDispositions.clear(); 8463 UnsignedRanges.clear(); 8464 SignedRanges.clear(); 8465 ExprValueMap.clear(); 8466 HasRecMap.clear(); 8467 ConstantMultipleCache.clear(); 8468 PredicatedSCEVRewrites.clear(); 8469 FoldCache.clear(); 8470 FoldCacheUser.clear(); 8471 } 8472 void ScalarEvolution::visitAndClearUsers( 8473 SmallVectorImpl<Instruction *> &Worklist, 8474 SmallPtrSetImpl<Instruction *> &Visited, 8475 SmallVectorImpl<const SCEV *> &ToForget) { 8476 while (!Worklist.empty()) { 8477 Instruction *I = Worklist.pop_back_val(); 8478 if (!isSCEVable(I->getType()) && !isa<WithOverflowInst>(I)) 8479 continue; 8480 8481 ValueExprMapType::iterator It = 8482 ValueExprMap.find_as(static_cast<Value *>(I)); 8483 if (It != ValueExprMap.end()) { 8484 eraseValueFromMap(It->first); 8485 ToForget.push_back(It->second); 8486 if (PHINode *PN = dyn_cast<PHINode>(I)) 8487 ConstantEvolutionLoopExitValue.erase(PN); 8488 } 8489 8490 PushDefUseChildren(I, Worklist, Visited); 8491 } 8492 } 8493 8494 void ScalarEvolution::forgetLoop(const Loop *L) { 8495 SmallVector<const Loop *, 16> LoopWorklist(1, L); 8496 SmallVector<Instruction *, 32> Worklist; 8497 SmallPtrSet<Instruction *, 16> Visited; 8498 SmallVector<const SCEV *, 16> ToForget; 8499 8500 // Iterate over all the loops and sub-loops to drop SCEV information. 8501 while (!LoopWorklist.empty()) { 8502 auto *CurrL = LoopWorklist.pop_back_val(); 8503 8504 // Drop any stored trip count value. 8505 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 8506 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 8507 8508 // Drop information about predicated SCEV rewrites for this loop. 8509 for (auto I = PredicatedSCEVRewrites.begin(); 8510 I != PredicatedSCEVRewrites.end();) { 8511 std::pair<const SCEV *, const Loop *> Entry = I->first; 8512 if (Entry.second == CurrL) 8513 PredicatedSCEVRewrites.erase(I++); 8514 else 8515 ++I; 8516 } 8517 8518 auto LoopUsersItr = LoopUsers.find(CurrL); 8519 if (LoopUsersItr != LoopUsers.end()) { 8520 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 8521 LoopUsersItr->second.end()); 8522 } 8523 8524 // Drop information about expressions based on loop-header PHIs. 8525 PushLoopPHIs(CurrL, Worklist, Visited); 8526 visitAndClearUsers(Worklist, Visited, ToForget); 8527 8528 LoopPropertiesCache.erase(CurrL); 8529 // Forget all contained loops too, to avoid dangling entries in the 8530 // ValuesAtScopes map. 8531 LoopWorklist.append(CurrL->begin(), CurrL->end()); 8532 } 8533 forgetMemoizedResults(ToForget); 8534 } 8535 8536 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 8537 forgetLoop(L->getOutermostLoop()); 8538 } 8539 8540 void ScalarEvolution::forgetValue(Value *V) { 8541 Instruction *I = dyn_cast<Instruction>(V); 8542 if (!I) return; 8543 8544 // Drop information about expressions based on loop-header PHIs. 8545 SmallVector<Instruction *, 16> Worklist; 8546 SmallPtrSet<Instruction *, 8> Visited; 8547 SmallVector<const SCEV *, 8> ToForget; 8548 Worklist.push_back(I); 8549 Visited.insert(I); 8550 visitAndClearUsers(Worklist, Visited, ToForget); 8551 8552 forgetMemoizedResults(ToForget); 8553 } 8554 8555 void ScalarEvolution::forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V) { 8556 if (!isSCEVable(V->getType())) 8557 return; 8558 8559 // If SCEV looked through a trivial LCSSA phi node, we might have SCEV's 8560 // directly using a SCEVUnknown/SCEVAddRec defined in the loop. After an 8561 // extra predecessor is added, this is no longer valid. Find all Unknowns and 8562 // AddRecs defined in the loop and invalidate any SCEV's making use of them. 8563 if (const SCEV *S = getExistingSCEV(V)) { 8564 struct InvalidationRootCollector { 8565 Loop *L; 8566 SmallVector<const SCEV *, 8> Roots; 8567 8568 InvalidationRootCollector(Loop *L) : L(L) {} 8569 8570 bool follow(const SCEV *S) { 8571 if (auto *SU = dyn_cast<SCEVUnknown>(S)) { 8572 if (auto *I = dyn_cast<Instruction>(SU->getValue())) 8573 if (L->contains(I)) 8574 Roots.push_back(S); 8575 } else if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 8576 if (L->contains(AddRec->getLoop())) 8577 Roots.push_back(S); 8578 } 8579 return true; 8580 } 8581 bool isDone() const { return false; } 8582 }; 8583 8584 InvalidationRootCollector C(L); 8585 visitAll(S, C); 8586 forgetMemoizedResults(C.Roots); 8587 } 8588 8589 // Also perform the normal invalidation. 8590 forgetValue(V); 8591 } 8592 8593 void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); } 8594 8595 void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) { 8596 // Unless a specific value is passed to invalidation, completely clear both 8597 // caches. 8598 if (!V) { 8599 BlockDispositions.clear(); 8600 LoopDispositions.clear(); 8601 return; 8602 } 8603 8604 if (!isSCEVable(V->getType())) 8605 return; 8606 8607 const SCEV *S = getExistingSCEV(V); 8608 if (!S) 8609 return; 8610 8611 // Invalidate the block and loop dispositions cached for S. Dispositions of 8612 // S's users may change if S's disposition changes (i.e. a user may change to 8613 // loop-invariant, if S changes to loop invariant), so also invalidate 8614 // dispositions of S's users recursively. 8615 SmallVector<const SCEV *, 8> Worklist = {S}; 8616 SmallPtrSet<const SCEV *, 8> Seen = {S}; 8617 while (!Worklist.empty()) { 8618 const SCEV *Curr = Worklist.pop_back_val(); 8619 bool LoopDispoRemoved = LoopDispositions.erase(Curr); 8620 bool BlockDispoRemoved = BlockDispositions.erase(Curr); 8621 if (!LoopDispoRemoved && !BlockDispoRemoved) 8622 continue; 8623 auto Users = SCEVUsers.find(Curr); 8624 if (Users != SCEVUsers.end()) 8625 for (const auto *User : Users->second) 8626 if (Seen.insert(User).second) 8627 Worklist.push_back(User); 8628 } 8629 } 8630 8631 /// Get the exact loop backedge taken count considering all loop exits. A 8632 /// computable result can only be returned for loops with all exiting blocks 8633 /// dominating the latch. howFarToZero assumes that the limit of each loop test 8634 /// is never skipped. This is a valid assumption as long as the loop exits via 8635 /// that test. For precise results, it is the caller's responsibility to specify 8636 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 8637 const SCEV *ScalarEvolution::BackedgeTakenInfo::getExact( 8638 const Loop *L, ScalarEvolution *SE, 8639 SmallVectorImpl<const SCEVPredicate *> *Preds) const { 8640 // If any exits were not computable, the loop is not computable. 8641 if (!isComplete() || ExitNotTaken.empty()) 8642 return SE->getCouldNotCompute(); 8643 8644 const BasicBlock *Latch = L->getLoopLatch(); 8645 // All exiting blocks we have collected must dominate the only backedge. 8646 if (!Latch) 8647 return SE->getCouldNotCompute(); 8648 8649 // All exiting blocks we have gathered dominate loop's latch, so exact trip 8650 // count is simply a minimum out of all these calculated exit counts. 8651 SmallVector<const SCEV *, 2> Ops; 8652 for (const auto &ENT : ExitNotTaken) { 8653 const SCEV *BECount = ENT.ExactNotTaken; 8654 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 8655 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 8656 "We should only have known counts for exiting blocks that dominate " 8657 "latch!"); 8658 8659 Ops.push_back(BECount); 8660 8661 if (Preds) 8662 append_range(*Preds, ENT.Predicates); 8663 8664 assert((Preds || ENT.hasAlwaysTruePredicate()) && 8665 "Predicate should be always true!"); 8666 } 8667 8668 // If an earlier exit exits on the first iteration (exit count zero), then 8669 // a later poison exit count should not propagate into the result. This are 8670 // exactly the semantics provided by umin_seq. 8671 return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true); 8672 } 8673 8674 const ScalarEvolution::ExitNotTakenInfo * 8675 ScalarEvolution::BackedgeTakenInfo::getExitNotTaken( 8676 const BasicBlock *ExitingBlock, 8677 SmallVectorImpl<const SCEVPredicate *> *Predicates) const { 8678 for (const auto &ENT : ExitNotTaken) 8679 if (ENT.ExitingBlock == ExitingBlock) { 8680 if (ENT.hasAlwaysTruePredicate()) 8681 return &ENT; 8682 else if (Predicates) { 8683 append_range(*Predicates, ENT.Predicates); 8684 return &ENT; 8685 } 8686 } 8687 8688 return nullptr; 8689 } 8690 8691 /// getConstantMax - Get the constant max backedge taken count for the loop. 8692 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 8693 ScalarEvolution *SE, 8694 SmallVectorImpl<const SCEVPredicate *> *Predicates) const { 8695 if (!getConstantMax()) 8696 return SE->getCouldNotCompute(); 8697 8698 for (const auto &ENT : ExitNotTaken) 8699 if (!ENT.hasAlwaysTruePredicate()) { 8700 if (!Predicates) 8701 return SE->getCouldNotCompute(); 8702 append_range(*Predicates, ENT.Predicates); 8703 } 8704 8705 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 8706 isa<SCEVConstant>(getConstantMax())) && 8707 "No point in having a non-constant max backedge taken count!"); 8708 return getConstantMax(); 8709 } 8710 8711 const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax( 8712 const Loop *L, ScalarEvolution *SE, 8713 SmallVectorImpl<const SCEVPredicate *> *Predicates) { 8714 if (!SymbolicMax) { 8715 // Form an expression for the maximum exit count possible for this loop. We 8716 // merge the max and exact information to approximate a version of 8717 // getConstantMaxBackedgeTakenCount which isn't restricted to just 8718 // constants. 8719 SmallVector<const SCEV *, 4> ExitCounts; 8720 8721 for (const auto &ENT : ExitNotTaken) { 8722 const SCEV *ExitCount = ENT.SymbolicMaxNotTaken; 8723 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 8724 assert(SE->DT.dominates(ENT.ExitingBlock, L->getLoopLatch()) && 8725 "We should only have known counts for exiting blocks that " 8726 "dominate latch!"); 8727 ExitCounts.push_back(ExitCount); 8728 if (Predicates) 8729 append_range(*Predicates, ENT.Predicates); 8730 8731 assert((Predicates || ENT.hasAlwaysTruePredicate()) && 8732 "Predicate should be always true!"); 8733 } 8734 } 8735 if (ExitCounts.empty()) 8736 SymbolicMax = SE->getCouldNotCompute(); 8737 else 8738 SymbolicMax = 8739 SE->getUMinFromMismatchedTypes(ExitCounts, /*Sequential*/ true); 8740 } 8741 return SymbolicMax; 8742 } 8743 8744 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 8745 ScalarEvolution *SE) const { 8746 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8747 return !ENT.hasAlwaysTruePredicate(); 8748 }; 8749 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 8750 } 8751 8752 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 8753 : ExitLimit(E, E, E, false) {} 8754 8755 ScalarEvolution::ExitLimit::ExitLimit( 8756 const SCEV *E, const SCEV *ConstantMaxNotTaken, 8757 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, 8758 ArrayRef<ArrayRef<const SCEVPredicate *>> PredLists) 8759 : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken), 8760 SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) { 8761 // If we prove the max count is zero, so is the symbolic bound. This happens 8762 // in practice due to differences in a) how context sensitive we've chosen 8763 // to be and b) how we reason about bounds implied by UB. 8764 if (ConstantMaxNotTaken->isZero()) { 8765 this->ExactNotTaken = E = ConstantMaxNotTaken; 8766 this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken; 8767 } 8768 8769 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8770 !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && 8771 "Exact is not allowed to be less precise than Constant Max"); 8772 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8773 !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) && 8774 "Exact is not allowed to be less precise than Symbolic Max"); 8775 assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) || 8776 !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && 8777 "Symbolic Max is not allowed to be less precise than Constant Max"); 8778 assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || 8779 isa<SCEVConstant>(ConstantMaxNotTaken)) && 8780 "No point in having a non-constant max backedge taken count!"); 8781 SmallPtrSet<const SCEVPredicate *, 4> SeenPreds; 8782 for (const auto PredList : PredLists) 8783 for (const auto *P : PredList) { 8784 if (SeenPreds.contains(P)) 8785 continue; 8786 assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!"); 8787 SeenPreds.insert(P); 8788 Predicates.push_back(P); 8789 } 8790 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 8791 "Backedge count should be int"); 8792 assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || 8793 !ConstantMaxNotTaken->getType()->isPointerTy()) && 8794 "Max backedge count should be int"); 8795 } 8796 8797 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, 8798 const SCEV *ConstantMaxNotTaken, 8799 const SCEV *SymbolicMaxNotTaken, 8800 bool MaxOrZero, 8801 ArrayRef<const SCEVPredicate *> PredList) 8802 : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero, 8803 ArrayRef({PredList})) {} 8804 8805 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 8806 /// computable exit into a persistent ExitNotTakenInfo array. 8807 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 8808 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 8809 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 8810 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 8811 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8812 8813 ExitNotTaken.reserve(ExitCounts.size()); 8814 std::transform(ExitCounts.begin(), ExitCounts.end(), 8815 std::back_inserter(ExitNotTaken), 8816 [&](const EdgeExitInfo &EEI) { 8817 BasicBlock *ExitBB = EEI.first; 8818 const ExitLimit &EL = EEI.second; 8819 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, 8820 EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken, 8821 EL.Predicates); 8822 }); 8823 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 8824 isa<SCEVConstant>(ConstantMax)) && 8825 "No point in having a non-constant max backedge taken count!"); 8826 } 8827 8828 /// Compute the number of times the backedge of the specified loop will execute. 8829 ScalarEvolution::BackedgeTakenInfo 8830 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 8831 bool AllowPredicates) { 8832 SmallVector<BasicBlock *, 8> ExitingBlocks; 8833 L->getExitingBlocks(ExitingBlocks); 8834 8835 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8836 8837 SmallVector<EdgeExitInfo, 4> ExitCounts; 8838 bool CouldComputeBECount = true; 8839 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 8840 const SCEV *MustExitMaxBECount = nullptr; 8841 const SCEV *MayExitMaxBECount = nullptr; 8842 bool MustExitMaxOrZero = false; 8843 bool IsOnlyExit = ExitingBlocks.size() == 1; 8844 8845 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 8846 // and compute maxBECount. 8847 // Do a union of all the predicates here. 8848 for (BasicBlock *ExitBB : ExitingBlocks) { 8849 // We canonicalize untaken exits to br (constant), ignore them so that 8850 // proving an exit untaken doesn't negatively impact our ability to reason 8851 // about the loop as whole. 8852 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 8853 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 8854 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8855 if (ExitIfTrue == CI->isZero()) 8856 continue; 8857 } 8858 8859 ExitLimit EL = computeExitLimit(L, ExitBB, IsOnlyExit, AllowPredicates); 8860 8861 assert((AllowPredicates || EL.Predicates.empty()) && 8862 "Predicated exit limit when predicates are not allowed!"); 8863 8864 // 1. For each exit that can be computed, add an entry to ExitCounts. 8865 // CouldComputeBECount is true only if all exits can be computed. 8866 if (EL.ExactNotTaken != getCouldNotCompute()) 8867 ++NumExitCountsComputed; 8868 else 8869 // We couldn't compute an exact value for this exit, so 8870 // we won't be able to compute an exact value for the loop. 8871 CouldComputeBECount = false; 8872 // Remember exit count if either exact or symbolic is known. Because 8873 // Exact always implies symbolic, only check symbolic. 8874 if (EL.SymbolicMaxNotTaken != getCouldNotCompute()) 8875 ExitCounts.emplace_back(ExitBB, EL); 8876 else { 8877 assert(EL.ExactNotTaken == getCouldNotCompute() && 8878 "Exact is known but symbolic isn't?"); 8879 ++NumExitCountsNotComputed; 8880 } 8881 8882 // 2. Derive the loop's MaxBECount from each exit's max number of 8883 // non-exiting iterations. Partition the loop exits into two kinds: 8884 // LoopMustExits and LoopMayExits. 8885 // 8886 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8887 // is a LoopMayExit. If any computable LoopMustExit is found, then 8888 // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable 8889 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8890 // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than 8891 // any 8892 // computable EL.ConstantMaxNotTaken. 8893 if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch && 8894 DT.dominates(ExitBB, Latch)) { 8895 if (!MustExitMaxBECount) { 8896 MustExitMaxBECount = EL.ConstantMaxNotTaken; 8897 MustExitMaxOrZero = EL.MaxOrZero; 8898 } else { 8899 MustExitMaxBECount = getUMinFromMismatchedTypes(MustExitMaxBECount, 8900 EL.ConstantMaxNotTaken); 8901 } 8902 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8903 if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute()) 8904 MayExitMaxBECount = EL.ConstantMaxNotTaken; 8905 else { 8906 MayExitMaxBECount = getUMaxFromMismatchedTypes(MayExitMaxBECount, 8907 EL.ConstantMaxNotTaken); 8908 } 8909 } 8910 } 8911 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8912 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8913 // The loop backedge will be taken the maximum or zero times if there's 8914 // a single exit that must be taken the maximum or zero times. 8915 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8916 8917 // Remember which SCEVs are used in exit limits for invalidation purposes. 8918 // We only care about non-constant SCEVs here, so we can ignore 8919 // EL.ConstantMaxNotTaken 8920 // and MaxBECount, which must be SCEVConstant. 8921 for (const auto &Pair : ExitCounts) { 8922 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 8923 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 8924 if (!isa<SCEVConstant>(Pair.second.SymbolicMaxNotTaken)) 8925 BECountUsers[Pair.second.SymbolicMaxNotTaken].insert( 8926 {L, AllowPredicates}); 8927 } 8928 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8929 MaxBECount, MaxOrZero); 8930 } 8931 8932 ScalarEvolution::ExitLimit 8933 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8934 bool IsOnlyExit, bool AllowPredicates) { 8935 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8936 // If our exiting block does not dominate the latch, then its connection with 8937 // loop's exit limit may be far from trivial. 8938 const BasicBlock *Latch = L->getLoopLatch(); 8939 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8940 return getCouldNotCompute(); 8941 8942 Instruction *Term = ExitingBlock->getTerminator(); 8943 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8944 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8945 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8946 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8947 "It should have one successor in loop and one exit block!"); 8948 // Proceed to the next level to examine the exit condition expression. 8949 return computeExitLimitFromCond(L, BI->getCondition(), ExitIfTrue, 8950 /*ControlsOnlyExit=*/IsOnlyExit, 8951 AllowPredicates); 8952 } 8953 8954 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8955 // For switch, make sure that there is a single exit from the loop. 8956 BasicBlock *Exit = nullptr; 8957 for (auto *SBB : successors(ExitingBlock)) 8958 if (!L->contains(SBB)) { 8959 if (Exit) // Multiple exit successors. 8960 return getCouldNotCompute(); 8961 Exit = SBB; 8962 } 8963 assert(Exit && "Exiting block must have at least one exit"); 8964 return computeExitLimitFromSingleExitSwitch( 8965 L, SI, Exit, /*ControlsOnlyExit=*/IsOnlyExit); 8966 } 8967 8968 return getCouldNotCompute(); 8969 } 8970 8971 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8972 const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, 8973 bool AllowPredicates) { 8974 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8975 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8976 ControlsOnlyExit, AllowPredicates); 8977 } 8978 8979 std::optional<ScalarEvolution::ExitLimit> 8980 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8981 bool ExitIfTrue, bool ControlsOnlyExit, 8982 bool AllowPredicates) { 8983 (void)this->L; 8984 (void)this->ExitIfTrue; 8985 (void)this->AllowPredicates; 8986 8987 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8988 this->AllowPredicates == AllowPredicates && 8989 "Variance in assumed invariant key components!"); 8990 auto Itr = TripCountMap.find({ExitCond, ControlsOnlyExit}); 8991 if (Itr == TripCountMap.end()) 8992 return std::nullopt; 8993 return Itr->second; 8994 } 8995 8996 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8997 bool ExitIfTrue, 8998 bool ControlsOnlyExit, 8999 bool AllowPredicates, 9000 const ExitLimit &EL) { 9001 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 9002 this->AllowPredicates == AllowPredicates && 9003 "Variance in assumed invariant key components!"); 9004 9005 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsOnlyExit}, EL}); 9006 assert(InsertResult.second && "Expected successful insertion!"); 9007 (void)InsertResult; 9008 (void)ExitIfTrue; 9009 } 9010 9011 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 9012 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 9013 bool ControlsOnlyExit, bool AllowPredicates) { 9014 9015 if (auto MaybeEL = Cache.find(L, ExitCond, ExitIfTrue, ControlsOnlyExit, 9016 AllowPredicates)) 9017 return *MaybeEL; 9018 9019 ExitLimit EL = computeExitLimitFromCondImpl( 9020 Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates); 9021 Cache.insert(L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates, EL); 9022 return EL; 9023 } 9024 9025 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 9026 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 9027 bool ControlsOnlyExit, bool AllowPredicates) { 9028 // Handle BinOp conditions (And, Or). 9029 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 9030 Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates)) 9031 return *LimitFromBinOp; 9032 9033 // With an icmp, it may be feasible to compute an exact backedge-taken count. 9034 // Proceed to the next level to examine the icmp. 9035 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 9036 ExitLimit EL = 9037 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsOnlyExit); 9038 if (EL.hasFullInfo() || !AllowPredicates) 9039 return EL; 9040 9041 // Try again, but use SCEV predicates this time. 9042 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, 9043 ControlsOnlyExit, 9044 /*AllowPredicates=*/true); 9045 } 9046 9047 // Check for a constant condition. These are normally stripped out by 9048 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 9049 // preserve the CFG and is temporarily leaving constant conditions 9050 // in place. 9051 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 9052 if (ExitIfTrue == !CI->getZExtValue()) 9053 // The backedge is always taken. 9054 return getCouldNotCompute(); 9055 // The backedge is never taken. 9056 return getZero(CI->getType()); 9057 } 9058 9059 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic 9060 // with a constant step, we can form an equivalent icmp predicate and figure 9061 // out how many iterations will be taken before we exit. 9062 const WithOverflowInst *WO; 9063 const APInt *C; 9064 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && 9065 match(WO->getRHS(), m_APInt(C))) { 9066 ConstantRange NWR = 9067 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 9068 WO->getNoWrapKind()); 9069 CmpInst::Predicate Pred; 9070 APInt NewRHSC, Offset; 9071 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 9072 if (!ExitIfTrue) 9073 Pred = ICmpInst::getInversePredicate(Pred); 9074 auto *LHS = getSCEV(WO->getLHS()); 9075 if (Offset != 0) 9076 LHS = getAddExpr(LHS, getConstant(Offset)); 9077 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), 9078 ControlsOnlyExit, AllowPredicates); 9079 if (EL.hasAnyInfo()) 9080 return EL; 9081 } 9082 9083 // If it's not an integer or pointer comparison then compute it the hard way. 9084 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 9085 } 9086 9087 std::optional<ScalarEvolution::ExitLimit> 9088 ScalarEvolution::computeExitLimitFromCondFromBinOp( 9089 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 9090 bool ControlsOnlyExit, bool AllowPredicates) { 9091 // Check if the controlling expression for this loop is an And or Or. 9092 Value *Op0, *Op1; 9093 bool IsAnd = false; 9094 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 9095 IsAnd = true; 9096 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 9097 IsAnd = false; 9098 else 9099 return std::nullopt; 9100 9101 // EitherMayExit is true in these two cases: 9102 // br (and Op0 Op1), loop, exit 9103 // br (or Op0 Op1), exit, loop 9104 bool EitherMayExit = IsAnd ^ ExitIfTrue; 9105 ExitLimit EL0 = computeExitLimitFromCondCached( 9106 Cache, L, Op0, ExitIfTrue, ControlsOnlyExit && !EitherMayExit, 9107 AllowPredicates); 9108 ExitLimit EL1 = computeExitLimitFromCondCached( 9109 Cache, L, Op1, ExitIfTrue, ControlsOnlyExit && !EitherMayExit, 9110 AllowPredicates); 9111 9112 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 9113 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 9114 if (isa<ConstantInt>(Op1)) 9115 return Op1 == NeutralElement ? EL0 : EL1; 9116 if (isa<ConstantInt>(Op0)) 9117 return Op0 == NeutralElement ? EL1 : EL0; 9118 9119 const SCEV *BECount = getCouldNotCompute(); 9120 const SCEV *ConstantMaxBECount = getCouldNotCompute(); 9121 const SCEV *SymbolicMaxBECount = getCouldNotCompute(); 9122 if (EitherMayExit) { 9123 bool UseSequentialUMin = !isa<BinaryOperator>(ExitCond); 9124 // Both conditions must be same for the loop to continue executing. 9125 // Choose the less conservative count. 9126 if (EL0.ExactNotTaken != getCouldNotCompute() && 9127 EL1.ExactNotTaken != getCouldNotCompute()) { 9128 BECount = getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken, 9129 UseSequentialUMin); 9130 } 9131 if (EL0.ConstantMaxNotTaken == getCouldNotCompute()) 9132 ConstantMaxBECount = EL1.ConstantMaxNotTaken; 9133 else if (EL1.ConstantMaxNotTaken == getCouldNotCompute()) 9134 ConstantMaxBECount = EL0.ConstantMaxNotTaken; 9135 else 9136 ConstantMaxBECount = getUMinFromMismatchedTypes(EL0.ConstantMaxNotTaken, 9137 EL1.ConstantMaxNotTaken); 9138 if (EL0.SymbolicMaxNotTaken == getCouldNotCompute()) 9139 SymbolicMaxBECount = EL1.SymbolicMaxNotTaken; 9140 else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute()) 9141 SymbolicMaxBECount = EL0.SymbolicMaxNotTaken; 9142 else 9143 SymbolicMaxBECount = getUMinFromMismatchedTypes( 9144 EL0.SymbolicMaxNotTaken, EL1.SymbolicMaxNotTaken, UseSequentialUMin); 9145 } else { 9146 // Both conditions must be same at the same time for the loop to exit. 9147 // For now, be conservative. 9148 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 9149 BECount = EL0.ExactNotTaken; 9150 } 9151 9152 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 9153 // to be more aggressive when computing BECount than when computing 9154 // ConstantMaxBECount. In these cases it is possible for EL0.ExactNotTaken 9155 // and 9156 // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and 9157 // EL1.ConstantMaxNotTaken to not. 9158 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) && 9159 !isa<SCEVCouldNotCompute>(BECount)) 9160 ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount)); 9161 if (isa<SCEVCouldNotCompute>(SymbolicMaxBECount)) 9162 SymbolicMaxBECount = 9163 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; 9164 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false, 9165 {ArrayRef(EL0.Predicates), ArrayRef(EL1.Predicates)}); 9166 } 9167 9168 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp( 9169 const Loop *L, ICmpInst *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, 9170 bool AllowPredicates) { 9171 // If the condition was exit on true, convert the condition to exit on false 9172 CmpPredicate Pred; 9173 if (!ExitIfTrue) 9174 Pred = ExitCond->getCmpPredicate(); 9175 else 9176 Pred = ExitCond->getInverseCmpPredicate(); 9177 const ICmpInst::Predicate OriginalPred = Pred; 9178 9179 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 9180 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 9181 9182 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsOnlyExit, 9183 AllowPredicates); 9184 if (EL.hasAnyInfo()) 9185 return EL; 9186 9187 auto *ExhaustiveCount = 9188 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 9189 9190 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 9191 return ExhaustiveCount; 9192 9193 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 9194 ExitCond->getOperand(1), L, OriginalPred); 9195 } 9196 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp( 9197 const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, 9198 bool ControlsOnlyExit, bool AllowPredicates) { 9199 9200 // Try to evaluate any dependencies out of the loop. 9201 LHS = getSCEVAtScope(LHS, L); 9202 RHS = getSCEVAtScope(RHS, L); 9203 9204 // At this point, we would like to compute how many iterations of the 9205 // loop the predicate will return true for these inputs. 9206 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 9207 // If there is a loop-invariant, force it into the RHS. 9208 std::swap(LHS, RHS); 9209 Pred = ICmpInst::getSwappedCmpPredicate(Pred); 9210 } 9211 9212 bool ControllingFiniteLoop = ControlsOnlyExit && loopHasNoAbnormalExits(L) && 9213 loopIsFiniteByAssumption(L); 9214 // Simplify the operands before analyzing them. 9215 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0); 9216 9217 // If we have a comparison of a chrec against a constant, try to use value 9218 // ranges to answer this query. 9219 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 9220 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 9221 if (AddRec->getLoop() == L) { 9222 // Form the constant range. 9223 ConstantRange CompRange = 9224 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 9225 9226 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 9227 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 9228 } 9229 9230 // If this loop must exit based on this condition (or execute undefined 9231 // behaviour), see if we can improve wrap flags. This is essentially 9232 // a must execute style proof. 9233 if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) { 9234 // If we can prove the test sequence produced must repeat the same values 9235 // on self-wrap of the IV, then we can infer that IV doesn't self wrap 9236 // because if it did, we'd have an infinite (undefined) loop. 9237 // TODO: We can peel off any functions which are invertible *in L*. Loop 9238 // invariant terms are effectively constants for our purposes here. 9239 auto *InnerLHS = LHS; 9240 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 9241 InnerLHS = ZExt->getOperand(); 9242 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS); 9243 AR && !AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 9244 isKnownToBeAPowerOfTwo(AR->getStepRecurrence(*this), /*OrZero=*/true, 9245 /*OrNegative=*/true)) { 9246 auto Flags = AR->getNoWrapFlags(); 9247 Flags = setFlags(Flags, SCEV::FlagNW); 9248 SmallVector<const SCEV *> Operands{AR->operands()}; 9249 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 9250 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 9251 } 9252 9253 // For a slt/ult condition with a positive step, can we prove nsw/nuw? 9254 // From no-self-wrap, this follows trivially from the fact that every 9255 // (un)signed-wrapped, but not self-wrapped value must be LT than the 9256 // last value before (un)signed wrap. Since we know that last value 9257 // didn't exit, nor will any smaller one. 9258 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT) { 9259 auto WrapType = Pred == ICmpInst::ICMP_SLT ? SCEV::FlagNSW : SCEV::FlagNUW; 9260 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS); 9261 AR && AR->getLoop() == L && AR->isAffine() && 9262 !AR->getNoWrapFlags(WrapType) && AR->hasNoSelfWrap() && 9263 isKnownPositive(AR->getStepRecurrence(*this))) { 9264 auto Flags = AR->getNoWrapFlags(); 9265 Flags = setFlags(Flags, WrapType); 9266 SmallVector<const SCEV*> Operands{AR->operands()}; 9267 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 9268 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 9269 } 9270 } 9271 } 9272 9273 switch (Pred) { 9274 case ICmpInst::ICMP_NE: { // while (X != Y) 9275 // Convert to: while (X-Y != 0) 9276 if (LHS->getType()->isPointerTy()) { 9277 LHS = getLosslessPtrToIntExpr(LHS); 9278 if (isa<SCEVCouldNotCompute>(LHS)) 9279 return LHS; 9280 } 9281 if (RHS->getType()->isPointerTy()) { 9282 RHS = getLosslessPtrToIntExpr(RHS); 9283 if (isa<SCEVCouldNotCompute>(RHS)) 9284 return RHS; 9285 } 9286 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit, 9287 AllowPredicates); 9288 if (EL.hasAnyInfo()) 9289 return EL; 9290 break; 9291 } 9292 case ICmpInst::ICMP_EQ: { // while (X == Y) 9293 // Convert to: while (X-Y == 0) 9294 if (LHS->getType()->isPointerTy()) { 9295 LHS = getLosslessPtrToIntExpr(LHS); 9296 if (isa<SCEVCouldNotCompute>(LHS)) 9297 return LHS; 9298 } 9299 if (RHS->getType()->isPointerTy()) { 9300 RHS = getLosslessPtrToIntExpr(RHS); 9301 if (isa<SCEVCouldNotCompute>(RHS)) 9302 return RHS; 9303 } 9304 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 9305 if (EL.hasAnyInfo()) return EL; 9306 break; 9307 } 9308 case ICmpInst::ICMP_SLE: 9309 case ICmpInst::ICMP_ULE: 9310 // Since the loop is finite, an invariant RHS cannot include the boundary 9311 // value, otherwise it would loop forever. 9312 if (!EnableFiniteLoopControl || !ControllingFiniteLoop || 9313 !isLoopInvariant(RHS, L)) { 9314 // Otherwise, perform the addition in a wider type, to avoid overflow. 9315 // If the LHS is an addrec with the appropriate nowrap flag, the 9316 // extension will be sunk into it and the exit count can be analyzed. 9317 auto *OldType = dyn_cast<IntegerType>(LHS->getType()); 9318 if (!OldType) 9319 break; 9320 // Prefer doubling the bitwidth over adding a single bit to make it more 9321 // likely that we use a legal type. 9322 auto *NewType = 9323 Type::getIntNTy(OldType->getContext(), OldType->getBitWidth() * 2); 9324 if (ICmpInst::isSigned(Pred)) { 9325 LHS = getSignExtendExpr(LHS, NewType); 9326 RHS = getSignExtendExpr(RHS, NewType); 9327 } else { 9328 LHS = getZeroExtendExpr(LHS, NewType); 9329 RHS = getZeroExtendExpr(RHS, NewType); 9330 } 9331 } 9332 RHS = getAddExpr(getOne(RHS->getType()), RHS); 9333 [[fallthrough]]; 9334 case ICmpInst::ICMP_SLT: 9335 case ICmpInst::ICMP_ULT: { // while (X < Y) 9336 bool IsSigned = ICmpInst::isSigned(Pred); 9337 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsOnlyExit, 9338 AllowPredicates); 9339 if (EL.hasAnyInfo()) 9340 return EL; 9341 break; 9342 } 9343 case ICmpInst::ICMP_SGE: 9344 case ICmpInst::ICMP_UGE: 9345 // Since the loop is finite, an invariant RHS cannot include the boundary 9346 // value, otherwise it would loop forever. 9347 if (!EnableFiniteLoopControl || !ControllingFiniteLoop || 9348 !isLoopInvariant(RHS, L)) 9349 break; 9350 RHS = getAddExpr(getMinusOne(RHS->getType()), RHS); 9351 [[fallthrough]]; 9352 case ICmpInst::ICMP_SGT: 9353 case ICmpInst::ICMP_UGT: { // while (X > Y) 9354 bool IsSigned = ICmpInst::isSigned(Pred); 9355 ExitLimit EL = howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsOnlyExit, 9356 AllowPredicates); 9357 if (EL.hasAnyInfo()) 9358 return EL; 9359 break; 9360 } 9361 default: 9362 break; 9363 } 9364 9365 return getCouldNotCompute(); 9366 } 9367 9368 ScalarEvolution::ExitLimit 9369 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 9370 SwitchInst *Switch, 9371 BasicBlock *ExitingBlock, 9372 bool ControlsOnlyExit) { 9373 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 9374 9375 // Give up if the exit is the default dest of a switch. 9376 if (Switch->getDefaultDest() == ExitingBlock) 9377 return getCouldNotCompute(); 9378 9379 assert(L->contains(Switch->getDefaultDest()) && 9380 "Default case must not exit the loop!"); 9381 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 9382 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 9383 9384 // while (X != Y) --> while (X-Y != 0) 9385 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit); 9386 if (EL.hasAnyInfo()) 9387 return EL; 9388 9389 return getCouldNotCompute(); 9390 } 9391 9392 static ConstantInt * 9393 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 9394 ScalarEvolution &SE) { 9395 const SCEV *InVal = SE.getConstant(C); 9396 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 9397 assert(isa<SCEVConstant>(Val) && 9398 "Evaluation of SCEV at constant didn't fold correctly?"); 9399 return cast<SCEVConstant>(Val)->getValue(); 9400 } 9401 9402 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 9403 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 9404 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 9405 if (!RHS) 9406 return getCouldNotCompute(); 9407 9408 const BasicBlock *Latch = L->getLoopLatch(); 9409 if (!Latch) 9410 return getCouldNotCompute(); 9411 9412 const BasicBlock *Predecessor = L->getLoopPredecessor(); 9413 if (!Predecessor) 9414 return getCouldNotCompute(); 9415 9416 // Return true if V is of the form "LHS `shift_op` <positive constant>". 9417 // Return LHS in OutLHS and shift_opt in OutOpCode. 9418 auto MatchPositiveShift = 9419 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 9420 9421 using namespace PatternMatch; 9422 9423 ConstantInt *ShiftAmt; 9424 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9425 OutOpCode = Instruction::LShr; 9426 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9427 OutOpCode = Instruction::AShr; 9428 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 9429 OutOpCode = Instruction::Shl; 9430 else 9431 return false; 9432 9433 return ShiftAmt->getValue().isStrictlyPositive(); 9434 }; 9435 9436 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 9437 // 9438 // loop: 9439 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 9440 // %iv.shifted = lshr i32 %iv, <positive constant> 9441 // 9442 // Return true on a successful match. Return the corresponding PHI node (%iv 9443 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 9444 auto MatchShiftRecurrence = 9445 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 9446 std::optional<Instruction::BinaryOps> PostShiftOpCode; 9447 9448 { 9449 Instruction::BinaryOps OpC; 9450 Value *V; 9451 9452 // If we encounter a shift instruction, "peel off" the shift operation, 9453 // and remember that we did so. Later when we inspect %iv's backedge 9454 // value, we will make sure that the backedge value uses the same 9455 // operation. 9456 // 9457 // Note: the peeled shift operation does not have to be the same 9458 // instruction as the one feeding into the PHI's backedge value. We only 9459 // really care about it being the same *kind* of shift instruction -- 9460 // that's all that is required for our later inferences to hold. 9461 if (MatchPositiveShift(LHS, V, OpC)) { 9462 PostShiftOpCode = OpC; 9463 LHS = V; 9464 } 9465 } 9466 9467 PNOut = dyn_cast<PHINode>(LHS); 9468 if (!PNOut || PNOut->getParent() != L->getHeader()) 9469 return false; 9470 9471 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 9472 Value *OpLHS; 9473 9474 return 9475 // The backedge value for the PHI node must be a shift by a positive 9476 // amount 9477 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 9478 9479 // of the PHI node itself 9480 OpLHS == PNOut && 9481 9482 // and the kind of shift should be match the kind of shift we peeled 9483 // off, if any. 9484 (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut); 9485 }; 9486 9487 PHINode *PN; 9488 Instruction::BinaryOps OpCode; 9489 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 9490 return getCouldNotCompute(); 9491 9492 const DataLayout &DL = getDataLayout(); 9493 9494 // The key rationale for this optimization is that for some kinds of shift 9495 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 9496 // within a finite number of iterations. If the condition guarding the 9497 // backedge (in the sense that the backedge is taken if the condition is true) 9498 // is false for the value the shift recurrence stabilizes to, then we know 9499 // that the backedge is taken only a finite number of times. 9500 9501 ConstantInt *StableValue = nullptr; 9502 switch (OpCode) { 9503 default: 9504 llvm_unreachable("Impossible case!"); 9505 9506 case Instruction::AShr: { 9507 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 9508 // bitwidth(K) iterations. 9509 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 9510 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 9511 Predecessor->getTerminator(), &DT); 9512 auto *Ty = cast<IntegerType>(RHS->getType()); 9513 if (Known.isNonNegative()) 9514 StableValue = ConstantInt::get(Ty, 0); 9515 else if (Known.isNegative()) 9516 StableValue = ConstantInt::get(Ty, -1, true); 9517 else 9518 return getCouldNotCompute(); 9519 9520 break; 9521 } 9522 case Instruction::LShr: 9523 case Instruction::Shl: 9524 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 9525 // stabilize to 0 in at most bitwidth(K) iterations. 9526 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 9527 break; 9528 } 9529 9530 auto *Result = 9531 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 9532 assert(Result->getType()->isIntegerTy(1) && 9533 "Otherwise cannot be an operand to a branch instruction"); 9534 9535 if (Result->isZeroValue()) { 9536 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 9537 const SCEV *UpperBound = 9538 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 9539 return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false); 9540 } 9541 9542 return getCouldNotCompute(); 9543 } 9544 9545 /// Return true if we can constant fold an instruction of the specified type, 9546 /// assuming that all operands were constants. 9547 static bool CanConstantFold(const Instruction *I) { 9548 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 9549 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 9550 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 9551 return true; 9552 9553 if (const CallInst *CI = dyn_cast<CallInst>(I)) 9554 if (const Function *F = CI->getCalledFunction()) 9555 return canConstantFoldCallTo(CI, F); 9556 return false; 9557 } 9558 9559 /// Determine whether this instruction can constant evolve within this loop 9560 /// assuming its operands can all constant evolve. 9561 static bool canConstantEvolve(Instruction *I, const Loop *L) { 9562 // An instruction outside of the loop can't be derived from a loop PHI. 9563 if (!L->contains(I)) return false; 9564 9565 if (isa<PHINode>(I)) { 9566 // We don't currently keep track of the control flow needed to evaluate 9567 // PHIs, so we cannot handle PHIs inside of loops. 9568 return L->getHeader() == I->getParent(); 9569 } 9570 9571 // If we won't be able to constant fold this expression even if the operands 9572 // are constants, bail early. 9573 return CanConstantFold(I); 9574 } 9575 9576 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 9577 /// recursing through each instruction operand until reaching a loop header phi. 9578 static PHINode * 9579 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 9580 DenseMap<Instruction *, PHINode *> &PHIMap, 9581 unsigned Depth) { 9582 if (Depth > MaxConstantEvolvingDepth) 9583 return nullptr; 9584 9585 // Otherwise, we can evaluate this instruction if all of its operands are 9586 // constant or derived from a PHI node themselves. 9587 PHINode *PHI = nullptr; 9588 for (Value *Op : UseInst->operands()) { 9589 if (isa<Constant>(Op)) continue; 9590 9591 Instruction *OpInst = dyn_cast<Instruction>(Op); 9592 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 9593 9594 PHINode *P = dyn_cast<PHINode>(OpInst); 9595 if (!P) 9596 // If this operand is already visited, reuse the prior result. 9597 // We may have P != PHI if this is the deepest point at which the 9598 // inconsistent paths meet. 9599 P = PHIMap.lookup(OpInst); 9600 if (!P) { 9601 // Recurse and memoize the results, whether a phi is found or not. 9602 // This recursive call invalidates pointers into PHIMap. 9603 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 9604 PHIMap[OpInst] = P; 9605 } 9606 if (!P) 9607 return nullptr; // Not evolving from PHI 9608 if (PHI && PHI != P) 9609 return nullptr; // Evolving from multiple different PHIs. 9610 PHI = P; 9611 } 9612 // This is a expression evolving from a constant PHI! 9613 return PHI; 9614 } 9615 9616 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 9617 /// in the loop that V is derived from. We allow arbitrary operations along the 9618 /// way, but the operands of an operation must either be constants or a value 9619 /// derived from a constant PHI. If this expression does not fit with these 9620 /// constraints, return null. 9621 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 9622 Instruction *I = dyn_cast<Instruction>(V); 9623 if (!I || !canConstantEvolve(I, L)) return nullptr; 9624 9625 if (PHINode *PN = dyn_cast<PHINode>(I)) 9626 return PN; 9627 9628 // Record non-constant instructions contained by the loop. 9629 DenseMap<Instruction *, PHINode *> PHIMap; 9630 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 9631 } 9632 9633 /// EvaluateExpression - Given an expression that passes the 9634 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 9635 /// in the loop has the value PHIVal. If we can't fold this expression for some 9636 /// reason, return null. 9637 static Constant *EvaluateExpression(Value *V, const Loop *L, 9638 DenseMap<Instruction *, Constant *> &Vals, 9639 const DataLayout &DL, 9640 const TargetLibraryInfo *TLI) { 9641 // Convenient constant check, but redundant for recursive calls. 9642 if (Constant *C = dyn_cast<Constant>(V)) return C; 9643 Instruction *I = dyn_cast<Instruction>(V); 9644 if (!I) return nullptr; 9645 9646 if (Constant *C = Vals.lookup(I)) return C; 9647 9648 // An instruction inside the loop depends on a value outside the loop that we 9649 // weren't given a mapping for, or a value such as a call inside the loop. 9650 if (!canConstantEvolve(I, L)) return nullptr; 9651 9652 // An unmapped PHI can be due to a branch or another loop inside this loop, 9653 // or due to this not being the initial iteration through a loop where we 9654 // couldn't compute the evolution of this particular PHI last time. 9655 if (isa<PHINode>(I)) return nullptr; 9656 9657 std::vector<Constant*> Operands(I->getNumOperands()); 9658 9659 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 9660 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 9661 if (!Operand) { 9662 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 9663 if (!Operands[i]) return nullptr; 9664 continue; 9665 } 9666 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 9667 Vals[Operand] = C; 9668 if (!C) return nullptr; 9669 Operands[i] = C; 9670 } 9671 9672 return ConstantFoldInstOperands(I, Operands, DL, TLI, 9673 /*AllowNonDeterministic=*/false); 9674 } 9675 9676 9677 // If every incoming value to PN except the one for BB is a specific Constant, 9678 // return that, else return nullptr. 9679 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 9680 Constant *IncomingVal = nullptr; 9681 9682 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 9683 if (PN->getIncomingBlock(i) == BB) 9684 continue; 9685 9686 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 9687 if (!CurrentVal) 9688 return nullptr; 9689 9690 if (IncomingVal != CurrentVal) { 9691 if (IncomingVal) 9692 return nullptr; 9693 IncomingVal = CurrentVal; 9694 } 9695 } 9696 9697 return IncomingVal; 9698 } 9699 9700 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 9701 /// in the header of its containing loop, we know the loop executes a 9702 /// constant number of times, and the PHI node is just a recurrence 9703 /// involving constants, fold it. 9704 Constant * 9705 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 9706 const APInt &BEs, 9707 const Loop *L) { 9708 auto [I, Inserted] = ConstantEvolutionLoopExitValue.try_emplace(PN); 9709 if (!Inserted) 9710 return I->second; 9711 9712 if (BEs.ugt(MaxBruteForceIterations)) 9713 return nullptr; // Not going to evaluate it. 9714 9715 Constant *&RetVal = I->second; 9716 9717 DenseMap<Instruction *, Constant *> CurrentIterVals; 9718 BasicBlock *Header = L->getHeader(); 9719 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9720 9721 BasicBlock *Latch = L->getLoopLatch(); 9722 if (!Latch) 9723 return nullptr; 9724 9725 for (PHINode &PHI : Header->phis()) { 9726 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9727 CurrentIterVals[&PHI] = StartCST; 9728 } 9729 if (!CurrentIterVals.count(PN)) 9730 return RetVal = nullptr; 9731 9732 Value *BEValue = PN->getIncomingValueForBlock(Latch); 9733 9734 // Execute the loop symbolically to determine the exit value. 9735 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 9736 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 9737 9738 unsigned NumIterations = BEs.getZExtValue(); // must be in range 9739 unsigned IterationNum = 0; 9740 const DataLayout &DL = getDataLayout(); 9741 for (; ; ++IterationNum) { 9742 if (IterationNum == NumIterations) 9743 return RetVal = CurrentIterVals[PN]; // Got exit value! 9744 9745 // Compute the value of the PHIs for the next iteration. 9746 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 9747 DenseMap<Instruction *, Constant *> NextIterVals; 9748 Constant *NextPHI = 9749 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9750 if (!NextPHI) 9751 return nullptr; // Couldn't evaluate! 9752 NextIterVals[PN] = NextPHI; 9753 9754 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 9755 9756 // Also evaluate the other PHI nodes. However, we don't get to stop if we 9757 // cease to be able to evaluate one of them or if they stop evolving, 9758 // because that doesn't necessarily prevent us from computing PN. 9759 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 9760 for (const auto &I : CurrentIterVals) { 9761 PHINode *PHI = dyn_cast<PHINode>(I.first); 9762 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 9763 PHIsToCompute.emplace_back(PHI, I.second); 9764 } 9765 // We use two distinct loops because EvaluateExpression may invalidate any 9766 // iterators into CurrentIterVals. 9767 for (const auto &I : PHIsToCompute) { 9768 PHINode *PHI = I.first; 9769 Constant *&NextPHI = NextIterVals[PHI]; 9770 if (!NextPHI) { // Not already computed. 9771 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9772 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9773 } 9774 if (NextPHI != I.second) 9775 StoppedEvolving = false; 9776 } 9777 9778 // If all entries in CurrentIterVals == NextIterVals then we can stop 9779 // iterating, the loop can't continue to change. 9780 if (StoppedEvolving) 9781 return RetVal = CurrentIterVals[PN]; 9782 9783 CurrentIterVals.swap(NextIterVals); 9784 } 9785 } 9786 9787 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 9788 Value *Cond, 9789 bool ExitWhen) { 9790 PHINode *PN = getConstantEvolvingPHI(Cond, L); 9791 if (!PN) return getCouldNotCompute(); 9792 9793 // If the loop is canonicalized, the PHI will have exactly two entries. 9794 // That's the only form we support here. 9795 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 9796 9797 DenseMap<Instruction *, Constant *> CurrentIterVals; 9798 BasicBlock *Header = L->getHeader(); 9799 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9800 9801 BasicBlock *Latch = L->getLoopLatch(); 9802 assert(Latch && "Should follow from NumIncomingValues == 2!"); 9803 9804 for (PHINode &PHI : Header->phis()) { 9805 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9806 CurrentIterVals[&PHI] = StartCST; 9807 } 9808 if (!CurrentIterVals.count(PN)) 9809 return getCouldNotCompute(); 9810 9811 // Okay, we find a PHI node that defines the trip count of this loop. Execute 9812 // the loop symbolically to determine when the condition gets a value of 9813 // "ExitWhen". 9814 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 9815 const DataLayout &DL = getDataLayout(); 9816 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 9817 auto *CondVal = dyn_cast_or_null<ConstantInt>( 9818 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 9819 9820 // Couldn't symbolically evaluate. 9821 if (!CondVal) return getCouldNotCompute(); 9822 9823 if (CondVal->getValue() == uint64_t(ExitWhen)) { 9824 ++NumBruteForceTripCountsComputed; 9825 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 9826 } 9827 9828 // Update all the PHI nodes for the next iteration. 9829 DenseMap<Instruction *, Constant *> NextIterVals; 9830 9831 // Create a list of which PHIs we need to compute. We want to do this before 9832 // calling EvaluateExpression on them because that may invalidate iterators 9833 // into CurrentIterVals. 9834 SmallVector<PHINode *, 8> PHIsToCompute; 9835 for (const auto &I : CurrentIterVals) { 9836 PHINode *PHI = dyn_cast<PHINode>(I.first); 9837 if (!PHI || PHI->getParent() != Header) continue; 9838 PHIsToCompute.push_back(PHI); 9839 } 9840 for (PHINode *PHI : PHIsToCompute) { 9841 Constant *&NextPHI = NextIterVals[PHI]; 9842 if (NextPHI) continue; // Already computed! 9843 9844 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9845 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9846 } 9847 CurrentIterVals.swap(NextIterVals); 9848 } 9849 9850 // Too many iterations were needed to evaluate. 9851 return getCouldNotCompute(); 9852 } 9853 9854 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 9855 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 9856 ValuesAtScopes[V]; 9857 // Check to see if we've folded this expression at this loop before. 9858 for (auto &LS : Values) 9859 if (LS.first == L) 9860 return LS.second ? LS.second : V; 9861 9862 Values.emplace_back(L, nullptr); 9863 9864 // Otherwise compute it. 9865 const SCEV *C = computeSCEVAtScope(V, L); 9866 for (auto &LS : reverse(ValuesAtScopes[V])) 9867 if (LS.first == L) { 9868 LS.second = C; 9869 if (!isa<SCEVConstant>(C)) 9870 ValuesAtScopesUsers[C].push_back({L, V}); 9871 break; 9872 } 9873 return C; 9874 } 9875 9876 /// This builds up a Constant using the ConstantExpr interface. That way, we 9877 /// will return Constants for objects which aren't represented by a 9878 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 9879 /// Returns NULL if the SCEV isn't representable as a Constant. 9880 static Constant *BuildConstantFromSCEV(const SCEV *V) { 9881 switch (V->getSCEVType()) { 9882 case scCouldNotCompute: 9883 case scAddRecExpr: 9884 case scVScale: 9885 return nullptr; 9886 case scConstant: 9887 return cast<SCEVConstant>(V)->getValue(); 9888 case scUnknown: 9889 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 9890 case scPtrToInt: { 9891 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 9892 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 9893 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 9894 9895 return nullptr; 9896 } 9897 case scTruncate: { 9898 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 9899 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 9900 return ConstantExpr::getTrunc(CastOp, ST->getType()); 9901 return nullptr; 9902 } 9903 case scAddExpr: { 9904 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 9905 Constant *C = nullptr; 9906 for (const SCEV *Op : SA->operands()) { 9907 Constant *OpC = BuildConstantFromSCEV(Op); 9908 if (!OpC) 9909 return nullptr; 9910 if (!C) { 9911 C = OpC; 9912 continue; 9913 } 9914 assert(!C->getType()->isPointerTy() && 9915 "Can only have one pointer, and it must be last"); 9916 if (OpC->getType()->isPointerTy()) { 9917 // The offsets have been converted to bytes. We can add bytes using 9918 // an i8 GEP. 9919 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 9920 OpC, C); 9921 } else { 9922 C = ConstantExpr::getAdd(C, OpC); 9923 } 9924 } 9925 return C; 9926 } 9927 case scMulExpr: 9928 case scSignExtend: 9929 case scZeroExtend: 9930 case scUDivExpr: 9931 case scSMaxExpr: 9932 case scUMaxExpr: 9933 case scSMinExpr: 9934 case scUMinExpr: 9935 case scSequentialUMinExpr: 9936 return nullptr; 9937 } 9938 llvm_unreachable("Unknown SCEV kind!"); 9939 } 9940 9941 const SCEV * 9942 ScalarEvolution::getWithOperands(const SCEV *S, 9943 SmallVectorImpl<const SCEV *> &NewOps) { 9944 switch (S->getSCEVType()) { 9945 case scTruncate: 9946 case scZeroExtend: 9947 case scSignExtend: 9948 case scPtrToInt: 9949 return getCastExpr(S->getSCEVType(), NewOps[0], S->getType()); 9950 case scAddRecExpr: { 9951 auto *AddRec = cast<SCEVAddRecExpr>(S); 9952 return getAddRecExpr(NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags()); 9953 } 9954 case scAddExpr: 9955 return getAddExpr(NewOps, cast<SCEVAddExpr>(S)->getNoWrapFlags()); 9956 case scMulExpr: 9957 return getMulExpr(NewOps, cast<SCEVMulExpr>(S)->getNoWrapFlags()); 9958 case scUDivExpr: 9959 return getUDivExpr(NewOps[0], NewOps[1]); 9960 case scUMaxExpr: 9961 case scSMaxExpr: 9962 case scUMinExpr: 9963 case scSMinExpr: 9964 return getMinMaxExpr(S->getSCEVType(), NewOps); 9965 case scSequentialUMinExpr: 9966 return getSequentialMinMaxExpr(S->getSCEVType(), NewOps); 9967 case scConstant: 9968 case scVScale: 9969 case scUnknown: 9970 return S; 9971 case scCouldNotCompute: 9972 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9973 } 9974 llvm_unreachable("Unknown SCEV kind!"); 9975 } 9976 9977 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9978 switch (V->getSCEVType()) { 9979 case scConstant: 9980 case scVScale: 9981 return V; 9982 case scAddRecExpr: { 9983 // If this is a loop recurrence for a loop that does not contain L, then we 9984 // are dealing with the final value computed by the loop. 9985 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(V); 9986 // First, attempt to evaluate each operand. 9987 // Avoid performing the look-up in the common case where the specified 9988 // expression has no loop-variant portions. 9989 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9990 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9991 if (OpAtScope == AddRec->getOperand(i)) 9992 continue; 9993 9994 // Okay, at least one of these operands is loop variant but might be 9995 // foldable. Build a new instance of the folded commutative expression. 9996 SmallVector<const SCEV *, 8> NewOps; 9997 NewOps.reserve(AddRec->getNumOperands()); 9998 append_range(NewOps, AddRec->operands().take_front(i)); 9999 NewOps.push_back(OpAtScope); 10000 for (++i; i != e; ++i) 10001 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 10002 10003 const SCEV *FoldedRec = getAddRecExpr( 10004 NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags(SCEV::FlagNW)); 10005 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 10006 // The addrec may be folded to a nonrecurrence, for example, if the 10007 // induction variable is multiplied by zero after constant folding. Go 10008 // ahead and return the folded value. 10009 if (!AddRec) 10010 return FoldedRec; 10011 break; 10012 } 10013 10014 // If the scope is outside the addrec's loop, evaluate it by using the 10015 // loop exit value of the addrec. 10016 if (!AddRec->getLoop()->contains(L)) { 10017 // To evaluate this recurrence, we need to know how many times the AddRec 10018 // loop iterates. Compute this now. 10019 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 10020 if (BackedgeTakenCount == getCouldNotCompute()) 10021 return AddRec; 10022 10023 // Then, evaluate the AddRec. 10024 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 10025 } 10026 10027 return AddRec; 10028 } 10029 case scTruncate: 10030 case scZeroExtend: 10031 case scSignExtend: 10032 case scPtrToInt: 10033 case scAddExpr: 10034 case scMulExpr: 10035 case scUDivExpr: 10036 case scUMaxExpr: 10037 case scSMaxExpr: 10038 case scUMinExpr: 10039 case scSMinExpr: 10040 case scSequentialUMinExpr: { 10041 ArrayRef<const SCEV *> Ops = V->operands(); 10042 // Avoid performing the look-up in the common case where the specified 10043 // expression has no loop-variant portions. 10044 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 10045 const SCEV *OpAtScope = getSCEVAtScope(Ops[i], L); 10046 if (OpAtScope != Ops[i]) { 10047 // Okay, at least one of these operands is loop variant but might be 10048 // foldable. Build a new instance of the folded commutative expression. 10049 SmallVector<const SCEV *, 8> NewOps; 10050 NewOps.reserve(Ops.size()); 10051 append_range(NewOps, Ops.take_front(i)); 10052 NewOps.push_back(OpAtScope); 10053 10054 for (++i; i != e; ++i) { 10055 OpAtScope = getSCEVAtScope(Ops[i], L); 10056 NewOps.push_back(OpAtScope); 10057 } 10058 10059 return getWithOperands(V, NewOps); 10060 } 10061 } 10062 // If we got here, all operands are loop invariant. 10063 return V; 10064 } 10065 case scUnknown: { 10066 // If this instruction is evolved from a constant-evolving PHI, compute the 10067 // exit value from the loop without using SCEVs. 10068 const SCEVUnknown *SU = cast<SCEVUnknown>(V); 10069 Instruction *I = dyn_cast<Instruction>(SU->getValue()); 10070 if (!I) 10071 return V; // This is some other type of SCEVUnknown, just return it. 10072 10073 if (PHINode *PN = dyn_cast<PHINode>(I)) { 10074 const Loop *CurrLoop = this->LI[I->getParent()]; 10075 // Looking for loop exit value. 10076 if (CurrLoop && CurrLoop->getParentLoop() == L && 10077 PN->getParent() == CurrLoop->getHeader()) { 10078 // Okay, there is no closed form solution for the PHI node. Check 10079 // to see if the loop that contains it has a known backedge-taken 10080 // count. If so, we may be able to force computation of the exit 10081 // value. 10082 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 10083 // This trivial case can show up in some degenerate cases where 10084 // the incoming IR has not yet been fully simplified. 10085 if (BackedgeTakenCount->isZero()) { 10086 Value *InitValue = nullptr; 10087 bool MultipleInitValues = false; 10088 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 10089 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 10090 if (!InitValue) 10091 InitValue = PN->getIncomingValue(i); 10092 else if (InitValue != PN->getIncomingValue(i)) { 10093 MultipleInitValues = true; 10094 break; 10095 } 10096 } 10097 } 10098 if (!MultipleInitValues && InitValue) 10099 return getSCEV(InitValue); 10100 } 10101 // Do we have a loop invariant value flowing around the backedge 10102 // for a loop which must execute the backedge? 10103 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 10104 isKnownNonZero(BackedgeTakenCount) && 10105 PN->getNumIncomingValues() == 2) { 10106 10107 unsigned InLoopPred = 10108 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 10109 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 10110 if (CurrLoop->isLoopInvariant(BackedgeVal)) 10111 return getSCEV(BackedgeVal); 10112 } 10113 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 10114 // Okay, we know how many times the containing loop executes. If 10115 // this is a constant evolving PHI node, get the final value at 10116 // the specified iteration number. 10117 Constant *RV = 10118 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), CurrLoop); 10119 if (RV) 10120 return getSCEV(RV); 10121 } 10122 } 10123 } 10124 10125 // Okay, this is an expression that we cannot symbolically evaluate 10126 // into a SCEV. Check to see if it's possible to symbolically evaluate 10127 // the arguments into constants, and if so, try to constant propagate the 10128 // result. This is particularly useful for computing loop exit values. 10129 if (!CanConstantFold(I)) 10130 return V; // This is some other type of SCEVUnknown, just return it. 10131 10132 SmallVector<Constant *, 4> Operands; 10133 Operands.reserve(I->getNumOperands()); 10134 bool MadeImprovement = false; 10135 for (Value *Op : I->operands()) { 10136 if (Constant *C = dyn_cast<Constant>(Op)) { 10137 Operands.push_back(C); 10138 continue; 10139 } 10140 10141 // If any of the operands is non-constant and if they are 10142 // non-integer and non-pointer, don't even try to analyze them 10143 // with scev techniques. 10144 if (!isSCEVable(Op->getType())) 10145 return V; 10146 10147 const SCEV *OrigV = getSCEV(Op); 10148 const SCEV *OpV = getSCEVAtScope(OrigV, L); 10149 MadeImprovement |= OrigV != OpV; 10150 10151 Constant *C = BuildConstantFromSCEV(OpV); 10152 if (!C) 10153 return V; 10154 assert(C->getType() == Op->getType() && "Type mismatch"); 10155 Operands.push_back(C); 10156 } 10157 10158 // Check to see if getSCEVAtScope actually made an improvement. 10159 if (!MadeImprovement) 10160 return V; // This is some other type of SCEVUnknown, just return it. 10161 10162 Constant *C = nullptr; 10163 const DataLayout &DL = getDataLayout(); 10164 C = ConstantFoldInstOperands(I, Operands, DL, &TLI, 10165 /*AllowNonDeterministic=*/false); 10166 if (!C) 10167 return V; 10168 return getSCEV(C); 10169 } 10170 case scCouldNotCompute: 10171 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 10172 } 10173 llvm_unreachable("Unknown SCEV type!"); 10174 } 10175 10176 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 10177 return getSCEVAtScope(getSCEV(V), L); 10178 } 10179 10180 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 10181 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 10182 return stripInjectiveFunctions(ZExt->getOperand()); 10183 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 10184 return stripInjectiveFunctions(SExt->getOperand()); 10185 return S; 10186 } 10187 10188 /// Finds the minimum unsigned root of the following equation: 10189 /// 10190 /// A * X = B (mod N) 10191 /// 10192 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 10193 /// A and B isn't important. 10194 /// 10195 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 10196 static const SCEV * 10197 SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 10198 SmallVectorImpl<const SCEVPredicate *> *Predicates, 10199 10200 ScalarEvolution &SE) { 10201 uint32_t BW = A.getBitWidth(); 10202 assert(BW == SE.getTypeSizeInBits(B->getType())); 10203 assert(A != 0 && "A must be non-zero."); 10204 10205 // 1. D = gcd(A, N) 10206 // 10207 // The gcd of A and N may have only one prime factor: 2. The number of 10208 // trailing zeros in A is its multiplicity 10209 uint32_t Mult2 = A.countr_zero(); 10210 // D = 2^Mult2 10211 10212 // 2. Check if B is divisible by D. 10213 // 10214 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 10215 // is not less than multiplicity of this prime factor for D. 10216 if (SE.getMinTrailingZeros(B) < Mult2) { 10217 // Check if we can prove there's no remainder using URem. 10218 const SCEV *URem = 10219 SE.getURemExpr(B, SE.getConstant(APInt::getOneBitSet(BW, Mult2))); 10220 const SCEV *Zero = SE.getZero(B->getType()); 10221 if (!SE.isKnownPredicate(CmpInst::ICMP_EQ, URem, Zero)) { 10222 // Try to add a predicate ensuring B is a multiple of 1 << Mult2. 10223 if (!Predicates) 10224 return SE.getCouldNotCompute(); 10225 10226 // Avoid adding a predicate that is known to be false. 10227 if (SE.isKnownPredicate(CmpInst::ICMP_NE, URem, Zero)) 10228 return SE.getCouldNotCompute(); 10229 Predicates->push_back(SE.getEqualPredicate(URem, Zero)); 10230 } 10231 } 10232 10233 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 10234 // modulo (N / D). 10235 // 10236 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 10237 // (N / D) in general. The inverse itself always fits into BW bits, though, 10238 // so we immediately truncate it. 10239 APInt AD = A.lshr(Mult2).trunc(BW - Mult2); // AD = A / D 10240 APInt I = AD.multiplicativeInverse().zext(BW); 10241 10242 // 4. Compute the minimum unsigned root of the equation: 10243 // I * (B / D) mod (N / D) 10244 // To simplify the computation, we factor out the divide by D: 10245 // (I * B mod N) / D 10246 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 10247 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 10248 } 10249 10250 /// For a given quadratic addrec, generate coefficients of the corresponding 10251 /// quadratic equation, multiplied by a common value to ensure that they are 10252 /// integers. 10253 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 10254 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 10255 /// were multiplied by, and BitWidth is the bit width of the original addrec 10256 /// coefficients. 10257 /// This function returns std::nullopt if the addrec coefficients are not 10258 /// compile- time constants. 10259 static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 10260 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 10261 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 10262 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 10263 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 10264 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 10265 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 10266 << *AddRec << '\n'); 10267 10268 // We currently can only solve this if the coefficients are constants. 10269 if (!LC || !MC || !NC) { 10270 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 10271 return std::nullopt; 10272 } 10273 10274 APInt L = LC->getAPInt(); 10275 APInt M = MC->getAPInt(); 10276 APInt N = NC->getAPInt(); 10277 assert(!N.isZero() && "This is not a quadratic addrec"); 10278 10279 unsigned BitWidth = LC->getAPInt().getBitWidth(); 10280 unsigned NewWidth = BitWidth + 1; 10281 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 10282 << BitWidth << '\n'); 10283 // The sign-extension (as opposed to a zero-extension) here matches the 10284 // extension used in SolveQuadraticEquationWrap (with the same motivation). 10285 N = N.sext(NewWidth); 10286 M = M.sext(NewWidth); 10287 L = L.sext(NewWidth); 10288 10289 // The increments are M, M+N, M+2N, ..., so the accumulated values are 10290 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 10291 // L+M, L+2M+N, L+3M+3N, ... 10292 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 10293 // 10294 // The equation Acc = 0 is then 10295 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 10296 // In a quadratic form it becomes: 10297 // N n^2 + (2M-N) n + 2L = 0. 10298 10299 APInt A = N; 10300 APInt B = 2 * M - A; 10301 APInt C = 2 * L; 10302 APInt T = APInt(NewWidth, 2); 10303 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 10304 << "x + " << C << ", coeff bw: " << NewWidth 10305 << ", multiplied by " << T << '\n'); 10306 return std::make_tuple(A, B, C, T, BitWidth); 10307 } 10308 10309 /// Helper function to compare optional APInts: 10310 /// (a) if X and Y both exist, return min(X, Y), 10311 /// (b) if neither X nor Y exist, return std::nullopt, 10312 /// (c) if exactly one of X and Y exists, return that value. 10313 static std::optional<APInt> MinOptional(std::optional<APInt> X, 10314 std::optional<APInt> Y) { 10315 if (X && Y) { 10316 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 10317 APInt XW = X->sext(W); 10318 APInt YW = Y->sext(W); 10319 return XW.slt(YW) ? *X : *Y; 10320 } 10321 if (!X && !Y) 10322 return std::nullopt; 10323 return X ? *X : *Y; 10324 } 10325 10326 /// Helper function to truncate an optional APInt to a given BitWidth. 10327 /// When solving addrec-related equations, it is preferable to return a value 10328 /// that has the same bit width as the original addrec's coefficients. If the 10329 /// solution fits in the original bit width, truncate it (except for i1). 10330 /// Returning a value of a different bit width may inhibit some optimizations. 10331 /// 10332 /// In general, a solution to a quadratic equation generated from an addrec 10333 /// may require BW+1 bits, where BW is the bit width of the addrec's 10334 /// coefficients. The reason is that the coefficients of the quadratic 10335 /// equation are BW+1 bits wide (to avoid truncation when converting from 10336 /// the addrec to the equation). 10337 static std::optional<APInt> TruncIfPossible(std::optional<APInt> X, 10338 unsigned BitWidth) { 10339 if (!X) 10340 return std::nullopt; 10341 unsigned W = X->getBitWidth(); 10342 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 10343 return X->trunc(BitWidth); 10344 return X; 10345 } 10346 10347 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 10348 /// iterations. The values L, M, N are assumed to be signed, and they 10349 /// should all have the same bit widths. 10350 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 10351 /// where BW is the bit width of the addrec's coefficients. 10352 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 10353 /// returned as such, otherwise the bit width of the returned value may 10354 /// be greater than BW. 10355 /// 10356 /// This function returns std::nullopt if 10357 /// (a) the addrec coefficients are not constant, or 10358 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 10359 /// like x^2 = 5, no integer solutions exist, in other cases an integer 10360 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 10361 static std::optional<APInt> 10362 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 10363 APInt A, B, C, M; 10364 unsigned BitWidth; 10365 auto T = GetQuadraticEquation(AddRec); 10366 if (!T) 10367 return std::nullopt; 10368 10369 std::tie(A, B, C, M, BitWidth) = *T; 10370 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 10371 std::optional<APInt> X = 10372 APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth + 1); 10373 if (!X) 10374 return std::nullopt; 10375 10376 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 10377 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 10378 if (!V->isZero()) 10379 return std::nullopt; 10380 10381 return TruncIfPossible(X, BitWidth); 10382 } 10383 10384 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 10385 /// iterations. The values M, N are assumed to be signed, and they 10386 /// should all have the same bit widths. 10387 /// Find the least n such that c(n) does not belong to the given range, 10388 /// while c(n-1) does. 10389 /// 10390 /// This function returns std::nullopt if 10391 /// (a) the addrec coefficients are not constant, or 10392 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 10393 /// bounds of the range. 10394 static std::optional<APInt> 10395 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 10396 const ConstantRange &Range, ScalarEvolution &SE) { 10397 assert(AddRec->getOperand(0)->isZero() && 10398 "Starting value of addrec should be 0"); 10399 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 10400 << Range << ", addrec " << *AddRec << '\n'); 10401 // This case is handled in getNumIterationsInRange. Here we can assume that 10402 // we start in the range. 10403 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 10404 "Addrec's initial value should be in range"); 10405 10406 APInt A, B, C, M; 10407 unsigned BitWidth; 10408 auto T = GetQuadraticEquation(AddRec); 10409 if (!T) 10410 return std::nullopt; 10411 10412 // Be careful about the return value: there can be two reasons for not 10413 // returning an actual number. First, if no solutions to the equations 10414 // were found, and second, if the solutions don't leave the given range. 10415 // The first case means that the actual solution is "unknown", the second 10416 // means that it's known, but not valid. If the solution is unknown, we 10417 // cannot make any conclusions. 10418 // Return a pair: the optional solution and a flag indicating if the 10419 // solution was found. 10420 auto SolveForBoundary = 10421 [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> { 10422 // Solve for signed overflow and unsigned overflow, pick the lower 10423 // solution. 10424 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 10425 << Bound << " (before multiplying by " << M << ")\n"); 10426 Bound *= M; // The quadratic equation multiplier. 10427 10428 std::optional<APInt> SO; 10429 if (BitWidth > 1) { 10430 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 10431 "signed overflow\n"); 10432 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 10433 } 10434 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 10435 "unsigned overflow\n"); 10436 std::optional<APInt> UO = 10437 APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth + 1); 10438 10439 auto LeavesRange = [&] (const APInt &X) { 10440 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 10441 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 10442 if (Range.contains(V0->getValue())) 10443 return false; 10444 // X should be at least 1, so X-1 is non-negative. 10445 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 10446 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 10447 if (Range.contains(V1->getValue())) 10448 return true; 10449 return false; 10450 }; 10451 10452 // If SolveQuadraticEquationWrap returns std::nullopt, it means that there 10453 // can be a solution, but the function failed to find it. We cannot treat it 10454 // as "no solution". 10455 if (!SO || !UO) 10456 return {std::nullopt, false}; 10457 10458 // Check the smaller value first to see if it leaves the range. 10459 // At this point, both SO and UO must have values. 10460 std::optional<APInt> Min = MinOptional(SO, UO); 10461 if (LeavesRange(*Min)) 10462 return { Min, true }; 10463 std::optional<APInt> Max = Min == SO ? UO : SO; 10464 if (LeavesRange(*Max)) 10465 return { Max, true }; 10466 10467 // Solutions were found, but were eliminated, hence the "true". 10468 return {std::nullopt, true}; 10469 }; 10470 10471 std::tie(A, B, C, M, BitWidth) = *T; 10472 // Lower bound is inclusive, subtract 1 to represent the exiting value. 10473 APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1; 10474 APInt Upper = Range.getUpper().sext(A.getBitWidth()); 10475 auto SL = SolveForBoundary(Lower); 10476 auto SU = SolveForBoundary(Upper); 10477 // If any of the solutions was unknown, no meaninigful conclusions can 10478 // be made. 10479 if (!SL.second || !SU.second) 10480 return std::nullopt; 10481 10482 // Claim: The correct solution is not some value between Min and Max. 10483 // 10484 // Justification: Assuming that Min and Max are different values, one of 10485 // them is when the first signed overflow happens, the other is when the 10486 // first unsigned overflow happens. Crossing the range boundary is only 10487 // possible via an overflow (treating 0 as a special case of it, modeling 10488 // an overflow as crossing k*2^W for some k). 10489 // 10490 // The interesting case here is when Min was eliminated as an invalid 10491 // solution, but Max was not. The argument is that if there was another 10492 // overflow between Min and Max, it would also have been eliminated if 10493 // it was considered. 10494 // 10495 // For a given boundary, it is possible to have two overflows of the same 10496 // type (signed/unsigned) without having the other type in between: this 10497 // can happen when the vertex of the parabola is between the iterations 10498 // corresponding to the overflows. This is only possible when the two 10499 // overflows cross k*2^W for the same k. In such case, if the second one 10500 // left the range (and was the first one to do so), the first overflow 10501 // would have to enter the range, which would mean that either we had left 10502 // the range before or that we started outside of it. Both of these cases 10503 // are contradictions. 10504 // 10505 // Claim: In the case where SolveForBoundary returns std::nullopt, the correct 10506 // solution is not some value between the Max for this boundary and the 10507 // Min of the other boundary. 10508 // 10509 // Justification: Assume that we had such Max_A and Min_B corresponding 10510 // to range boundaries A and B and such that Max_A < Min_B. If there was 10511 // a solution between Max_A and Min_B, it would have to be caused by an 10512 // overflow corresponding to either A or B. It cannot correspond to B, 10513 // since Min_B is the first occurrence of such an overflow. If it 10514 // corresponded to A, it would have to be either a signed or an unsigned 10515 // overflow that is larger than both eliminated overflows for A. But 10516 // between the eliminated overflows and this overflow, the values would 10517 // cover the entire value space, thus crossing the other boundary, which 10518 // is a contradiction. 10519 10520 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 10521 } 10522 10523 ScalarEvolution::ExitLimit ScalarEvolution::howFarToZero(const SCEV *V, 10524 const Loop *L, 10525 bool ControlsOnlyExit, 10526 bool AllowPredicates) { 10527 10528 // This is only used for loops with a "x != y" exit test. The exit condition 10529 // is now expressed as a single expression, V = x-y. So the exit test is 10530 // effectively V != 0. We know and take advantage of the fact that this 10531 // expression only being used in a comparison by zero context. 10532 10533 SmallVector<const SCEVPredicate *> Predicates; 10534 // If the value is a constant 10535 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10536 // If the value is already zero, the branch will execute zero times. 10537 if (C->getValue()->isZero()) return C; 10538 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10539 } 10540 10541 const SCEVAddRecExpr *AddRec = 10542 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 10543 10544 if (!AddRec && AllowPredicates) 10545 // Try to make this an AddRec using runtime tests, in the first X 10546 // iterations of this loop, where X is the SCEV expression found by the 10547 // algorithm below. 10548 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 10549 10550 if (!AddRec || AddRec->getLoop() != L) 10551 return getCouldNotCompute(); 10552 10553 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 10554 // the quadratic equation to solve it. 10555 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 10556 // We can only use this value if the chrec ends up with an exact zero 10557 // value at this index. When solving for "X*X != 5", for example, we 10558 // should not accept a root of 2. 10559 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 10560 const auto *R = cast<SCEVConstant>(getConstant(*S)); 10561 return ExitLimit(R, R, R, false, Predicates); 10562 } 10563 return getCouldNotCompute(); 10564 } 10565 10566 // Otherwise we can only handle this if it is affine. 10567 if (!AddRec->isAffine()) 10568 return getCouldNotCompute(); 10569 10570 // If this is an affine expression, the execution count of this branch is 10571 // the minimum unsigned root of the following equation: 10572 // 10573 // Start + Step*N = 0 (mod 2^BW) 10574 // 10575 // equivalent to: 10576 // 10577 // Step*N = -Start (mod 2^BW) 10578 // 10579 // where BW is the common bit width of Start and Step. 10580 10581 // Get the initial value for the loop. 10582 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 10583 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 10584 10585 if (!isLoopInvariant(Step, L)) 10586 return getCouldNotCompute(); 10587 10588 LoopGuards Guards = LoopGuards::collect(L, *this); 10589 // Specialize step for this loop so we get context sensitive facts below. 10590 const SCEV *StepWLG = applyLoopGuards(Step, Guards); 10591 10592 // For positive steps (counting up until unsigned overflow): 10593 // N = -Start/Step (as unsigned) 10594 // For negative steps (counting down to zero): 10595 // N = Start/-Step 10596 // First compute the unsigned distance from zero in the direction of Step. 10597 bool CountDown = isKnownNegative(StepWLG); 10598 if (!CountDown && !isKnownNonNegative(StepWLG)) 10599 return getCouldNotCompute(); 10600 10601 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 10602 // Handle unitary steps, which cannot wraparound. 10603 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 10604 // N = Distance (as unsigned) 10605 10606 if (match(Step, m_CombineOr(m_scev_One(), m_scev_AllOnes()))) { 10607 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, Guards)); 10608 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 10609 10610 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 10611 // we end up with a loop whose backedge-taken count is n - 1. Detect this 10612 // case, and see if we can improve the bound. 10613 // 10614 // Explicitly handling this here is necessary because getUnsignedRange 10615 // isn't context-sensitive; it doesn't know that we only care about the 10616 // range inside the loop. 10617 const SCEV *Zero = getZero(Distance->getType()); 10618 const SCEV *One = getOne(Distance->getType()); 10619 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 10620 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 10621 // If Distance + 1 doesn't overflow, we can compute the maximum distance 10622 // as "unsigned_max(Distance + 1) - 1". 10623 ConstantRange CR = getUnsignedRange(DistancePlusOne); 10624 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 10625 } 10626 return ExitLimit(Distance, getConstant(MaxBECount), Distance, false, 10627 Predicates); 10628 } 10629 10630 // If the condition controls loop exit (the loop exits only if the expression 10631 // is true) and the addition is no-wrap we can use unsigned divide to 10632 // compute the backedge count. In this case, the step may not divide the 10633 // distance, but we don't care because if the condition is "missed" the loop 10634 // will have undefined behavior due to wrapping. 10635 if (ControlsOnlyExit && AddRec->hasNoSelfWrap() && 10636 loopHasNoAbnormalExits(AddRec->getLoop())) { 10637 10638 // If the stride is zero, the loop must be infinite. In C++, most loops 10639 // are finite by assumption, in which case the step being zero implies 10640 // UB must execute if the loop is entered. 10641 if (!loopIsFiniteByAssumption(L) && !isKnownNonZero(StepWLG)) 10642 return getCouldNotCompute(); 10643 10644 const SCEV *Exact = 10645 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 10646 const SCEV *ConstantMax = getCouldNotCompute(); 10647 if (Exact != getCouldNotCompute()) { 10648 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, Guards)); 10649 ConstantMax = 10650 getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 10651 } 10652 const SCEV *SymbolicMax = 10653 isa<SCEVCouldNotCompute>(Exact) ? ConstantMax : Exact; 10654 return ExitLimit(Exact, ConstantMax, SymbolicMax, false, Predicates); 10655 } 10656 10657 // Solve the general equation. 10658 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 10659 if (!StepC || StepC->getValue()->isZero()) 10660 return getCouldNotCompute(); 10661 const SCEV *E = SolveLinEquationWithOverflow( 10662 StepC->getAPInt(), getNegativeSCEV(Start), 10663 AllowPredicates ? &Predicates : nullptr, *this); 10664 10665 const SCEV *M = E; 10666 if (E != getCouldNotCompute()) { 10667 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, Guards)); 10668 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 10669 } 10670 auto *S = isa<SCEVCouldNotCompute>(E) ? M : E; 10671 return ExitLimit(E, M, S, false, Predicates); 10672 } 10673 10674 ScalarEvolution::ExitLimit 10675 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 10676 // Loops that look like: while (X == 0) are very strange indeed. We don't 10677 // handle them yet except for the trivial case. This could be expanded in the 10678 // future as needed. 10679 10680 // If the value is a constant, check to see if it is known to be non-zero 10681 // already. If so, the backedge will execute zero times. 10682 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10683 if (!C->getValue()->isZero()) 10684 return getZero(C->getType()); 10685 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10686 } 10687 10688 // We could implement others, but I really doubt anyone writes loops like 10689 // this, and if they did, they would already be constant folded. 10690 return getCouldNotCompute(); 10691 } 10692 10693 std::pair<const BasicBlock *, const BasicBlock *> 10694 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 10695 const { 10696 // If the block has a unique predecessor, then there is no path from the 10697 // predecessor to the block that does not go through the direct edge 10698 // from the predecessor to the block. 10699 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 10700 return {Pred, BB}; 10701 10702 // A loop's header is defined to be a block that dominates the loop. 10703 // If the header has a unique predecessor outside the loop, it must be 10704 // a block that has exactly one successor that can reach the loop. 10705 if (const Loop *L = LI.getLoopFor(BB)) 10706 return {L->getLoopPredecessor(), L->getHeader()}; 10707 10708 return {nullptr, BB}; 10709 } 10710 10711 /// SCEV structural equivalence is usually sufficient for testing whether two 10712 /// expressions are equal, however for the purposes of looking for a condition 10713 /// guarding a loop, it can be useful to be a little more general, since a 10714 /// front-end may have replicated the controlling expression. 10715 static bool HasSameValue(const SCEV *A, const SCEV *B) { 10716 // Quick check to see if they are the same SCEV. 10717 if (A == B) return true; 10718 10719 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 10720 // Not all instructions that are "identical" compute the same value. For 10721 // instance, two distinct alloca instructions allocating the same type are 10722 // identical and do not read memory; but compute distinct values. 10723 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 10724 }; 10725 10726 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 10727 // two different instructions with the same value. Check for this case. 10728 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 10729 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 10730 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 10731 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 10732 if (ComputesEqualValues(AI, BI)) 10733 return true; 10734 10735 // Otherwise assume they may have a different value. 10736 return false; 10737 } 10738 10739 static bool MatchBinarySub(const SCEV *S, const SCEV *&LHS, const SCEV *&RHS) { 10740 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S); 10741 if (!Add || Add->getNumOperands() != 2) 10742 return false; 10743 if (auto *ME = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 10744 ME && ME->getNumOperands() == 2 && ME->getOperand(0)->isAllOnesValue()) { 10745 LHS = Add->getOperand(1); 10746 RHS = ME->getOperand(1); 10747 return true; 10748 } 10749 if (auto *ME = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 10750 ME && ME->getNumOperands() == 2 && ME->getOperand(0)->isAllOnesValue()) { 10751 LHS = Add->getOperand(0); 10752 RHS = ME->getOperand(1); 10753 return true; 10754 } 10755 return false; 10756 } 10757 10758 bool ScalarEvolution::SimplifyICmpOperands(CmpPredicate &Pred, const SCEV *&LHS, 10759 const SCEV *&RHS, unsigned Depth) { 10760 bool Changed = false; 10761 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 10762 // '0 != 0'. 10763 auto TrivialCase = [&](bool TriviallyTrue) { 10764 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 10765 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 10766 return true; 10767 }; 10768 // If we hit the max recursion limit bail out. 10769 if (Depth >= 3) 10770 return false; 10771 10772 // Canonicalize a constant to the right side. 10773 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 10774 // Check for both operands constant. 10775 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 10776 if (!ICmpInst::compare(LHSC->getAPInt(), RHSC->getAPInt(), Pred)) 10777 return TrivialCase(false); 10778 return TrivialCase(true); 10779 } 10780 // Otherwise swap the operands to put the constant on the right. 10781 std::swap(LHS, RHS); 10782 Pred = ICmpInst::getSwappedCmpPredicate(Pred); 10783 Changed = true; 10784 } 10785 10786 // If we're comparing an addrec with a value which is loop-invariant in the 10787 // addrec's loop, put the addrec on the left. Also make a dominance check, 10788 // as both operands could be addrecs loop-invariant in each other's loop. 10789 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 10790 const Loop *L = AR->getLoop(); 10791 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 10792 std::swap(LHS, RHS); 10793 Pred = ICmpInst::getSwappedCmpPredicate(Pred); 10794 Changed = true; 10795 } 10796 } 10797 10798 // If there's a constant operand, canonicalize comparisons with boundary 10799 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 10800 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 10801 const APInt &RA = RC->getAPInt(); 10802 10803 bool SimplifiedByConstantRange = false; 10804 10805 if (!ICmpInst::isEquality(Pred)) { 10806 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 10807 if (ExactCR.isFullSet()) 10808 return TrivialCase(true); 10809 if (ExactCR.isEmptySet()) 10810 return TrivialCase(false); 10811 10812 APInt NewRHS; 10813 CmpInst::Predicate NewPred; 10814 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 10815 ICmpInst::isEquality(NewPred)) { 10816 // We were able to convert an inequality to an equality. 10817 Pred = NewPred; 10818 RHS = getConstant(NewRHS); 10819 Changed = SimplifiedByConstantRange = true; 10820 } 10821 } 10822 10823 if (!SimplifiedByConstantRange) { 10824 switch (Pred) { 10825 default: 10826 break; 10827 case ICmpInst::ICMP_EQ: 10828 case ICmpInst::ICMP_NE: 10829 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 10830 if (RA.isZero() && MatchBinarySub(LHS, LHS, RHS)) 10831 Changed = true; 10832 break; 10833 10834 // The "Should have been caught earlier!" messages refer to the fact 10835 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 10836 // should have fired on the corresponding cases, and canonicalized the 10837 // check to trivial case. 10838 10839 case ICmpInst::ICMP_UGE: 10840 assert(!RA.isMinValue() && "Should have been caught earlier!"); 10841 Pred = ICmpInst::ICMP_UGT; 10842 RHS = getConstant(RA - 1); 10843 Changed = true; 10844 break; 10845 case ICmpInst::ICMP_ULE: 10846 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 10847 Pred = ICmpInst::ICMP_ULT; 10848 RHS = getConstant(RA + 1); 10849 Changed = true; 10850 break; 10851 case ICmpInst::ICMP_SGE: 10852 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 10853 Pred = ICmpInst::ICMP_SGT; 10854 RHS = getConstant(RA - 1); 10855 Changed = true; 10856 break; 10857 case ICmpInst::ICMP_SLE: 10858 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 10859 Pred = ICmpInst::ICMP_SLT; 10860 RHS = getConstant(RA + 1); 10861 Changed = true; 10862 break; 10863 } 10864 } 10865 } 10866 10867 // Check for obvious equality. 10868 if (HasSameValue(LHS, RHS)) { 10869 if (ICmpInst::isTrueWhenEqual(Pred)) 10870 return TrivialCase(true); 10871 if (ICmpInst::isFalseWhenEqual(Pred)) 10872 return TrivialCase(false); 10873 } 10874 10875 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 10876 // adding or subtracting 1 from one of the operands. 10877 switch (Pred) { 10878 case ICmpInst::ICMP_SLE: 10879 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 10880 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10881 SCEV::FlagNSW); 10882 Pred = ICmpInst::ICMP_SLT; 10883 Changed = true; 10884 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 10885 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 10886 SCEV::FlagNSW); 10887 Pred = ICmpInst::ICMP_SLT; 10888 Changed = true; 10889 } 10890 break; 10891 case ICmpInst::ICMP_SGE: 10892 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 10893 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 10894 SCEV::FlagNSW); 10895 Pred = ICmpInst::ICMP_SGT; 10896 Changed = true; 10897 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 10898 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10899 SCEV::FlagNSW); 10900 Pred = ICmpInst::ICMP_SGT; 10901 Changed = true; 10902 } 10903 break; 10904 case ICmpInst::ICMP_ULE: 10905 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 10906 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10907 SCEV::FlagNUW); 10908 Pred = ICmpInst::ICMP_ULT; 10909 Changed = true; 10910 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 10911 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 10912 Pred = ICmpInst::ICMP_ULT; 10913 Changed = true; 10914 } 10915 break; 10916 case ICmpInst::ICMP_UGE: 10917 if (!getUnsignedRangeMin(RHS).isMinValue()) { 10918 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 10919 Pred = ICmpInst::ICMP_UGT; 10920 Changed = true; 10921 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 10922 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10923 SCEV::FlagNUW); 10924 Pred = ICmpInst::ICMP_UGT; 10925 Changed = true; 10926 } 10927 break; 10928 default: 10929 break; 10930 } 10931 10932 // TODO: More simplifications are possible here. 10933 10934 // Recursively simplify until we either hit a recursion limit or nothing 10935 // changes. 10936 if (Changed) 10937 return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1); 10938 10939 return Changed; 10940 } 10941 10942 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 10943 return getSignedRangeMax(S).isNegative(); 10944 } 10945 10946 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 10947 return getSignedRangeMin(S).isStrictlyPositive(); 10948 } 10949 10950 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10951 return !getSignedRangeMin(S).isNegative(); 10952 } 10953 10954 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10955 return !getSignedRangeMax(S).isStrictlyPositive(); 10956 } 10957 10958 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10959 // Query push down for cases where the unsigned range is 10960 // less than sufficient. 10961 if (const auto *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 10962 return isKnownNonZero(SExt->getOperand(0)); 10963 return getUnsignedRangeMin(S) != 0; 10964 } 10965 10966 bool ScalarEvolution::isKnownToBeAPowerOfTwo(const SCEV *S, bool OrZero, 10967 bool OrNegative) { 10968 auto NonRecursive = [this, OrNegative](const SCEV *S) { 10969 if (auto *C = dyn_cast<SCEVConstant>(S)) 10970 return C->getAPInt().isPowerOf2() || 10971 (OrNegative && C->getAPInt().isNegatedPowerOf2()); 10972 10973 // The vscale_range indicates vscale is a power-of-two. 10974 return isa<SCEVVScale>(S) && F.hasFnAttribute(Attribute::VScaleRange); 10975 }; 10976 10977 if (NonRecursive(S)) 10978 return true; 10979 10980 auto *Mul = dyn_cast<SCEVMulExpr>(S); 10981 if (!Mul) 10982 return false; 10983 return all_of(Mul->operands(), NonRecursive) && (OrZero || isKnownNonZero(S)); 10984 } 10985 10986 std::pair<const SCEV *, const SCEV *> 10987 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10988 // Compute SCEV on entry of loop L. 10989 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10990 if (Start == getCouldNotCompute()) 10991 return { Start, Start }; 10992 // Compute post increment SCEV for loop L. 10993 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10994 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10995 return { Start, PostInc }; 10996 } 10997 10998 bool ScalarEvolution::isKnownViaInduction(CmpPredicate Pred, const SCEV *LHS, 10999 const SCEV *RHS) { 11000 // First collect all loops. 11001 SmallPtrSet<const Loop *, 8> LoopsUsed; 11002 getUsedLoops(LHS, LoopsUsed); 11003 getUsedLoops(RHS, LoopsUsed); 11004 11005 if (LoopsUsed.empty()) 11006 return false; 11007 11008 // Domination relationship must be a linear order on collected loops. 11009 #ifndef NDEBUG 11010 for (const auto *L1 : LoopsUsed) 11011 for (const auto *L2 : LoopsUsed) 11012 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 11013 DT.dominates(L2->getHeader(), L1->getHeader())) && 11014 "Domination relationship is not a linear order"); 11015 #endif 11016 11017 const Loop *MDL = 11018 *llvm::max_element(LoopsUsed, [&](const Loop *L1, const Loop *L2) { 11019 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 11020 }); 11021 11022 // Get init and post increment value for LHS. 11023 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 11024 // if LHS contains unknown non-invariant SCEV then bail out. 11025 if (SplitLHS.first == getCouldNotCompute()) 11026 return false; 11027 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 11028 // Get init and post increment value for RHS. 11029 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 11030 // if RHS contains unknown non-invariant SCEV then bail out. 11031 if (SplitRHS.first == getCouldNotCompute()) 11032 return false; 11033 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 11034 // It is possible that init SCEV contains an invariant load but it does 11035 // not dominate MDL and is not available at MDL loop entry, so we should 11036 // check it here. 11037 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 11038 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 11039 return false; 11040 11041 // It seems backedge guard check is faster than entry one so in some cases 11042 // it can speed up whole estimation by short circuit 11043 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 11044 SplitRHS.second) && 11045 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 11046 } 11047 11048 bool ScalarEvolution::isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, 11049 const SCEV *RHS) { 11050 // Canonicalize the inputs first. 11051 (void)SimplifyICmpOperands(Pred, LHS, RHS); 11052 11053 if (isKnownViaInduction(Pred, LHS, RHS)) 11054 return true; 11055 11056 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 11057 return true; 11058 11059 // Otherwise see what can be done with some simple reasoning. 11060 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 11061 } 11062 11063 std::optional<bool> ScalarEvolution::evaluatePredicate(CmpPredicate Pred, 11064 const SCEV *LHS, 11065 const SCEV *RHS) { 11066 if (isKnownPredicate(Pred, LHS, RHS)) 11067 return true; 11068 if (isKnownPredicate(ICmpInst::getInverseCmpPredicate(Pred), LHS, RHS)) 11069 return false; 11070 return std::nullopt; 11071 } 11072 11073 bool ScalarEvolution::isKnownPredicateAt(CmpPredicate Pred, const SCEV *LHS, 11074 const SCEV *RHS, 11075 const Instruction *CtxI) { 11076 // TODO: Analyze guards and assumes from Context's block. 11077 return isKnownPredicate(Pred, LHS, RHS) || 11078 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 11079 } 11080 11081 std::optional<bool> 11082 ScalarEvolution::evaluatePredicateAt(CmpPredicate Pred, const SCEV *LHS, 11083 const SCEV *RHS, const Instruction *CtxI) { 11084 std::optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 11085 if (KnownWithoutContext) 11086 return KnownWithoutContext; 11087 11088 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 11089 return true; 11090 if (isBasicBlockEntryGuardedByCond( 11091 CtxI->getParent(), ICmpInst::getInverseCmpPredicate(Pred), LHS, RHS)) 11092 return false; 11093 return std::nullopt; 11094 } 11095 11096 bool ScalarEvolution::isKnownOnEveryIteration(CmpPredicate Pred, 11097 const SCEVAddRecExpr *LHS, 11098 const SCEV *RHS) { 11099 const Loop *L = LHS->getLoop(); 11100 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 11101 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 11102 } 11103 11104 std::optional<ScalarEvolution::MonotonicPredicateType> 11105 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 11106 ICmpInst::Predicate Pred) { 11107 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 11108 11109 #ifndef NDEBUG 11110 // Verify an invariant: inverting the predicate should turn a monotonically 11111 // increasing change to a monotonically decreasing one, and vice versa. 11112 if (Result) { 11113 auto ResultSwapped = 11114 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 11115 11116 assert(*ResultSwapped != *Result && 11117 "monotonicity should flip as we flip the predicate"); 11118 } 11119 #endif 11120 11121 return Result; 11122 } 11123 11124 std::optional<ScalarEvolution::MonotonicPredicateType> 11125 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 11126 ICmpInst::Predicate Pred) { 11127 // A zero step value for LHS means the induction variable is essentially a 11128 // loop invariant value. We don't really depend on the predicate actually 11129 // flipping from false to true (for increasing predicates, and the other way 11130 // around for decreasing predicates), all we care about is that *if* the 11131 // predicate changes then it only changes from false to true. 11132 // 11133 // A zero step value in itself is not very useful, but there may be places 11134 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 11135 // as general as possible. 11136 11137 // Only handle LE/LT/GE/GT predicates. 11138 if (!ICmpInst::isRelational(Pred)) 11139 return std::nullopt; 11140 11141 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 11142 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 11143 "Should be greater or less!"); 11144 11145 // Check that AR does not wrap. 11146 if (ICmpInst::isUnsigned(Pred)) { 11147 if (!LHS->hasNoUnsignedWrap()) 11148 return std::nullopt; 11149 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 11150 } 11151 assert(ICmpInst::isSigned(Pred) && 11152 "Relational predicate is either signed or unsigned!"); 11153 if (!LHS->hasNoSignedWrap()) 11154 return std::nullopt; 11155 11156 const SCEV *Step = LHS->getStepRecurrence(*this); 11157 11158 if (isKnownNonNegative(Step)) 11159 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 11160 11161 if (isKnownNonPositive(Step)) 11162 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 11163 11164 return std::nullopt; 11165 } 11166 11167 std::optional<ScalarEvolution::LoopInvariantPredicate> 11168 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 11169 const SCEV *LHS, const SCEV *RHS, 11170 const Loop *L, 11171 const Instruction *CtxI) { 11172 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 11173 if (!isLoopInvariant(RHS, L)) { 11174 if (!isLoopInvariant(LHS, L)) 11175 return std::nullopt; 11176 11177 std::swap(LHS, RHS); 11178 Pred = ICmpInst::getSwappedPredicate(Pred); 11179 } 11180 11181 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11182 if (!ArLHS || ArLHS->getLoop() != L) 11183 return std::nullopt; 11184 11185 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 11186 if (!MonotonicType) 11187 return std::nullopt; 11188 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 11189 // true as the loop iterates, and the backedge is control dependent on 11190 // "ArLHS `Pred` RHS" == true then we can reason as follows: 11191 // 11192 // * if the predicate was false in the first iteration then the predicate 11193 // is never evaluated again, since the loop exits without taking the 11194 // backedge. 11195 // * if the predicate was true in the first iteration then it will 11196 // continue to be true for all future iterations since it is 11197 // monotonically increasing. 11198 // 11199 // For both the above possibilities, we can replace the loop varying 11200 // predicate with its value on the first iteration of the loop (which is 11201 // loop invariant). 11202 // 11203 // A similar reasoning applies for a monotonically decreasing predicate, by 11204 // replacing true with false and false with true in the above two bullets. 11205 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 11206 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 11207 11208 if (isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 11209 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), 11210 RHS); 11211 11212 if (!CtxI) 11213 return std::nullopt; 11214 // Try to prove via context. 11215 // TODO: Support other cases. 11216 switch (Pred) { 11217 default: 11218 break; 11219 case ICmpInst::ICMP_ULE: 11220 case ICmpInst::ICMP_ULT: { 11221 assert(ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!"); 11222 // Given preconditions 11223 // (1) ArLHS does not cross the border of positive and negative parts of 11224 // range because of: 11225 // - Positive step; (TODO: lift this limitation) 11226 // - nuw - does not cross zero boundary; 11227 // - nsw - does not cross SINT_MAX boundary; 11228 // (2) ArLHS <s RHS 11229 // (3) RHS >=s 0 11230 // we can replace the loop variant ArLHS <u RHS condition with loop 11231 // invariant Start(ArLHS) <u RHS. 11232 // 11233 // Because of (1) there are two options: 11234 // - ArLHS is always negative. It means that ArLHS <u RHS is always false; 11235 // - ArLHS is always non-negative. Because of (3) RHS is also non-negative. 11236 // It means that ArLHS <s RHS <=> ArLHS <u RHS. 11237 // Because of (2) ArLHS <u RHS is trivially true. 11238 // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0. 11239 // We can strengthen this to Start(ArLHS) <u RHS. 11240 auto SignFlippedPred = ICmpInst::getFlippedSignednessPredicate(Pred); 11241 if (ArLHS->hasNoSignedWrap() && ArLHS->isAffine() && 11242 isKnownPositive(ArLHS->getStepRecurrence(*this)) && 11243 isKnownNonNegative(RHS) && 11244 isKnownPredicateAt(SignFlippedPred, ArLHS, RHS, CtxI)) 11245 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), 11246 RHS); 11247 } 11248 } 11249 11250 return std::nullopt; 11251 } 11252 11253 std::optional<ScalarEvolution::LoopInvariantPredicate> 11254 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 11255 CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 11256 const Instruction *CtxI, const SCEV *MaxIter) { 11257 if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl( 11258 Pred, LHS, RHS, L, CtxI, MaxIter)) 11259 return LIP; 11260 if (auto *UMin = dyn_cast<SCEVUMinExpr>(MaxIter)) 11261 // Number of iterations expressed as UMIN isn't always great for expressing 11262 // the value on the last iteration. If the straightforward approach didn't 11263 // work, try the following trick: if the a predicate is invariant for X, it 11264 // is also invariant for umin(X, ...). So try to find something that works 11265 // among subexpressions of MaxIter expressed as umin. 11266 for (auto *Op : UMin->operands()) 11267 if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl( 11268 Pred, LHS, RHS, L, CtxI, Op)) 11269 return LIP; 11270 return std::nullopt; 11271 } 11272 11273 std::optional<ScalarEvolution::LoopInvariantPredicate> 11274 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl( 11275 CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 11276 const Instruction *CtxI, const SCEV *MaxIter) { 11277 // Try to prove the following set of facts: 11278 // - The predicate is monotonic in the iteration space. 11279 // - If the check does not fail on the 1st iteration: 11280 // - No overflow will happen during first MaxIter iterations; 11281 // - It will not fail on the MaxIter'th iteration. 11282 // If the check does fail on the 1st iteration, we leave the loop and no 11283 // other checks matter. 11284 11285 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 11286 if (!isLoopInvariant(RHS, L)) { 11287 if (!isLoopInvariant(LHS, L)) 11288 return std::nullopt; 11289 11290 std::swap(LHS, RHS); 11291 Pred = ICmpInst::getSwappedCmpPredicate(Pred); 11292 } 11293 11294 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 11295 if (!AR || AR->getLoop() != L) 11296 return std::nullopt; 11297 11298 // The predicate must be relational (i.e. <, <=, >=, >). 11299 if (!ICmpInst::isRelational(Pred)) 11300 return std::nullopt; 11301 11302 // TODO: Support steps other than +/- 1. 11303 const SCEV *Step = AR->getStepRecurrence(*this); 11304 auto *One = getOne(Step->getType()); 11305 auto *MinusOne = getNegativeSCEV(One); 11306 if (Step != One && Step != MinusOne) 11307 return std::nullopt; 11308 11309 // Type mismatch here means that MaxIter is potentially larger than max 11310 // unsigned value in start type, which mean we cannot prove no wrap for the 11311 // indvar. 11312 if (AR->getType() != MaxIter->getType()) 11313 return std::nullopt; 11314 11315 // Value of IV on suggested last iteration. 11316 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 11317 // Does it still meet the requirement? 11318 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 11319 return std::nullopt; 11320 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 11321 // not exceed max unsigned value of this type), this effectively proves 11322 // that there is no wrap during the iteration. To prove that there is no 11323 // signed/unsigned wrap, we need to check that 11324 // Start <= Last for step = 1 or Start >= Last for step = -1. 11325 ICmpInst::Predicate NoOverflowPred = 11326 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 11327 if (Step == MinusOne) 11328 NoOverflowPred = ICmpInst::getSwappedCmpPredicate(NoOverflowPred); 11329 const SCEV *Start = AR->getStart(); 11330 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 11331 return std::nullopt; 11332 11333 // Everything is fine. 11334 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 11335 } 11336 11337 bool ScalarEvolution::isKnownPredicateViaConstantRanges(CmpPredicate Pred, 11338 const SCEV *LHS, 11339 const SCEV *RHS) { 11340 if (HasSameValue(LHS, RHS)) 11341 return ICmpInst::isTrueWhenEqual(Pred); 11342 11343 // This code is split out from isKnownPredicate because it is called from 11344 // within isLoopEntryGuardedByCond. 11345 11346 auto CheckRanges = [&](const ConstantRange &RangeLHS, 11347 const ConstantRange &RangeRHS) { 11348 return RangeLHS.icmp(Pred, RangeRHS); 11349 }; 11350 11351 // The check at the top of the function catches the case where the values are 11352 // known to be equal. 11353 if (Pred == CmpInst::ICMP_EQ) 11354 return false; 11355 11356 if (Pred == CmpInst::ICMP_NE) { 11357 auto SL = getSignedRange(LHS); 11358 auto SR = getSignedRange(RHS); 11359 if (CheckRanges(SL, SR)) 11360 return true; 11361 auto UL = getUnsignedRange(LHS); 11362 auto UR = getUnsignedRange(RHS); 11363 if (CheckRanges(UL, UR)) 11364 return true; 11365 auto *Diff = getMinusSCEV(LHS, RHS); 11366 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 11367 } 11368 11369 if (CmpInst::isSigned(Pred)) { 11370 auto SL = getSignedRange(LHS); 11371 auto SR = getSignedRange(RHS); 11372 return CheckRanges(SL, SR); 11373 } 11374 11375 auto UL = getUnsignedRange(LHS); 11376 auto UR = getUnsignedRange(RHS); 11377 return CheckRanges(UL, UR); 11378 } 11379 11380 bool ScalarEvolution::isKnownPredicateViaNoOverflow(CmpPredicate Pred, 11381 const SCEV *LHS, 11382 const SCEV *RHS) { 11383 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 11384 // C1 and C2 are constant integers. If either X or Y are not add expressions, 11385 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 11386 // OutC1 and OutC2. 11387 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 11388 APInt &OutC1, APInt &OutC2, 11389 SCEV::NoWrapFlags ExpectedFlags) { 11390 const SCEV *XNonConstOp, *XConstOp; 11391 const SCEV *YNonConstOp, *YConstOp; 11392 SCEV::NoWrapFlags XFlagsPresent; 11393 SCEV::NoWrapFlags YFlagsPresent; 11394 11395 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 11396 XConstOp = getZero(X->getType()); 11397 XNonConstOp = X; 11398 XFlagsPresent = ExpectedFlags; 11399 } 11400 if (!isa<SCEVConstant>(XConstOp) || 11401 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 11402 return false; 11403 11404 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 11405 YConstOp = getZero(Y->getType()); 11406 YNonConstOp = Y; 11407 YFlagsPresent = ExpectedFlags; 11408 } 11409 11410 if (!isa<SCEVConstant>(YConstOp) || 11411 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 11412 return false; 11413 11414 if (YNonConstOp != XNonConstOp) 11415 return false; 11416 11417 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 11418 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 11419 11420 return true; 11421 }; 11422 11423 APInt C1; 11424 APInt C2; 11425 11426 switch (Pred) { 11427 default: 11428 break; 11429 11430 case ICmpInst::ICMP_SGE: 11431 std::swap(LHS, RHS); 11432 [[fallthrough]]; 11433 case ICmpInst::ICMP_SLE: 11434 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 11435 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 11436 return true; 11437 11438 break; 11439 11440 case ICmpInst::ICMP_SGT: 11441 std::swap(LHS, RHS); 11442 [[fallthrough]]; 11443 case ICmpInst::ICMP_SLT: 11444 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 11445 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 11446 return true; 11447 11448 break; 11449 11450 case ICmpInst::ICMP_UGE: 11451 std::swap(LHS, RHS); 11452 [[fallthrough]]; 11453 case ICmpInst::ICMP_ULE: 11454 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 11455 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNUW) && C1.ule(C2)) 11456 return true; 11457 11458 break; 11459 11460 case ICmpInst::ICMP_UGT: 11461 std::swap(LHS, RHS); 11462 [[fallthrough]]; 11463 case ICmpInst::ICMP_ULT: 11464 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 11465 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNUW) && C1.ult(C2)) 11466 return true; 11467 break; 11468 } 11469 11470 return false; 11471 } 11472 11473 bool ScalarEvolution::isKnownPredicateViaSplitting(CmpPredicate Pred, 11474 const SCEV *LHS, 11475 const SCEV *RHS) { 11476 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 11477 return false; 11478 11479 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 11480 // the stack can result in exponential time complexity. 11481 SaveAndRestore Restore(ProvingSplitPredicate, true); 11482 11483 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 11484 // 11485 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 11486 // isKnownPredicate. isKnownPredicate is more powerful, but also more 11487 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 11488 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 11489 // use isKnownPredicate later if needed. 11490 return isKnownNonNegative(RHS) && 11491 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 11492 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 11493 } 11494 11495 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, CmpPredicate Pred, 11496 const SCEV *LHS, const SCEV *RHS) { 11497 // No need to even try if we know the module has no guards. 11498 if (!HasGuards) 11499 return false; 11500 11501 return any_of(*BB, [&](const Instruction &I) { 11502 using namespace llvm::PatternMatch; 11503 11504 Value *Condition; 11505 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 11506 m_Value(Condition))) && 11507 isImpliedCond(Pred, LHS, RHS, Condition, false); 11508 }); 11509 } 11510 11511 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 11512 /// protected by a conditional between LHS and RHS. This is used to 11513 /// to eliminate casts. 11514 bool ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 11515 CmpPredicate Pred, 11516 const SCEV *LHS, 11517 const SCEV *RHS) { 11518 // Interpret a null as meaning no loop, where there is obviously no guard 11519 // (interprocedural conditions notwithstanding). Do not bother about 11520 // unreachable loops. 11521 if (!L || !DT.isReachableFromEntry(L->getHeader())) 11522 return true; 11523 11524 if (VerifyIR) 11525 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 11526 "This cannot be done on broken IR!"); 11527 11528 11529 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11530 return true; 11531 11532 BasicBlock *Latch = L->getLoopLatch(); 11533 if (!Latch) 11534 return false; 11535 11536 BranchInst *LoopContinuePredicate = 11537 dyn_cast<BranchInst>(Latch->getTerminator()); 11538 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 11539 isImpliedCond(Pred, LHS, RHS, 11540 LoopContinuePredicate->getCondition(), 11541 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 11542 return true; 11543 11544 // We don't want more than one activation of the following loops on the stack 11545 // -- that can lead to O(n!) time complexity. 11546 if (WalkingBEDominatingConds) 11547 return false; 11548 11549 SaveAndRestore ClearOnExit(WalkingBEDominatingConds, true); 11550 11551 // See if we can exploit a trip count to prove the predicate. 11552 const auto &BETakenInfo = getBackedgeTakenInfo(L); 11553 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 11554 if (LatchBECount != getCouldNotCompute()) { 11555 // We know that Latch branches back to the loop header exactly 11556 // LatchBECount times. This means the backdege condition at Latch is 11557 // equivalent to "{0,+,1} u< LatchBECount". 11558 Type *Ty = LatchBECount->getType(); 11559 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 11560 const SCEV *LoopCounter = 11561 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 11562 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 11563 LatchBECount)) 11564 return true; 11565 } 11566 11567 // Check conditions due to any @llvm.assume intrinsics. 11568 for (auto &AssumeVH : AC.assumptions()) { 11569 if (!AssumeVH) 11570 continue; 11571 auto *CI = cast<CallInst>(AssumeVH); 11572 if (!DT.dominates(CI, Latch->getTerminator())) 11573 continue; 11574 11575 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 11576 return true; 11577 } 11578 11579 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 11580 return true; 11581 11582 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 11583 DTN != HeaderDTN; DTN = DTN->getIDom()) { 11584 assert(DTN && "should reach the loop header before reaching the root!"); 11585 11586 BasicBlock *BB = DTN->getBlock(); 11587 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 11588 return true; 11589 11590 BasicBlock *PBB = BB->getSinglePredecessor(); 11591 if (!PBB) 11592 continue; 11593 11594 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 11595 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 11596 continue; 11597 11598 Value *Condition = ContinuePredicate->getCondition(); 11599 11600 // If we have an edge `E` within the loop body that dominates the only 11601 // latch, the condition guarding `E` also guards the backedge. This 11602 // reasoning works only for loops with a single latch. 11603 11604 BasicBlockEdge DominatingEdge(PBB, BB); 11605 if (DominatingEdge.isSingleEdge()) { 11606 // We're constructively (and conservatively) enumerating edges within the 11607 // loop body that dominate the latch. The dominator tree better agree 11608 // with us on this: 11609 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 11610 11611 if (isImpliedCond(Pred, LHS, RHS, Condition, 11612 BB != ContinuePredicate->getSuccessor(0))) 11613 return true; 11614 } 11615 } 11616 11617 return false; 11618 } 11619 11620 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 11621 CmpPredicate Pred, 11622 const SCEV *LHS, 11623 const SCEV *RHS) { 11624 // Do not bother proving facts for unreachable code. 11625 if (!DT.isReachableFromEntry(BB)) 11626 return true; 11627 if (VerifyIR) 11628 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 11629 "This cannot be done on broken IR!"); 11630 11631 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 11632 // the facts (a >= b && a != b) separately. A typical situation is when the 11633 // non-strict comparison is known from ranges and non-equality is known from 11634 // dominating predicates. If we are proving strict comparison, we always try 11635 // to prove non-equality and non-strict comparison separately. 11636 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 11637 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 11638 bool ProvedNonStrictComparison = false; 11639 bool ProvedNonEquality = false; 11640 11641 auto SplitAndProve = [&](std::function<bool(CmpPredicate)> Fn) -> bool { 11642 if (!ProvedNonStrictComparison) 11643 ProvedNonStrictComparison = Fn(NonStrictPredicate); 11644 if (!ProvedNonEquality) 11645 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 11646 if (ProvedNonStrictComparison && ProvedNonEquality) 11647 return true; 11648 return false; 11649 }; 11650 11651 if (ProvingStrictComparison) { 11652 auto ProofFn = [&](CmpPredicate P) { 11653 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 11654 }; 11655 if (SplitAndProve(ProofFn)) 11656 return true; 11657 } 11658 11659 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 11660 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 11661 const Instruction *CtxI = &BB->front(); 11662 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 11663 return true; 11664 if (ProvingStrictComparison) { 11665 auto ProofFn = [&](CmpPredicate P) { 11666 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 11667 }; 11668 if (SplitAndProve(ProofFn)) 11669 return true; 11670 } 11671 return false; 11672 }; 11673 11674 // Starting at the block's predecessor, climb up the predecessor chain, as long 11675 // as there are predecessors that can be found that have unique successors 11676 // leading to the original block. 11677 const Loop *ContainingLoop = LI.getLoopFor(BB); 11678 const BasicBlock *PredBB; 11679 if (ContainingLoop && ContainingLoop->getHeader() == BB) 11680 PredBB = ContainingLoop->getLoopPredecessor(); 11681 else 11682 PredBB = BB->getSinglePredecessor(); 11683 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 11684 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 11685 const BranchInst *BlockEntryPredicate = 11686 dyn_cast<BranchInst>(Pair.first->getTerminator()); 11687 if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional()) 11688 continue; 11689 11690 if (ProveViaCond(BlockEntryPredicate->getCondition(), 11691 BlockEntryPredicate->getSuccessor(0) != Pair.second)) 11692 return true; 11693 } 11694 11695 // Check conditions due to any @llvm.assume intrinsics. 11696 for (auto &AssumeVH : AC.assumptions()) { 11697 if (!AssumeVH) 11698 continue; 11699 auto *CI = cast<CallInst>(AssumeVH); 11700 if (!DT.dominates(CI, BB)) 11701 continue; 11702 11703 if (ProveViaCond(CI->getArgOperand(0), false)) 11704 return true; 11705 } 11706 11707 // Check conditions due to any @llvm.experimental.guard intrinsics. 11708 auto *GuardDecl = Intrinsic::getDeclarationIfExists( 11709 F.getParent(), Intrinsic::experimental_guard); 11710 if (GuardDecl) 11711 for (const auto *GU : GuardDecl->users()) 11712 if (const auto *Guard = dyn_cast<IntrinsicInst>(GU)) 11713 if (Guard->getFunction() == BB->getParent() && DT.dominates(Guard, BB)) 11714 if (ProveViaCond(Guard->getArgOperand(0), false)) 11715 return true; 11716 return false; 11717 } 11718 11719 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, 11720 const SCEV *LHS, 11721 const SCEV *RHS) { 11722 // Interpret a null as meaning no loop, where there is obviously no guard 11723 // (interprocedural conditions notwithstanding). 11724 if (!L) 11725 return false; 11726 11727 // Both LHS and RHS must be available at loop entry. 11728 assert(isAvailableAtLoopEntry(LHS, L) && 11729 "LHS is not available at Loop Entry"); 11730 assert(isAvailableAtLoopEntry(RHS, L) && 11731 "RHS is not available at Loop Entry"); 11732 11733 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11734 return true; 11735 11736 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 11737 } 11738 11739 bool ScalarEvolution::isImpliedCond(CmpPredicate Pred, const SCEV *LHS, 11740 const SCEV *RHS, 11741 const Value *FoundCondValue, bool Inverse, 11742 const Instruction *CtxI) { 11743 // False conditions implies anything. Do not bother analyzing it further. 11744 if (FoundCondValue == 11745 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 11746 return true; 11747 11748 if (!PendingLoopPredicates.insert(FoundCondValue).second) 11749 return false; 11750 11751 auto ClearOnExit = 11752 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 11753 11754 // Recursively handle And and Or conditions. 11755 const Value *Op0, *Op1; 11756 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 11757 if (!Inverse) 11758 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11759 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11760 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 11761 if (Inverse) 11762 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11763 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11764 } 11765 11766 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 11767 if (!ICI) return false; 11768 11769 // Now that we found a conditional branch that dominates the loop or controls 11770 // the loop latch. Check to see if it is the comparison we are looking for. 11771 CmpPredicate FoundPred; 11772 if (Inverse) 11773 FoundPred = ICI->getInverseCmpPredicate(); 11774 else 11775 FoundPred = ICI->getCmpPredicate(); 11776 11777 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 11778 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 11779 11780 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 11781 } 11782 11783 bool ScalarEvolution::isImpliedCond(CmpPredicate Pred, const SCEV *LHS, 11784 const SCEV *RHS, CmpPredicate FoundPred, 11785 const SCEV *FoundLHS, const SCEV *FoundRHS, 11786 const Instruction *CtxI) { 11787 // Balance the types. 11788 if (getTypeSizeInBits(LHS->getType()) < 11789 getTypeSizeInBits(FoundLHS->getType())) { 11790 // For unsigned and equality predicates, try to prove that both found 11791 // operands fit into narrow unsigned range. If so, try to prove facts in 11792 // narrow types. 11793 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() && 11794 !FoundRHS->getType()->isPointerTy()) { 11795 auto *NarrowType = LHS->getType(); 11796 auto *WideType = FoundLHS->getType(); 11797 auto BitWidth = getTypeSizeInBits(NarrowType); 11798 const SCEV *MaxValue = getZeroExtendExpr( 11799 getConstant(APInt::getMaxValue(BitWidth)), WideType); 11800 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 11801 MaxValue) && 11802 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 11803 MaxValue)) { 11804 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 11805 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 11806 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 11807 TruncFoundRHS, CtxI)) 11808 return true; 11809 } 11810 } 11811 11812 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) 11813 return false; 11814 if (CmpInst::isSigned(Pred)) { 11815 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 11816 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 11817 } else { 11818 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 11819 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 11820 } 11821 } else if (getTypeSizeInBits(LHS->getType()) > 11822 getTypeSizeInBits(FoundLHS->getType())) { 11823 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) 11824 return false; 11825 if (CmpInst::isSigned(FoundPred)) { 11826 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 11827 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 11828 } else { 11829 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 11830 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 11831 } 11832 } 11833 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 11834 FoundRHS, CtxI); 11835 } 11836 11837 bool ScalarEvolution::isImpliedCondBalancedTypes( 11838 CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, CmpPredicate FoundPred, 11839 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11840 assert(getTypeSizeInBits(LHS->getType()) == 11841 getTypeSizeInBits(FoundLHS->getType()) && 11842 "Types should be balanced!"); 11843 // Canonicalize the query to match the way instcombine will have 11844 // canonicalized the comparison. 11845 if (SimplifyICmpOperands(Pred, LHS, RHS)) 11846 if (LHS == RHS) 11847 return CmpInst::isTrueWhenEqual(Pred); 11848 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 11849 if (FoundLHS == FoundRHS) 11850 return CmpInst::isFalseWhenEqual(FoundPred); 11851 11852 // Check to see if we can make the LHS or RHS match. 11853 if (LHS == FoundRHS || RHS == FoundLHS) { 11854 if (isa<SCEVConstant>(RHS)) { 11855 std::swap(FoundLHS, FoundRHS); 11856 FoundPred = ICmpInst::getSwappedCmpPredicate(FoundPred); 11857 } else { 11858 std::swap(LHS, RHS); 11859 Pred = ICmpInst::getSwappedCmpPredicate(Pred); 11860 } 11861 } 11862 11863 // Check whether the found predicate is the same as the desired predicate. 11864 // FIXME: use CmpPredicate::getMatching here. 11865 if (FoundPred == static_cast<CmpInst::Predicate>(Pred)) 11866 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11867 11868 // Check whether swapping the found predicate makes it the same as the 11869 // desired predicate. 11870 // FIXME: use CmpPredicate::getMatching here. 11871 if (ICmpInst::getSwappedCmpPredicate(FoundPred) == 11872 static_cast<CmpInst::Predicate>(Pred)) { 11873 // We can write the implication 11874 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 11875 // using one of the following ways: 11876 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 11877 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 11878 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 11879 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 11880 // Forms 1. and 2. require swapping the operands of one condition. Don't 11881 // do this if it would break canonical constant/addrec ordering. 11882 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 11883 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 11884 CtxI); 11885 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 11886 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 11887 11888 // There's no clear preference between forms 3. and 4., try both. Avoid 11889 // forming getNotSCEV of pointer values as the resulting subtract is 11890 // not legal. 11891 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 11892 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 11893 FoundLHS, FoundRHS, CtxI)) 11894 return true; 11895 11896 if (!FoundLHS->getType()->isPointerTy() && 11897 !FoundRHS->getType()->isPointerTy() && 11898 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 11899 getNotSCEV(FoundRHS), CtxI)) 11900 return true; 11901 11902 return false; 11903 } 11904 11905 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 11906 CmpInst::Predicate P2) { 11907 assert(P1 != P2 && "Handled earlier!"); 11908 return CmpInst::isRelational(P2) && 11909 P1 == ICmpInst::getFlippedSignednessPredicate(P2); 11910 }; 11911 if (IsSignFlippedPredicate(Pred, FoundPred)) { 11912 // Unsigned comparison is the same as signed comparison when both the 11913 // operands are non-negative or negative. 11914 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 11915 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 11916 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11917 // Create local copies that we can freely swap and canonicalize our 11918 // conditions to "le/lt". 11919 CmpPredicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 11920 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 11921 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 11922 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 11923 CanonicalPred = ICmpInst::getSwappedCmpPredicate(CanonicalPred); 11924 CanonicalFoundPred = ICmpInst::getSwappedCmpPredicate(CanonicalFoundPred); 11925 std::swap(CanonicalLHS, CanonicalRHS); 11926 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 11927 } 11928 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 11929 "Must be!"); 11930 assert((ICmpInst::isLT(CanonicalFoundPred) || 11931 ICmpInst::isLE(CanonicalFoundPred)) && 11932 "Must be!"); 11933 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 11934 // Use implication: 11935 // x <u y && y >=s 0 --> x <s y. 11936 // If we can prove the left part, the right part is also proven. 11937 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11938 CanonicalRHS, CanonicalFoundLHS, 11939 CanonicalFoundRHS); 11940 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 11941 // Use implication: 11942 // x <s y && y <s 0 --> x <u y. 11943 // If we can prove the left part, the right part is also proven. 11944 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11945 CanonicalRHS, CanonicalFoundLHS, 11946 CanonicalFoundRHS); 11947 } 11948 11949 // Check if we can make progress by sharpening ranges. 11950 if (FoundPred == ICmpInst::ICMP_NE && 11951 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 11952 11953 const SCEVConstant *C = nullptr; 11954 const SCEV *V = nullptr; 11955 11956 if (isa<SCEVConstant>(FoundLHS)) { 11957 C = cast<SCEVConstant>(FoundLHS); 11958 V = FoundRHS; 11959 } else { 11960 C = cast<SCEVConstant>(FoundRHS); 11961 V = FoundLHS; 11962 } 11963 11964 // The guarding predicate tells us that C != V. If the known range 11965 // of V is [C, t), we can sharpen the range to [C + 1, t). The 11966 // range we consider has to correspond to same signedness as the 11967 // predicate we're interested in folding. 11968 11969 APInt Min = ICmpInst::isSigned(Pred) ? 11970 getSignedRangeMin(V) : getUnsignedRangeMin(V); 11971 11972 if (Min == C->getAPInt()) { 11973 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 11974 // This is true even if (Min + 1) wraps around -- in case of 11975 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 11976 11977 APInt SharperMin = Min + 1; 11978 11979 switch (Pred) { 11980 case ICmpInst::ICMP_SGE: 11981 case ICmpInst::ICMP_UGE: 11982 // We know V `Pred` SharperMin. If this implies LHS `Pred` 11983 // RHS, we're done. 11984 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 11985 CtxI)) 11986 return true; 11987 [[fallthrough]]; 11988 11989 case ICmpInst::ICMP_SGT: 11990 case ICmpInst::ICMP_UGT: 11991 // We know from the range information that (V `Pred` Min || 11992 // V == Min). We know from the guarding condition that !(V 11993 // == Min). This gives us 11994 // 11995 // V `Pred` Min || V == Min && !(V == Min) 11996 // => V `Pred` Min 11997 // 11998 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 11999 12000 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 12001 return true; 12002 break; 12003 12004 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 12005 case ICmpInst::ICMP_SLE: 12006 case ICmpInst::ICMP_ULE: 12007 if (isImpliedCondOperands(ICmpInst::getSwappedCmpPredicate(Pred), RHS, 12008 LHS, V, getConstant(SharperMin), CtxI)) 12009 return true; 12010 [[fallthrough]]; 12011 12012 case ICmpInst::ICMP_SLT: 12013 case ICmpInst::ICMP_ULT: 12014 if (isImpliedCondOperands(ICmpInst::getSwappedCmpPredicate(Pred), RHS, 12015 LHS, V, getConstant(Min), CtxI)) 12016 return true; 12017 break; 12018 12019 default: 12020 // No change 12021 break; 12022 } 12023 } 12024 } 12025 12026 // Check whether the actual condition is beyond sufficient. 12027 if (FoundPred == ICmpInst::ICMP_EQ) 12028 if (ICmpInst::isTrueWhenEqual(Pred)) 12029 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 12030 return true; 12031 if (Pred == ICmpInst::ICMP_NE) 12032 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 12033 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 12034 return true; 12035 12036 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS)) 12037 return true; 12038 12039 // Otherwise assume the worst. 12040 return false; 12041 } 12042 12043 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 12044 const SCEV *&L, const SCEV *&R, 12045 SCEV::NoWrapFlags &Flags) { 12046 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 12047 if (!AE || AE->getNumOperands() != 2) 12048 return false; 12049 12050 L = AE->getOperand(0); 12051 R = AE->getOperand(1); 12052 Flags = AE->getNoWrapFlags(); 12053 return true; 12054 } 12055 12056 std::optional<APInt> 12057 ScalarEvolution::computeConstantDifference(const SCEV *More, const SCEV *Less) { 12058 // We avoid subtracting expressions here because this function is usually 12059 // fairly deep in the call stack (i.e. is called many times). 12060 12061 unsigned BW = getTypeSizeInBits(More->getType()); 12062 APInt Diff(BW, 0); 12063 APInt DiffMul(BW, 1); 12064 // Try various simplifications to reduce the difference to a constant. Limit 12065 // the number of allowed simplifications to keep compile-time low. 12066 for (unsigned I = 0; I < 8; ++I) { 12067 if (More == Less) 12068 return Diff; 12069 12070 // Reduce addrecs with identical steps to their start value. 12071 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 12072 const auto *LAR = cast<SCEVAddRecExpr>(Less); 12073 const auto *MAR = cast<SCEVAddRecExpr>(More); 12074 12075 if (LAR->getLoop() != MAR->getLoop()) 12076 return std::nullopt; 12077 12078 // We look at affine expressions only; not for correctness but to keep 12079 // getStepRecurrence cheap. 12080 if (!LAR->isAffine() || !MAR->isAffine()) 12081 return std::nullopt; 12082 12083 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 12084 return std::nullopt; 12085 12086 Less = LAR->getStart(); 12087 More = MAR->getStart(); 12088 continue; 12089 } 12090 12091 // Try to match a common constant multiply. 12092 auto MatchConstMul = 12093 [](const SCEV *S) -> std::optional<std::pair<const SCEV *, APInt>> { 12094 auto *M = dyn_cast<SCEVMulExpr>(S); 12095 if (!M || M->getNumOperands() != 2 || 12096 !isa<SCEVConstant>(M->getOperand(0))) 12097 return std::nullopt; 12098 return { 12099 {M->getOperand(1), cast<SCEVConstant>(M->getOperand(0))->getAPInt()}}; 12100 }; 12101 if (auto MatchedMore = MatchConstMul(More)) { 12102 if (auto MatchedLess = MatchConstMul(Less)) { 12103 if (MatchedMore->second == MatchedLess->second) { 12104 More = MatchedMore->first; 12105 Less = MatchedLess->first; 12106 DiffMul *= MatchedMore->second; 12107 continue; 12108 } 12109 } 12110 } 12111 12112 // Try to cancel out common factors in two add expressions. 12113 SmallDenseMap<const SCEV *, int, 8> Multiplicity; 12114 auto Add = [&](const SCEV *S, int Mul) { 12115 if (auto *C = dyn_cast<SCEVConstant>(S)) { 12116 if (Mul == 1) { 12117 Diff += C->getAPInt() * DiffMul; 12118 } else { 12119 assert(Mul == -1); 12120 Diff -= C->getAPInt() * DiffMul; 12121 } 12122 } else 12123 Multiplicity[S] += Mul; 12124 }; 12125 auto Decompose = [&](const SCEV *S, int Mul) { 12126 if (isa<SCEVAddExpr>(S)) { 12127 for (const SCEV *Op : S->operands()) 12128 Add(Op, Mul); 12129 } else 12130 Add(S, Mul); 12131 }; 12132 Decompose(More, 1); 12133 Decompose(Less, -1); 12134 12135 // Check whether all the non-constants cancel out, or reduce to new 12136 // More/Less values. 12137 const SCEV *NewMore = nullptr, *NewLess = nullptr; 12138 for (const auto &[S, Mul] : Multiplicity) { 12139 if (Mul == 0) 12140 continue; 12141 if (Mul == 1) { 12142 if (NewMore) 12143 return std::nullopt; 12144 NewMore = S; 12145 } else if (Mul == -1) { 12146 if (NewLess) 12147 return std::nullopt; 12148 NewLess = S; 12149 } else 12150 return std::nullopt; 12151 } 12152 12153 // Values stayed the same, no point in trying further. 12154 if (NewMore == More || NewLess == Less) 12155 return std::nullopt; 12156 12157 More = NewMore; 12158 Less = NewLess; 12159 12160 // Reduced to constant. 12161 if (!More && !Less) 12162 return Diff; 12163 12164 // Left with variable on only one side, bail out. 12165 if (!More || !Less) 12166 return std::nullopt; 12167 } 12168 12169 // Did not reduce to constant. 12170 return std::nullopt; 12171 } 12172 12173 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 12174 CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, 12175 const SCEV *FoundRHS, const Instruction *CtxI) { 12176 // Try to recognize the following pattern: 12177 // 12178 // FoundRHS = ... 12179 // ... 12180 // loop: 12181 // FoundLHS = {Start,+,W} 12182 // context_bb: // Basic block from the same loop 12183 // known(Pred, FoundLHS, FoundRHS) 12184 // 12185 // If some predicate is known in the context of a loop, it is also known on 12186 // each iteration of this loop, including the first iteration. Therefore, in 12187 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 12188 // prove the original pred using this fact. 12189 if (!CtxI) 12190 return false; 12191 const BasicBlock *ContextBB = CtxI->getParent(); 12192 // Make sure AR varies in the context block. 12193 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 12194 const Loop *L = AR->getLoop(); 12195 // Make sure that context belongs to the loop and executes on 1st iteration 12196 // (if it ever executes at all). 12197 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 12198 return false; 12199 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 12200 return false; 12201 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 12202 } 12203 12204 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 12205 const Loop *L = AR->getLoop(); 12206 // Make sure that context belongs to the loop and executes on 1st iteration 12207 // (if it ever executes at all). 12208 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 12209 return false; 12210 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 12211 return false; 12212 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 12213 } 12214 12215 return false; 12216 } 12217 12218 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(CmpPredicate Pred, 12219 const SCEV *LHS, 12220 const SCEV *RHS, 12221 const SCEV *FoundLHS, 12222 const SCEV *FoundRHS) { 12223 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 12224 return false; 12225 12226 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 12227 if (!AddRecLHS) 12228 return false; 12229 12230 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 12231 if (!AddRecFoundLHS) 12232 return false; 12233 12234 // We'd like to let SCEV reason about control dependencies, so we constrain 12235 // both the inequalities to be about add recurrences on the same loop. This 12236 // way we can use isLoopEntryGuardedByCond later. 12237 12238 const Loop *L = AddRecFoundLHS->getLoop(); 12239 if (L != AddRecLHS->getLoop()) 12240 return false; 12241 12242 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 12243 // 12244 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 12245 // ... (2) 12246 // 12247 // Informal proof for (2), assuming (1) [*]: 12248 // 12249 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 12250 // 12251 // Then 12252 // 12253 // FoundLHS s< FoundRHS s< INT_MIN - C 12254 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 12255 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 12256 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 12257 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 12258 // <=> FoundLHS + C s< FoundRHS + C 12259 // 12260 // [*]: (1) can be proved by ruling out overflow. 12261 // 12262 // [**]: This can be proved by analyzing all the four possibilities: 12263 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 12264 // (A s>= 0, B s>= 0). 12265 // 12266 // Note: 12267 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 12268 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 12269 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 12270 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 12271 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 12272 // C)". 12273 12274 std::optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 12275 if (!LDiff) 12276 return false; 12277 std::optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 12278 if (!RDiff || *LDiff != *RDiff) 12279 return false; 12280 12281 if (LDiff->isMinValue()) 12282 return true; 12283 12284 APInt FoundRHSLimit; 12285 12286 if (Pred == CmpInst::ICMP_ULT) { 12287 FoundRHSLimit = -(*RDiff); 12288 } else { 12289 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 12290 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 12291 } 12292 12293 // Try to prove (1) or (2), as needed. 12294 return isAvailableAtLoopEntry(FoundRHS, L) && 12295 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 12296 getConstant(FoundRHSLimit)); 12297 } 12298 12299 bool ScalarEvolution::isImpliedViaMerge(CmpPredicate Pred, const SCEV *LHS, 12300 const SCEV *RHS, const SCEV *FoundLHS, 12301 const SCEV *FoundRHS, unsigned Depth) { 12302 const PHINode *LPhi = nullptr, *RPhi = nullptr; 12303 12304 auto ClearOnExit = make_scope_exit([&]() { 12305 if (LPhi) { 12306 bool Erased = PendingMerges.erase(LPhi); 12307 assert(Erased && "Failed to erase LPhi!"); 12308 (void)Erased; 12309 } 12310 if (RPhi) { 12311 bool Erased = PendingMerges.erase(RPhi); 12312 assert(Erased && "Failed to erase RPhi!"); 12313 (void)Erased; 12314 } 12315 }); 12316 12317 // Find respective Phis and check that they are not being pending. 12318 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 12319 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 12320 if (!PendingMerges.insert(Phi).second) 12321 return false; 12322 LPhi = Phi; 12323 } 12324 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 12325 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 12326 // If we detect a loop of Phi nodes being processed by this method, for 12327 // example: 12328 // 12329 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 12330 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 12331 // 12332 // we don't want to deal with a case that complex, so return conservative 12333 // answer false. 12334 if (!PendingMerges.insert(Phi).second) 12335 return false; 12336 RPhi = Phi; 12337 } 12338 12339 // If none of LHS, RHS is a Phi, nothing to do here. 12340 if (!LPhi && !RPhi) 12341 return false; 12342 12343 // If there is a SCEVUnknown Phi we are interested in, make it left. 12344 if (!LPhi) { 12345 std::swap(LHS, RHS); 12346 std::swap(FoundLHS, FoundRHS); 12347 std::swap(LPhi, RPhi); 12348 Pred = ICmpInst::getSwappedCmpPredicate(Pred); 12349 } 12350 12351 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 12352 const BasicBlock *LBB = LPhi->getParent(); 12353 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 12354 12355 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 12356 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 12357 isImpliedCondOperandsViaRanges(Pred, S1, S2, Pred, FoundLHS, FoundRHS) || 12358 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 12359 }; 12360 12361 if (RPhi && RPhi->getParent() == LBB) { 12362 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 12363 // If we compare two Phis from the same block, and for each entry block 12364 // the predicate is true for incoming values from this block, then the 12365 // predicate is also true for the Phis. 12366 for (const BasicBlock *IncBB : predecessors(LBB)) { 12367 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 12368 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 12369 if (!ProvedEasily(L, R)) 12370 return false; 12371 } 12372 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 12373 // Case two: RHS is also a Phi from the same basic block, and it is an 12374 // AddRec. It means that there is a loop which has both AddRec and Unknown 12375 // PHIs, for it we can compare incoming values of AddRec from above the loop 12376 // and latch with their respective incoming values of LPhi. 12377 // TODO: Generalize to handle loops with many inputs in a header. 12378 if (LPhi->getNumIncomingValues() != 2) return false; 12379 12380 auto *RLoop = RAR->getLoop(); 12381 auto *Predecessor = RLoop->getLoopPredecessor(); 12382 assert(Predecessor && "Loop with AddRec with no predecessor?"); 12383 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 12384 if (!ProvedEasily(L1, RAR->getStart())) 12385 return false; 12386 auto *Latch = RLoop->getLoopLatch(); 12387 assert(Latch && "Loop with AddRec with no latch?"); 12388 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 12389 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 12390 return false; 12391 } else { 12392 // In all other cases go over inputs of LHS and compare each of them to RHS, 12393 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 12394 // At this point RHS is either a non-Phi, or it is a Phi from some block 12395 // different from LBB. 12396 for (const BasicBlock *IncBB : predecessors(LBB)) { 12397 // Check that RHS is available in this block. 12398 if (!dominates(RHS, IncBB)) 12399 return false; 12400 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 12401 // Make sure L does not refer to a value from a potentially previous 12402 // iteration of a loop. 12403 if (!properlyDominates(L, LBB)) 12404 return false; 12405 if (!ProvedEasily(L, RHS)) 12406 return false; 12407 } 12408 } 12409 return true; 12410 } 12411 12412 bool ScalarEvolution::isImpliedCondOperandsViaShift(CmpPredicate Pred, 12413 const SCEV *LHS, 12414 const SCEV *RHS, 12415 const SCEV *FoundLHS, 12416 const SCEV *FoundRHS) { 12417 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make 12418 // sure that we are dealing with same LHS. 12419 if (RHS == FoundRHS) { 12420 std::swap(LHS, RHS); 12421 std::swap(FoundLHS, FoundRHS); 12422 Pred = ICmpInst::getSwappedCmpPredicate(Pred); 12423 } 12424 if (LHS != FoundLHS) 12425 return false; 12426 12427 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS); 12428 if (!SUFoundRHS) 12429 return false; 12430 12431 Value *Shiftee, *ShiftValue; 12432 12433 using namespace PatternMatch; 12434 if (match(SUFoundRHS->getValue(), 12435 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) { 12436 auto *ShifteeS = getSCEV(Shiftee); 12437 // Prove one of the following: 12438 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS 12439 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS 12440 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 12441 // ---> LHS <s RHS 12442 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 12443 // ---> LHS <=s RHS 12444 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 12445 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS); 12446 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 12447 if (isKnownNonNegative(ShifteeS)) 12448 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS); 12449 } 12450 12451 return false; 12452 } 12453 12454 bool ScalarEvolution::isImpliedCondOperands(CmpPredicate Pred, const SCEV *LHS, 12455 const SCEV *RHS, 12456 const SCEV *FoundLHS, 12457 const SCEV *FoundRHS, 12458 const Instruction *CtxI) { 12459 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, Pred, FoundLHS, FoundRHS)) 12460 return true; 12461 12462 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12463 return true; 12464 12465 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12466 return true; 12467 12468 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 12469 CtxI)) 12470 return true; 12471 12472 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 12473 FoundLHS, FoundRHS); 12474 } 12475 12476 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 12477 template <typename MinMaxExprType> 12478 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 12479 const SCEV *Candidate) { 12480 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 12481 if (!MinMaxExpr) 12482 return false; 12483 12484 return is_contained(MinMaxExpr->operands(), Candidate); 12485 } 12486 12487 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 12488 CmpPredicate Pred, const SCEV *LHS, 12489 const SCEV *RHS) { 12490 // If both sides are affine addrecs for the same loop, with equal 12491 // steps, and we know the recurrences don't wrap, then we only 12492 // need to check the predicate on the starting values. 12493 12494 if (!ICmpInst::isRelational(Pred)) 12495 return false; 12496 12497 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 12498 if (!LAR) 12499 return false; 12500 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 12501 if (!RAR) 12502 return false; 12503 if (LAR->getLoop() != RAR->getLoop()) 12504 return false; 12505 if (!LAR->isAffine() || !RAR->isAffine()) 12506 return false; 12507 12508 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 12509 return false; 12510 12511 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 12512 SCEV::FlagNSW : SCEV::FlagNUW; 12513 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 12514 return false; 12515 12516 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 12517 } 12518 12519 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 12520 /// expression? 12521 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, CmpPredicate Pred, 12522 const SCEV *LHS, const SCEV *RHS) { 12523 switch (Pred) { 12524 default: 12525 return false; 12526 12527 case ICmpInst::ICMP_SGE: 12528 std::swap(LHS, RHS); 12529 [[fallthrough]]; 12530 case ICmpInst::ICMP_SLE: 12531 return 12532 // min(A, ...) <= A 12533 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 12534 // A <= max(A, ...) 12535 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 12536 12537 case ICmpInst::ICMP_UGE: 12538 std::swap(LHS, RHS); 12539 [[fallthrough]]; 12540 case ICmpInst::ICMP_ULE: 12541 return 12542 // min(A, ...) <= A 12543 // FIXME: what about umin_seq? 12544 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 12545 // A <= max(A, ...) 12546 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 12547 } 12548 12549 llvm_unreachable("covered switch fell through?!"); 12550 } 12551 12552 bool ScalarEvolution::isImpliedViaOperations(CmpPredicate Pred, const SCEV *LHS, 12553 const SCEV *RHS, 12554 const SCEV *FoundLHS, 12555 const SCEV *FoundRHS, 12556 unsigned Depth) { 12557 assert(getTypeSizeInBits(LHS->getType()) == 12558 getTypeSizeInBits(RHS->getType()) && 12559 "LHS and RHS have different sizes?"); 12560 assert(getTypeSizeInBits(FoundLHS->getType()) == 12561 getTypeSizeInBits(FoundRHS->getType()) && 12562 "FoundLHS and FoundRHS have different sizes?"); 12563 // We want to avoid hurting the compile time with analysis of too big trees. 12564 if (Depth > MaxSCEVOperationsImplicationDepth) 12565 return false; 12566 12567 // We only want to work with GT comparison so far. 12568 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 12569 Pred = ICmpInst::getSwappedCmpPredicate(Pred); 12570 std::swap(LHS, RHS); 12571 std::swap(FoundLHS, FoundRHS); 12572 } 12573 12574 // For unsigned, try to reduce it to corresponding signed comparison. 12575 if (Pred == ICmpInst::ICMP_UGT) 12576 // We can replace unsigned predicate with its signed counterpart if all 12577 // involved values are non-negative. 12578 // TODO: We could have better support for unsigned. 12579 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 12580 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 12581 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 12582 // use this fact to prove that LHS and RHS are non-negative. 12583 const SCEV *MinusOne = getMinusOne(LHS->getType()); 12584 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 12585 FoundRHS) && 12586 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 12587 FoundRHS)) 12588 Pred = ICmpInst::ICMP_SGT; 12589 } 12590 12591 if (Pred != ICmpInst::ICMP_SGT) 12592 return false; 12593 12594 auto GetOpFromSExt = [&](const SCEV *S) { 12595 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 12596 return Ext->getOperand(); 12597 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 12598 // the constant in some cases. 12599 return S; 12600 }; 12601 12602 // Acquire values from extensions. 12603 auto *OrigLHS = LHS; 12604 auto *OrigFoundLHS = FoundLHS; 12605 LHS = GetOpFromSExt(LHS); 12606 FoundLHS = GetOpFromSExt(FoundLHS); 12607 12608 // Is the SGT predicate can be proved trivially or using the found context. 12609 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 12610 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 12611 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 12612 FoundRHS, Depth + 1); 12613 }; 12614 12615 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 12616 // We want to avoid creation of any new non-constant SCEV. Since we are 12617 // going to compare the operands to RHS, we should be certain that we don't 12618 // need any size extensions for this. So let's decline all cases when the 12619 // sizes of types of LHS and RHS do not match. 12620 // TODO: Maybe try to get RHS from sext to catch more cases? 12621 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 12622 return false; 12623 12624 // Should not overflow. 12625 if (!LHSAddExpr->hasNoSignedWrap()) 12626 return false; 12627 12628 auto *LL = LHSAddExpr->getOperand(0); 12629 auto *LR = LHSAddExpr->getOperand(1); 12630 auto *MinusOne = getMinusOne(RHS->getType()); 12631 12632 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 12633 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 12634 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 12635 }; 12636 // Try to prove the following rule: 12637 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 12638 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 12639 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 12640 return true; 12641 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 12642 Value *LL, *LR; 12643 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 12644 12645 using namespace llvm::PatternMatch; 12646 12647 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 12648 // Rules for division. 12649 // We are going to perform some comparisons with Denominator and its 12650 // derivative expressions. In general case, creating a SCEV for it may 12651 // lead to a complex analysis of the entire graph, and in particular it 12652 // can request trip count recalculation for the same loop. This would 12653 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 12654 // this, we only want to create SCEVs that are constants in this section. 12655 // So we bail if Denominator is not a constant. 12656 if (!isa<ConstantInt>(LR)) 12657 return false; 12658 12659 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 12660 12661 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 12662 // then a SCEV for the numerator already exists and matches with FoundLHS. 12663 auto *Numerator = getExistingSCEV(LL); 12664 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 12665 return false; 12666 12667 // Make sure that the numerator matches with FoundLHS and the denominator 12668 // is positive. 12669 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 12670 return false; 12671 12672 auto *DTy = Denominator->getType(); 12673 auto *FRHSTy = FoundRHS->getType(); 12674 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 12675 // One of types is a pointer and another one is not. We cannot extend 12676 // them properly to a wider type, so let us just reject this case. 12677 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 12678 // to avoid this check. 12679 return false; 12680 12681 // Given that: 12682 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 12683 auto *WTy = getWiderType(DTy, FRHSTy); 12684 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 12685 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 12686 12687 // Try to prove the following rule: 12688 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 12689 // For example, given that FoundLHS > 2. It means that FoundLHS is at 12690 // least 3. If we divide it by Denominator < 4, we will have at least 1. 12691 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 12692 if (isKnownNonPositive(RHS) && 12693 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 12694 return true; 12695 12696 // Try to prove the following rule: 12697 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 12698 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 12699 // If we divide it by Denominator > 2, then: 12700 // 1. If FoundLHS is negative, then the result is 0. 12701 // 2. If FoundLHS is non-negative, then the result is non-negative. 12702 // Anyways, the result is non-negative. 12703 auto *MinusOne = getMinusOne(WTy); 12704 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 12705 if (isKnownNegative(RHS) && 12706 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 12707 return true; 12708 } 12709 } 12710 12711 // If our expression contained SCEVUnknown Phis, and we split it down and now 12712 // need to prove something for them, try to prove the predicate for every 12713 // possible incoming values of those Phis. 12714 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 12715 return true; 12716 12717 return false; 12718 } 12719 12720 static bool isKnownPredicateExtendIdiom(CmpPredicate Pred, const SCEV *LHS, 12721 const SCEV *RHS) { 12722 // zext x u<= sext x, sext x s<= zext x 12723 const SCEV *Op; 12724 switch (Pred) { 12725 case ICmpInst::ICMP_SGE: 12726 std::swap(LHS, RHS); 12727 [[fallthrough]]; 12728 case ICmpInst::ICMP_SLE: { 12729 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 12730 return match(LHS, m_scev_SExt(m_SCEV(Op))) && 12731 match(RHS, m_scev_ZExt(m_Specific(Op))); 12732 } 12733 case ICmpInst::ICMP_UGE: 12734 std::swap(LHS, RHS); 12735 [[fallthrough]]; 12736 case ICmpInst::ICMP_ULE: { 12737 // If operand >=u 0 then ZExt == SExt. If operand <u 0 then ZExt <u SExt. 12738 return match(LHS, m_scev_ZExt(m_SCEV(Op))) && 12739 match(RHS, m_scev_SExt(m_Specific(Op))); 12740 } 12741 default: 12742 return false; 12743 }; 12744 llvm_unreachable("unhandled case"); 12745 } 12746 12747 bool ScalarEvolution::isKnownViaNonRecursiveReasoning(CmpPredicate Pred, 12748 const SCEV *LHS, 12749 const SCEV *RHS) { 12750 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 12751 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 12752 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 12753 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 12754 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 12755 } 12756 12757 bool ScalarEvolution::isImpliedCondOperandsHelper(CmpPredicate Pred, 12758 const SCEV *LHS, 12759 const SCEV *RHS, 12760 const SCEV *FoundLHS, 12761 const SCEV *FoundRHS) { 12762 switch (Pred) { 12763 default: 12764 llvm_unreachable("Unexpected CmpPredicate value!"); 12765 case ICmpInst::ICMP_EQ: 12766 case ICmpInst::ICMP_NE: 12767 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 12768 return true; 12769 break; 12770 case ICmpInst::ICMP_SLT: 12771 case ICmpInst::ICMP_SLE: 12772 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 12773 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 12774 return true; 12775 break; 12776 case ICmpInst::ICMP_SGT: 12777 case ICmpInst::ICMP_SGE: 12778 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 12779 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 12780 return true; 12781 break; 12782 case ICmpInst::ICMP_ULT: 12783 case ICmpInst::ICMP_ULE: 12784 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 12785 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 12786 return true; 12787 break; 12788 case ICmpInst::ICMP_UGT: 12789 case ICmpInst::ICMP_UGE: 12790 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 12791 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 12792 return true; 12793 break; 12794 } 12795 12796 // Maybe it can be proved via operations? 12797 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12798 return true; 12799 12800 return false; 12801 } 12802 12803 bool ScalarEvolution::isImpliedCondOperandsViaRanges( 12804 CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, CmpPredicate FoundPred, 12805 const SCEV *FoundLHS, const SCEV *FoundRHS) { 12806 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 12807 // The restriction on `FoundRHS` be lifted easily -- it exists only to 12808 // reduce the compile time impact of this optimization. 12809 return false; 12810 12811 std::optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 12812 if (!Addend) 12813 return false; 12814 12815 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 12816 12817 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 12818 // antecedent "`FoundLHS` `FoundPred` `FoundRHS`". 12819 ConstantRange FoundLHSRange = 12820 ConstantRange::makeExactICmpRegion(FoundPred, ConstFoundRHS); 12821 12822 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 12823 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 12824 12825 // We can also compute the range of values for `LHS` that satisfy the 12826 // consequent, "`LHS` `Pred` `RHS`": 12827 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 12828 // The antecedent implies the consequent if every value of `LHS` that 12829 // satisfies the antecedent also satisfies the consequent. 12830 return LHSRange.icmp(Pred, ConstRHS); 12831 } 12832 12833 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 12834 bool IsSigned) { 12835 assert(isKnownPositive(Stride) && "Positive stride expected!"); 12836 12837 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12838 const SCEV *One = getOne(Stride->getType()); 12839 12840 if (IsSigned) { 12841 APInt MaxRHS = getSignedRangeMax(RHS); 12842 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 12843 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12844 12845 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 12846 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 12847 } 12848 12849 APInt MaxRHS = getUnsignedRangeMax(RHS); 12850 APInt MaxValue = APInt::getMaxValue(BitWidth); 12851 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12852 12853 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 12854 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 12855 } 12856 12857 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 12858 bool IsSigned) { 12859 12860 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12861 const SCEV *One = getOne(Stride->getType()); 12862 12863 if (IsSigned) { 12864 APInt MinRHS = getSignedRangeMin(RHS); 12865 APInt MinValue = APInt::getSignedMinValue(BitWidth); 12866 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12867 12868 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 12869 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 12870 } 12871 12872 APInt MinRHS = getUnsignedRangeMin(RHS); 12873 APInt MinValue = APInt::getMinValue(BitWidth); 12874 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12875 12876 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 12877 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 12878 } 12879 12880 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 12881 // umin(N, 1) + floor((N - umin(N, 1)) / D) 12882 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 12883 // expression fixes the case of N=0. 12884 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 12885 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 12886 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 12887 } 12888 12889 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 12890 const SCEV *Stride, 12891 const SCEV *End, 12892 unsigned BitWidth, 12893 bool IsSigned) { 12894 // The logic in this function assumes we can represent a positive stride. 12895 // If we can't, the backedge-taken count must be zero. 12896 if (IsSigned && BitWidth == 1) 12897 return getZero(Stride->getType()); 12898 12899 // This code below only been closely audited for negative strides in the 12900 // unsigned comparison case, it may be correct for signed comparison, but 12901 // that needs to be established. 12902 if (IsSigned && isKnownNegative(Stride)) 12903 return getCouldNotCompute(); 12904 12905 // Calculate the maximum backedge count based on the range of values 12906 // permitted by Start, End, and Stride. 12907 APInt MinStart = 12908 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 12909 12910 APInt MinStride = 12911 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 12912 12913 // We assume either the stride is positive, or the backedge-taken count 12914 // is zero. So force StrideForMaxBECount to be at least one. 12915 APInt One(BitWidth, 1); 12916 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 12917 : APIntOps::umax(One, MinStride); 12918 12919 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 12920 : APInt::getMaxValue(BitWidth); 12921 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 12922 12923 // Although End can be a MAX expression we estimate MaxEnd considering only 12924 // the case End = RHS of the loop termination condition. This is safe because 12925 // in the other case (End - Start) is zero, leading to a zero maximum backedge 12926 // taken count. 12927 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 12928 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 12929 12930 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 12931 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 12932 : APIntOps::umax(MaxEnd, MinStart); 12933 12934 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 12935 getConstant(StrideForMaxBECount) /* Step */); 12936 } 12937 12938 ScalarEvolution::ExitLimit 12939 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 12940 const Loop *L, bool IsSigned, 12941 bool ControlsOnlyExit, bool AllowPredicates) { 12942 SmallVector<const SCEVPredicate *> Predicates; 12943 12944 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12945 bool PredicatedIV = false; 12946 if (!IV) { 12947 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 12948 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 12949 if (AR && AR->getLoop() == L && AR->isAffine()) { 12950 auto canProveNUW = [&]() { 12951 // We can use the comparison to infer no-wrap flags only if it fully 12952 // controls the loop exit. 12953 if (!ControlsOnlyExit) 12954 return false; 12955 12956 if (!isLoopInvariant(RHS, L)) 12957 return false; 12958 12959 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 12960 // We need the sequence defined by AR to strictly increase in the 12961 // unsigned integer domain for the logic below to hold. 12962 return false; 12963 12964 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 12965 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 12966 // If RHS <=u Limit, then there must exist a value V in the sequence 12967 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 12968 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 12969 // overflow occurs. This limit also implies that a signed comparison 12970 // (in the wide bitwidth) is equivalent to an unsigned comparison as 12971 // the high bits on both sides must be zero. 12972 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 12973 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 12974 Limit = Limit.zext(OuterBitWidth); 12975 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 12976 }; 12977 auto Flags = AR->getNoWrapFlags(); 12978 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 12979 Flags = setFlags(Flags, SCEV::FlagNUW); 12980 12981 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 12982 if (AR->hasNoUnsignedWrap()) { 12983 // Emulate what getZeroExtendExpr would have done during construction 12984 // if we'd been able to infer the fact just above at that time. 12985 const SCEV *Step = AR->getStepRecurrence(*this); 12986 Type *Ty = ZExt->getType(); 12987 auto *S = getAddRecExpr( 12988 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 12989 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 12990 IV = dyn_cast<SCEVAddRecExpr>(S); 12991 } 12992 } 12993 } 12994 } 12995 12996 12997 if (!IV && AllowPredicates) { 12998 // Try to make this an AddRec using runtime tests, in the first X 12999 // iterations of this loop, where X is the SCEV expression found by the 13000 // algorithm below. 13001 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 13002 PredicatedIV = true; 13003 } 13004 13005 // Avoid weird loops 13006 if (!IV || IV->getLoop() != L || !IV->isAffine()) 13007 return getCouldNotCompute(); 13008 13009 // A precondition of this method is that the condition being analyzed 13010 // reaches an exiting branch which dominates the latch. Given that, we can 13011 // assume that an increment which violates the nowrap specification and 13012 // produces poison must cause undefined behavior when the resulting poison 13013 // value is branched upon and thus we can conclude that the backedge is 13014 // taken no more often than would be required to produce that poison value. 13015 // Note that a well defined loop can exit on the iteration which violates 13016 // the nowrap specification if there is another exit (either explicit or 13017 // implicit/exceptional) which causes the loop to execute before the 13018 // exiting instruction we're analyzing would trigger UB. 13019 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 13020 bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType); 13021 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 13022 13023 const SCEV *Stride = IV->getStepRecurrence(*this); 13024 13025 bool PositiveStride = isKnownPositive(Stride); 13026 13027 // Avoid negative or zero stride values. 13028 if (!PositiveStride) { 13029 // We can compute the correct backedge taken count for loops with unknown 13030 // strides if we can prove that the loop is not an infinite loop with side 13031 // effects. Here's the loop structure we are trying to handle - 13032 // 13033 // i = start 13034 // do { 13035 // A[i] = i; 13036 // i += s; 13037 // } while (i < end); 13038 // 13039 // The backedge taken count for such loops is evaluated as - 13040 // (max(end, start + stride) - start - 1) /u stride 13041 // 13042 // The additional preconditions that we need to check to prove correctness 13043 // of the above formula is as follows - 13044 // 13045 // a) IV is either nuw or nsw depending upon signedness (indicated by the 13046 // NoWrap flag). 13047 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 13048 // no side effects within the loop) 13049 // c) loop has a single static exit (with no abnormal exits) 13050 // 13051 // Precondition a) implies that if the stride is negative, this is a single 13052 // trip loop. The backedge taken count formula reduces to zero in this case. 13053 // 13054 // Precondition b) and c) combine to imply that if rhs is invariant in L, 13055 // then a zero stride means the backedge can't be taken without executing 13056 // undefined behavior. 13057 // 13058 // The positive stride case is the same as isKnownPositive(Stride) returning 13059 // true (original behavior of the function). 13060 // 13061 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 13062 !loopHasNoAbnormalExits(L)) 13063 return getCouldNotCompute(); 13064 13065 if (!isKnownNonZero(Stride)) { 13066 // If we have a step of zero, and RHS isn't invariant in L, we don't know 13067 // if it might eventually be greater than start and if so, on which 13068 // iteration. We can't even produce a useful upper bound. 13069 if (!isLoopInvariant(RHS, L)) 13070 return getCouldNotCompute(); 13071 13072 // We allow a potentially zero stride, but we need to divide by stride 13073 // below. Since the loop can't be infinite and this check must control 13074 // the sole exit, we can infer the exit must be taken on the first 13075 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 13076 // we know the numerator in the divides below must be zero, so we can 13077 // pick an arbitrary non-zero value for the denominator (e.g. stride) 13078 // and produce the right result. 13079 // FIXME: Handle the case where Stride is poison? 13080 auto wouldZeroStrideBeUB = [&]() { 13081 // Proof by contradiction. Suppose the stride were zero. If we can 13082 // prove that the backedge *is* taken on the first iteration, then since 13083 // we know this condition controls the sole exit, we must have an 13084 // infinite loop. We can't have a (well defined) infinite loop per 13085 // check just above. 13086 // Note: The (Start - Stride) term is used to get the start' term from 13087 // (start' + stride,+,stride). Remember that we only care about the 13088 // result of this expression when stride == 0 at runtime. 13089 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 13090 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 13091 }; 13092 if (!wouldZeroStrideBeUB()) { 13093 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 13094 } 13095 } 13096 } else if (!NoWrap) { 13097 // Avoid proven overflow cases: this will ensure that the backedge taken 13098 // count will not generate any unsigned overflow. 13099 if (canIVOverflowOnLT(RHS, Stride, IsSigned)) 13100 return getCouldNotCompute(); 13101 } 13102 13103 // On all paths just preceeding, we established the following invariant: 13104 // IV can be assumed not to overflow up to and including the exiting 13105 // iteration. We proved this in one of two ways: 13106 // 1) We can show overflow doesn't occur before the exiting iteration 13107 // 1a) canIVOverflowOnLT, and b) step of one 13108 // 2) We can show that if overflow occurs, the loop must execute UB 13109 // before any possible exit. 13110 // Note that we have not yet proved RHS invariant (in general). 13111 13112 const SCEV *Start = IV->getStart(); 13113 13114 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 13115 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 13116 // Use integer-typed versions for actual computation; we can't subtract 13117 // pointers in general. 13118 const SCEV *OrigStart = Start; 13119 const SCEV *OrigRHS = RHS; 13120 if (Start->getType()->isPointerTy()) { 13121 Start = getLosslessPtrToIntExpr(Start); 13122 if (isa<SCEVCouldNotCompute>(Start)) 13123 return Start; 13124 } 13125 if (RHS->getType()->isPointerTy()) { 13126 RHS = getLosslessPtrToIntExpr(RHS); 13127 if (isa<SCEVCouldNotCompute>(RHS)) 13128 return RHS; 13129 } 13130 13131 const SCEV *End = nullptr, *BECount = nullptr, 13132 *BECountIfBackedgeTaken = nullptr; 13133 if (!isLoopInvariant(RHS, L)) { 13134 const auto *RHSAddRec = dyn_cast<SCEVAddRecExpr>(RHS); 13135 if (PositiveStride && RHSAddRec != nullptr && RHSAddRec->getLoop() == L && 13136 RHSAddRec->getNoWrapFlags()) { 13137 // The structure of loop we are trying to calculate backedge count of: 13138 // 13139 // left = left_start 13140 // right = right_start 13141 // 13142 // while(left < right){ 13143 // ... do something here ... 13144 // left += s1; // stride of left is s1 (s1 > 0) 13145 // right += s2; // stride of right is s2 (s2 < 0) 13146 // } 13147 // 13148 13149 const SCEV *RHSStart = RHSAddRec->getStart(); 13150 const SCEV *RHSStride = RHSAddRec->getStepRecurrence(*this); 13151 13152 // If Stride - RHSStride is positive and does not overflow, we can write 13153 // backedge count as -> 13154 // ceil((End - Start) /u (Stride - RHSStride)) 13155 // Where, End = max(RHSStart, Start) 13156 13157 // Check if RHSStride < 0 and Stride - RHSStride will not overflow. 13158 if (isKnownNegative(RHSStride) && 13159 willNotOverflow(Instruction::Sub, /*Signed=*/true, Stride, 13160 RHSStride)) { 13161 13162 const SCEV *Denominator = getMinusSCEV(Stride, RHSStride); 13163 if (isKnownPositive(Denominator)) { 13164 End = IsSigned ? getSMaxExpr(RHSStart, Start) 13165 : getUMaxExpr(RHSStart, Start); 13166 13167 // We can do this because End >= Start, as End = max(RHSStart, Start) 13168 const SCEV *Delta = getMinusSCEV(End, Start); 13169 13170 BECount = getUDivCeilSCEV(Delta, Denominator); 13171 BECountIfBackedgeTaken = 13172 getUDivCeilSCEV(getMinusSCEV(RHSStart, Start), Denominator); 13173 } 13174 } 13175 } 13176 if (BECount == nullptr) { 13177 // If we cannot calculate ExactBECount, we can calculate the MaxBECount, 13178 // given the start, stride and max value for the end bound of the 13179 // loop (RHS), and the fact that IV does not overflow (which is 13180 // checked above). 13181 const SCEV *MaxBECount = computeMaxBECountForLT( 13182 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 13183 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 13184 MaxBECount, false /*MaxOrZero*/, Predicates); 13185 } 13186 } else { 13187 // We use the expression (max(End,Start)-Start)/Stride to describe the 13188 // backedge count, as if the backedge is taken at least once 13189 // max(End,Start) is End and so the result is as above, and if not 13190 // max(End,Start) is Start so we get a backedge count of zero. 13191 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 13192 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 13193 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 13194 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 13195 // Can we prove (max(RHS,Start) > Start - Stride? 13196 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 13197 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 13198 // In this case, we can use a refined formula for computing backedge 13199 // taken count. The general formula remains: 13200 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 13201 // We want to use the alternate formula: 13202 // "((End - 1) - (Start - Stride)) /u Stride" 13203 // Let's do a quick case analysis to show these are equivalent under 13204 // our precondition that max(RHS,Start) > Start - Stride. 13205 // * For RHS <= Start, the backedge-taken count must be zero. 13206 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 13207 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 13208 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 13209 // of Stride. For 0 stride, we've use umin(1,Stride) above, 13210 // reducing this to the stride of 1 case. 13211 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil 13212 // Stride". 13213 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 13214 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 13215 // "((RHS - (Start - Stride) - 1) /u Stride". 13216 // Our preconditions trivially imply no overflow in that form. 13217 const SCEV *MinusOne = getMinusOne(Stride->getType()); 13218 const SCEV *Numerator = 13219 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 13220 BECount = getUDivExpr(Numerator, Stride); 13221 } 13222 13223 if (!BECount) { 13224 auto canProveRHSGreaterThanEqualStart = [&]() { 13225 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 13226 const SCEV *GuardedRHS = applyLoopGuards(OrigRHS, L); 13227 const SCEV *GuardedStart = applyLoopGuards(OrigStart, L); 13228 13229 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart) || 13230 isKnownPredicate(CondGE, GuardedRHS, GuardedStart)) 13231 return true; 13232 13233 // (RHS > Start - 1) implies RHS >= Start. 13234 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 13235 // "Start - 1" doesn't overflow. 13236 // * For signed comparison, if Start - 1 does overflow, it's equal 13237 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 13238 // * For unsigned comparison, if Start - 1 does overflow, it's equal 13239 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 13240 // 13241 // FIXME: Should isLoopEntryGuardedByCond do this for us? 13242 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 13243 auto *StartMinusOne = 13244 getAddExpr(OrigStart, getMinusOne(OrigStart->getType())); 13245 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 13246 }; 13247 13248 // If we know that RHS >= Start in the context of loop, then we know 13249 // that max(RHS, Start) = RHS at this point. 13250 if (canProveRHSGreaterThanEqualStart()) { 13251 End = RHS; 13252 } else { 13253 // If RHS < Start, the backedge will be taken zero times. So in 13254 // general, we can write the backedge-taken count as: 13255 // 13256 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 13257 // 13258 // We convert it to the following to make it more convenient for SCEV: 13259 // 13260 // ceil(max(RHS, Start) - Start) / Stride 13261 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 13262 13263 // See what would happen if we assume the backedge is taken. This is 13264 // used to compute MaxBECount. 13265 BECountIfBackedgeTaken = 13266 getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 13267 } 13268 13269 // At this point, we know: 13270 // 13271 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 13272 // 2. The index variable doesn't overflow. 13273 // 13274 // Therefore, we know N exists such that 13275 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 13276 // doesn't overflow. 13277 // 13278 // Using this information, try to prove whether the addition in 13279 // "(Start - End) + (Stride - 1)" has unsigned overflow. 13280 const SCEV *One = getOne(Stride->getType()); 13281 bool MayAddOverflow = [&] { 13282 if (isKnownToBeAPowerOfTwo(Stride)) { 13283 // Suppose Stride is a power of two, and Start/End are unsigned 13284 // integers. Let UMAX be the largest representable unsigned 13285 // integer. 13286 // 13287 // By the preconditions of this function, we know 13288 // "(Start + Stride * N) >= End", and this doesn't overflow. 13289 // As a formula: 13290 // 13291 // End <= (Start + Stride * N) <= UMAX 13292 // 13293 // Subtracting Start from all the terms: 13294 // 13295 // End - Start <= Stride * N <= UMAX - Start 13296 // 13297 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 13298 // 13299 // End - Start <= Stride * N <= UMAX 13300 // 13301 // Stride * N is a multiple of Stride. Therefore, 13302 // 13303 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 13304 // 13305 // Since Stride is a power of two, UMAX + 1 is divisible by 13306 // Stride. Therefore, UMAX mod Stride == Stride - 1. So we can 13307 // write: 13308 // 13309 // End - Start <= Stride * N <= UMAX - Stride - 1 13310 // 13311 // Dropping the middle term: 13312 // 13313 // End - Start <= UMAX - Stride - 1 13314 // 13315 // Adding Stride - 1 to both sides: 13316 // 13317 // (End - Start) + (Stride - 1) <= UMAX 13318 // 13319 // In other words, the addition doesn't have unsigned overflow. 13320 // 13321 // A similar proof works if we treat Start/End as signed values. 13322 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" 13323 // to use signed max instead of unsigned max. Note that we're 13324 // trying to prove a lack of unsigned overflow in either case. 13325 return false; 13326 } 13327 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 13328 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End 13329 // - 1. If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 13330 // <u End. If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 13331 // 1 <s End. 13332 // 13333 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == 13334 // End. 13335 return false; 13336 } 13337 return true; 13338 }(); 13339 13340 const SCEV *Delta = getMinusSCEV(End, Start); 13341 if (!MayAddOverflow) { 13342 // floor((D + (S - 1)) / S) 13343 // We prefer this formulation if it's legal because it's fewer 13344 // operations. 13345 BECount = 13346 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 13347 } else { 13348 BECount = getUDivCeilSCEV(Delta, Stride); 13349 } 13350 } 13351 } 13352 13353 const SCEV *ConstantMaxBECount; 13354 bool MaxOrZero = false; 13355 if (isa<SCEVConstant>(BECount)) { 13356 ConstantMaxBECount = BECount; 13357 } else if (BECountIfBackedgeTaken && 13358 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 13359 // If we know exactly how many times the backedge will be taken if it's 13360 // taken at least once, then the backedge count will either be that or 13361 // zero. 13362 ConstantMaxBECount = BECountIfBackedgeTaken; 13363 MaxOrZero = true; 13364 } else { 13365 ConstantMaxBECount = computeMaxBECountForLT( 13366 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 13367 } 13368 13369 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) && 13370 !isa<SCEVCouldNotCompute>(BECount)) 13371 ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount)); 13372 13373 const SCEV *SymbolicMaxBECount = 13374 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; 13375 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero, 13376 Predicates); 13377 } 13378 13379 ScalarEvolution::ExitLimit ScalarEvolution::howManyGreaterThans( 13380 const SCEV *LHS, const SCEV *RHS, const Loop *L, bool IsSigned, 13381 bool ControlsOnlyExit, bool AllowPredicates) { 13382 SmallVector<const SCEVPredicate *> Predicates; 13383 // We handle only IV > Invariant 13384 if (!isLoopInvariant(RHS, L)) 13385 return getCouldNotCompute(); 13386 13387 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 13388 if (!IV && AllowPredicates) 13389 // Try to make this an AddRec using runtime tests, in the first X 13390 // iterations of this loop, where X is the SCEV expression found by the 13391 // algorithm below. 13392 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 13393 13394 // Avoid weird loops 13395 if (!IV || IV->getLoop() != L || !IV->isAffine()) 13396 return getCouldNotCompute(); 13397 13398 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 13399 bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType); 13400 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 13401 13402 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 13403 13404 // Avoid negative or zero stride values 13405 if (!isKnownPositive(Stride)) 13406 return getCouldNotCompute(); 13407 13408 // Avoid proven overflow cases: this will ensure that the backedge taken count 13409 // will not generate any unsigned overflow. Relaxed no-overflow conditions 13410 // exploit NoWrapFlags, allowing to optimize in presence of undefined 13411 // behaviors like the case of C language. 13412 if (!Stride->isOne() && !NoWrap) 13413 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 13414 return getCouldNotCompute(); 13415 13416 const SCEV *Start = IV->getStart(); 13417 const SCEV *End = RHS; 13418 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 13419 // If we know that Start >= RHS in the context of loop, then we know that 13420 // min(RHS, Start) = RHS at this point. 13421 if (isLoopEntryGuardedByCond( 13422 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 13423 End = RHS; 13424 else 13425 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 13426 } 13427 13428 if (Start->getType()->isPointerTy()) { 13429 Start = getLosslessPtrToIntExpr(Start); 13430 if (isa<SCEVCouldNotCompute>(Start)) 13431 return Start; 13432 } 13433 if (End->getType()->isPointerTy()) { 13434 End = getLosslessPtrToIntExpr(End); 13435 if (isa<SCEVCouldNotCompute>(End)) 13436 return End; 13437 } 13438 13439 // Compute ((Start - End) + (Stride - 1)) / Stride. 13440 // FIXME: This can overflow. Holding off on fixing this for now; 13441 // howManyGreaterThans will hopefully be gone soon. 13442 const SCEV *One = getOne(Stride->getType()); 13443 const SCEV *BECount = getUDivExpr( 13444 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 13445 13446 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 13447 : getUnsignedRangeMax(Start); 13448 13449 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 13450 : getUnsignedRangeMin(Stride); 13451 13452 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 13453 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 13454 : APInt::getMinValue(BitWidth) + (MinStride - 1); 13455 13456 // Although End can be a MIN expression we estimate MinEnd considering only 13457 // the case End = RHS. This is safe because in the other case (Start - End) 13458 // is zero, leading to a zero maximum backedge taken count. 13459 APInt MinEnd = 13460 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 13461 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 13462 13463 const SCEV *ConstantMaxBECount = 13464 isa<SCEVConstant>(BECount) 13465 ? BECount 13466 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 13467 getConstant(MinStride)); 13468 13469 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount)) 13470 ConstantMaxBECount = BECount; 13471 const SCEV *SymbolicMaxBECount = 13472 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; 13473 13474 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false, 13475 Predicates); 13476 } 13477 13478 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 13479 ScalarEvolution &SE) const { 13480 if (Range.isFullSet()) // Infinite loop. 13481 return SE.getCouldNotCompute(); 13482 13483 // If the start is a non-zero constant, shift the range to simplify things. 13484 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 13485 if (!SC->getValue()->isZero()) { 13486 SmallVector<const SCEV *, 4> Operands(operands()); 13487 Operands[0] = SE.getZero(SC->getType()); 13488 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 13489 getNoWrapFlags(FlagNW)); 13490 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 13491 return ShiftedAddRec->getNumIterationsInRange( 13492 Range.subtract(SC->getAPInt()), SE); 13493 // This is strange and shouldn't happen. 13494 return SE.getCouldNotCompute(); 13495 } 13496 13497 // The only time we can solve this is when we have all constant indices. 13498 // Otherwise, we cannot determine the overflow conditions. 13499 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 13500 return SE.getCouldNotCompute(); 13501 13502 // Okay at this point we know that all elements of the chrec are constants and 13503 // that the start element is zero. 13504 13505 // First check to see if the range contains zero. If not, the first 13506 // iteration exits. 13507 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 13508 if (!Range.contains(APInt(BitWidth, 0))) 13509 return SE.getZero(getType()); 13510 13511 if (isAffine()) { 13512 // If this is an affine expression then we have this situation: 13513 // Solve {0,+,A} in Range === Ax in Range 13514 13515 // We know that zero is in the range. If A is positive then we know that 13516 // the upper value of the range must be the first possible exit value. 13517 // If A is negative then the lower of the range is the last possible loop 13518 // value. Also note that we already checked for a full range. 13519 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 13520 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 13521 13522 // The exit value should be (End+A)/A. 13523 APInt ExitVal = (End + A).udiv(A); 13524 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 13525 13526 // Evaluate at the exit value. If we really did fall out of the valid 13527 // range, then we computed our trip count, otherwise wrap around or other 13528 // things must have happened. 13529 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 13530 if (Range.contains(Val->getValue())) 13531 return SE.getCouldNotCompute(); // Something strange happened 13532 13533 // Ensure that the previous value is in the range. 13534 assert(Range.contains( 13535 EvaluateConstantChrecAtConstant(this, 13536 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 13537 "Linear scev computation is off in a bad way!"); 13538 return SE.getConstant(ExitValue); 13539 } 13540 13541 if (isQuadratic()) { 13542 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 13543 return SE.getConstant(*S); 13544 } 13545 13546 return SE.getCouldNotCompute(); 13547 } 13548 13549 const SCEVAddRecExpr * 13550 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 13551 assert(getNumOperands() > 1 && "AddRec with zero step?"); 13552 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 13553 // but in this case we cannot guarantee that the value returned will be an 13554 // AddRec because SCEV does not have a fixed point where it stops 13555 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 13556 // may happen if we reach arithmetic depth limit while simplifying. So we 13557 // construct the returned value explicitly. 13558 SmallVector<const SCEV *, 3> Ops; 13559 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 13560 // (this + Step) is {A+B,+,B+C,+...,+,N}. 13561 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 13562 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 13563 // We know that the last operand is not a constant zero (otherwise it would 13564 // have been popped out earlier). This guarantees us that if the result has 13565 // the same last operand, then it will also not be popped out, meaning that 13566 // the returned value will be an AddRec. 13567 const SCEV *Last = getOperand(getNumOperands() - 1); 13568 assert(!Last->isZero() && "Recurrency with zero step?"); 13569 Ops.push_back(Last); 13570 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 13571 SCEV::FlagAnyWrap)); 13572 } 13573 13574 // Return true when S contains at least an undef value. 13575 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 13576 return SCEVExprContains(S, [](const SCEV *S) { 13577 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 13578 return isa<UndefValue>(SU->getValue()); 13579 return false; 13580 }); 13581 } 13582 13583 // Return true when S contains a value that is a nullptr. 13584 bool ScalarEvolution::containsErasedValue(const SCEV *S) const { 13585 return SCEVExprContains(S, [](const SCEV *S) { 13586 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 13587 return SU->getValue() == nullptr; 13588 return false; 13589 }); 13590 } 13591 13592 /// Return the size of an element read or written by Inst. 13593 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 13594 Type *Ty; 13595 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 13596 Ty = Store->getValueOperand()->getType(); 13597 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 13598 Ty = Load->getType(); 13599 else 13600 return nullptr; 13601 13602 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Inst->getContext())); 13603 return getSizeOfExpr(ETy, Ty); 13604 } 13605 13606 //===----------------------------------------------------------------------===// 13607 // SCEVCallbackVH Class Implementation 13608 //===----------------------------------------------------------------------===// 13609 13610 void ScalarEvolution::SCEVCallbackVH::deleted() { 13611 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 13612 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 13613 SE->ConstantEvolutionLoopExitValue.erase(PN); 13614 SE->eraseValueFromMap(getValPtr()); 13615 // this now dangles! 13616 } 13617 13618 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 13619 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 13620 13621 // Forget all the expressions associated with users of the old value, 13622 // so that future queries will recompute the expressions using the new 13623 // value. 13624 SE->forgetValue(getValPtr()); 13625 // this now dangles! 13626 } 13627 13628 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 13629 : CallbackVH(V), SE(se) {} 13630 13631 //===----------------------------------------------------------------------===// 13632 // ScalarEvolution Class Implementation 13633 //===----------------------------------------------------------------------===// 13634 13635 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 13636 AssumptionCache &AC, DominatorTree &DT, 13637 LoopInfo &LI) 13638 : F(F), DL(F.getDataLayout()), TLI(TLI), AC(AC), DT(DT), LI(LI), 13639 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 13640 LoopDispositions(64), BlockDispositions(64) { 13641 // To use guards for proving predicates, we need to scan every instruction in 13642 // relevant basic blocks, and not just terminators. Doing this is a waste of 13643 // time if the IR does not actually contain any calls to 13644 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 13645 // 13646 // This pessimizes the case where a pass that preserves ScalarEvolution wants 13647 // to _add_ guards to the module when there weren't any before, and wants 13648 // ScalarEvolution to optimize based on those guards. For now we prefer to be 13649 // efficient in lieu of being smart in that rather obscure case. 13650 13651 auto *GuardDecl = Intrinsic::getDeclarationIfExists( 13652 F.getParent(), Intrinsic::experimental_guard); 13653 HasGuards = GuardDecl && !GuardDecl->use_empty(); 13654 } 13655 13656 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 13657 : F(Arg.F), DL(Arg.DL), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), 13658 DT(Arg.DT), LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 13659 ValueExprMap(std::move(Arg.ValueExprMap)), 13660 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 13661 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 13662 PendingMerges(std::move(Arg.PendingMerges)), 13663 ConstantMultipleCache(std::move(Arg.ConstantMultipleCache)), 13664 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 13665 PredicatedBackedgeTakenCounts( 13666 std::move(Arg.PredicatedBackedgeTakenCounts)), 13667 BECountUsers(std::move(Arg.BECountUsers)), 13668 ConstantEvolutionLoopExitValue( 13669 std::move(Arg.ConstantEvolutionLoopExitValue)), 13670 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 13671 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 13672 LoopDispositions(std::move(Arg.LoopDispositions)), 13673 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 13674 BlockDispositions(std::move(Arg.BlockDispositions)), 13675 SCEVUsers(std::move(Arg.SCEVUsers)), 13676 UnsignedRanges(std::move(Arg.UnsignedRanges)), 13677 SignedRanges(std::move(Arg.SignedRanges)), 13678 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 13679 UniquePreds(std::move(Arg.UniquePreds)), 13680 SCEVAllocator(std::move(Arg.SCEVAllocator)), 13681 LoopUsers(std::move(Arg.LoopUsers)), 13682 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 13683 FirstUnknown(Arg.FirstUnknown) { 13684 Arg.FirstUnknown = nullptr; 13685 } 13686 13687 ScalarEvolution::~ScalarEvolution() { 13688 // Iterate through all the SCEVUnknown instances and call their 13689 // destructors, so that they release their references to their values. 13690 for (SCEVUnknown *U = FirstUnknown; U;) { 13691 SCEVUnknown *Tmp = U; 13692 U = U->Next; 13693 Tmp->~SCEVUnknown(); 13694 } 13695 FirstUnknown = nullptr; 13696 13697 ExprValueMap.clear(); 13698 ValueExprMap.clear(); 13699 HasRecMap.clear(); 13700 BackedgeTakenCounts.clear(); 13701 PredicatedBackedgeTakenCounts.clear(); 13702 13703 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 13704 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 13705 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 13706 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 13707 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 13708 } 13709 13710 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 13711 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 13712 } 13713 13714 /// When printing a top-level SCEV for trip counts, it's helpful to include 13715 /// a type for constants which are otherwise hard to disambiguate. 13716 static void PrintSCEVWithTypeHint(raw_ostream &OS, const SCEV* S) { 13717 if (isa<SCEVConstant>(S)) 13718 OS << *S->getType() << " "; 13719 OS << *S; 13720 } 13721 13722 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 13723 const Loop *L) { 13724 // Print all inner loops first 13725 for (Loop *I : *L) 13726 PrintLoopInfo(OS, SE, I); 13727 13728 OS << "Loop "; 13729 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13730 OS << ": "; 13731 13732 SmallVector<BasicBlock *, 8> ExitingBlocks; 13733 L->getExitingBlocks(ExitingBlocks); 13734 if (ExitingBlocks.size() != 1) 13735 OS << "<multiple exits> "; 13736 13737 auto *BTC = SE->getBackedgeTakenCount(L); 13738 if (!isa<SCEVCouldNotCompute>(BTC)) { 13739 OS << "backedge-taken count is "; 13740 PrintSCEVWithTypeHint(OS, BTC); 13741 } else 13742 OS << "Unpredictable backedge-taken count."; 13743 OS << "\n"; 13744 13745 if (ExitingBlocks.size() > 1) 13746 for (BasicBlock *ExitingBlock : ExitingBlocks) { 13747 OS << " exit count for " << ExitingBlock->getName() << ": "; 13748 const SCEV *EC = SE->getExitCount(L, ExitingBlock); 13749 PrintSCEVWithTypeHint(OS, EC); 13750 if (isa<SCEVCouldNotCompute>(EC)) { 13751 // Retry with predicates. 13752 SmallVector<const SCEVPredicate *> Predicates; 13753 EC = SE->getPredicatedExitCount(L, ExitingBlock, &Predicates); 13754 if (!isa<SCEVCouldNotCompute>(EC)) { 13755 OS << "\n predicated exit count for " << ExitingBlock->getName() 13756 << ": "; 13757 PrintSCEVWithTypeHint(OS, EC); 13758 OS << "\n Predicates:\n"; 13759 for (const auto *P : Predicates) 13760 P->print(OS, 4); 13761 } 13762 } 13763 OS << "\n"; 13764 } 13765 13766 OS << "Loop "; 13767 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13768 OS << ": "; 13769 13770 auto *ConstantBTC = SE->getConstantMaxBackedgeTakenCount(L); 13771 if (!isa<SCEVCouldNotCompute>(ConstantBTC)) { 13772 OS << "constant max backedge-taken count is "; 13773 PrintSCEVWithTypeHint(OS, ConstantBTC); 13774 if (SE->isBackedgeTakenCountMaxOrZero(L)) 13775 OS << ", actual taken count either this or zero."; 13776 } else { 13777 OS << "Unpredictable constant max backedge-taken count. "; 13778 } 13779 13780 OS << "\n" 13781 "Loop "; 13782 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13783 OS << ": "; 13784 13785 auto *SymbolicBTC = SE->getSymbolicMaxBackedgeTakenCount(L); 13786 if (!isa<SCEVCouldNotCompute>(SymbolicBTC)) { 13787 OS << "symbolic max backedge-taken count is "; 13788 PrintSCEVWithTypeHint(OS, SymbolicBTC); 13789 if (SE->isBackedgeTakenCountMaxOrZero(L)) 13790 OS << ", actual taken count either this or zero."; 13791 } else { 13792 OS << "Unpredictable symbolic max backedge-taken count. "; 13793 } 13794 OS << "\n"; 13795 13796 if (ExitingBlocks.size() > 1) 13797 for (BasicBlock *ExitingBlock : ExitingBlocks) { 13798 OS << " symbolic max exit count for " << ExitingBlock->getName() << ": "; 13799 auto *ExitBTC = SE->getExitCount(L, ExitingBlock, 13800 ScalarEvolution::SymbolicMaximum); 13801 PrintSCEVWithTypeHint(OS, ExitBTC); 13802 if (isa<SCEVCouldNotCompute>(ExitBTC)) { 13803 // Retry with predicates. 13804 SmallVector<const SCEVPredicate *> Predicates; 13805 ExitBTC = SE->getPredicatedExitCount(L, ExitingBlock, &Predicates, 13806 ScalarEvolution::SymbolicMaximum); 13807 if (!isa<SCEVCouldNotCompute>(ExitBTC)) { 13808 OS << "\n predicated symbolic max exit count for " 13809 << ExitingBlock->getName() << ": "; 13810 PrintSCEVWithTypeHint(OS, ExitBTC); 13811 OS << "\n Predicates:\n"; 13812 for (const auto *P : Predicates) 13813 P->print(OS, 4); 13814 } 13815 } 13816 OS << "\n"; 13817 } 13818 13819 SmallVector<const SCEVPredicate *, 4> Preds; 13820 auto *PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); 13821 if (PBT != BTC) { 13822 assert(!Preds.empty() && "Different predicated BTC, but no predicates"); 13823 OS << "Loop "; 13824 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13825 OS << ": "; 13826 if (!isa<SCEVCouldNotCompute>(PBT)) { 13827 OS << "Predicated backedge-taken count is "; 13828 PrintSCEVWithTypeHint(OS, PBT); 13829 } else 13830 OS << "Unpredictable predicated backedge-taken count."; 13831 OS << "\n"; 13832 OS << " Predicates:\n"; 13833 for (const auto *P : Preds) 13834 P->print(OS, 4); 13835 } 13836 Preds.clear(); 13837 13838 auto *PredConstantMax = 13839 SE->getPredicatedConstantMaxBackedgeTakenCount(L, Preds); 13840 if (PredConstantMax != ConstantBTC) { 13841 assert(!Preds.empty() && 13842 "different predicated constant max BTC but no predicates"); 13843 OS << "Loop "; 13844 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13845 OS << ": "; 13846 if (!isa<SCEVCouldNotCompute>(PredConstantMax)) { 13847 OS << "Predicated constant max backedge-taken count is "; 13848 PrintSCEVWithTypeHint(OS, PredConstantMax); 13849 } else 13850 OS << "Unpredictable predicated constant max backedge-taken count."; 13851 OS << "\n"; 13852 OS << " Predicates:\n"; 13853 for (const auto *P : Preds) 13854 P->print(OS, 4); 13855 } 13856 Preds.clear(); 13857 13858 auto *PredSymbolicMax = 13859 SE->getPredicatedSymbolicMaxBackedgeTakenCount(L, Preds); 13860 if (SymbolicBTC != PredSymbolicMax) { 13861 assert(!Preds.empty() && 13862 "Different predicated symbolic max BTC, but no predicates"); 13863 OS << "Loop "; 13864 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13865 OS << ": "; 13866 if (!isa<SCEVCouldNotCompute>(PredSymbolicMax)) { 13867 OS << "Predicated symbolic max backedge-taken count is "; 13868 PrintSCEVWithTypeHint(OS, PredSymbolicMax); 13869 } else 13870 OS << "Unpredictable predicated symbolic max backedge-taken count."; 13871 OS << "\n"; 13872 OS << " Predicates:\n"; 13873 for (const auto *P : Preds) 13874 P->print(OS, 4); 13875 } 13876 13877 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 13878 OS << "Loop "; 13879 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13880 OS << ": "; 13881 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 13882 } 13883 } 13884 13885 namespace llvm { 13886 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::LoopDisposition LD) { 13887 switch (LD) { 13888 case ScalarEvolution::LoopVariant: 13889 OS << "Variant"; 13890 break; 13891 case ScalarEvolution::LoopInvariant: 13892 OS << "Invariant"; 13893 break; 13894 case ScalarEvolution::LoopComputable: 13895 OS << "Computable"; 13896 break; 13897 } 13898 return OS; 13899 } 13900 13901 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::BlockDisposition BD) { 13902 switch (BD) { 13903 case ScalarEvolution::DoesNotDominateBlock: 13904 OS << "DoesNotDominate"; 13905 break; 13906 case ScalarEvolution::DominatesBlock: 13907 OS << "Dominates"; 13908 break; 13909 case ScalarEvolution::ProperlyDominatesBlock: 13910 OS << "ProperlyDominates"; 13911 break; 13912 } 13913 return OS; 13914 } 13915 } // namespace llvm 13916 13917 void ScalarEvolution::print(raw_ostream &OS) const { 13918 // ScalarEvolution's implementation of the print method is to print 13919 // out SCEV values of all instructions that are interesting. Doing 13920 // this potentially causes it to create new SCEV objects though, 13921 // which technically conflicts with the const qualifier. This isn't 13922 // observable from outside the class though, so casting away the 13923 // const isn't dangerous. 13924 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13925 13926 if (ClassifyExpressions) { 13927 OS << "Classifying expressions for: "; 13928 F.printAsOperand(OS, /*PrintType=*/false); 13929 OS << "\n"; 13930 for (Instruction &I : instructions(F)) 13931 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 13932 OS << I << '\n'; 13933 OS << " --> "; 13934 const SCEV *SV = SE.getSCEV(&I); 13935 SV->print(OS); 13936 if (!isa<SCEVCouldNotCompute>(SV)) { 13937 OS << " U: "; 13938 SE.getUnsignedRange(SV).print(OS); 13939 OS << " S: "; 13940 SE.getSignedRange(SV).print(OS); 13941 } 13942 13943 const Loop *L = LI.getLoopFor(I.getParent()); 13944 13945 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 13946 if (AtUse != SV) { 13947 OS << " --> "; 13948 AtUse->print(OS); 13949 if (!isa<SCEVCouldNotCompute>(AtUse)) { 13950 OS << " U: "; 13951 SE.getUnsignedRange(AtUse).print(OS); 13952 OS << " S: "; 13953 SE.getSignedRange(AtUse).print(OS); 13954 } 13955 } 13956 13957 if (L) { 13958 OS << "\t\t" "Exits: "; 13959 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 13960 if (!SE.isLoopInvariant(ExitValue, L)) { 13961 OS << "<<Unknown>>"; 13962 } else { 13963 OS << *ExitValue; 13964 } 13965 13966 bool First = true; 13967 for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 13968 if (First) { 13969 OS << "\t\t" "LoopDispositions: { "; 13970 First = false; 13971 } else { 13972 OS << ", "; 13973 } 13974 13975 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13976 OS << ": " << SE.getLoopDisposition(SV, Iter); 13977 } 13978 13979 for (const auto *InnerL : depth_first(L)) { 13980 if (InnerL == L) 13981 continue; 13982 if (First) { 13983 OS << "\t\t" "LoopDispositions: { "; 13984 First = false; 13985 } else { 13986 OS << ", "; 13987 } 13988 13989 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13990 OS << ": " << SE.getLoopDisposition(SV, InnerL); 13991 } 13992 13993 OS << " }"; 13994 } 13995 13996 OS << "\n"; 13997 } 13998 } 13999 14000 OS << "Determining loop execution counts for: "; 14001 F.printAsOperand(OS, /*PrintType=*/false); 14002 OS << "\n"; 14003 for (Loop *I : LI) 14004 PrintLoopInfo(OS, &SE, I); 14005 } 14006 14007 ScalarEvolution::LoopDisposition 14008 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 14009 auto &Values = LoopDispositions[S]; 14010 for (auto &V : Values) { 14011 if (V.getPointer() == L) 14012 return V.getInt(); 14013 } 14014 Values.emplace_back(L, LoopVariant); 14015 LoopDisposition D = computeLoopDisposition(S, L); 14016 auto &Values2 = LoopDispositions[S]; 14017 for (auto &V : llvm::reverse(Values2)) { 14018 if (V.getPointer() == L) { 14019 V.setInt(D); 14020 break; 14021 } 14022 } 14023 return D; 14024 } 14025 14026 ScalarEvolution::LoopDisposition 14027 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 14028 switch (S->getSCEVType()) { 14029 case scConstant: 14030 case scVScale: 14031 return LoopInvariant; 14032 case scAddRecExpr: { 14033 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 14034 14035 // If L is the addrec's loop, it's computable. 14036 if (AR->getLoop() == L) 14037 return LoopComputable; 14038 14039 // Add recurrences are never invariant in the function-body (null loop). 14040 if (!L) 14041 return LoopVariant; 14042 14043 // Everything that is not defined at loop entry is variant. 14044 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 14045 return LoopVariant; 14046 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 14047 " dominate the contained loop's header?"); 14048 14049 // This recurrence is invariant w.r.t. L if AR's loop contains L. 14050 if (AR->getLoop()->contains(L)) 14051 return LoopInvariant; 14052 14053 // This recurrence is variant w.r.t. L if any of its operands 14054 // are variant. 14055 for (const auto *Op : AR->operands()) 14056 if (!isLoopInvariant(Op, L)) 14057 return LoopVariant; 14058 14059 // Otherwise it's loop-invariant. 14060 return LoopInvariant; 14061 } 14062 case scTruncate: 14063 case scZeroExtend: 14064 case scSignExtend: 14065 case scPtrToInt: 14066 case scAddExpr: 14067 case scMulExpr: 14068 case scUDivExpr: 14069 case scUMaxExpr: 14070 case scSMaxExpr: 14071 case scUMinExpr: 14072 case scSMinExpr: 14073 case scSequentialUMinExpr: { 14074 bool HasVarying = false; 14075 for (const auto *Op : S->operands()) { 14076 LoopDisposition D = getLoopDisposition(Op, L); 14077 if (D == LoopVariant) 14078 return LoopVariant; 14079 if (D == LoopComputable) 14080 HasVarying = true; 14081 } 14082 return HasVarying ? LoopComputable : LoopInvariant; 14083 } 14084 case scUnknown: 14085 // All non-instruction values are loop invariant. All instructions are loop 14086 // invariant if they are not contained in the specified loop. 14087 // Instructions are never considered invariant in the function body 14088 // (null loop) because they are defined within the "loop". 14089 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 14090 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 14091 return LoopInvariant; 14092 case scCouldNotCompute: 14093 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 14094 } 14095 llvm_unreachable("Unknown SCEV kind!"); 14096 } 14097 14098 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 14099 return getLoopDisposition(S, L) == LoopInvariant; 14100 } 14101 14102 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 14103 return getLoopDisposition(S, L) == LoopComputable; 14104 } 14105 14106 ScalarEvolution::BlockDisposition 14107 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 14108 auto &Values = BlockDispositions[S]; 14109 for (auto &V : Values) { 14110 if (V.getPointer() == BB) 14111 return V.getInt(); 14112 } 14113 Values.emplace_back(BB, DoesNotDominateBlock); 14114 BlockDisposition D = computeBlockDisposition(S, BB); 14115 auto &Values2 = BlockDispositions[S]; 14116 for (auto &V : llvm::reverse(Values2)) { 14117 if (V.getPointer() == BB) { 14118 V.setInt(D); 14119 break; 14120 } 14121 } 14122 return D; 14123 } 14124 14125 ScalarEvolution::BlockDisposition 14126 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 14127 switch (S->getSCEVType()) { 14128 case scConstant: 14129 case scVScale: 14130 return ProperlyDominatesBlock; 14131 case scAddRecExpr: { 14132 // This uses a "dominates" query instead of "properly dominates" query 14133 // to test for proper dominance too, because the instruction which 14134 // produces the addrec's value is a PHI, and a PHI effectively properly 14135 // dominates its entire containing block. 14136 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 14137 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 14138 return DoesNotDominateBlock; 14139 14140 // Fall through into SCEVNAryExpr handling. 14141 [[fallthrough]]; 14142 } 14143 case scTruncate: 14144 case scZeroExtend: 14145 case scSignExtend: 14146 case scPtrToInt: 14147 case scAddExpr: 14148 case scMulExpr: 14149 case scUDivExpr: 14150 case scUMaxExpr: 14151 case scSMaxExpr: 14152 case scUMinExpr: 14153 case scSMinExpr: 14154 case scSequentialUMinExpr: { 14155 bool Proper = true; 14156 for (const SCEV *NAryOp : S->operands()) { 14157 BlockDisposition D = getBlockDisposition(NAryOp, BB); 14158 if (D == DoesNotDominateBlock) 14159 return DoesNotDominateBlock; 14160 if (D == DominatesBlock) 14161 Proper = false; 14162 } 14163 return Proper ? ProperlyDominatesBlock : DominatesBlock; 14164 } 14165 case scUnknown: 14166 if (Instruction *I = 14167 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 14168 if (I->getParent() == BB) 14169 return DominatesBlock; 14170 if (DT.properlyDominates(I->getParent(), BB)) 14171 return ProperlyDominatesBlock; 14172 return DoesNotDominateBlock; 14173 } 14174 return ProperlyDominatesBlock; 14175 case scCouldNotCompute: 14176 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 14177 } 14178 llvm_unreachable("Unknown SCEV kind!"); 14179 } 14180 14181 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 14182 return getBlockDisposition(S, BB) >= DominatesBlock; 14183 } 14184 14185 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 14186 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 14187 } 14188 14189 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 14190 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 14191 } 14192 14193 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 14194 bool Predicated) { 14195 auto &BECounts = 14196 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 14197 auto It = BECounts.find(L); 14198 if (It != BECounts.end()) { 14199 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 14200 for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) { 14201 if (!isa<SCEVConstant>(S)) { 14202 auto UserIt = BECountUsers.find(S); 14203 assert(UserIt != BECountUsers.end()); 14204 UserIt->second.erase({L, Predicated}); 14205 } 14206 } 14207 } 14208 BECounts.erase(It); 14209 } 14210 } 14211 14212 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 14213 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 14214 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 14215 14216 while (!Worklist.empty()) { 14217 const SCEV *Curr = Worklist.pop_back_val(); 14218 auto Users = SCEVUsers.find(Curr); 14219 if (Users != SCEVUsers.end()) 14220 for (const auto *User : Users->second) 14221 if (ToForget.insert(User).second) 14222 Worklist.push_back(User); 14223 } 14224 14225 for (const auto *S : ToForget) 14226 forgetMemoizedResultsImpl(S); 14227 14228 for (auto I = PredicatedSCEVRewrites.begin(); 14229 I != PredicatedSCEVRewrites.end();) { 14230 std::pair<const SCEV *, const Loop *> Entry = I->first; 14231 if (ToForget.count(Entry.first)) 14232 PredicatedSCEVRewrites.erase(I++); 14233 else 14234 ++I; 14235 } 14236 } 14237 14238 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 14239 LoopDispositions.erase(S); 14240 BlockDispositions.erase(S); 14241 UnsignedRanges.erase(S); 14242 SignedRanges.erase(S); 14243 HasRecMap.erase(S); 14244 ConstantMultipleCache.erase(S); 14245 14246 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) { 14247 UnsignedWrapViaInductionTried.erase(AR); 14248 SignedWrapViaInductionTried.erase(AR); 14249 } 14250 14251 auto ExprIt = ExprValueMap.find(S); 14252 if (ExprIt != ExprValueMap.end()) { 14253 for (Value *V : ExprIt->second) { 14254 auto ValueIt = ValueExprMap.find_as(V); 14255 if (ValueIt != ValueExprMap.end()) 14256 ValueExprMap.erase(ValueIt); 14257 } 14258 ExprValueMap.erase(ExprIt); 14259 } 14260 14261 auto ScopeIt = ValuesAtScopes.find(S); 14262 if (ScopeIt != ValuesAtScopes.end()) { 14263 for (const auto &Pair : ScopeIt->second) 14264 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 14265 llvm::erase(ValuesAtScopesUsers[Pair.second], 14266 std::make_pair(Pair.first, S)); 14267 ValuesAtScopes.erase(ScopeIt); 14268 } 14269 14270 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 14271 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 14272 for (const auto &Pair : ScopeUserIt->second) 14273 llvm::erase(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 14274 ValuesAtScopesUsers.erase(ScopeUserIt); 14275 } 14276 14277 auto BEUsersIt = BECountUsers.find(S); 14278 if (BEUsersIt != BECountUsers.end()) { 14279 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 14280 auto Copy = BEUsersIt->second; 14281 for (const auto &Pair : Copy) 14282 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 14283 BECountUsers.erase(BEUsersIt); 14284 } 14285 14286 auto FoldUser = FoldCacheUser.find(S); 14287 if (FoldUser != FoldCacheUser.end()) 14288 for (auto &KV : FoldUser->second) 14289 FoldCache.erase(KV); 14290 FoldCacheUser.erase(S); 14291 } 14292 14293 void 14294 ScalarEvolution::getUsedLoops(const SCEV *S, 14295 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 14296 struct FindUsedLoops { 14297 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 14298 : LoopsUsed(LoopsUsed) {} 14299 SmallPtrSetImpl<const Loop *> &LoopsUsed; 14300 bool follow(const SCEV *S) { 14301 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 14302 LoopsUsed.insert(AR->getLoop()); 14303 return true; 14304 } 14305 14306 bool isDone() const { return false; } 14307 }; 14308 14309 FindUsedLoops F(LoopsUsed); 14310 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 14311 } 14312 14313 void ScalarEvolution::getReachableBlocks( 14314 SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) { 14315 SmallVector<BasicBlock *> Worklist; 14316 Worklist.push_back(&F.getEntryBlock()); 14317 while (!Worklist.empty()) { 14318 BasicBlock *BB = Worklist.pop_back_val(); 14319 if (!Reachable.insert(BB).second) 14320 continue; 14321 14322 Value *Cond; 14323 BasicBlock *TrueBB, *FalseBB; 14324 if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB), 14325 m_BasicBlock(FalseBB)))) { 14326 if (auto *C = dyn_cast<ConstantInt>(Cond)) { 14327 Worklist.push_back(C->isOne() ? TrueBB : FalseBB); 14328 continue; 14329 } 14330 14331 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14332 const SCEV *L = getSCEV(Cmp->getOperand(0)); 14333 const SCEV *R = getSCEV(Cmp->getOperand(1)); 14334 if (isKnownPredicateViaConstantRanges(Cmp->getCmpPredicate(), L, R)) { 14335 Worklist.push_back(TrueBB); 14336 continue; 14337 } 14338 if (isKnownPredicateViaConstantRanges(Cmp->getInverseCmpPredicate(), L, 14339 R)) { 14340 Worklist.push_back(FalseBB); 14341 continue; 14342 } 14343 } 14344 } 14345 14346 append_range(Worklist, successors(BB)); 14347 } 14348 } 14349 14350 void ScalarEvolution::verify() const { 14351 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 14352 ScalarEvolution SE2(F, TLI, AC, DT, LI); 14353 14354 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 14355 14356 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 14357 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 14358 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 14359 14360 const SCEV *visitConstant(const SCEVConstant *Constant) { 14361 return SE.getConstant(Constant->getAPInt()); 14362 } 14363 14364 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14365 return SE.getUnknown(Expr->getValue()); 14366 } 14367 14368 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 14369 return SE.getCouldNotCompute(); 14370 } 14371 }; 14372 14373 SCEVMapper SCM(SE2); 14374 SmallPtrSet<BasicBlock *, 16> ReachableBlocks; 14375 SE2.getReachableBlocks(ReachableBlocks, F); 14376 14377 auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * { 14378 if (containsUndefs(Old) || containsUndefs(New)) { 14379 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 14380 // not propagate undef aggressively). This means we can (and do) fail 14381 // verification in cases where a transform makes a value go from "undef" 14382 // to "undef+1" (say). The transform is fine, since in both cases the 14383 // result is "undef", but SCEV thinks the value increased by 1. 14384 return nullptr; 14385 } 14386 14387 // Unless VerifySCEVStrict is set, we only compare constant deltas. 14388 const SCEV *Delta = SE2.getMinusSCEV(Old, New); 14389 if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta)) 14390 return nullptr; 14391 14392 return Delta; 14393 }; 14394 14395 while (!LoopStack.empty()) { 14396 auto *L = LoopStack.pop_back_val(); 14397 llvm::append_range(LoopStack, *L); 14398 14399 // Only verify BECounts in reachable loops. For an unreachable loop, 14400 // any BECount is legal. 14401 if (!ReachableBlocks.contains(L->getHeader())) 14402 continue; 14403 14404 // Only verify cached BECounts. Computing new BECounts may change the 14405 // results of subsequent SCEV uses. 14406 auto It = BackedgeTakenCounts.find(L); 14407 if (It == BackedgeTakenCounts.end()) 14408 continue; 14409 14410 auto *CurBECount = 14411 SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this))); 14412 auto *NewBECount = SE2.getBackedgeTakenCount(L); 14413 14414 if (CurBECount == SE2.getCouldNotCompute() || 14415 NewBECount == SE2.getCouldNotCompute()) { 14416 // NB! This situation is legal, but is very suspicious -- whatever pass 14417 // change the loop to make a trip count go from could not compute to 14418 // computable or vice-versa *should have* invalidated SCEV. However, we 14419 // choose not to assert here (for now) since we don't want false 14420 // positives. 14421 continue; 14422 } 14423 14424 if (SE.getTypeSizeInBits(CurBECount->getType()) > 14425 SE.getTypeSizeInBits(NewBECount->getType())) 14426 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 14427 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 14428 SE.getTypeSizeInBits(NewBECount->getType())) 14429 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 14430 14431 const SCEV *Delta = GetDelta(CurBECount, NewBECount); 14432 if (Delta && !Delta->isZero()) { 14433 dbgs() << "Trip Count for " << *L << " Changed!\n"; 14434 dbgs() << "Old: " << *CurBECount << "\n"; 14435 dbgs() << "New: " << *NewBECount << "\n"; 14436 dbgs() << "Delta: " << *Delta << "\n"; 14437 std::abort(); 14438 } 14439 } 14440 14441 // Collect all valid loops currently in LoopInfo. 14442 SmallPtrSet<Loop *, 32> ValidLoops; 14443 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 14444 while (!Worklist.empty()) { 14445 Loop *L = Worklist.pop_back_val(); 14446 if (ValidLoops.insert(L).second) 14447 Worklist.append(L->begin(), L->end()); 14448 } 14449 for (const auto &KV : ValueExprMap) { 14450 #ifndef NDEBUG 14451 // Check for SCEV expressions referencing invalid/deleted loops. 14452 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 14453 assert(ValidLoops.contains(AR->getLoop()) && 14454 "AddRec references invalid loop"); 14455 } 14456 #endif 14457 14458 // Check that the value is also part of the reverse map. 14459 auto It = ExprValueMap.find(KV.second); 14460 if (It == ExprValueMap.end() || !It->second.contains(KV.first)) { 14461 dbgs() << "Value " << *KV.first 14462 << " is in ValueExprMap but not in ExprValueMap\n"; 14463 std::abort(); 14464 } 14465 14466 if (auto *I = dyn_cast<Instruction>(&*KV.first)) { 14467 if (!ReachableBlocks.contains(I->getParent())) 14468 continue; 14469 const SCEV *OldSCEV = SCM.visit(KV.second); 14470 const SCEV *NewSCEV = SE2.getSCEV(I); 14471 const SCEV *Delta = GetDelta(OldSCEV, NewSCEV); 14472 if (Delta && !Delta->isZero()) { 14473 dbgs() << "SCEV for value " << *I << " changed!\n" 14474 << "Old: " << *OldSCEV << "\n" 14475 << "New: " << *NewSCEV << "\n" 14476 << "Delta: " << *Delta << "\n"; 14477 std::abort(); 14478 } 14479 } 14480 } 14481 14482 for (const auto &KV : ExprValueMap) { 14483 for (Value *V : KV.second) { 14484 auto It = ValueExprMap.find_as(V); 14485 if (It == ValueExprMap.end()) { 14486 dbgs() << "Value " << *V 14487 << " is in ExprValueMap but not in ValueExprMap\n"; 14488 std::abort(); 14489 } 14490 if (It->second != KV.first) { 14491 dbgs() << "Value " << *V << " mapped to " << *It->second 14492 << " rather than " << *KV.first << "\n"; 14493 std::abort(); 14494 } 14495 } 14496 } 14497 14498 // Verify integrity of SCEV users. 14499 for (const auto &S : UniqueSCEVs) { 14500 for (const auto *Op : S.operands()) { 14501 // We do not store dependencies of constants. 14502 if (isa<SCEVConstant>(Op)) 14503 continue; 14504 auto It = SCEVUsers.find(Op); 14505 if (It != SCEVUsers.end() && It->second.count(&S)) 14506 continue; 14507 dbgs() << "Use of operand " << *Op << " by user " << S 14508 << " is not being tracked!\n"; 14509 std::abort(); 14510 } 14511 } 14512 14513 // Verify integrity of ValuesAtScopes users. 14514 for (const auto &ValueAndVec : ValuesAtScopes) { 14515 const SCEV *Value = ValueAndVec.first; 14516 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 14517 const Loop *L = LoopAndValueAtScope.first; 14518 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 14519 if (!isa<SCEVConstant>(ValueAtScope)) { 14520 auto It = ValuesAtScopesUsers.find(ValueAtScope); 14521 if (It != ValuesAtScopesUsers.end() && 14522 is_contained(It->second, std::make_pair(L, Value))) 14523 continue; 14524 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 14525 << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; 14526 std::abort(); 14527 } 14528 } 14529 } 14530 14531 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 14532 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 14533 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 14534 const Loop *L = LoopAndValue.first; 14535 const SCEV *Value = LoopAndValue.second; 14536 assert(!isa<SCEVConstant>(Value)); 14537 auto It = ValuesAtScopes.find(Value); 14538 if (It != ValuesAtScopes.end() && 14539 is_contained(It->second, std::make_pair(L, ValueAtScope))) 14540 continue; 14541 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 14542 << *ValueAtScope << " missing in ValuesAtScopes\n"; 14543 std::abort(); 14544 } 14545 } 14546 14547 // Verify integrity of BECountUsers. 14548 auto VerifyBECountUsers = [&](bool Predicated) { 14549 auto &BECounts = 14550 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 14551 for (const auto &LoopAndBEInfo : BECounts) { 14552 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 14553 for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) { 14554 if (!isa<SCEVConstant>(S)) { 14555 auto UserIt = BECountUsers.find(S); 14556 if (UserIt != BECountUsers.end() && 14557 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 14558 continue; 14559 dbgs() << "Value " << *S << " for loop " << *LoopAndBEInfo.first 14560 << " missing from BECountUsers\n"; 14561 std::abort(); 14562 } 14563 } 14564 } 14565 } 14566 }; 14567 VerifyBECountUsers(/* Predicated */ false); 14568 VerifyBECountUsers(/* Predicated */ true); 14569 14570 // Verify intergity of loop disposition cache. 14571 for (auto &[S, Values] : LoopDispositions) { 14572 for (auto [Loop, CachedDisposition] : Values) { 14573 const auto RecomputedDisposition = SE2.getLoopDisposition(S, Loop); 14574 if (CachedDisposition != RecomputedDisposition) { 14575 dbgs() << "Cached disposition of " << *S << " for loop " << *Loop 14576 << " is incorrect: cached " << CachedDisposition << ", actual " 14577 << RecomputedDisposition << "\n"; 14578 std::abort(); 14579 } 14580 } 14581 } 14582 14583 // Verify integrity of the block disposition cache. 14584 for (auto &[S, Values] : BlockDispositions) { 14585 for (auto [BB, CachedDisposition] : Values) { 14586 const auto RecomputedDisposition = SE2.getBlockDisposition(S, BB); 14587 if (CachedDisposition != RecomputedDisposition) { 14588 dbgs() << "Cached disposition of " << *S << " for block %" 14589 << BB->getName() << " is incorrect: cached " << CachedDisposition 14590 << ", actual " << RecomputedDisposition << "\n"; 14591 std::abort(); 14592 } 14593 } 14594 } 14595 14596 // Verify FoldCache/FoldCacheUser caches. 14597 for (auto [FoldID, Expr] : FoldCache) { 14598 auto I = FoldCacheUser.find(Expr); 14599 if (I == FoldCacheUser.end()) { 14600 dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr 14601 << "!\n"; 14602 std::abort(); 14603 } 14604 if (!is_contained(I->second, FoldID)) { 14605 dbgs() << "Missing FoldID in cached users of " << *Expr << "!\n"; 14606 std::abort(); 14607 } 14608 } 14609 for (auto [Expr, IDs] : FoldCacheUser) { 14610 for (auto &FoldID : IDs) { 14611 auto I = FoldCache.find(FoldID); 14612 if (I == FoldCache.end()) { 14613 dbgs() << "Missing entry in FoldCache for expression " << *Expr 14614 << "!\n"; 14615 std::abort(); 14616 } 14617 if (I->second != Expr) { 14618 dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: " 14619 << *I->second << " != " << *Expr << "!\n"; 14620 std::abort(); 14621 } 14622 } 14623 } 14624 14625 // Verify that ConstantMultipleCache computations are correct. We check that 14626 // cached multiples and recomputed multiples are multiples of each other to 14627 // verify correctness. It is possible that a recomputed multiple is different 14628 // from the cached multiple due to strengthened no wrap flags or changes in 14629 // KnownBits computations. 14630 for (auto [S, Multiple] : ConstantMultipleCache) { 14631 APInt RecomputedMultiple = SE2.getConstantMultiple(S); 14632 if ((Multiple != 0 && RecomputedMultiple != 0 && 14633 Multiple.urem(RecomputedMultiple) != 0 && 14634 RecomputedMultiple.urem(Multiple) != 0)) { 14635 dbgs() << "Incorrect cached computation in ConstantMultipleCache for " 14636 << *S << " : Computed " << RecomputedMultiple 14637 << " but cache contains " << Multiple << "!\n"; 14638 std::abort(); 14639 } 14640 } 14641 } 14642 14643 bool ScalarEvolution::invalidate( 14644 Function &F, const PreservedAnalyses &PA, 14645 FunctionAnalysisManager::Invalidator &Inv) { 14646 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 14647 // of its dependencies is invalidated. 14648 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 14649 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 14650 Inv.invalidate<AssumptionAnalysis>(F, PA) || 14651 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 14652 Inv.invalidate<LoopAnalysis>(F, PA); 14653 } 14654 14655 AnalysisKey ScalarEvolutionAnalysis::Key; 14656 14657 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 14658 FunctionAnalysisManager &AM) { 14659 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 14660 auto &AC = AM.getResult<AssumptionAnalysis>(F); 14661 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 14662 auto &LI = AM.getResult<LoopAnalysis>(F); 14663 return ScalarEvolution(F, TLI, AC, DT, LI); 14664 } 14665 14666 PreservedAnalyses 14667 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 14668 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 14669 return PreservedAnalyses::all(); 14670 } 14671 14672 PreservedAnalyses 14673 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 14674 // For compatibility with opt's -analyze feature under legacy pass manager 14675 // which was not ported to NPM. This keeps tests using 14676 // update_analyze_test_checks.py working. 14677 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 14678 << F.getName() << "':\n"; 14679 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 14680 return PreservedAnalyses::all(); 14681 } 14682 14683 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 14684 "Scalar Evolution Analysis", false, true) 14685 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 14686 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 14687 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 14688 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 14689 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 14690 "Scalar Evolution Analysis", false, true) 14691 14692 char ScalarEvolutionWrapperPass::ID = 0; 14693 14694 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 14695 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 14696 } 14697 14698 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 14699 SE.reset(new ScalarEvolution( 14700 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 14701 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 14702 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 14703 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 14704 return false; 14705 } 14706 14707 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 14708 14709 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 14710 SE->print(OS); 14711 } 14712 14713 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 14714 if (!VerifySCEV) 14715 return; 14716 14717 SE->verify(); 14718 } 14719 14720 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 14721 AU.setPreservesAll(); 14722 AU.addRequiredTransitive<AssumptionCacheTracker>(); 14723 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 14724 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 14725 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 14726 } 14727 14728 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 14729 const SCEV *RHS) { 14730 return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS); 14731 } 14732 14733 const SCEVPredicate * 14734 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, 14735 const SCEV *LHS, const SCEV *RHS) { 14736 FoldingSetNodeID ID; 14737 assert(LHS->getType() == RHS->getType() && 14738 "Type mismatch between LHS and RHS"); 14739 // Unique this node based on the arguments 14740 ID.AddInteger(SCEVPredicate::P_Compare); 14741 ID.AddInteger(Pred); 14742 ID.AddPointer(LHS); 14743 ID.AddPointer(RHS); 14744 void *IP = nullptr; 14745 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 14746 return S; 14747 SCEVComparePredicate *Eq = new (SCEVAllocator) 14748 SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS); 14749 UniquePreds.InsertNode(Eq, IP); 14750 return Eq; 14751 } 14752 14753 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 14754 const SCEVAddRecExpr *AR, 14755 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 14756 FoldingSetNodeID ID; 14757 // Unique this node based on the arguments 14758 ID.AddInteger(SCEVPredicate::P_Wrap); 14759 ID.AddPointer(AR); 14760 ID.AddInteger(AddedFlags); 14761 void *IP = nullptr; 14762 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 14763 return S; 14764 auto *OF = new (SCEVAllocator) 14765 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 14766 UniquePreds.InsertNode(OF, IP); 14767 return OF; 14768 } 14769 14770 namespace { 14771 14772 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 14773 public: 14774 14775 /// Rewrites \p S in the context of a loop L and the SCEV predication 14776 /// infrastructure. 14777 /// 14778 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 14779 /// equivalences present in \p Pred. 14780 /// 14781 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 14782 /// \p NewPreds such that the result will be an AddRecExpr. 14783 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 14784 SmallVectorImpl<const SCEVPredicate *> *NewPreds, 14785 const SCEVPredicate *Pred) { 14786 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 14787 return Rewriter.visit(S); 14788 } 14789 14790 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14791 if (Pred) { 14792 if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) { 14793 for (const auto *Pred : U->getPredicates()) 14794 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) 14795 if (IPred->getLHS() == Expr && 14796 IPred->getPredicate() == ICmpInst::ICMP_EQ) 14797 return IPred->getRHS(); 14798 } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) { 14799 if (IPred->getLHS() == Expr && 14800 IPred->getPredicate() == ICmpInst::ICMP_EQ) 14801 return IPred->getRHS(); 14802 } 14803 } 14804 return convertToAddRecWithPreds(Expr); 14805 } 14806 14807 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14808 const SCEV *Operand = visit(Expr->getOperand()); 14809 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 14810 if (AR && AR->getLoop() == L && AR->isAffine()) { 14811 // This couldn't be folded because the operand didn't have the nuw 14812 // flag. Add the nusw flag as an assumption that we could make. 14813 const SCEV *Step = AR->getStepRecurrence(SE); 14814 Type *Ty = Expr->getType(); 14815 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 14816 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 14817 SE.getSignExtendExpr(Step, Ty), L, 14818 AR->getNoWrapFlags()); 14819 } 14820 return SE.getZeroExtendExpr(Operand, Expr->getType()); 14821 } 14822 14823 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 14824 const SCEV *Operand = visit(Expr->getOperand()); 14825 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 14826 if (AR && AR->getLoop() == L && AR->isAffine()) { 14827 // This couldn't be folded because the operand didn't have the nsw 14828 // flag. Add the nssw flag as an assumption that we could make. 14829 const SCEV *Step = AR->getStepRecurrence(SE); 14830 Type *Ty = Expr->getType(); 14831 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 14832 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 14833 SE.getSignExtendExpr(Step, Ty), L, 14834 AR->getNoWrapFlags()); 14835 } 14836 return SE.getSignExtendExpr(Operand, Expr->getType()); 14837 } 14838 14839 private: 14840 explicit SCEVPredicateRewriter( 14841 const Loop *L, ScalarEvolution &SE, 14842 SmallVectorImpl<const SCEVPredicate *> *NewPreds, 14843 const SCEVPredicate *Pred) 14844 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 14845 14846 bool addOverflowAssumption(const SCEVPredicate *P) { 14847 if (!NewPreds) { 14848 // Check if we've already made this assumption. 14849 return Pred && Pred->implies(P, SE); 14850 } 14851 NewPreds->push_back(P); 14852 return true; 14853 } 14854 14855 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 14856 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 14857 auto *A = SE.getWrapPredicate(AR, AddedFlags); 14858 return addOverflowAssumption(A); 14859 } 14860 14861 // If \p Expr represents a PHINode, we try to see if it can be represented 14862 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 14863 // to add this predicate as a runtime overflow check, we return the AddRec. 14864 // If \p Expr does not meet these conditions (is not a PHI node, or we 14865 // couldn't create an AddRec for it, or couldn't add the predicate), we just 14866 // return \p Expr. 14867 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 14868 if (!isa<PHINode>(Expr->getValue())) 14869 return Expr; 14870 std::optional< 14871 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 14872 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 14873 if (!PredicatedRewrite) 14874 return Expr; 14875 for (const auto *P : PredicatedRewrite->second){ 14876 // Wrap predicates from outer loops are not supported. 14877 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 14878 if (L != WP->getExpr()->getLoop()) 14879 return Expr; 14880 } 14881 if (!addOverflowAssumption(P)) 14882 return Expr; 14883 } 14884 return PredicatedRewrite->first; 14885 } 14886 14887 SmallVectorImpl<const SCEVPredicate *> *NewPreds; 14888 const SCEVPredicate *Pred; 14889 const Loop *L; 14890 }; 14891 14892 } // end anonymous namespace 14893 14894 const SCEV * 14895 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 14896 const SCEVPredicate &Preds) { 14897 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 14898 } 14899 14900 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 14901 const SCEV *S, const Loop *L, 14902 SmallVectorImpl<const SCEVPredicate *> &Preds) { 14903 SmallVector<const SCEVPredicate *> TransformPreds; 14904 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 14905 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 14906 14907 if (!AddRec) 14908 return nullptr; 14909 14910 // Since the transformation was successful, we can now transfer the SCEV 14911 // predicates. 14912 Preds.append(TransformPreds.begin(), TransformPreds.end()); 14913 14914 return AddRec; 14915 } 14916 14917 /// SCEV predicates 14918 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 14919 SCEVPredicateKind Kind) 14920 : FastID(ID), Kind(Kind) {} 14921 14922 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, 14923 const ICmpInst::Predicate Pred, 14924 const SCEV *LHS, const SCEV *RHS) 14925 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { 14926 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 14927 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 14928 } 14929 14930 bool SCEVComparePredicate::implies(const SCEVPredicate *N, 14931 ScalarEvolution &SE) const { 14932 const auto *Op = dyn_cast<SCEVComparePredicate>(N); 14933 14934 if (!Op) 14935 return false; 14936 14937 if (Pred != ICmpInst::ICMP_EQ) 14938 return false; 14939 14940 return Op->LHS == LHS && Op->RHS == RHS; 14941 } 14942 14943 bool SCEVComparePredicate::isAlwaysTrue() const { return false; } 14944 14945 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { 14946 if (Pred == ICmpInst::ICMP_EQ) 14947 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 14948 else 14949 OS.indent(Depth) << "Compare predicate: " << *LHS << " " << Pred << ") " 14950 << *RHS << "\n"; 14951 14952 } 14953 14954 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 14955 const SCEVAddRecExpr *AR, 14956 IncrementWrapFlags Flags) 14957 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 14958 14959 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } 14960 14961 bool SCEVWrapPredicate::implies(const SCEVPredicate *N, 14962 ScalarEvolution &SE) const { 14963 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 14964 if (!Op || setFlags(Flags, Op->Flags) != Flags) 14965 return false; 14966 14967 if (Op->AR == AR) 14968 return true; 14969 14970 if (Flags != SCEVWrapPredicate::IncrementNSSW && 14971 Flags != SCEVWrapPredicate::IncrementNUSW) 14972 return false; 14973 14974 const SCEV *Start = AR->getStart(); 14975 const SCEV *OpStart = Op->AR->getStart(); 14976 if (Start->getType()->isPointerTy() != OpStart->getType()->isPointerTy()) 14977 return false; 14978 14979 const SCEV *Step = AR->getStepRecurrence(SE); 14980 const SCEV *OpStep = Op->AR->getStepRecurrence(SE); 14981 if (!SE.isKnownPositive(Step) || !SE.isKnownPositive(OpStep)) 14982 return false; 14983 14984 // If both steps are positive, this implies N, if N's start and step are 14985 // ULE/SLE (for NSUW/NSSW) than this'. 14986 Type *WiderTy = SE.getWiderType(Step->getType(), OpStep->getType()); 14987 Step = SE.getNoopOrZeroExtend(Step, WiderTy); 14988 OpStep = SE.getNoopOrZeroExtend(OpStep, WiderTy); 14989 14990 bool IsNUW = Flags == SCEVWrapPredicate::IncrementNUSW; 14991 OpStart = IsNUW ? SE.getNoopOrZeroExtend(OpStart, WiderTy) 14992 : SE.getNoopOrSignExtend(OpStart, WiderTy); 14993 Start = IsNUW ? SE.getNoopOrZeroExtend(Start, WiderTy) 14994 : SE.getNoopOrSignExtend(Start, WiderTy); 14995 CmpInst::Predicate Pred = IsNUW ? CmpInst::ICMP_ULE : CmpInst::ICMP_SLE; 14996 return SE.isKnownPredicate(Pred, OpStep, Step) && 14997 SE.isKnownPredicate(Pred, OpStart, Start); 14998 } 14999 15000 bool SCEVWrapPredicate::isAlwaysTrue() const { 15001 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 15002 IncrementWrapFlags IFlags = Flags; 15003 15004 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 15005 IFlags = clearFlags(IFlags, IncrementNSSW); 15006 15007 return IFlags == IncrementAnyWrap; 15008 } 15009 15010 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 15011 OS.indent(Depth) << *getExpr() << " Added Flags: "; 15012 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 15013 OS << "<nusw>"; 15014 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 15015 OS << "<nssw>"; 15016 OS << "\n"; 15017 } 15018 15019 SCEVWrapPredicate::IncrementWrapFlags 15020 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 15021 ScalarEvolution &SE) { 15022 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 15023 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 15024 15025 // We can safely transfer the NSW flag as NSSW. 15026 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 15027 ImpliedFlags = IncrementNSSW; 15028 15029 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 15030 // If the increment is positive, the SCEV NUW flag will also imply the 15031 // WrapPredicate NUSW flag. 15032 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 15033 if (Step->getValue()->getValue().isNonNegative()) 15034 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 15035 } 15036 15037 return ImpliedFlags; 15038 } 15039 15040 /// Union predicates don't get cached so create a dummy set ID for it. 15041 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds, 15042 ScalarEvolution &SE) 15043 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { 15044 for (const auto *P : Preds) 15045 add(P, SE); 15046 } 15047 15048 bool SCEVUnionPredicate::isAlwaysTrue() const { 15049 return all_of(Preds, 15050 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 15051 } 15052 15053 bool SCEVUnionPredicate::implies(const SCEVPredicate *N, 15054 ScalarEvolution &SE) const { 15055 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 15056 return all_of(Set->Preds, [this, &SE](const SCEVPredicate *I) { 15057 return this->implies(I, SE); 15058 }); 15059 15060 return any_of(Preds, 15061 [N, &SE](const SCEVPredicate *I) { return I->implies(N, SE); }); 15062 } 15063 15064 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 15065 for (const auto *Pred : Preds) 15066 Pred->print(OS, Depth); 15067 } 15068 15069 void SCEVUnionPredicate::add(const SCEVPredicate *N, ScalarEvolution &SE) { 15070 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 15071 for (const auto *Pred : Set->Preds) 15072 add(Pred, SE); 15073 return; 15074 } 15075 15076 // Only add predicate if it is not already implied by this union predicate. 15077 if (implies(N, SE)) 15078 return; 15079 15080 // Build a new vector containing the current predicates, except the ones that 15081 // are implied by the new predicate N. 15082 SmallVector<const SCEVPredicate *> PrunedPreds; 15083 for (auto *P : Preds) { 15084 if (N->implies(P, SE)) 15085 continue; 15086 PrunedPreds.push_back(P); 15087 } 15088 Preds = std::move(PrunedPreds); 15089 Preds.push_back(N); 15090 } 15091 15092 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 15093 Loop &L) 15094 : SE(SE), L(L) { 15095 SmallVector<const SCEVPredicate*, 4> Empty; 15096 Preds = std::make_unique<SCEVUnionPredicate>(Empty, SE); 15097 } 15098 15099 void ScalarEvolution::registerUser(const SCEV *User, 15100 ArrayRef<const SCEV *> Ops) { 15101 for (const auto *Op : Ops) 15102 // We do not expect that forgetting cached data for SCEVConstants will ever 15103 // open any prospects for sharpening or introduce any correctness issues, 15104 // so we don't bother storing their dependencies. 15105 if (!isa<SCEVConstant>(Op)) 15106 SCEVUsers[Op].insert(User); 15107 } 15108 15109 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 15110 const SCEV *Expr = SE.getSCEV(V); 15111 RewriteEntry &Entry = RewriteMap[Expr]; 15112 15113 // If we already have an entry and the version matches, return it. 15114 if (Entry.second && Generation == Entry.first) 15115 return Entry.second; 15116 15117 // We found an entry but it's stale. Rewrite the stale entry 15118 // according to the current predicate. 15119 if (Entry.second) 15120 Expr = Entry.second; 15121 15122 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds); 15123 Entry = {Generation, NewSCEV}; 15124 15125 return NewSCEV; 15126 } 15127 15128 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 15129 if (!BackedgeCount) { 15130 SmallVector<const SCEVPredicate *, 4> Preds; 15131 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds); 15132 for (const auto *P : Preds) 15133 addPredicate(*P); 15134 } 15135 return BackedgeCount; 15136 } 15137 15138 const SCEV *PredicatedScalarEvolution::getSymbolicMaxBackedgeTakenCount() { 15139 if (!SymbolicMaxBackedgeCount) { 15140 SmallVector<const SCEVPredicate *, 4> Preds; 15141 SymbolicMaxBackedgeCount = 15142 SE.getPredicatedSymbolicMaxBackedgeTakenCount(&L, Preds); 15143 for (const auto *P : Preds) 15144 addPredicate(*P); 15145 } 15146 return SymbolicMaxBackedgeCount; 15147 } 15148 15149 unsigned PredicatedScalarEvolution::getSmallConstantMaxTripCount() { 15150 if (!SmallConstantMaxTripCount) { 15151 SmallVector<const SCEVPredicate *, 4> Preds; 15152 SmallConstantMaxTripCount = SE.getSmallConstantMaxTripCount(&L, &Preds); 15153 for (const auto *P : Preds) 15154 addPredicate(*P); 15155 } 15156 return *SmallConstantMaxTripCount; 15157 } 15158 15159 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 15160 if (Preds->implies(&Pred, SE)) 15161 return; 15162 15163 SmallVector<const SCEVPredicate *, 4> NewPreds(Preds->getPredicates()); 15164 NewPreds.push_back(&Pred); 15165 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds, SE); 15166 updateGeneration(); 15167 } 15168 15169 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { 15170 return *Preds; 15171 } 15172 15173 void PredicatedScalarEvolution::updateGeneration() { 15174 // If the generation number wrapped recompute everything. 15175 if (++Generation == 0) { 15176 for (auto &II : RewriteMap) { 15177 const SCEV *Rewritten = II.second.second; 15178 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)}; 15179 } 15180 } 15181 } 15182 15183 void PredicatedScalarEvolution::setNoOverflow( 15184 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 15185 const SCEV *Expr = getSCEV(V); 15186 const auto *AR = cast<SCEVAddRecExpr>(Expr); 15187 15188 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 15189 15190 // Clear the statically implied flags. 15191 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 15192 addPredicate(*SE.getWrapPredicate(AR, Flags)); 15193 15194 auto II = FlagsMap.insert({V, Flags}); 15195 if (!II.second) 15196 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 15197 } 15198 15199 bool PredicatedScalarEvolution::hasNoOverflow( 15200 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 15201 const SCEV *Expr = getSCEV(V); 15202 const auto *AR = cast<SCEVAddRecExpr>(Expr); 15203 15204 Flags = SCEVWrapPredicate::clearFlags( 15205 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 15206 15207 auto II = FlagsMap.find(V); 15208 15209 if (II != FlagsMap.end()) 15210 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 15211 15212 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 15213 } 15214 15215 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 15216 const SCEV *Expr = this->getSCEV(V); 15217 SmallVector<const SCEVPredicate *, 4> NewPreds; 15218 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 15219 15220 if (!New) 15221 return nullptr; 15222 15223 for (const auto *P : NewPreds) 15224 addPredicate(*P); 15225 15226 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 15227 return New; 15228 } 15229 15230 PredicatedScalarEvolution::PredicatedScalarEvolution( 15231 const PredicatedScalarEvolution &Init) 15232 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), 15233 Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates(), 15234 SE)), 15235 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 15236 for (auto I : Init.FlagsMap) 15237 FlagsMap.insert(I); 15238 } 15239 15240 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 15241 // For each block. 15242 for (auto *BB : L.getBlocks()) 15243 for (auto &I : *BB) { 15244 if (!SE.isSCEVable(I.getType())) 15245 continue; 15246 15247 auto *Expr = SE.getSCEV(&I); 15248 auto II = RewriteMap.find(Expr); 15249 15250 if (II == RewriteMap.end()) 15251 continue; 15252 15253 // Don't print things that are not interesting. 15254 if (II->second.second == Expr) 15255 continue; 15256 15257 OS.indent(Depth) << "[PSE]" << I << ":\n"; 15258 OS.indent(Depth + 2) << *Expr << "\n"; 15259 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 15260 } 15261 } 15262 15263 // Match the mathematical pattern A - (A / B) * B, where A and B can be 15264 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 15265 // for URem with constant power-of-2 second operands. 15266 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 15267 // 4, A / B becomes X / 8). 15268 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 15269 const SCEV *&RHS) { 15270 if (Expr->getType()->isPointerTy()) 15271 return false; 15272 15273 // Try to match 'zext (trunc A to iB) to iY', which is used 15274 // for URem with constant power-of-2 second operands. Make sure the size of 15275 // the operand A matches the size of the whole expressions. 15276 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 15277 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 15278 LHS = Trunc->getOperand(); 15279 // Bail out if the type of the LHS is larger than the type of the 15280 // expression for now. 15281 if (getTypeSizeInBits(LHS->getType()) > 15282 getTypeSizeInBits(Expr->getType())) 15283 return false; 15284 if (LHS->getType() != Expr->getType()) 15285 LHS = getZeroExtendExpr(LHS, Expr->getType()); 15286 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 15287 << getTypeSizeInBits(Trunc->getType())); 15288 return true; 15289 } 15290 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 15291 if (Add == nullptr || Add->getNumOperands() != 2) 15292 return false; 15293 15294 const SCEV *A = Add->getOperand(1); 15295 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 15296 15297 if (Mul == nullptr) 15298 return false; 15299 15300 const auto MatchURemWithDivisor = [&](const SCEV *B) { 15301 // (SomeExpr + (-(SomeExpr / B) * B)). 15302 if (Expr == getURemExpr(A, B)) { 15303 LHS = A; 15304 RHS = B; 15305 return true; 15306 } 15307 return false; 15308 }; 15309 15310 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 15311 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 15312 return MatchURemWithDivisor(Mul->getOperand(1)) || 15313 MatchURemWithDivisor(Mul->getOperand(2)); 15314 15315 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 15316 if (Mul->getNumOperands() == 2) 15317 return MatchURemWithDivisor(Mul->getOperand(1)) || 15318 MatchURemWithDivisor(Mul->getOperand(0)) || 15319 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 15320 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 15321 return false; 15322 } 15323 15324 ScalarEvolution::LoopGuards 15325 ScalarEvolution::LoopGuards::collect(const Loop *L, ScalarEvolution &SE) { 15326 BasicBlock *Header = L->getHeader(); 15327 BasicBlock *Pred = L->getLoopPredecessor(); 15328 LoopGuards Guards(SE); 15329 if (!Pred) 15330 return Guards; 15331 SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; 15332 collectFromBlock(SE, Guards, Header, Pred, VisitedBlocks); 15333 return Guards; 15334 } 15335 15336 void ScalarEvolution::LoopGuards::collectFromPHI( 15337 ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards, 15338 const PHINode &Phi, SmallPtrSetImpl<const BasicBlock *> &VisitedBlocks, 15339 SmallDenseMap<const BasicBlock *, LoopGuards> &IncomingGuards, 15340 unsigned Depth) { 15341 if (!SE.isSCEVable(Phi.getType())) 15342 return; 15343 15344 using MinMaxPattern = std::pair<const SCEVConstant *, SCEVTypes>; 15345 auto GetMinMaxConst = [&](unsigned IncomingIdx) -> MinMaxPattern { 15346 const BasicBlock *InBlock = Phi.getIncomingBlock(IncomingIdx); 15347 if (!VisitedBlocks.insert(InBlock).second) 15348 return {nullptr, scCouldNotCompute}; 15349 auto [G, Inserted] = IncomingGuards.try_emplace(InBlock, LoopGuards(SE)); 15350 if (Inserted) 15351 collectFromBlock(SE, G->second, Phi.getParent(), InBlock, VisitedBlocks, 15352 Depth + 1); 15353 auto &RewriteMap = G->second.RewriteMap; 15354 if (RewriteMap.empty()) 15355 return {nullptr, scCouldNotCompute}; 15356 auto S = RewriteMap.find(SE.getSCEV(Phi.getIncomingValue(IncomingIdx))); 15357 if (S == RewriteMap.end()) 15358 return {nullptr, scCouldNotCompute}; 15359 auto *SM = dyn_cast_if_present<SCEVMinMaxExpr>(S->second); 15360 if (!SM) 15361 return {nullptr, scCouldNotCompute}; 15362 if (const SCEVConstant *C0 = dyn_cast<SCEVConstant>(SM->getOperand(0))) 15363 return {C0, SM->getSCEVType()}; 15364 return {nullptr, scCouldNotCompute}; 15365 }; 15366 auto MergeMinMaxConst = [](MinMaxPattern P1, 15367 MinMaxPattern P2) -> MinMaxPattern { 15368 auto [C1, T1] = P1; 15369 auto [C2, T2] = P2; 15370 if (!C1 || !C2 || T1 != T2) 15371 return {nullptr, scCouldNotCompute}; 15372 switch (T1) { 15373 case scUMaxExpr: 15374 return {C1->getAPInt().ult(C2->getAPInt()) ? C1 : C2, T1}; 15375 case scSMaxExpr: 15376 return {C1->getAPInt().slt(C2->getAPInt()) ? C1 : C2, T1}; 15377 case scUMinExpr: 15378 return {C1->getAPInt().ugt(C2->getAPInt()) ? C1 : C2, T1}; 15379 case scSMinExpr: 15380 return {C1->getAPInt().sgt(C2->getAPInt()) ? C1 : C2, T1}; 15381 default: 15382 llvm_unreachable("Trying to merge non-MinMaxExpr SCEVs."); 15383 } 15384 }; 15385 auto P = GetMinMaxConst(0); 15386 for (unsigned int In = 1; In < Phi.getNumIncomingValues(); In++) { 15387 if (!P.first) 15388 break; 15389 P = MergeMinMaxConst(P, GetMinMaxConst(In)); 15390 } 15391 if (P.first) { 15392 const SCEV *LHS = SE.getSCEV(const_cast<PHINode *>(&Phi)); 15393 SmallVector<const SCEV *, 2> Ops({P.first, LHS}); 15394 const SCEV *RHS = SE.getMinMaxExpr(P.second, Ops); 15395 Guards.RewriteMap.insert({LHS, RHS}); 15396 } 15397 } 15398 15399 void ScalarEvolution::LoopGuards::collectFromBlock( 15400 ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards, 15401 const BasicBlock *Block, const BasicBlock *Pred, 15402 SmallPtrSetImpl<const BasicBlock *> &VisitedBlocks, unsigned Depth) { 15403 SmallVector<const SCEV *> ExprsToRewrite; 15404 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 15405 const SCEV *RHS, 15406 DenseMap<const SCEV *, const SCEV *> 15407 &RewriteMap) { 15408 // WARNING: It is generally unsound to apply any wrap flags to the proposed 15409 // replacement SCEV which isn't directly implied by the structure of that 15410 // SCEV. In particular, using contextual facts to imply flags is *NOT* 15411 // legal. See the scoping rules for flags in the header to understand why. 15412 15413 // If LHS is a constant, apply information to the other expression. 15414 if (isa<SCEVConstant>(LHS)) { 15415 std::swap(LHS, RHS); 15416 Predicate = CmpInst::getSwappedPredicate(Predicate); 15417 } 15418 15419 // Check for a condition of the form (-C1 + X < C2). InstCombine will 15420 // create this form when combining two checks of the form (X u< C2 + C1) and 15421 // (X >=u C1). 15422 auto MatchRangeCheckIdiom = [&SE, Predicate, LHS, RHS, &RewriteMap, 15423 &ExprsToRewrite]() { 15424 const SCEVConstant *C1; 15425 const SCEVUnknown *LHSUnknown; 15426 auto *C2 = dyn_cast<SCEVConstant>(RHS); 15427 if (!match(LHS, 15428 m_scev_Add(m_SCEVConstant(C1), m_SCEVUnknown(LHSUnknown))) || 15429 !C2) 15430 return false; 15431 15432 auto ExactRegion = 15433 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 15434 .sub(C1->getAPInt()); 15435 15436 // Bail out, unless we have a non-wrapping, monotonic range. 15437 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 15438 return false; 15439 auto I = RewriteMap.find(LHSUnknown); 15440 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 15441 RewriteMap[LHSUnknown] = SE.getUMaxExpr( 15442 SE.getConstant(ExactRegion.getUnsignedMin()), 15443 SE.getUMinExpr(RewrittenLHS, 15444 SE.getConstant(ExactRegion.getUnsignedMax()))); 15445 ExprsToRewrite.push_back(LHSUnknown); 15446 return true; 15447 }; 15448 if (MatchRangeCheckIdiom()) 15449 return; 15450 15451 // Return true if \p Expr is a MinMax SCEV expression with a non-negative 15452 // constant operand. If so, return in \p SCTy the SCEV type and in \p RHS 15453 // the non-constant operand and in \p LHS the constant operand. 15454 auto IsMinMaxSCEVWithNonNegativeConstant = 15455 [&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS, 15456 const SCEV *&RHS) { 15457 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) { 15458 if (MinMax->getNumOperands() != 2) 15459 return false; 15460 if (auto *C = dyn_cast<SCEVConstant>(MinMax->getOperand(0))) { 15461 if (C->getAPInt().isNegative()) 15462 return false; 15463 SCTy = MinMax->getSCEVType(); 15464 LHS = MinMax->getOperand(0); 15465 RHS = MinMax->getOperand(1); 15466 return true; 15467 } 15468 } 15469 return false; 15470 }; 15471 15472 // Checks whether Expr is a non-negative constant, and Divisor is a positive 15473 // constant, and returns their APInt in ExprVal and in DivisorVal. 15474 auto GetNonNegExprAndPosDivisor = [&](const SCEV *Expr, const SCEV *Divisor, 15475 APInt &ExprVal, APInt &DivisorVal) { 15476 auto *ConstExpr = dyn_cast<SCEVConstant>(Expr); 15477 auto *ConstDivisor = dyn_cast<SCEVConstant>(Divisor); 15478 if (!ConstExpr || !ConstDivisor) 15479 return false; 15480 ExprVal = ConstExpr->getAPInt(); 15481 DivisorVal = ConstDivisor->getAPInt(); 15482 return ExprVal.isNonNegative() && !DivisorVal.isNonPositive(); 15483 }; 15484 15485 // Return a new SCEV that modifies \p Expr to the closest number divides by 15486 // \p Divisor and greater or equal than Expr. 15487 // For now, only handle constant Expr and Divisor. 15488 auto GetNextSCEVDividesByDivisor = [&](const SCEV *Expr, 15489 const SCEV *Divisor) { 15490 APInt ExprVal; 15491 APInt DivisorVal; 15492 if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal)) 15493 return Expr; 15494 APInt Rem = ExprVal.urem(DivisorVal); 15495 if (!Rem.isZero()) 15496 // return the SCEV: Expr + Divisor - Expr % Divisor 15497 return SE.getConstant(ExprVal + DivisorVal - Rem); 15498 return Expr; 15499 }; 15500 15501 // Return a new SCEV that modifies \p Expr to the closest number divides by 15502 // \p Divisor and less or equal than Expr. 15503 // For now, only handle constant Expr and Divisor. 15504 auto GetPreviousSCEVDividesByDivisor = [&](const SCEV *Expr, 15505 const SCEV *Divisor) { 15506 APInt ExprVal; 15507 APInt DivisorVal; 15508 if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal)) 15509 return Expr; 15510 APInt Rem = ExprVal.urem(DivisorVal); 15511 // return the SCEV: Expr - Expr % Divisor 15512 return SE.getConstant(ExprVal - Rem); 15513 }; 15514 15515 // Apply divisibilty by \p Divisor on MinMaxExpr with constant values, 15516 // recursively. This is done by aligning up/down the constant value to the 15517 // Divisor. 15518 std::function<const SCEV *(const SCEV *, const SCEV *)> 15519 ApplyDivisibiltyOnMinMaxExpr = [&](const SCEV *MinMaxExpr, 15520 const SCEV *Divisor) { 15521 const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr; 15522 SCEVTypes SCTy; 15523 if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS, 15524 MinMaxRHS)) 15525 return MinMaxExpr; 15526 auto IsMin = 15527 isa<SCEVSMinExpr>(MinMaxExpr) || isa<SCEVUMinExpr>(MinMaxExpr); 15528 assert(SE.isKnownNonNegative(MinMaxLHS) && 15529 "Expected non-negative operand!"); 15530 auto *DivisibleExpr = 15531 IsMin ? GetPreviousSCEVDividesByDivisor(MinMaxLHS, Divisor) 15532 : GetNextSCEVDividesByDivisor(MinMaxLHS, Divisor); 15533 SmallVector<const SCEV *> Ops = { 15534 ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr}; 15535 return SE.getMinMaxExpr(SCTy, Ops); 15536 }; 15537 15538 // If we have LHS == 0, check if LHS is computing a property of some unknown 15539 // SCEV %v which we can rewrite %v to express explicitly. 15540 if (Predicate == CmpInst::ICMP_EQ && match(RHS, m_scev_Zero())) { 15541 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 15542 // explicitly express that. 15543 const SCEV *URemLHS = nullptr; 15544 const SCEV *URemRHS = nullptr; 15545 if (SE.matchURem(LHS, URemLHS, URemRHS)) { 15546 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 15547 auto I = RewriteMap.find(LHSUnknown); 15548 const SCEV *RewrittenLHS = 15549 I != RewriteMap.end() ? I->second : LHSUnknown; 15550 RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS); 15551 const auto *Multiple = 15552 SE.getMulExpr(SE.getUDivExpr(RewrittenLHS, URemRHS), URemRHS); 15553 RewriteMap[LHSUnknown] = Multiple; 15554 ExprsToRewrite.push_back(LHSUnknown); 15555 return; 15556 } 15557 } 15558 } 15559 15560 // Do not apply information for constants or if RHS contains an AddRec. 15561 if (isa<SCEVConstant>(LHS) || SE.containsAddRecurrence(RHS)) 15562 return; 15563 15564 // If RHS is SCEVUnknown, make sure the information is applied to it. 15565 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 15566 std::swap(LHS, RHS); 15567 Predicate = CmpInst::getSwappedPredicate(Predicate); 15568 } 15569 15570 // Puts rewrite rule \p From -> \p To into the rewrite map. Also if \p From 15571 // and \p FromRewritten are the same (i.e. there has been no rewrite 15572 // registered for \p From), then puts this value in the list of rewritten 15573 // expressions. 15574 auto AddRewrite = [&](const SCEV *From, const SCEV *FromRewritten, 15575 const SCEV *To) { 15576 if (From == FromRewritten) 15577 ExprsToRewrite.push_back(From); 15578 RewriteMap[From] = To; 15579 }; 15580 15581 // Checks whether \p S has already been rewritten. In that case returns the 15582 // existing rewrite because we want to chain further rewrites onto the 15583 // already rewritten value. Otherwise returns \p S. 15584 auto GetMaybeRewritten = [&](const SCEV *S) { 15585 auto I = RewriteMap.find(S); 15586 return I != RewriteMap.end() ? I->second : S; 15587 }; 15588 15589 // Check for the SCEV expression (A /u B) * B while B is a constant, inside 15590 // \p Expr. The check is done recuresively on \p Expr, which is assumed to 15591 // be a composition of Min/Max SCEVs. Return whether the SCEV expression (A 15592 // /u B) * B was found, and return the divisor B in \p DividesBy. For 15593 // example, if Expr = umin (umax ((A /u 8) * 8, 16), 64), return true since 15594 // (A /u 8) * 8 matched the pattern, and return the constant SCEV 8 in \p 15595 // DividesBy. 15596 std::function<bool(const SCEV *, const SCEV *&)> HasDivisibiltyInfo = 15597 [&](const SCEV *Expr, const SCEV *&DividesBy) { 15598 if (auto *Mul = dyn_cast<SCEVMulExpr>(Expr)) { 15599 if (Mul->getNumOperands() != 2) 15600 return false; 15601 auto *MulLHS = Mul->getOperand(0); 15602 auto *MulRHS = Mul->getOperand(1); 15603 if (isa<SCEVConstant>(MulLHS)) 15604 std::swap(MulLHS, MulRHS); 15605 if (auto *Div = dyn_cast<SCEVUDivExpr>(MulLHS)) 15606 if (Div->getOperand(1) == MulRHS) { 15607 DividesBy = MulRHS; 15608 return true; 15609 } 15610 } 15611 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) 15612 return HasDivisibiltyInfo(MinMax->getOperand(0), DividesBy) || 15613 HasDivisibiltyInfo(MinMax->getOperand(1), DividesBy); 15614 return false; 15615 }; 15616 15617 // Return true if Expr known to divide by \p DividesBy. 15618 std::function<bool(const SCEV *, const SCEV *&)> IsKnownToDivideBy = 15619 [&](const SCEV *Expr, const SCEV *DividesBy) { 15620 if (SE.getURemExpr(Expr, DividesBy)->isZero()) 15621 return true; 15622 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) 15623 return IsKnownToDivideBy(MinMax->getOperand(0), DividesBy) && 15624 IsKnownToDivideBy(MinMax->getOperand(1), DividesBy); 15625 return false; 15626 }; 15627 15628 const SCEV *RewrittenLHS = GetMaybeRewritten(LHS); 15629 const SCEV *DividesBy = nullptr; 15630 if (HasDivisibiltyInfo(RewrittenLHS, DividesBy)) 15631 // Check that the whole expression is divided by DividesBy 15632 DividesBy = 15633 IsKnownToDivideBy(RewrittenLHS, DividesBy) ? DividesBy : nullptr; 15634 15635 // Collect rewrites for LHS and its transitive operands based on the 15636 // condition. 15637 // For min/max expressions, also apply the guard to its operands: 15638 // 'min(a, b) >= c' -> '(a >= c) and (b >= c)', 15639 // 'min(a, b) > c' -> '(a > c) and (b > c)', 15640 // 'max(a, b) <= c' -> '(a <= c) and (b <= c)', 15641 // 'max(a, b) < c' -> '(a < c) and (b < c)'. 15642 15643 // We cannot express strict predicates in SCEV, so instead we replace them 15644 // with non-strict ones against plus or minus one of RHS depending on the 15645 // predicate. 15646 const SCEV *One = SE.getOne(RHS->getType()); 15647 switch (Predicate) { 15648 case CmpInst::ICMP_ULT: 15649 if (RHS->getType()->isPointerTy()) 15650 return; 15651 RHS = SE.getUMaxExpr(RHS, One); 15652 [[fallthrough]]; 15653 case CmpInst::ICMP_SLT: { 15654 RHS = SE.getMinusSCEV(RHS, One); 15655 RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS; 15656 break; 15657 } 15658 case CmpInst::ICMP_UGT: 15659 case CmpInst::ICMP_SGT: 15660 RHS = SE.getAddExpr(RHS, One); 15661 RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS; 15662 break; 15663 case CmpInst::ICMP_ULE: 15664 case CmpInst::ICMP_SLE: 15665 RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS; 15666 break; 15667 case CmpInst::ICMP_UGE: 15668 case CmpInst::ICMP_SGE: 15669 RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS; 15670 break; 15671 default: 15672 break; 15673 } 15674 15675 SmallVector<const SCEV *, 16> Worklist(1, LHS); 15676 SmallPtrSet<const SCEV *, 16> Visited; 15677 15678 auto EnqueueOperands = [&Worklist](const SCEVNAryExpr *S) { 15679 append_range(Worklist, S->operands()); 15680 }; 15681 15682 while (!Worklist.empty()) { 15683 const SCEV *From = Worklist.pop_back_val(); 15684 if (isa<SCEVConstant>(From)) 15685 continue; 15686 if (!Visited.insert(From).second) 15687 continue; 15688 const SCEV *FromRewritten = GetMaybeRewritten(From); 15689 const SCEV *To = nullptr; 15690 15691 switch (Predicate) { 15692 case CmpInst::ICMP_ULT: 15693 case CmpInst::ICMP_ULE: 15694 To = SE.getUMinExpr(FromRewritten, RHS); 15695 if (auto *UMax = dyn_cast<SCEVUMaxExpr>(FromRewritten)) 15696 EnqueueOperands(UMax); 15697 break; 15698 case CmpInst::ICMP_SLT: 15699 case CmpInst::ICMP_SLE: 15700 To = SE.getSMinExpr(FromRewritten, RHS); 15701 if (auto *SMax = dyn_cast<SCEVSMaxExpr>(FromRewritten)) 15702 EnqueueOperands(SMax); 15703 break; 15704 case CmpInst::ICMP_UGT: 15705 case CmpInst::ICMP_UGE: 15706 To = SE.getUMaxExpr(FromRewritten, RHS); 15707 if (auto *UMin = dyn_cast<SCEVUMinExpr>(FromRewritten)) 15708 EnqueueOperands(UMin); 15709 break; 15710 case CmpInst::ICMP_SGT: 15711 case CmpInst::ICMP_SGE: 15712 To = SE.getSMaxExpr(FromRewritten, RHS); 15713 if (auto *SMin = dyn_cast<SCEVSMinExpr>(FromRewritten)) 15714 EnqueueOperands(SMin); 15715 break; 15716 case CmpInst::ICMP_EQ: 15717 if (isa<SCEVConstant>(RHS)) 15718 To = RHS; 15719 break; 15720 case CmpInst::ICMP_NE: 15721 if (match(RHS, m_scev_Zero())) { 15722 const SCEV *OneAlignedUp = 15723 DividesBy ? GetNextSCEVDividesByDivisor(One, DividesBy) : One; 15724 To = SE.getUMaxExpr(FromRewritten, OneAlignedUp); 15725 } 15726 break; 15727 default: 15728 break; 15729 } 15730 15731 if (To) 15732 AddRewrite(From, FromRewritten, To); 15733 } 15734 }; 15735 15736 SmallVector<PointerIntPair<Value *, 1, bool>> Terms; 15737 // First, collect information from assumptions dominating the loop. 15738 for (auto &AssumeVH : SE.AC.assumptions()) { 15739 if (!AssumeVH) 15740 continue; 15741 auto *AssumeI = cast<CallInst>(AssumeVH); 15742 if (!SE.DT.dominates(AssumeI, Block)) 15743 continue; 15744 Terms.emplace_back(AssumeI->getOperand(0), true); 15745 } 15746 15747 // Second, collect information from llvm.experimental.guards dominating the loop. 15748 auto *GuardDecl = Intrinsic::getDeclarationIfExists( 15749 SE.F.getParent(), Intrinsic::experimental_guard); 15750 if (GuardDecl) 15751 for (const auto *GU : GuardDecl->users()) 15752 if (const auto *Guard = dyn_cast<IntrinsicInst>(GU)) 15753 if (Guard->getFunction() == Block->getParent() && 15754 SE.DT.dominates(Guard, Block)) 15755 Terms.emplace_back(Guard->getArgOperand(0), true); 15756 15757 // Third, collect conditions from dominating branches. Starting at the loop 15758 // predecessor, climb up the predecessor chain, as long as there are 15759 // predecessors that can be found that have unique successors leading to the 15760 // original header. 15761 // TODO: share this logic with isLoopEntryGuardedByCond. 15762 unsigned NumCollectedConditions = 0; 15763 VisitedBlocks.insert(Block); 15764 std::pair<const BasicBlock *, const BasicBlock *> Pair(Pred, Block); 15765 for (; Pair.first; 15766 Pair = SE.getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 15767 VisitedBlocks.insert(Pair.second); 15768 const BranchInst *LoopEntryPredicate = 15769 dyn_cast<BranchInst>(Pair.first->getTerminator()); 15770 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 15771 continue; 15772 15773 Terms.emplace_back(LoopEntryPredicate->getCondition(), 15774 LoopEntryPredicate->getSuccessor(0) == Pair.second); 15775 NumCollectedConditions++; 15776 15777 // If we are recursively collecting guards stop after 2 15778 // conditions to limit compile-time impact for now. 15779 if (Depth > 0 && NumCollectedConditions == 2) 15780 break; 15781 } 15782 // Finally, if we stopped climbing the predecessor chain because 15783 // there wasn't a unique one to continue, try to collect conditions 15784 // for PHINodes by recursively following all of their incoming 15785 // blocks and try to merge the found conditions to build a new one 15786 // for the Phi. 15787 if (Pair.second->hasNPredecessorsOrMore(2) && 15788 Depth < MaxLoopGuardCollectionDepth) { 15789 SmallDenseMap<const BasicBlock *, LoopGuards> IncomingGuards; 15790 for (auto &Phi : Pair.second->phis()) 15791 collectFromPHI(SE, Guards, Phi, VisitedBlocks, IncomingGuards, Depth); 15792 } 15793 15794 // Now apply the information from the collected conditions to 15795 // Guards.RewriteMap. Conditions are processed in reverse order, so the 15796 // earliest conditions is processed first. This ensures the SCEVs with the 15797 // shortest dependency chains are constructed first. 15798 for (auto [Term, EnterIfTrue] : reverse(Terms)) { 15799 SmallVector<Value *, 8> Worklist; 15800 SmallPtrSet<Value *, 8> Visited; 15801 Worklist.push_back(Term); 15802 while (!Worklist.empty()) { 15803 Value *Cond = Worklist.pop_back_val(); 15804 if (!Visited.insert(Cond).second) 15805 continue; 15806 15807 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 15808 auto Predicate = 15809 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 15810 const auto *LHS = SE.getSCEV(Cmp->getOperand(0)); 15811 const auto *RHS = SE.getSCEV(Cmp->getOperand(1)); 15812 CollectCondition(Predicate, LHS, RHS, Guards.RewriteMap); 15813 continue; 15814 } 15815 15816 Value *L, *R; 15817 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 15818 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 15819 Worklist.push_back(L); 15820 Worklist.push_back(R); 15821 } 15822 } 15823 } 15824 15825 // Let the rewriter preserve NUW/NSW flags if the unsigned/signed ranges of 15826 // the replacement expressions are contained in the ranges of the replaced 15827 // expressions. 15828 Guards.PreserveNUW = true; 15829 Guards.PreserveNSW = true; 15830 for (const SCEV *Expr : ExprsToRewrite) { 15831 const SCEV *RewriteTo = Guards.RewriteMap[Expr]; 15832 Guards.PreserveNUW &= 15833 SE.getUnsignedRange(Expr).contains(SE.getUnsignedRange(RewriteTo)); 15834 Guards.PreserveNSW &= 15835 SE.getSignedRange(Expr).contains(SE.getSignedRange(RewriteTo)); 15836 } 15837 15838 // Now that all rewrite information is collect, rewrite the collected 15839 // expressions with the information in the map. This applies information to 15840 // sub-expressions. 15841 if (ExprsToRewrite.size() > 1) { 15842 for (const SCEV *Expr : ExprsToRewrite) { 15843 const SCEV *RewriteTo = Guards.RewriteMap[Expr]; 15844 Guards.RewriteMap.erase(Expr); 15845 Guards.RewriteMap.insert({Expr, Guards.rewrite(RewriteTo)}); 15846 } 15847 } 15848 } 15849 15850 const SCEV *ScalarEvolution::LoopGuards::rewrite(const SCEV *Expr) const { 15851 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 15852 /// in the map. It skips AddRecExpr because we cannot guarantee that the 15853 /// replacement is loop invariant in the loop of the AddRec. 15854 class SCEVLoopGuardRewriter 15855 : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 15856 const DenseMap<const SCEV *, const SCEV *> ⤅ 15857 15858 SCEV::NoWrapFlags FlagMask = SCEV::FlagAnyWrap; 15859 15860 public: 15861 SCEVLoopGuardRewriter(ScalarEvolution &SE, 15862 const ScalarEvolution::LoopGuards &Guards) 15863 : SCEVRewriteVisitor(SE), Map(Guards.RewriteMap) { 15864 if (Guards.PreserveNUW) 15865 FlagMask = ScalarEvolution::setFlags(FlagMask, SCEV::FlagNUW); 15866 if (Guards.PreserveNSW) 15867 FlagMask = ScalarEvolution::setFlags(FlagMask, SCEV::FlagNSW); 15868 } 15869 15870 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 15871 15872 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 15873 auto I = Map.find(Expr); 15874 if (I == Map.end()) 15875 return Expr; 15876 return I->second; 15877 } 15878 15879 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 15880 auto I = Map.find(Expr); 15881 if (I == Map.end()) { 15882 // If we didn't find the extact ZExt expr in the map, check if there's 15883 // an entry for a smaller ZExt we can use instead. 15884 Type *Ty = Expr->getType(); 15885 const SCEV *Op = Expr->getOperand(0); 15886 unsigned Bitwidth = Ty->getScalarSizeInBits() / 2; 15887 while (Bitwidth % 8 == 0 && Bitwidth >= 8 && 15888 Bitwidth > Op->getType()->getScalarSizeInBits()) { 15889 Type *NarrowTy = IntegerType::get(SE.getContext(), Bitwidth); 15890 auto *NarrowExt = SE.getZeroExtendExpr(Op, NarrowTy); 15891 auto I = Map.find(NarrowExt); 15892 if (I != Map.end()) 15893 return SE.getZeroExtendExpr(I->second, Ty); 15894 Bitwidth = Bitwidth / 2; 15895 } 15896 15897 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 15898 Expr); 15899 } 15900 return I->second; 15901 } 15902 15903 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 15904 auto I = Map.find(Expr); 15905 if (I == Map.end()) 15906 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSignExtendExpr( 15907 Expr); 15908 return I->second; 15909 } 15910 15911 const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) { 15912 auto I = Map.find(Expr); 15913 if (I == Map.end()) 15914 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitUMinExpr(Expr); 15915 return I->second; 15916 } 15917 15918 const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) { 15919 auto I = Map.find(Expr); 15920 if (I == Map.end()) 15921 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSMinExpr(Expr); 15922 return I->second; 15923 } 15924 15925 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 15926 SmallVector<const SCEV *, 2> Operands; 15927 bool Changed = false; 15928 for (const auto *Op : Expr->operands()) { 15929 Operands.push_back( 15930 SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visit(Op)); 15931 Changed |= Op != Operands.back(); 15932 } 15933 // We are only replacing operands with equivalent values, so transfer the 15934 // flags from the original expression. 15935 return !Changed ? Expr 15936 : SE.getAddExpr(Operands, 15937 ScalarEvolution::maskFlags( 15938 Expr->getNoWrapFlags(), FlagMask)); 15939 } 15940 15941 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 15942 SmallVector<const SCEV *, 2> Operands; 15943 bool Changed = false; 15944 for (const auto *Op : Expr->operands()) { 15945 Operands.push_back( 15946 SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visit(Op)); 15947 Changed |= Op != Operands.back(); 15948 } 15949 // We are only replacing operands with equivalent values, so transfer the 15950 // flags from the original expression. 15951 return !Changed ? Expr 15952 : SE.getMulExpr(Operands, 15953 ScalarEvolution::maskFlags( 15954 Expr->getNoWrapFlags(), FlagMask)); 15955 } 15956 }; 15957 15958 if (RewriteMap.empty()) 15959 return Expr; 15960 15961 SCEVLoopGuardRewriter Rewriter(SE, *this); 15962 return Rewriter.visit(Expr); 15963 } 15964 15965 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 15966 return applyLoopGuards(Expr, LoopGuards::collect(L, *this)); 15967 } 15968 15969 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, 15970 const LoopGuards &Guards) { 15971 return Guards.rewrite(Expr); 15972 } 15973