1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 #include "llvm/Transforms/InstCombine/InstCombiner.h"
28
29 using namespace llvm;
30 using namespace PatternMatch;
31
32 #define DEBUG_TYPE "instcombine"
33
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel, "Number of select opts");
36
37
38 /// Compute Result = In1+In2, returning true if the result overflowed for this
39 /// type.
addWithOverflow(APInt & Result,const APInt & In1,const APInt & In2,bool IsSigned=false)40 static bool addWithOverflow(APInt &Result, const APInt &In1,
41 const APInt &In2, bool IsSigned = false) {
42 bool Overflow;
43 if (IsSigned)
44 Result = In1.sadd_ov(In2, Overflow);
45 else
46 Result = In1.uadd_ov(In2, Overflow);
47
48 return Overflow;
49 }
50
51 /// Compute Result = In1-In2, returning true if the result overflowed for this
52 /// type.
subWithOverflow(APInt & Result,const APInt & In1,const APInt & In2,bool IsSigned=false)53 static bool subWithOverflow(APInt &Result, const APInt &In1,
54 const APInt &In2, bool IsSigned = false) {
55 bool Overflow;
56 if (IsSigned)
57 Result = In1.ssub_ov(In2, Overflow);
58 else
59 Result = In1.usub_ov(In2, Overflow);
60
61 return Overflow;
62 }
63
64 /// Given an icmp instruction, return true if any use of this comparison is a
65 /// branch on sign bit comparison.
hasBranchUse(ICmpInst & I)66 static bool hasBranchUse(ICmpInst &I) {
67 for (auto *U : I.users())
68 if (isa<BranchInst>(U))
69 return true;
70 return false;
71 }
72
73 /// Returns true if the exploded icmp can be expressed as a signed comparison
74 /// to zero and updates the predicate accordingly.
75 /// The signedness of the comparison is preserved.
76 /// TODO: Refactor with decomposeBitTestICmp()?
isSignTest(ICmpInst::Predicate & Pred,const APInt & C)77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
78 if (!ICmpInst::isSigned(Pred))
79 return false;
80
81 if (C.isNullValue())
82 return ICmpInst::isRelational(Pred);
83
84 if (C.isOneValue()) {
85 if (Pred == ICmpInst::ICMP_SLT) {
86 Pred = ICmpInst::ICMP_SLE;
87 return true;
88 }
89 } else if (C.isAllOnesValue()) {
90 if (Pred == ICmpInst::ICMP_SGT) {
91 Pred = ICmpInst::ICMP_SGE;
92 return true;
93 }
94 }
95
96 return false;
97 }
98
99 /// This is called when we see this pattern:
100 /// cmp pred (load (gep GV, ...)), cmpcst
101 /// where GV is a global variable with a constant initializer. Try to simplify
102 /// this into some simple computation that does not need the load. For example
103 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
104 ///
105 /// If AndCst is non-null, then the loaded value is masked with that constant
106 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
107 Instruction *
foldCmpLoadFromIndexedGlobal(GetElementPtrInst * GEP,GlobalVariable * GV,CmpInst & ICI,ConstantInt * AndCst)108 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
109 GlobalVariable *GV, CmpInst &ICI,
110 ConstantInt *AndCst) {
111 Constant *Init = GV->getInitializer();
112 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
113 return nullptr;
114
115 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
116 // Don't blow up on huge arrays.
117 if (ArrayElementCount > MaxArraySizeForCombine)
118 return nullptr;
119
120 // There are many forms of this optimization we can handle, for now, just do
121 // the simple index into a single-dimensional array.
122 //
123 // Require: GEP GV, 0, i {{, constant indices}}
124 if (GEP->getNumOperands() < 3 ||
125 !isa<ConstantInt>(GEP->getOperand(1)) ||
126 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
127 isa<Constant>(GEP->getOperand(2)))
128 return nullptr;
129
130 // Check that indices after the variable are constants and in-range for the
131 // type they index. Collect the indices. This is typically for arrays of
132 // structs.
133 SmallVector<unsigned, 4> LaterIndices;
134
135 Type *EltTy = Init->getType()->getArrayElementType();
136 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
137 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
138 if (!Idx) return nullptr; // Variable index.
139
140 uint64_t IdxVal = Idx->getZExtValue();
141 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
142
143 if (StructType *STy = dyn_cast<StructType>(EltTy))
144 EltTy = STy->getElementType(IdxVal);
145 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
146 if (IdxVal >= ATy->getNumElements()) return nullptr;
147 EltTy = ATy->getElementType();
148 } else {
149 return nullptr; // Unknown type.
150 }
151
152 LaterIndices.push_back(IdxVal);
153 }
154
155 enum { Overdefined = -3, Undefined = -2 };
156
157 // Variables for our state machines.
158
159 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
160 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
161 // and 87 is the second (and last) index. FirstTrueElement is -2 when
162 // undefined, otherwise set to the first true element. SecondTrueElement is
163 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
164 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
165
166 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
167 // form "i != 47 & i != 87". Same state transitions as for true elements.
168 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
169
170 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
171 /// define a state machine that triggers for ranges of values that the index
172 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
173 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
174 /// index in the range (inclusive). We use -2 for undefined here because we
175 /// use relative comparisons and don't want 0-1 to match -1.
176 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
177
178 // MagicBitvector - This is a magic bitvector where we set a bit if the
179 // comparison is true for element 'i'. If there are 64 elements or less in
180 // the array, this will fully represent all the comparison results.
181 uint64_t MagicBitvector = 0;
182
183 // Scan the array and see if one of our patterns matches.
184 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
185 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
186 Constant *Elt = Init->getAggregateElement(i);
187 if (!Elt) return nullptr;
188
189 // If this is indexing an array of structures, get the structure element.
190 if (!LaterIndices.empty())
191 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
192
193 // If the element is masked, handle it.
194 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
195
196 // Find out if the comparison would be true or false for the i'th element.
197 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
198 CompareRHS, DL, &TLI);
199 // If the result is undef for this element, ignore it.
200 if (isa<UndefValue>(C)) {
201 // Extend range state machines to cover this element in case there is an
202 // undef in the middle of the range.
203 if (TrueRangeEnd == (int)i-1)
204 TrueRangeEnd = i;
205 if (FalseRangeEnd == (int)i-1)
206 FalseRangeEnd = i;
207 continue;
208 }
209
210 // If we can't compute the result for any of the elements, we have to give
211 // up evaluating the entire conditional.
212 if (!isa<ConstantInt>(C)) return nullptr;
213
214 // Otherwise, we know if the comparison is true or false for this element,
215 // update our state machines.
216 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
217
218 // State machine for single/double/range index comparison.
219 if (IsTrueForElt) {
220 // Update the TrueElement state machine.
221 if (FirstTrueElement == Undefined)
222 FirstTrueElement = TrueRangeEnd = i; // First true element.
223 else {
224 // Update double-compare state machine.
225 if (SecondTrueElement == Undefined)
226 SecondTrueElement = i;
227 else
228 SecondTrueElement = Overdefined;
229
230 // Update range state machine.
231 if (TrueRangeEnd == (int)i-1)
232 TrueRangeEnd = i;
233 else
234 TrueRangeEnd = Overdefined;
235 }
236 } else {
237 // Update the FalseElement state machine.
238 if (FirstFalseElement == Undefined)
239 FirstFalseElement = FalseRangeEnd = i; // First false element.
240 else {
241 // Update double-compare state machine.
242 if (SecondFalseElement == Undefined)
243 SecondFalseElement = i;
244 else
245 SecondFalseElement = Overdefined;
246
247 // Update range state machine.
248 if (FalseRangeEnd == (int)i-1)
249 FalseRangeEnd = i;
250 else
251 FalseRangeEnd = Overdefined;
252 }
253 }
254
255 // If this element is in range, update our magic bitvector.
256 if (i < 64 && IsTrueForElt)
257 MagicBitvector |= 1ULL << i;
258
259 // If all of our states become overdefined, bail out early. Since the
260 // predicate is expensive, only check it every 8 elements. This is only
261 // really useful for really huge arrays.
262 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
263 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
264 FalseRangeEnd == Overdefined)
265 return nullptr;
266 }
267
268 // Now that we've scanned the entire array, emit our new comparison(s). We
269 // order the state machines in complexity of the generated code.
270 Value *Idx = GEP->getOperand(2);
271
272 // If the index is larger than the pointer size of the target, truncate the
273 // index down like the GEP would do implicitly. We don't have to do this for
274 // an inbounds GEP because the index can't be out of range.
275 if (!GEP->isInBounds()) {
276 Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
277 unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
278 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
279 Idx = Builder.CreateTrunc(Idx, IntPtrTy);
280 }
281
282 // If the comparison is only true for one or two elements, emit direct
283 // comparisons.
284 if (SecondTrueElement != Overdefined) {
285 // None true -> false.
286 if (FirstTrueElement == Undefined)
287 return replaceInstUsesWith(ICI, Builder.getFalse());
288
289 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
290
291 // True for one element -> 'i == 47'.
292 if (SecondTrueElement == Undefined)
293 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
294
295 // True for two elements -> 'i == 47 | i == 72'.
296 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
297 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
298 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
299 return BinaryOperator::CreateOr(C1, C2);
300 }
301
302 // If the comparison is only false for one or two elements, emit direct
303 // comparisons.
304 if (SecondFalseElement != Overdefined) {
305 // None false -> true.
306 if (FirstFalseElement == Undefined)
307 return replaceInstUsesWith(ICI, Builder.getTrue());
308
309 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
310
311 // False for one element -> 'i != 47'.
312 if (SecondFalseElement == Undefined)
313 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
314
315 // False for two elements -> 'i != 47 & i != 72'.
316 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
317 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
318 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
319 return BinaryOperator::CreateAnd(C1, C2);
320 }
321
322 // If the comparison can be replaced with a range comparison for the elements
323 // where it is true, emit the range check.
324 if (TrueRangeEnd != Overdefined) {
325 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
326
327 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
328 if (FirstTrueElement) {
329 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
330 Idx = Builder.CreateAdd(Idx, Offs);
331 }
332
333 Value *End = ConstantInt::get(Idx->getType(),
334 TrueRangeEnd-FirstTrueElement+1);
335 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
336 }
337
338 // False range check.
339 if (FalseRangeEnd != Overdefined) {
340 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
341 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
342 if (FirstFalseElement) {
343 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
344 Idx = Builder.CreateAdd(Idx, Offs);
345 }
346
347 Value *End = ConstantInt::get(Idx->getType(),
348 FalseRangeEnd-FirstFalseElement);
349 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
350 }
351
352 // If a magic bitvector captures the entire comparison state
353 // of this load, replace it with computation that does:
354 // ((magic_cst >> i) & 1) != 0
355 {
356 Type *Ty = nullptr;
357
358 // Look for an appropriate type:
359 // - The type of Idx if the magic fits
360 // - The smallest fitting legal type
361 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
362 Ty = Idx->getType();
363 else
364 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
365
366 if (Ty) {
367 Value *V = Builder.CreateIntCast(Idx, Ty, false);
368 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
369 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
370 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
371 }
372 }
373
374 return nullptr;
375 }
376
377 /// Return a value that can be used to compare the *offset* implied by a GEP to
378 /// zero. For example, if we have &A[i], we want to return 'i' for
379 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
380 /// are involved. The above expression would also be legal to codegen as
381 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
382 /// This latter form is less amenable to optimization though, and we are allowed
383 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
384 ///
385 /// If we can't emit an optimized form for this expression, this returns null.
386 ///
evaluateGEPOffsetExpression(User * GEP,InstCombinerImpl & IC,const DataLayout & DL)387 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
388 const DataLayout &DL) {
389 gep_type_iterator GTI = gep_type_begin(GEP);
390
391 // Check to see if this gep only has a single variable index. If so, and if
392 // any constant indices are a multiple of its scale, then we can compute this
393 // in terms of the scale of the variable index. For example, if the GEP
394 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
395 // because the expression will cross zero at the same point.
396 unsigned i, e = GEP->getNumOperands();
397 int64_t Offset = 0;
398 for (i = 1; i != e; ++i, ++GTI) {
399 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
400 // Compute the aggregate offset of constant indices.
401 if (CI->isZero()) continue;
402
403 // Handle a struct index, which adds its field offset to the pointer.
404 if (StructType *STy = GTI.getStructTypeOrNull()) {
405 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
406 } else {
407 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
408 Offset += Size*CI->getSExtValue();
409 }
410 } else {
411 // Found our variable index.
412 break;
413 }
414 }
415
416 // If there are no variable indices, we must have a constant offset, just
417 // evaluate it the general way.
418 if (i == e) return nullptr;
419
420 Value *VariableIdx = GEP->getOperand(i);
421 // Determine the scale factor of the variable element. For example, this is
422 // 4 if the variable index is into an array of i32.
423 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
424
425 // Verify that there are no other variable indices. If so, emit the hard way.
426 for (++i, ++GTI; i != e; ++i, ++GTI) {
427 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
428 if (!CI) return nullptr;
429
430 // Compute the aggregate offset of constant indices.
431 if (CI->isZero()) continue;
432
433 // Handle a struct index, which adds its field offset to the pointer.
434 if (StructType *STy = GTI.getStructTypeOrNull()) {
435 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
436 } else {
437 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
438 Offset += Size*CI->getSExtValue();
439 }
440 }
441
442 // Okay, we know we have a single variable index, which must be a
443 // pointer/array/vector index. If there is no offset, life is simple, return
444 // the index.
445 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
446 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
447 if (Offset == 0) {
448 // Cast to intptrty in case a truncation occurs. If an extension is needed,
449 // we don't need to bother extending: the extension won't affect where the
450 // computation crosses zero.
451 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
452 IntPtrWidth) {
453 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
454 }
455 return VariableIdx;
456 }
457
458 // Otherwise, there is an index. The computation we will do will be modulo
459 // the pointer size.
460 Offset = SignExtend64(Offset, IntPtrWidth);
461 VariableScale = SignExtend64(VariableScale, IntPtrWidth);
462
463 // To do this transformation, any constant index must be a multiple of the
464 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
465 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
466 // multiple of the variable scale.
467 int64_t NewOffs = Offset / (int64_t)VariableScale;
468 if (Offset != NewOffs*(int64_t)VariableScale)
469 return nullptr;
470
471 // Okay, we can do this evaluation. Start by converting the index to intptr.
472 if (VariableIdx->getType() != IntPtrTy)
473 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
474 true /*Signed*/);
475 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
476 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
477 }
478
479 /// Returns true if we can rewrite Start as a GEP with pointer Base
480 /// and some integer offset. The nodes that need to be re-written
481 /// for this transformation will be added to Explored.
canRewriteGEPAsOffset(Value * Start,Value * Base,const DataLayout & DL,SetVector<Value * > & Explored)482 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
483 const DataLayout &DL,
484 SetVector<Value *> &Explored) {
485 SmallVector<Value *, 16> WorkList(1, Start);
486 Explored.insert(Base);
487
488 // The following traversal gives us an order which can be used
489 // when doing the final transformation. Since in the final
490 // transformation we create the PHI replacement instructions first,
491 // we don't have to get them in any particular order.
492 //
493 // However, for other instructions we will have to traverse the
494 // operands of an instruction first, which means that we have to
495 // do a post-order traversal.
496 while (!WorkList.empty()) {
497 SetVector<PHINode *> PHIs;
498
499 while (!WorkList.empty()) {
500 if (Explored.size() >= 100)
501 return false;
502
503 Value *V = WorkList.back();
504
505 if (Explored.contains(V)) {
506 WorkList.pop_back();
507 continue;
508 }
509
510 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
511 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
512 // We've found some value that we can't explore which is different from
513 // the base. Therefore we can't do this transformation.
514 return false;
515
516 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
517 auto *CI = cast<CastInst>(V);
518 if (!CI->isNoopCast(DL))
519 return false;
520
521 if (Explored.count(CI->getOperand(0)) == 0)
522 WorkList.push_back(CI->getOperand(0));
523 }
524
525 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
526 // We're limiting the GEP to having one index. This will preserve
527 // the original pointer type. We could handle more cases in the
528 // future.
529 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
530 GEP->getType() != Start->getType())
531 return false;
532
533 if (Explored.count(GEP->getOperand(0)) == 0)
534 WorkList.push_back(GEP->getOperand(0));
535 }
536
537 if (WorkList.back() == V) {
538 WorkList.pop_back();
539 // We've finished visiting this node, mark it as such.
540 Explored.insert(V);
541 }
542
543 if (auto *PN = dyn_cast<PHINode>(V)) {
544 // We cannot transform PHIs on unsplittable basic blocks.
545 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
546 return false;
547 Explored.insert(PN);
548 PHIs.insert(PN);
549 }
550 }
551
552 // Explore the PHI nodes further.
553 for (auto *PN : PHIs)
554 for (Value *Op : PN->incoming_values())
555 if (Explored.count(Op) == 0)
556 WorkList.push_back(Op);
557 }
558
559 // Make sure that we can do this. Since we can't insert GEPs in a basic
560 // block before a PHI node, we can't easily do this transformation if
561 // we have PHI node users of transformed instructions.
562 for (Value *Val : Explored) {
563 for (Value *Use : Val->uses()) {
564
565 auto *PHI = dyn_cast<PHINode>(Use);
566 auto *Inst = dyn_cast<Instruction>(Val);
567
568 if (Inst == Base || Inst == PHI || !Inst || !PHI ||
569 Explored.count(PHI) == 0)
570 continue;
571
572 if (PHI->getParent() == Inst->getParent())
573 return false;
574 }
575 }
576 return true;
577 }
578
579 // Sets the appropriate insert point on Builder where we can add
580 // a replacement Instruction for V (if that is possible).
setInsertionPoint(IRBuilder<> & Builder,Value * V,bool Before=true)581 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
582 bool Before = true) {
583 if (auto *PHI = dyn_cast<PHINode>(V)) {
584 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
585 return;
586 }
587 if (auto *I = dyn_cast<Instruction>(V)) {
588 if (!Before)
589 I = &*std::next(I->getIterator());
590 Builder.SetInsertPoint(I);
591 return;
592 }
593 if (auto *A = dyn_cast<Argument>(V)) {
594 // Set the insertion point in the entry block.
595 BasicBlock &Entry = A->getParent()->getEntryBlock();
596 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
597 return;
598 }
599 // Otherwise, this is a constant and we don't need to set a new
600 // insertion point.
601 assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
602 }
603
604 /// Returns a re-written value of Start as an indexed GEP using Base as a
605 /// pointer.
rewriteGEPAsOffset(Value * Start,Value * Base,const DataLayout & DL,SetVector<Value * > & Explored)606 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
607 const DataLayout &DL,
608 SetVector<Value *> &Explored) {
609 // Perform all the substitutions. This is a bit tricky because we can
610 // have cycles in our use-def chains.
611 // 1. Create the PHI nodes without any incoming values.
612 // 2. Create all the other values.
613 // 3. Add the edges for the PHI nodes.
614 // 4. Emit GEPs to get the original pointers.
615 // 5. Remove the original instructions.
616 Type *IndexType = IntegerType::get(
617 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
618
619 DenseMap<Value *, Value *> NewInsts;
620 NewInsts[Base] = ConstantInt::getNullValue(IndexType);
621
622 // Create the new PHI nodes, without adding any incoming values.
623 for (Value *Val : Explored) {
624 if (Val == Base)
625 continue;
626 // Create empty phi nodes. This avoids cyclic dependencies when creating
627 // the remaining instructions.
628 if (auto *PHI = dyn_cast<PHINode>(Val))
629 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
630 PHI->getName() + ".idx", PHI);
631 }
632 IRBuilder<> Builder(Base->getContext());
633
634 // Create all the other instructions.
635 for (Value *Val : Explored) {
636
637 if (NewInsts.find(Val) != NewInsts.end())
638 continue;
639
640 if (auto *CI = dyn_cast<CastInst>(Val)) {
641 // Don't get rid of the intermediate variable here; the store can grow
642 // the map which will invalidate the reference to the input value.
643 Value *V = NewInsts[CI->getOperand(0)];
644 NewInsts[CI] = V;
645 continue;
646 }
647 if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
648 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
649 : GEP->getOperand(1);
650 setInsertionPoint(Builder, GEP);
651 // Indices might need to be sign extended. GEPs will magically do
652 // this, but we need to do it ourselves here.
653 if (Index->getType()->getScalarSizeInBits() !=
654 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
655 Index = Builder.CreateSExtOrTrunc(
656 Index, NewInsts[GEP->getOperand(0)]->getType(),
657 GEP->getOperand(0)->getName() + ".sext");
658 }
659
660 auto *Op = NewInsts[GEP->getOperand(0)];
661 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
662 NewInsts[GEP] = Index;
663 else
664 NewInsts[GEP] = Builder.CreateNSWAdd(
665 Op, Index, GEP->getOperand(0)->getName() + ".add");
666 continue;
667 }
668 if (isa<PHINode>(Val))
669 continue;
670
671 llvm_unreachable("Unexpected instruction type");
672 }
673
674 // Add the incoming values to the PHI nodes.
675 for (Value *Val : Explored) {
676 if (Val == Base)
677 continue;
678 // All the instructions have been created, we can now add edges to the
679 // phi nodes.
680 if (auto *PHI = dyn_cast<PHINode>(Val)) {
681 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
682 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
683 Value *NewIncoming = PHI->getIncomingValue(I);
684
685 if (NewInsts.find(NewIncoming) != NewInsts.end())
686 NewIncoming = NewInsts[NewIncoming];
687
688 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
689 }
690 }
691 }
692
693 for (Value *Val : Explored) {
694 if (Val == Base)
695 continue;
696
697 // Depending on the type, for external users we have to emit
698 // a GEP or a GEP + ptrtoint.
699 setInsertionPoint(Builder, Val, false);
700
701 // If required, create an inttoptr instruction for Base.
702 Value *NewBase = Base;
703 if (!Base->getType()->isPointerTy())
704 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
705 Start->getName() + "to.ptr");
706
707 Value *GEP = Builder.CreateInBoundsGEP(
708 Start->getType()->getPointerElementType(), NewBase,
709 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
710
711 if (!Val->getType()->isPointerTy()) {
712 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
713 Val->getName() + ".conv");
714 GEP = Cast;
715 }
716 Val->replaceAllUsesWith(GEP);
717 }
718
719 return NewInsts[Start];
720 }
721
722 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
723 /// the input Value as a constant indexed GEP. Returns a pair containing
724 /// the GEPs Pointer and Index.
725 static std::pair<Value *, Value *>
getAsConstantIndexedAddress(Value * V,const DataLayout & DL)726 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
727 Type *IndexType = IntegerType::get(V->getContext(),
728 DL.getIndexTypeSizeInBits(V->getType()));
729
730 Constant *Index = ConstantInt::getNullValue(IndexType);
731 while (true) {
732 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
733 // We accept only inbouds GEPs here to exclude the possibility of
734 // overflow.
735 if (!GEP->isInBounds())
736 break;
737 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
738 GEP->getType() == V->getType()) {
739 V = GEP->getOperand(0);
740 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
741 Index = ConstantExpr::getAdd(
742 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
743 continue;
744 }
745 break;
746 }
747 if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
748 if (!CI->isNoopCast(DL))
749 break;
750 V = CI->getOperand(0);
751 continue;
752 }
753 if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
754 if (!CI->isNoopCast(DL))
755 break;
756 V = CI->getOperand(0);
757 continue;
758 }
759 break;
760 }
761 return {V, Index};
762 }
763
764 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
765 /// We can look through PHIs, GEPs and casts in order to determine a common base
766 /// between GEPLHS and RHS.
transformToIndexedCompare(GEPOperator * GEPLHS,Value * RHS,ICmpInst::Predicate Cond,const DataLayout & DL)767 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
768 ICmpInst::Predicate Cond,
769 const DataLayout &DL) {
770 // FIXME: Support vector of pointers.
771 if (GEPLHS->getType()->isVectorTy())
772 return nullptr;
773
774 if (!GEPLHS->hasAllConstantIndices())
775 return nullptr;
776
777 // Make sure the pointers have the same type.
778 if (GEPLHS->getType() != RHS->getType())
779 return nullptr;
780
781 Value *PtrBase, *Index;
782 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
783
784 // The set of nodes that will take part in this transformation.
785 SetVector<Value *> Nodes;
786
787 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
788 return nullptr;
789
790 // We know we can re-write this as
791 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
792 // Since we've only looked through inbouds GEPs we know that we
793 // can't have overflow on either side. We can therefore re-write
794 // this as:
795 // OFFSET1 cmp OFFSET2
796 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
797
798 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
799 // GEP having PtrBase as the pointer base, and has returned in NewRHS the
800 // offset. Since Index is the offset of LHS to the base pointer, we will now
801 // compare the offsets instead of comparing the pointers.
802 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
803 }
804
805 /// Fold comparisons between a GEP instruction and something else. At this point
806 /// we know that the GEP is on the LHS of the comparison.
foldGEPICmp(GEPOperator * GEPLHS,Value * RHS,ICmpInst::Predicate Cond,Instruction & I)807 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
808 ICmpInst::Predicate Cond,
809 Instruction &I) {
810 // Don't transform signed compares of GEPs into index compares. Even if the
811 // GEP is inbounds, the final add of the base pointer can have signed overflow
812 // and would change the result of the icmp.
813 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
814 // the maximum signed value for the pointer type.
815 if (ICmpInst::isSigned(Cond))
816 return nullptr;
817
818 // Look through bitcasts and addrspacecasts. We do not however want to remove
819 // 0 GEPs.
820 if (!isa<GetElementPtrInst>(RHS))
821 RHS = RHS->stripPointerCasts();
822
823 Value *PtrBase = GEPLHS->getOperand(0);
824 // FIXME: Support vector pointer GEPs.
825 if (PtrBase == RHS && GEPLHS->isInBounds() &&
826 !GEPLHS->getType()->isVectorTy()) {
827 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
828 // This transformation (ignoring the base and scales) is valid because we
829 // know pointers can't overflow since the gep is inbounds. See if we can
830 // output an optimized form.
831 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
832
833 // If not, synthesize the offset the hard way.
834 if (!Offset)
835 Offset = EmitGEPOffset(GEPLHS);
836 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
837 Constant::getNullValue(Offset->getType()));
838 }
839
840 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
841 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
842 !NullPointerIsDefined(I.getFunction(),
843 RHS->getType()->getPointerAddressSpace())) {
844 // For most address spaces, an allocation can't be placed at null, but null
845 // itself is treated as a 0 size allocation in the in bounds rules. Thus,
846 // the only valid inbounds address derived from null, is null itself.
847 // Thus, we have four cases to consider:
848 // 1) Base == nullptr, Offset == 0 -> inbounds, null
849 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
850 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
851 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
852 //
853 // (Note if we're indexing a type of size 0, that simply collapses into one
854 // of the buckets above.)
855 //
856 // In general, we're allowed to make values less poison (i.e. remove
857 // sources of full UB), so in this case, we just select between the two
858 // non-poison cases (1 and 4 above).
859 //
860 // For vectors, we apply the same reasoning on a per-lane basis.
861 auto *Base = GEPLHS->getPointerOperand();
862 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
863 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
864 Base = Builder.CreateVectorSplat(EC, Base);
865 }
866 return new ICmpInst(Cond, Base,
867 ConstantExpr::getPointerBitCastOrAddrSpaceCast(
868 cast<Constant>(RHS), Base->getType()));
869 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
870 // If the base pointers are different, but the indices are the same, just
871 // compare the base pointer.
872 if (PtrBase != GEPRHS->getOperand(0)) {
873 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
874 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
875 GEPRHS->getOperand(0)->getType();
876 if (IndicesTheSame)
877 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
878 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
879 IndicesTheSame = false;
880 break;
881 }
882
883 // If all indices are the same, just compare the base pointers.
884 Type *BaseType = GEPLHS->getOperand(0)->getType();
885 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
886 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
887
888 // If we're comparing GEPs with two base pointers that only differ in type
889 // and both GEPs have only constant indices or just one use, then fold
890 // the compare with the adjusted indices.
891 // FIXME: Support vector of pointers.
892 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
893 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
894 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
895 PtrBase->stripPointerCasts() ==
896 GEPRHS->getOperand(0)->stripPointerCasts() &&
897 !GEPLHS->getType()->isVectorTy()) {
898 Value *LOffset = EmitGEPOffset(GEPLHS);
899 Value *ROffset = EmitGEPOffset(GEPRHS);
900
901 // If we looked through an addrspacecast between different sized address
902 // spaces, the LHS and RHS pointers are different sized
903 // integers. Truncate to the smaller one.
904 Type *LHSIndexTy = LOffset->getType();
905 Type *RHSIndexTy = ROffset->getType();
906 if (LHSIndexTy != RHSIndexTy) {
907 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
908 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
909 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
910 } else
911 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
912 }
913
914 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
915 LOffset, ROffset);
916 return replaceInstUsesWith(I, Cmp);
917 }
918
919 // Otherwise, the base pointers are different and the indices are
920 // different. Try convert this to an indexed compare by looking through
921 // PHIs/casts.
922 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
923 }
924
925 // If one of the GEPs has all zero indices, recurse.
926 // FIXME: Handle vector of pointers.
927 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
928 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
929 ICmpInst::getSwappedPredicate(Cond), I);
930
931 // If the other GEP has all zero indices, recurse.
932 // FIXME: Handle vector of pointers.
933 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
934 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
935
936 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
937 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
938 // If the GEPs only differ by one index, compare it.
939 unsigned NumDifferences = 0; // Keep track of # differences.
940 unsigned DiffOperand = 0; // The operand that differs.
941 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
942 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
943 Type *LHSType = GEPLHS->getOperand(i)->getType();
944 Type *RHSType = GEPRHS->getOperand(i)->getType();
945 // FIXME: Better support for vector of pointers.
946 if (LHSType->getPrimitiveSizeInBits() !=
947 RHSType->getPrimitiveSizeInBits() ||
948 (GEPLHS->getType()->isVectorTy() &&
949 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
950 // Irreconcilable differences.
951 NumDifferences = 2;
952 break;
953 }
954
955 if (NumDifferences++) break;
956 DiffOperand = i;
957 }
958
959 if (NumDifferences == 0) // SAME GEP?
960 return replaceInstUsesWith(I, // No comparison is needed here.
961 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
962
963 else if (NumDifferences == 1 && GEPsInBounds) {
964 Value *LHSV = GEPLHS->getOperand(DiffOperand);
965 Value *RHSV = GEPRHS->getOperand(DiffOperand);
966 // Make sure we do a signed comparison here.
967 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
968 }
969 }
970
971 // Only lower this if the icmp is the only user of the GEP or if we expect
972 // the result to fold to a constant!
973 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
974 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
975 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
976 Value *L = EmitGEPOffset(GEPLHS);
977 Value *R = EmitGEPOffset(GEPRHS);
978 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
979 }
980 }
981
982 // Try convert this to an indexed compare by looking through PHIs/casts as a
983 // last resort.
984 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
985 }
986
foldAllocaCmp(ICmpInst & ICI,const AllocaInst * Alloca,const Value * Other)987 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
988 const AllocaInst *Alloca,
989 const Value *Other) {
990 assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
991
992 // It would be tempting to fold away comparisons between allocas and any
993 // pointer not based on that alloca (e.g. an argument). However, even
994 // though such pointers cannot alias, they can still compare equal.
995 //
996 // But LLVM doesn't specify where allocas get their memory, so if the alloca
997 // doesn't escape we can argue that it's impossible to guess its value, and we
998 // can therefore act as if any such guesses are wrong.
999 //
1000 // The code below checks that the alloca doesn't escape, and that it's only
1001 // used in a comparison once (the current instruction). The
1002 // single-comparison-use condition ensures that we're trivially folding all
1003 // comparisons against the alloca consistently, and avoids the risk of
1004 // erroneously folding a comparison of the pointer with itself.
1005
1006 unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1007
1008 SmallVector<const Use *, 32> Worklist;
1009 for (const Use &U : Alloca->uses()) {
1010 if (Worklist.size() >= MaxIter)
1011 return nullptr;
1012 Worklist.push_back(&U);
1013 }
1014
1015 unsigned NumCmps = 0;
1016 while (!Worklist.empty()) {
1017 assert(Worklist.size() <= MaxIter);
1018 const Use *U = Worklist.pop_back_val();
1019 const Value *V = U->getUser();
1020 --MaxIter;
1021
1022 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1023 isa<SelectInst>(V)) {
1024 // Track the uses.
1025 } else if (isa<LoadInst>(V)) {
1026 // Loading from the pointer doesn't escape it.
1027 continue;
1028 } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1029 // Storing *to* the pointer is fine, but storing the pointer escapes it.
1030 if (SI->getValueOperand() == U->get())
1031 return nullptr;
1032 continue;
1033 } else if (isa<ICmpInst>(V)) {
1034 if (NumCmps++)
1035 return nullptr; // Found more than one cmp.
1036 continue;
1037 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1038 switch (Intrin->getIntrinsicID()) {
1039 // These intrinsics don't escape or compare the pointer. Memset is safe
1040 // because we don't allow ptrtoint. Memcpy and memmove are safe because
1041 // we don't allow stores, so src cannot point to V.
1042 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1043 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1044 continue;
1045 default:
1046 return nullptr;
1047 }
1048 } else {
1049 return nullptr;
1050 }
1051 for (const Use &U : V->uses()) {
1052 if (Worklist.size() >= MaxIter)
1053 return nullptr;
1054 Worklist.push_back(&U);
1055 }
1056 }
1057
1058 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1059 return replaceInstUsesWith(
1060 ICI,
1061 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1062 }
1063
1064 /// Fold "icmp pred (X+C), X".
foldICmpAddOpConst(Value * X,const APInt & C,ICmpInst::Predicate Pred)1065 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1066 ICmpInst::Predicate Pred) {
1067 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1068 // so the values can never be equal. Similarly for all other "or equals"
1069 // operators.
1070 assert(!!C && "C should not be zero!");
1071
1072 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
1073 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
1074 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
1075 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1076 Constant *R = ConstantInt::get(X->getType(),
1077 APInt::getMaxValue(C.getBitWidth()) - C);
1078 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1079 }
1080
1081 // (X+1) >u X --> X <u (0-1) --> X != 255
1082 // (X+2) >u X --> X <u (0-2) --> X <u 254
1083 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
1084 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1085 return new ICmpInst(ICmpInst::ICMP_ULT, X,
1086 ConstantInt::get(X->getType(), -C));
1087
1088 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1089
1090 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
1091 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
1092 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
1093 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
1094 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
1095 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
1096 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1097 return new ICmpInst(ICmpInst::ICMP_SGT, X,
1098 ConstantInt::get(X->getType(), SMax - C));
1099
1100 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
1101 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
1102 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1103 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1104 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
1105 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
1106
1107 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1108 return new ICmpInst(ICmpInst::ICMP_SLT, X,
1109 ConstantInt::get(X->getType(), SMax - (C - 1)));
1110 }
1111
1112 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1113 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1114 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
foldICmpShrConstConst(ICmpInst & I,Value * A,const APInt & AP1,const APInt & AP2)1115 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1116 const APInt &AP1,
1117 const APInt &AP2) {
1118 assert(I.isEquality() && "Cannot fold icmp gt/lt");
1119
1120 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1121 if (I.getPredicate() == I.ICMP_NE)
1122 Pred = CmpInst::getInversePredicate(Pred);
1123 return new ICmpInst(Pred, LHS, RHS);
1124 };
1125
1126 // Don't bother doing any work for cases which InstSimplify handles.
1127 if (AP2.isNullValue())
1128 return nullptr;
1129
1130 bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1131 if (IsAShr) {
1132 if (AP2.isAllOnesValue())
1133 return nullptr;
1134 if (AP2.isNegative() != AP1.isNegative())
1135 return nullptr;
1136 if (AP2.sgt(AP1))
1137 return nullptr;
1138 }
1139
1140 if (!AP1)
1141 // 'A' must be large enough to shift out the highest set bit.
1142 return getICmp(I.ICMP_UGT, A,
1143 ConstantInt::get(A->getType(), AP2.logBase2()));
1144
1145 if (AP1 == AP2)
1146 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1147
1148 int Shift;
1149 if (IsAShr && AP1.isNegative())
1150 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1151 else
1152 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1153
1154 if (Shift > 0) {
1155 if (IsAShr && AP1 == AP2.ashr(Shift)) {
1156 // There are multiple solutions if we are comparing against -1 and the LHS
1157 // of the ashr is not a power of two.
1158 if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1159 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1160 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1161 } else if (AP1 == AP2.lshr(Shift)) {
1162 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1163 }
1164 }
1165
1166 // Shifting const2 will never be equal to const1.
1167 // FIXME: This should always be handled by InstSimplify?
1168 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1169 return replaceInstUsesWith(I, TorF);
1170 }
1171
1172 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1173 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
foldICmpShlConstConst(ICmpInst & I,Value * A,const APInt & AP1,const APInt & AP2)1174 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1175 const APInt &AP1,
1176 const APInt &AP2) {
1177 assert(I.isEquality() && "Cannot fold icmp gt/lt");
1178
1179 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1180 if (I.getPredicate() == I.ICMP_NE)
1181 Pred = CmpInst::getInversePredicate(Pred);
1182 return new ICmpInst(Pred, LHS, RHS);
1183 };
1184
1185 // Don't bother doing any work for cases which InstSimplify handles.
1186 if (AP2.isNullValue())
1187 return nullptr;
1188
1189 unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1190
1191 if (!AP1 && AP2TrailingZeros != 0)
1192 return getICmp(
1193 I.ICMP_UGE, A,
1194 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1195
1196 if (AP1 == AP2)
1197 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1198
1199 // Get the distance between the lowest bits that are set.
1200 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1201
1202 if (Shift > 0 && AP2.shl(Shift) == AP1)
1203 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1204
1205 // Shifting const2 will never be equal to const1.
1206 // FIXME: This should always be handled by InstSimplify?
1207 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1208 return replaceInstUsesWith(I, TorF);
1209 }
1210
1211 /// The caller has matched a pattern of the form:
1212 /// I = icmp ugt (add (add A, B), CI2), CI1
1213 /// If this is of the form:
1214 /// sum = a + b
1215 /// if (sum+128 >u 255)
1216 /// Then replace it with llvm.sadd.with.overflow.i8.
1217 ///
processUGT_ADDCST_ADD(ICmpInst & I,Value * A,Value * B,ConstantInt * CI2,ConstantInt * CI1,InstCombinerImpl & IC)1218 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1219 ConstantInt *CI2, ConstantInt *CI1,
1220 InstCombinerImpl &IC) {
1221 // The transformation we're trying to do here is to transform this into an
1222 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1223 // with a narrower add, and discard the add-with-constant that is part of the
1224 // range check (if we can't eliminate it, this isn't profitable).
1225
1226 // In order to eliminate the add-with-constant, the compare can be its only
1227 // use.
1228 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1229 if (!AddWithCst->hasOneUse())
1230 return nullptr;
1231
1232 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1233 if (!CI2->getValue().isPowerOf2())
1234 return nullptr;
1235 unsigned NewWidth = CI2->getValue().countTrailingZeros();
1236 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1237 return nullptr;
1238
1239 // The width of the new add formed is 1 more than the bias.
1240 ++NewWidth;
1241
1242 // Check to see that CI1 is an all-ones value with NewWidth bits.
1243 if (CI1->getBitWidth() == NewWidth ||
1244 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1245 return nullptr;
1246
1247 // This is only really a signed overflow check if the inputs have been
1248 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1249 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1250 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1251 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1252 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1253 return nullptr;
1254
1255 // In order to replace the original add with a narrower
1256 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1257 // and truncates that discard the high bits of the add. Verify that this is
1258 // the case.
1259 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1260 for (User *U : OrigAdd->users()) {
1261 if (U == AddWithCst)
1262 continue;
1263
1264 // Only accept truncates for now. We would really like a nice recursive
1265 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1266 // chain to see which bits of a value are actually demanded. If the
1267 // original add had another add which was then immediately truncated, we
1268 // could still do the transformation.
1269 TruncInst *TI = dyn_cast<TruncInst>(U);
1270 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1271 return nullptr;
1272 }
1273
1274 // If the pattern matches, truncate the inputs to the narrower type and
1275 // use the sadd_with_overflow intrinsic to efficiently compute both the
1276 // result and the overflow bit.
1277 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1278 Function *F = Intrinsic::getDeclaration(
1279 I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1280
1281 InstCombiner::BuilderTy &Builder = IC.Builder;
1282
1283 // Put the new code above the original add, in case there are any uses of the
1284 // add between the add and the compare.
1285 Builder.SetInsertPoint(OrigAdd);
1286
1287 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1288 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1289 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1290 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1291 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1292
1293 // The inner add was the result of the narrow add, zero extended to the
1294 // wider type. Replace it with the result computed by the intrinsic.
1295 IC.replaceInstUsesWith(*OrigAdd, ZExt);
1296 IC.eraseInstFromFunction(*OrigAdd);
1297
1298 // The original icmp gets replaced with the overflow value.
1299 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1300 }
1301
1302 /// If we have:
1303 /// icmp eq/ne (urem/srem %x, %y), 0
1304 /// iff %y is a power-of-two, we can replace this with a bit test:
1305 /// icmp eq/ne (and %x, (add %y, -1)), 0
foldIRemByPowerOfTwoToBitTest(ICmpInst & I)1306 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1307 // This fold is only valid for equality predicates.
1308 if (!I.isEquality())
1309 return nullptr;
1310 ICmpInst::Predicate Pred;
1311 Value *X, *Y, *Zero;
1312 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1313 m_CombineAnd(m_Zero(), m_Value(Zero)))))
1314 return nullptr;
1315 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1316 return nullptr;
1317 // This may increase instruction count, we don't enforce that Y is a constant.
1318 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1319 Value *Masked = Builder.CreateAnd(X, Mask);
1320 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1321 }
1322
1323 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1324 /// by one-less-than-bitwidth into a sign test on the original value.
foldSignBitTest(ICmpInst & I)1325 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1326 Instruction *Val;
1327 ICmpInst::Predicate Pred;
1328 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1329 return nullptr;
1330
1331 Value *X;
1332 Type *XTy;
1333
1334 Constant *C;
1335 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1336 XTy = X->getType();
1337 unsigned XBitWidth = XTy->getScalarSizeInBits();
1338 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1339 APInt(XBitWidth, XBitWidth - 1))))
1340 return nullptr;
1341 } else if (isa<BinaryOperator>(Val) &&
1342 (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1343 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1344 /*AnalyzeForSignBitExtraction=*/true))) {
1345 XTy = X->getType();
1346 } else
1347 return nullptr;
1348
1349 return ICmpInst::Create(Instruction::ICmp,
1350 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1351 : ICmpInst::ICMP_SLT,
1352 X, ConstantInt::getNullValue(XTy));
1353 }
1354
1355 // Handle icmp pred X, 0
foldICmpWithZero(ICmpInst & Cmp)1356 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1357 CmpInst::Predicate Pred = Cmp.getPredicate();
1358 if (!match(Cmp.getOperand(1), m_Zero()))
1359 return nullptr;
1360
1361 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1362 if (Pred == ICmpInst::ICMP_SGT) {
1363 Value *A, *B;
1364 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1365 if (SPR.Flavor == SPF_SMIN) {
1366 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1367 return new ICmpInst(Pred, B, Cmp.getOperand(1));
1368 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1369 return new ICmpInst(Pred, A, Cmp.getOperand(1));
1370 }
1371 }
1372
1373 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1374 return New;
1375
1376 // Given:
1377 // icmp eq/ne (urem %x, %y), 0
1378 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1379 // icmp eq/ne %x, 0
1380 Value *X, *Y;
1381 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1382 ICmpInst::isEquality(Pred)) {
1383 KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1384 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1385 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1386 return new ICmpInst(Pred, X, Cmp.getOperand(1));
1387 }
1388
1389 return nullptr;
1390 }
1391
1392 /// Fold icmp Pred X, C.
1393 /// TODO: This code structure does not make sense. The saturating add fold
1394 /// should be moved to some other helper and extended as noted below (it is also
1395 /// possible that code has been made unnecessary - do we canonicalize IR to
1396 /// overflow/saturating intrinsics or not?).
foldICmpWithConstant(ICmpInst & Cmp)1397 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1398 // Match the following pattern, which is a common idiom when writing
1399 // overflow-safe integer arithmetic functions. The source performs an addition
1400 // in wider type and explicitly checks for overflow using comparisons against
1401 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1402 //
1403 // TODO: This could probably be generalized to handle other overflow-safe
1404 // operations if we worked out the formulas to compute the appropriate magic
1405 // constants.
1406 //
1407 // sum = a + b
1408 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1409 CmpInst::Predicate Pred = Cmp.getPredicate();
1410 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1411 Value *A, *B;
1412 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1413 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1414 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1415 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1416 return Res;
1417
1418 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1419 Constant *C = dyn_cast<Constant>(Op1);
1420 if (!C)
1421 return nullptr;
1422
1423 if (auto *Phi = dyn_cast<PHINode>(Op0))
1424 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1425 Type *Ty = Cmp.getType();
1426 Builder.SetInsertPoint(Phi);
1427 PHINode *NewPhi =
1428 Builder.CreatePHI(Ty, Phi->getNumOperands());
1429 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1430 auto *Input =
1431 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1432 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1433 NewPhi->addIncoming(BoolInput, Predecessor);
1434 }
1435 NewPhi->takeName(&Cmp);
1436 return replaceInstUsesWith(Cmp, NewPhi);
1437 }
1438
1439 return nullptr;
1440 }
1441
1442 /// Canonicalize icmp instructions based on dominating conditions.
foldICmpWithDominatingICmp(ICmpInst & Cmp)1443 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1444 // This is a cheap/incomplete check for dominance - just match a single
1445 // predecessor with a conditional branch.
1446 BasicBlock *CmpBB = Cmp.getParent();
1447 BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1448 if (!DomBB)
1449 return nullptr;
1450
1451 Value *DomCond;
1452 BasicBlock *TrueBB, *FalseBB;
1453 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1454 return nullptr;
1455
1456 assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1457 "Predecessor block does not point to successor?");
1458
1459 // The branch should get simplified. Don't bother simplifying this condition.
1460 if (TrueBB == FalseBB)
1461 return nullptr;
1462
1463 // Try to simplify this compare to T/F based on the dominating condition.
1464 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1465 if (Imp)
1466 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1467
1468 CmpInst::Predicate Pred = Cmp.getPredicate();
1469 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1470 ICmpInst::Predicate DomPred;
1471 const APInt *C, *DomC;
1472 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1473 match(Y, m_APInt(C))) {
1474 // We have 2 compares of a variable with constants. Calculate the constant
1475 // ranges of those compares to see if we can transform the 2nd compare:
1476 // DomBB:
1477 // DomCond = icmp DomPred X, DomC
1478 // br DomCond, CmpBB, FalseBB
1479 // CmpBB:
1480 // Cmp = icmp Pred X, C
1481 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1482 ConstantRange DominatingCR =
1483 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1484 : ConstantRange::makeExactICmpRegion(
1485 CmpInst::getInversePredicate(DomPred), *DomC);
1486 ConstantRange Intersection = DominatingCR.intersectWith(CR);
1487 ConstantRange Difference = DominatingCR.difference(CR);
1488 if (Intersection.isEmptySet())
1489 return replaceInstUsesWith(Cmp, Builder.getFalse());
1490 if (Difference.isEmptySet())
1491 return replaceInstUsesWith(Cmp, Builder.getTrue());
1492
1493 // Canonicalizing a sign bit comparison that gets used in a branch,
1494 // pessimizes codegen by generating branch on zero instruction instead
1495 // of a test and branch. So we avoid canonicalizing in such situations
1496 // because test and branch instruction has better branch displacement
1497 // than compare and branch instruction.
1498 bool UnusedBit;
1499 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1500 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1501 return nullptr;
1502
1503 // Avoid an infinite loop with min/max canonicalization.
1504 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1505 if (Cmp.hasOneUse() &&
1506 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1507 return nullptr;
1508
1509 if (const APInt *EqC = Intersection.getSingleElement())
1510 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1511 if (const APInt *NeC = Difference.getSingleElement())
1512 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1513 }
1514
1515 return nullptr;
1516 }
1517
1518 /// Fold icmp (trunc X, Y), C.
foldICmpTruncConstant(ICmpInst & Cmp,TruncInst * Trunc,const APInt & C)1519 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1520 TruncInst *Trunc,
1521 const APInt &C) {
1522 ICmpInst::Predicate Pred = Cmp.getPredicate();
1523 Value *X = Trunc->getOperand(0);
1524 if (C.isOneValue() && C.getBitWidth() > 1) {
1525 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1526 Value *V = nullptr;
1527 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1528 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1529 ConstantInt::get(V->getType(), 1));
1530 }
1531
1532 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1533 SrcBits = X->getType()->getScalarSizeInBits();
1534 if (Cmp.isEquality() && Trunc->hasOneUse()) {
1535 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1536 // of the high bits truncated out of x are known.
1537 KnownBits Known = computeKnownBits(X, 0, &Cmp);
1538
1539 // If all the high bits are known, we can do this xform.
1540 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1541 // Pull in the high bits from known-ones set.
1542 APInt NewRHS = C.zext(SrcBits);
1543 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1544 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1545 }
1546 }
1547
1548 // Look through truncated right-shift of the sign-bit for a sign-bit check:
1549 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0
1550 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1551 Value *ShOp;
1552 const APInt *ShAmtC;
1553 bool TrueIfSigned;
1554 if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1555 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1556 DstBits == SrcBits - ShAmtC->getZExtValue()) {
1557 return TrueIfSigned
1558 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1559 ConstantInt::getNullValue(X->getType()))
1560 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1561 ConstantInt::getAllOnesValue(X->getType()));
1562 }
1563
1564 return nullptr;
1565 }
1566
1567 /// Fold icmp (xor X, Y), C.
foldICmpXorConstant(ICmpInst & Cmp,BinaryOperator * Xor,const APInt & C)1568 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1569 BinaryOperator *Xor,
1570 const APInt &C) {
1571 Value *X = Xor->getOperand(0);
1572 Value *Y = Xor->getOperand(1);
1573 const APInt *XorC;
1574 if (!match(Y, m_APInt(XorC)))
1575 return nullptr;
1576
1577 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1578 // fold the xor.
1579 ICmpInst::Predicate Pred = Cmp.getPredicate();
1580 bool TrueIfSigned = false;
1581 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1582
1583 // If the sign bit of the XorCst is not set, there is no change to
1584 // the operation, just stop using the Xor.
1585 if (!XorC->isNegative())
1586 return replaceOperand(Cmp, 0, X);
1587
1588 // Emit the opposite comparison.
1589 if (TrueIfSigned)
1590 return new ICmpInst(ICmpInst::ICMP_SGT, X,
1591 ConstantInt::getAllOnesValue(X->getType()));
1592 else
1593 return new ICmpInst(ICmpInst::ICMP_SLT, X,
1594 ConstantInt::getNullValue(X->getType()));
1595 }
1596
1597 if (Xor->hasOneUse()) {
1598 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1599 if (!Cmp.isEquality() && XorC->isSignMask()) {
1600 Pred = Cmp.getFlippedSignednessPredicate();
1601 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1602 }
1603
1604 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1605 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1606 Pred = Cmp.getFlippedSignednessPredicate();
1607 Pred = Cmp.getSwappedPredicate(Pred);
1608 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1609 }
1610 }
1611
1612 // Mask constant magic can eliminate an 'xor' with unsigned compares.
1613 if (Pred == ICmpInst::ICMP_UGT) {
1614 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1615 if (*XorC == ~C && (C + 1).isPowerOf2())
1616 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1617 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1618 if (*XorC == C && (C + 1).isPowerOf2())
1619 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1620 }
1621 if (Pred == ICmpInst::ICMP_ULT) {
1622 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1623 if (*XorC == -C && C.isPowerOf2())
1624 return new ICmpInst(ICmpInst::ICMP_UGT, X,
1625 ConstantInt::get(X->getType(), ~C));
1626 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1627 if (*XorC == C && (-C).isPowerOf2())
1628 return new ICmpInst(ICmpInst::ICMP_UGT, X,
1629 ConstantInt::get(X->getType(), ~C));
1630 }
1631 return nullptr;
1632 }
1633
1634 /// Fold icmp (and (sh X, Y), C2), C1.
foldICmpAndShift(ICmpInst & Cmp,BinaryOperator * And,const APInt & C1,const APInt & C2)1635 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1636 BinaryOperator *And,
1637 const APInt &C1,
1638 const APInt &C2) {
1639 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1640 if (!Shift || !Shift->isShift())
1641 return nullptr;
1642
1643 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1644 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1645 // code produced by the clang front-end, for bitfield access.
1646 // This seemingly simple opportunity to fold away a shift turns out to be
1647 // rather complicated. See PR17827 for details.
1648 unsigned ShiftOpcode = Shift->getOpcode();
1649 bool IsShl = ShiftOpcode == Instruction::Shl;
1650 const APInt *C3;
1651 if (match(Shift->getOperand(1), m_APInt(C3))) {
1652 APInt NewAndCst, NewCmpCst;
1653 bool AnyCmpCstBitsShiftedOut;
1654 if (ShiftOpcode == Instruction::Shl) {
1655 // For a left shift, we can fold if the comparison is not signed. We can
1656 // also fold a signed comparison if the mask value and comparison value
1657 // are not negative. These constraints may not be obvious, but we can
1658 // prove that they are correct using an SMT solver.
1659 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1660 return nullptr;
1661
1662 NewCmpCst = C1.lshr(*C3);
1663 NewAndCst = C2.lshr(*C3);
1664 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1665 } else if (ShiftOpcode == Instruction::LShr) {
1666 // For a logical right shift, we can fold if the comparison is not signed.
1667 // We can also fold a signed comparison if the shifted mask value and the
1668 // shifted comparison value are not negative. These constraints may not be
1669 // obvious, but we can prove that they are correct using an SMT solver.
1670 NewCmpCst = C1.shl(*C3);
1671 NewAndCst = C2.shl(*C3);
1672 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1673 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1674 return nullptr;
1675 } else {
1676 // For an arithmetic shift, check that both constants don't use (in a
1677 // signed sense) the top bits being shifted out.
1678 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1679 NewCmpCst = C1.shl(*C3);
1680 NewAndCst = C2.shl(*C3);
1681 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1682 if (NewAndCst.ashr(*C3) != C2)
1683 return nullptr;
1684 }
1685
1686 if (AnyCmpCstBitsShiftedOut) {
1687 // If we shifted bits out, the fold is not going to work out. As a
1688 // special case, check to see if this means that the result is always
1689 // true or false now.
1690 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1691 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1692 if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1693 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1694 } else {
1695 Value *NewAnd = Builder.CreateAnd(
1696 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1697 return new ICmpInst(Cmp.getPredicate(),
1698 NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1699 }
1700 }
1701
1702 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
1703 // preferable because it allows the C2 << Y expression to be hoisted out of a
1704 // loop if Y is invariant and X is not.
1705 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1706 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1707 // Compute C2 << Y.
1708 Value *NewShift =
1709 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1710 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1711
1712 // Compute X & (C2 << Y).
1713 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1714 return replaceOperand(Cmp, 0, NewAnd);
1715 }
1716
1717 return nullptr;
1718 }
1719
1720 /// Fold icmp (and X, C2), C1.
foldICmpAndConstConst(ICmpInst & Cmp,BinaryOperator * And,const APInt & C1)1721 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1722 BinaryOperator *And,
1723 const APInt &C1) {
1724 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1725
1726 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1727 // TODO: We canonicalize to the longer form for scalars because we have
1728 // better analysis/folds for icmp, and codegen may be better with icmp.
1729 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1730 match(And->getOperand(1), m_One()))
1731 return new TruncInst(And->getOperand(0), Cmp.getType());
1732
1733 const APInt *C2;
1734 Value *X;
1735 if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1736 return nullptr;
1737
1738 // Don't perform the following transforms if the AND has multiple uses
1739 if (!And->hasOneUse())
1740 return nullptr;
1741
1742 if (Cmp.isEquality() && C1.isNullValue()) {
1743 // Restrict this fold to single-use 'and' (PR10267).
1744 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1745 if (C2->isSignMask()) {
1746 Constant *Zero = Constant::getNullValue(X->getType());
1747 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1748 return new ICmpInst(NewPred, X, Zero);
1749 }
1750
1751 // Restrict this fold only for single-use 'and' (PR10267).
1752 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
1753 if ((~(*C2) + 1).isPowerOf2()) {
1754 Constant *NegBOC =
1755 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1756 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1757 return new ICmpInst(NewPred, X, NegBOC);
1758 }
1759 }
1760
1761 // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1762 // the input width without changing the value produced, eliminate the cast:
1763 //
1764 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1765 //
1766 // We can do this transformation if the constants do not have their sign bits
1767 // set or if it is an equality comparison. Extending a relational comparison
1768 // when we're checking the sign bit would not work.
1769 Value *W;
1770 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1771 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1772 // TODO: Is this a good transform for vectors? Wider types may reduce
1773 // throughput. Should this transform be limited (even for scalars) by using
1774 // shouldChangeType()?
1775 if (!Cmp.getType()->isVectorTy()) {
1776 Type *WideType = W->getType();
1777 unsigned WideScalarBits = WideType->getScalarSizeInBits();
1778 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1779 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1780 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1781 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1782 }
1783 }
1784
1785 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1786 return I;
1787
1788 // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1789 // (icmp pred (and A, (or (shl 1, B), 1), 0))
1790 //
1791 // iff pred isn't signed
1792 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1793 match(And->getOperand(1), m_One())) {
1794 Constant *One = cast<Constant>(And->getOperand(1));
1795 Value *Or = And->getOperand(0);
1796 Value *A, *B, *LShr;
1797 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1798 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1799 unsigned UsesRemoved = 0;
1800 if (And->hasOneUse())
1801 ++UsesRemoved;
1802 if (Or->hasOneUse())
1803 ++UsesRemoved;
1804 if (LShr->hasOneUse())
1805 ++UsesRemoved;
1806
1807 // Compute A & ((1 << B) | 1)
1808 Value *NewOr = nullptr;
1809 if (auto *C = dyn_cast<Constant>(B)) {
1810 if (UsesRemoved >= 1)
1811 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1812 } else {
1813 if (UsesRemoved >= 3)
1814 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1815 /*HasNUW=*/true),
1816 One, Or->getName());
1817 }
1818 if (NewOr) {
1819 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1820 return replaceOperand(Cmp, 0, NewAnd);
1821 }
1822 }
1823 }
1824
1825 return nullptr;
1826 }
1827
1828 /// Fold icmp (and X, Y), C.
foldICmpAndConstant(ICmpInst & Cmp,BinaryOperator * And,const APInt & C)1829 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1830 BinaryOperator *And,
1831 const APInt &C) {
1832 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1833 return I;
1834
1835 // TODO: These all require that Y is constant too, so refactor with the above.
1836
1837 // Try to optimize things like "A[i] & 42 == 0" to index computations.
1838 Value *X = And->getOperand(0);
1839 Value *Y = And->getOperand(1);
1840 if (auto *LI = dyn_cast<LoadInst>(X))
1841 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1842 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1843 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1844 !LI->isVolatile() && isa<ConstantInt>(Y)) {
1845 ConstantInt *C2 = cast<ConstantInt>(Y);
1846 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1847 return Res;
1848 }
1849
1850 if (!Cmp.isEquality())
1851 return nullptr;
1852
1853 // X & -C == -C -> X > u ~C
1854 // X & -C != -C -> X <= u ~C
1855 // iff C is a power of 2
1856 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1857 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1858 : CmpInst::ICMP_ULE;
1859 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1860 }
1861
1862 // (X & C2) == 0 -> (trunc X) >= 0
1863 // (X & C2) != 0 -> (trunc X) < 0
1864 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1865 const APInt *C2;
1866 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1867 int32_t ExactLogBase2 = C2->exactLogBase2();
1868 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1869 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1870 if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
1871 NTy = VectorType::get(NTy, AndVTy->getElementCount());
1872 Value *Trunc = Builder.CreateTrunc(X, NTy);
1873 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1874 : CmpInst::ICMP_SLT;
1875 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1876 }
1877 }
1878
1879 return nullptr;
1880 }
1881
1882 /// Fold icmp (or X, Y), C.
foldICmpOrConstant(ICmpInst & Cmp,BinaryOperator * Or,const APInt & C)1883 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1884 BinaryOperator *Or,
1885 const APInt &C) {
1886 ICmpInst::Predicate Pred = Cmp.getPredicate();
1887 if (C.isOneValue()) {
1888 // icmp slt signum(V) 1 --> icmp slt V, 1
1889 Value *V = nullptr;
1890 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1891 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1892 ConstantInt::get(V->getType(), 1));
1893 }
1894
1895 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1896 const APInt *MaskC;
1897 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1898 if (*MaskC == C && (C + 1).isPowerOf2()) {
1899 // X | C == C --> X <=u C
1900 // X | C != C --> X >u C
1901 // iff C+1 is a power of 2 (C is a bitmask of the low bits)
1902 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1903 return new ICmpInst(Pred, OrOp0, OrOp1);
1904 }
1905
1906 // More general: canonicalize 'equality with set bits mask' to
1907 // 'equality with clear bits mask'.
1908 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1909 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1910 if (Or->hasOneUse()) {
1911 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1912 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1913 return new ICmpInst(Pred, And, NewC);
1914 }
1915 }
1916
1917 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1918 return nullptr;
1919
1920 Value *P, *Q;
1921 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1922 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1923 // -> and (icmp eq P, null), (icmp eq Q, null).
1924 Value *CmpP =
1925 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1926 Value *CmpQ =
1927 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1928 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1929 return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1930 }
1931
1932 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1933 // a shorter form that has more potential to be folded even further.
1934 Value *X1, *X2, *X3, *X4;
1935 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1936 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1937 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1938 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1939 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1940 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1941 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1942 return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1943 }
1944
1945 return nullptr;
1946 }
1947
1948 /// Fold icmp (mul X, Y), C.
foldICmpMulConstant(ICmpInst & Cmp,BinaryOperator * Mul,const APInt & C)1949 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1950 BinaryOperator *Mul,
1951 const APInt &C) {
1952 const APInt *MulC;
1953 if (!match(Mul->getOperand(1), m_APInt(MulC)))
1954 return nullptr;
1955
1956 // If this is a test of the sign bit and the multiply is sign-preserving with
1957 // a constant operand, use the multiply LHS operand instead.
1958 ICmpInst::Predicate Pred = Cmp.getPredicate();
1959 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1960 if (MulC->isNegative())
1961 Pred = ICmpInst::getSwappedPredicate(Pred);
1962 return new ICmpInst(Pred, Mul->getOperand(0),
1963 Constant::getNullValue(Mul->getType()));
1964 }
1965
1966 // If the multiply does not wrap, try to divide the compare constant by the
1967 // multiplication factor.
1968 if (Cmp.isEquality() && !MulC->isNullValue()) {
1969 // (mul nsw X, MulC) == C --> X == C /s MulC
1970 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) {
1971 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1972 return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1973 }
1974 // (mul nuw X, MulC) == C --> X == C /u MulC
1975 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) {
1976 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
1977 return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1978 }
1979 }
1980
1981 return nullptr;
1982 }
1983
1984 /// Fold icmp (shl 1, Y), C.
foldICmpShlOne(ICmpInst & Cmp,Instruction * Shl,const APInt & C)1985 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1986 const APInt &C) {
1987 Value *Y;
1988 if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1989 return nullptr;
1990
1991 Type *ShiftType = Shl->getType();
1992 unsigned TypeBits = C.getBitWidth();
1993 bool CIsPowerOf2 = C.isPowerOf2();
1994 ICmpInst::Predicate Pred = Cmp.getPredicate();
1995 if (Cmp.isUnsigned()) {
1996 // (1 << Y) pred C -> Y pred Log2(C)
1997 if (!CIsPowerOf2) {
1998 // (1 << Y) < 30 -> Y <= 4
1999 // (1 << Y) <= 30 -> Y <= 4
2000 // (1 << Y) >= 30 -> Y > 4
2001 // (1 << Y) > 30 -> Y > 4
2002 if (Pred == ICmpInst::ICMP_ULT)
2003 Pred = ICmpInst::ICMP_ULE;
2004 else if (Pred == ICmpInst::ICMP_UGE)
2005 Pred = ICmpInst::ICMP_UGT;
2006 }
2007
2008 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2009 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31
2010 unsigned CLog2 = C.logBase2();
2011 if (CLog2 == TypeBits - 1) {
2012 if (Pred == ICmpInst::ICMP_UGE)
2013 Pred = ICmpInst::ICMP_EQ;
2014 else if (Pred == ICmpInst::ICMP_ULT)
2015 Pred = ICmpInst::ICMP_NE;
2016 }
2017 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2018 } else if (Cmp.isSigned()) {
2019 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2020 if (C.isAllOnesValue()) {
2021 // (1 << Y) <= -1 -> Y == 31
2022 if (Pred == ICmpInst::ICMP_SLE)
2023 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2024
2025 // (1 << Y) > -1 -> Y != 31
2026 if (Pred == ICmpInst::ICMP_SGT)
2027 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2028 } else if (!C) {
2029 // (1 << Y) < 0 -> Y == 31
2030 // (1 << Y) <= 0 -> Y == 31
2031 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2032 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2033
2034 // (1 << Y) >= 0 -> Y != 31
2035 // (1 << Y) > 0 -> Y != 31
2036 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2037 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2038 }
2039 } else if (Cmp.isEquality() && CIsPowerOf2) {
2040 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2041 }
2042
2043 return nullptr;
2044 }
2045
2046 /// Fold icmp (shl X, Y), C.
foldICmpShlConstant(ICmpInst & Cmp,BinaryOperator * Shl,const APInt & C)2047 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2048 BinaryOperator *Shl,
2049 const APInt &C) {
2050 const APInt *ShiftVal;
2051 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2052 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2053
2054 const APInt *ShiftAmt;
2055 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2056 return foldICmpShlOne(Cmp, Shl, C);
2057
2058 // Check that the shift amount is in range. If not, don't perform undefined
2059 // shifts. When the shift is visited, it will be simplified.
2060 unsigned TypeBits = C.getBitWidth();
2061 if (ShiftAmt->uge(TypeBits))
2062 return nullptr;
2063
2064 ICmpInst::Predicate Pred = Cmp.getPredicate();
2065 Value *X = Shl->getOperand(0);
2066 Type *ShType = Shl->getType();
2067
2068 // NSW guarantees that we are only shifting out sign bits from the high bits,
2069 // so we can ASHR the compare constant without needing a mask and eliminate
2070 // the shift.
2071 if (Shl->hasNoSignedWrap()) {
2072 if (Pred == ICmpInst::ICMP_SGT) {
2073 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2074 APInt ShiftedC = C.ashr(*ShiftAmt);
2075 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2076 }
2077 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2078 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2079 APInt ShiftedC = C.ashr(*ShiftAmt);
2080 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2081 }
2082 if (Pred == ICmpInst::ICMP_SLT) {
2083 // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2084 // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2085 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2086 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2087 assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2088 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2089 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2090 }
2091 // If this is a signed comparison to 0 and the shift is sign preserving,
2092 // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2093 // do that if we're sure to not continue on in this function.
2094 if (isSignTest(Pred, C))
2095 return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2096 }
2097
2098 // NUW guarantees that we are only shifting out zero bits from the high bits,
2099 // so we can LSHR the compare constant without needing a mask and eliminate
2100 // the shift.
2101 if (Shl->hasNoUnsignedWrap()) {
2102 if (Pred == ICmpInst::ICMP_UGT) {
2103 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2104 APInt ShiftedC = C.lshr(*ShiftAmt);
2105 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2106 }
2107 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2108 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2109 APInt ShiftedC = C.lshr(*ShiftAmt);
2110 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2111 }
2112 if (Pred == ICmpInst::ICMP_ULT) {
2113 // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2114 // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2115 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2116 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2117 assert(C.ugt(0) && "ult 0 should have been eliminated");
2118 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2119 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2120 }
2121 }
2122
2123 if (Cmp.isEquality() && Shl->hasOneUse()) {
2124 // Strength-reduce the shift into an 'and'.
2125 Constant *Mask = ConstantInt::get(
2126 ShType,
2127 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2128 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2129 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2130 return new ICmpInst(Pred, And, LShrC);
2131 }
2132
2133 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2134 bool TrueIfSigned = false;
2135 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2136 // (X << 31) <s 0 --> (X & 1) != 0
2137 Constant *Mask = ConstantInt::get(
2138 ShType,
2139 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2140 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2141 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2142 And, Constant::getNullValue(ShType));
2143 }
2144
2145 // Simplify 'shl' inequality test into 'and' equality test.
2146 if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2147 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2148 if ((C + 1).isPowerOf2() &&
2149 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2150 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2151 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2152 : ICmpInst::ICMP_NE,
2153 And, Constant::getNullValue(ShType));
2154 }
2155 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2156 if (C.isPowerOf2() &&
2157 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2158 Value *And =
2159 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2160 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2161 : ICmpInst::ICMP_NE,
2162 And, Constant::getNullValue(ShType));
2163 }
2164 }
2165
2166 // Transform (icmp pred iM (shl iM %v, N), C)
2167 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2168 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2169 // This enables us to get rid of the shift in favor of a trunc that may be
2170 // free on the target. It has the additional benefit of comparing to a
2171 // smaller constant that may be more target-friendly.
2172 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2173 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2174 DL.isLegalInteger(TypeBits - Amt)) {
2175 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2176 if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2177 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2178 Constant *NewC =
2179 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2180 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2181 }
2182
2183 return nullptr;
2184 }
2185
2186 /// Fold icmp ({al}shr X, Y), C.
foldICmpShrConstant(ICmpInst & Cmp,BinaryOperator * Shr,const APInt & C)2187 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2188 BinaryOperator *Shr,
2189 const APInt &C) {
2190 // An exact shr only shifts out zero bits, so:
2191 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2192 Value *X = Shr->getOperand(0);
2193 CmpInst::Predicate Pred = Cmp.getPredicate();
2194 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2195 C.isNullValue())
2196 return new ICmpInst(Pred, X, Cmp.getOperand(1));
2197
2198 const APInt *ShiftVal;
2199 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2200 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2201
2202 const APInt *ShiftAmt;
2203 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2204 return nullptr;
2205
2206 // Check that the shift amount is in range. If not, don't perform undefined
2207 // shifts. When the shift is visited it will be simplified.
2208 unsigned TypeBits = C.getBitWidth();
2209 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2210 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2211 return nullptr;
2212
2213 bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2214 bool IsExact = Shr->isExact();
2215 Type *ShrTy = Shr->getType();
2216 // TODO: If we could guarantee that InstSimplify would handle all of the
2217 // constant-value-based preconditions in the folds below, then we could assert
2218 // those conditions rather than checking them. This is difficult because of
2219 // undef/poison (PR34838).
2220 if (IsAShr) {
2221 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2222 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2223 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2224 APInt ShiftedC = C.shl(ShAmtVal);
2225 if (ShiftedC.ashr(ShAmtVal) == C)
2226 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2227 }
2228 if (Pred == CmpInst::ICMP_SGT) {
2229 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2230 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2231 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2232 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2233 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2234 }
2235
2236 // If the compare constant has significant bits above the lowest sign-bit,
2237 // then convert an unsigned cmp to a test of the sign-bit:
2238 // (ashr X, ShiftC) u> C --> X s< 0
2239 // (ashr X, ShiftC) u< C --> X s> -1
2240 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2241 if (Pred == CmpInst::ICMP_UGT) {
2242 return new ICmpInst(CmpInst::ICMP_SLT, X,
2243 ConstantInt::getNullValue(ShrTy));
2244 }
2245 if (Pred == CmpInst::ICMP_ULT) {
2246 return new ICmpInst(CmpInst::ICMP_SGT, X,
2247 ConstantInt::getAllOnesValue(ShrTy));
2248 }
2249 }
2250 } else {
2251 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2252 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2253 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2254 APInt ShiftedC = C.shl(ShAmtVal);
2255 if (ShiftedC.lshr(ShAmtVal) == C)
2256 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2257 }
2258 if (Pred == CmpInst::ICMP_UGT) {
2259 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2260 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2261 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2262 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2263 }
2264 }
2265
2266 if (!Cmp.isEquality())
2267 return nullptr;
2268
2269 // Handle equality comparisons of shift-by-constant.
2270
2271 // If the comparison constant changes with the shift, the comparison cannot
2272 // succeed (bits of the comparison constant cannot match the shifted value).
2273 // This should be known by InstSimplify and already be folded to true/false.
2274 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2275 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2276 "Expected icmp+shr simplify did not occur.");
2277
2278 // If the bits shifted out are known zero, compare the unshifted value:
2279 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
2280 if (Shr->isExact())
2281 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2282
2283 if (C.isNullValue()) {
2284 // == 0 is u< 1.
2285 if (Pred == CmpInst::ICMP_EQ)
2286 return new ICmpInst(CmpInst::ICMP_ULT, X,
2287 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2288 else
2289 return new ICmpInst(CmpInst::ICMP_UGT, X,
2290 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2291 }
2292
2293 if (Shr->hasOneUse()) {
2294 // Canonicalize the shift into an 'and':
2295 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2296 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2297 Constant *Mask = ConstantInt::get(ShrTy, Val);
2298 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2299 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2300 }
2301
2302 return nullptr;
2303 }
2304
foldICmpSRemConstant(ICmpInst & Cmp,BinaryOperator * SRem,const APInt & C)2305 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2306 BinaryOperator *SRem,
2307 const APInt &C) {
2308 // Match an 'is positive' or 'is negative' comparison of remainder by a
2309 // constant power-of-2 value:
2310 // (X % pow2C) sgt/slt 0
2311 const ICmpInst::Predicate Pred = Cmp.getPredicate();
2312 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2313 return nullptr;
2314
2315 // TODO: The one-use check is standard because we do not typically want to
2316 // create longer instruction sequences, but this might be a special-case
2317 // because srem is not good for analysis or codegen.
2318 if (!SRem->hasOneUse())
2319 return nullptr;
2320
2321 const APInt *DivisorC;
2322 if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2323 return nullptr;
2324
2325 // Mask off the sign bit and the modulo bits (low-bits).
2326 Type *Ty = SRem->getType();
2327 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2328 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2329 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2330
2331 // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2332 // bit is set. Example:
2333 // (i8 X % 32) s> 0 --> (X & 159) s> 0
2334 if (Pred == ICmpInst::ICMP_SGT)
2335 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2336
2337 // For 'is negative?' check that the sign-bit is set and at least 1 masked
2338 // bit is set. Example:
2339 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2340 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2341 }
2342
2343 /// Fold icmp (udiv X, Y), C.
foldICmpUDivConstant(ICmpInst & Cmp,BinaryOperator * UDiv,const APInt & C)2344 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2345 BinaryOperator *UDiv,
2346 const APInt &C) {
2347 const APInt *C2;
2348 if (!match(UDiv->getOperand(0), m_APInt(C2)))
2349 return nullptr;
2350
2351 assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2352
2353 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2354 Value *Y = UDiv->getOperand(1);
2355 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2356 assert(!C.isMaxValue() &&
2357 "icmp ugt X, UINT_MAX should have been simplified already.");
2358 return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2359 ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2360 }
2361
2362 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2363 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2364 assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2365 return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2366 ConstantInt::get(Y->getType(), C2->udiv(C)));
2367 }
2368
2369 return nullptr;
2370 }
2371
2372 /// Fold icmp ({su}div X, Y), C.
foldICmpDivConstant(ICmpInst & Cmp,BinaryOperator * Div,const APInt & C)2373 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2374 BinaryOperator *Div,
2375 const APInt &C) {
2376 // Fold: icmp pred ([us]div X, C2), C -> range test
2377 // Fold this div into the comparison, producing a range check.
2378 // Determine, based on the divide type, what the range is being
2379 // checked. If there is an overflow on the low or high side, remember
2380 // it, otherwise compute the range [low, hi) bounding the new value.
2381 // See: InsertRangeTest above for the kinds of replacements possible.
2382 const APInt *C2;
2383 if (!match(Div->getOperand(1), m_APInt(C2)))
2384 return nullptr;
2385
2386 // FIXME: If the operand types don't match the type of the divide
2387 // then don't attempt this transform. The code below doesn't have the
2388 // logic to deal with a signed divide and an unsigned compare (and
2389 // vice versa). This is because (x /s C2) <s C produces different
2390 // results than (x /s C2) <u C or (x /u C2) <s C or even
2391 // (x /u C2) <u C. Simply casting the operands and result won't
2392 // work. :( The if statement below tests that condition and bails
2393 // if it finds it.
2394 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2395 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2396 return nullptr;
2397
2398 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2399 // INT_MIN will also fail if the divisor is 1. Although folds of all these
2400 // division-by-constant cases should be present, we can not assert that they
2401 // have happened before we reach this icmp instruction.
2402 if (C2->isNullValue() || C2->isOneValue() ||
2403 (DivIsSigned && C2->isAllOnesValue()))
2404 return nullptr;
2405
2406 // Compute Prod = C * C2. We are essentially solving an equation of
2407 // form X / C2 = C. We solve for X by multiplying C2 and C.
2408 // By solving for X, we can turn this into a range check instead of computing
2409 // a divide.
2410 APInt Prod = C * *C2;
2411
2412 // Determine if the product overflows by seeing if the product is not equal to
2413 // the divide. Make sure we do the same kind of divide as in the LHS
2414 // instruction that we're folding.
2415 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2416
2417 ICmpInst::Predicate Pred = Cmp.getPredicate();
2418
2419 // If the division is known to be exact, then there is no remainder from the
2420 // divide, so the covered range size is unit, otherwise it is the divisor.
2421 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2422
2423 // Figure out the interval that is being checked. For example, a comparison
2424 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2425 // Compute this interval based on the constants involved and the signedness of
2426 // the compare/divide. This computes a half-open interval, keeping track of
2427 // whether either value in the interval overflows. After analysis each
2428 // overflow variable is set to 0 if it's corresponding bound variable is valid
2429 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2430 int LoOverflow = 0, HiOverflow = 0;
2431 APInt LoBound, HiBound;
2432
2433 if (!DivIsSigned) { // udiv
2434 // e.g. X/5 op 3 --> [15, 20)
2435 LoBound = Prod;
2436 HiOverflow = LoOverflow = ProdOV;
2437 if (!HiOverflow) {
2438 // If this is not an exact divide, then many values in the range collapse
2439 // to the same result value.
2440 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2441 }
2442 } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2443 if (C.isNullValue()) { // (X / pos) op 0
2444 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
2445 LoBound = -(RangeSize - 1);
2446 HiBound = RangeSize;
2447 } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2448 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
2449 HiOverflow = LoOverflow = ProdOV;
2450 if (!HiOverflow)
2451 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2452 } else { // (X / pos) op neg
2453 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
2454 HiBound = Prod + 1;
2455 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2456 if (!LoOverflow) {
2457 APInt DivNeg = -RangeSize;
2458 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2459 }
2460 }
2461 } else if (C2->isNegative()) { // Divisor is < 0.
2462 if (Div->isExact())
2463 RangeSize.negate();
2464 if (C.isNullValue()) { // (X / neg) op 0
2465 // e.g. X/-5 op 0 --> [-4, 5)
2466 LoBound = RangeSize + 1;
2467 HiBound = -RangeSize;
2468 if (HiBound == *C2) { // -INTMIN = INTMIN
2469 HiOverflow = 1; // [INTMIN+1, overflow)
2470 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
2471 }
2472 } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2473 // e.g. X/-5 op 3 --> [-19, -14)
2474 HiBound = Prod + 1;
2475 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2476 if (!LoOverflow)
2477 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2478 } else { // (X / neg) op neg
2479 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
2480 LoOverflow = HiOverflow = ProdOV;
2481 if (!HiOverflow)
2482 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2483 }
2484
2485 // Dividing by a negative swaps the condition. LT <-> GT
2486 Pred = ICmpInst::getSwappedPredicate(Pred);
2487 }
2488
2489 Value *X = Div->getOperand(0);
2490 switch (Pred) {
2491 default: llvm_unreachable("Unhandled icmp opcode!");
2492 case ICmpInst::ICMP_EQ:
2493 if (LoOverflow && HiOverflow)
2494 return replaceInstUsesWith(Cmp, Builder.getFalse());
2495 if (HiOverflow)
2496 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2497 ICmpInst::ICMP_UGE, X,
2498 ConstantInt::get(Div->getType(), LoBound));
2499 if (LoOverflow)
2500 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2501 ICmpInst::ICMP_ULT, X,
2502 ConstantInt::get(Div->getType(), HiBound));
2503 return replaceInstUsesWith(
2504 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2505 case ICmpInst::ICMP_NE:
2506 if (LoOverflow && HiOverflow)
2507 return replaceInstUsesWith(Cmp, Builder.getTrue());
2508 if (HiOverflow)
2509 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2510 ICmpInst::ICMP_ULT, X,
2511 ConstantInt::get(Div->getType(), LoBound));
2512 if (LoOverflow)
2513 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2514 ICmpInst::ICMP_UGE, X,
2515 ConstantInt::get(Div->getType(), HiBound));
2516 return replaceInstUsesWith(Cmp,
2517 insertRangeTest(X, LoBound, HiBound,
2518 DivIsSigned, false));
2519 case ICmpInst::ICMP_ULT:
2520 case ICmpInst::ICMP_SLT:
2521 if (LoOverflow == +1) // Low bound is greater than input range.
2522 return replaceInstUsesWith(Cmp, Builder.getTrue());
2523 if (LoOverflow == -1) // Low bound is less than input range.
2524 return replaceInstUsesWith(Cmp, Builder.getFalse());
2525 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2526 case ICmpInst::ICMP_UGT:
2527 case ICmpInst::ICMP_SGT:
2528 if (HiOverflow == +1) // High bound greater than input range.
2529 return replaceInstUsesWith(Cmp, Builder.getFalse());
2530 if (HiOverflow == -1) // High bound less than input range.
2531 return replaceInstUsesWith(Cmp, Builder.getTrue());
2532 if (Pred == ICmpInst::ICMP_UGT)
2533 return new ICmpInst(ICmpInst::ICMP_UGE, X,
2534 ConstantInt::get(Div->getType(), HiBound));
2535 return new ICmpInst(ICmpInst::ICMP_SGE, X,
2536 ConstantInt::get(Div->getType(), HiBound));
2537 }
2538
2539 return nullptr;
2540 }
2541
2542 /// Fold icmp (sub X, Y), C.
foldICmpSubConstant(ICmpInst & Cmp,BinaryOperator * Sub,const APInt & C)2543 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2544 BinaryOperator *Sub,
2545 const APInt &C) {
2546 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2547 ICmpInst::Predicate Pred = Cmp.getPredicate();
2548 const APInt *C2;
2549 APInt SubResult;
2550
2551 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2552 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2553 return new ICmpInst(Cmp.getPredicate(), Y,
2554 ConstantInt::get(Y->getType(), 0));
2555
2556 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2557 if (match(X, m_APInt(C2)) &&
2558 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2559 (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2560 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2561 return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2562 ConstantInt::get(Y->getType(), SubResult));
2563
2564 // The following transforms are only worth it if the only user of the subtract
2565 // is the icmp.
2566 if (!Sub->hasOneUse())
2567 return nullptr;
2568
2569 if (Sub->hasNoSignedWrap()) {
2570 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2571 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2572 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2573
2574 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2575 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2576 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2577
2578 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2579 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2580 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2581
2582 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2583 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2584 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2585 }
2586
2587 if (!match(X, m_APInt(C2)))
2588 return nullptr;
2589
2590 // C2 - Y <u C -> (Y | (C - 1)) == C2
2591 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2592 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2593 (*C2 & (C - 1)) == (C - 1))
2594 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2595
2596 // C2 - Y >u C -> (Y | C) != C2
2597 // iff C2 & C == C and C + 1 is a power of 2
2598 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2599 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2600
2601 return nullptr;
2602 }
2603
2604 /// Fold icmp (add X, Y), C.
foldICmpAddConstant(ICmpInst & Cmp,BinaryOperator * Add,const APInt & C)2605 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2606 BinaryOperator *Add,
2607 const APInt &C) {
2608 Value *Y = Add->getOperand(1);
2609 const APInt *C2;
2610 if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2611 return nullptr;
2612
2613 // Fold icmp pred (add X, C2), C.
2614 Value *X = Add->getOperand(0);
2615 Type *Ty = Add->getType();
2616 CmpInst::Predicate Pred = Cmp.getPredicate();
2617
2618 // If the add does not wrap, we can always adjust the compare by subtracting
2619 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2620 // are canonicalized to SGT/SLT/UGT/ULT.
2621 if ((Add->hasNoSignedWrap() &&
2622 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2623 (Add->hasNoUnsignedWrap() &&
2624 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2625 bool Overflow;
2626 APInt NewC =
2627 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2628 // If there is overflow, the result must be true or false.
2629 // TODO: Can we assert there is no overflow because InstSimplify always
2630 // handles those cases?
2631 if (!Overflow)
2632 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2633 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2634 }
2635
2636 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2637 const APInt &Upper = CR.getUpper();
2638 const APInt &Lower = CR.getLower();
2639 if (Cmp.isSigned()) {
2640 if (Lower.isSignMask())
2641 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2642 if (Upper.isSignMask())
2643 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2644 } else {
2645 if (Lower.isMinValue())
2646 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2647 if (Upper.isMinValue())
2648 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2649 }
2650
2651 if (!Add->hasOneUse())
2652 return nullptr;
2653
2654 // X+C <u C2 -> (X & -C2) == C
2655 // iff C & (C2-1) == 0
2656 // C2 is a power of 2
2657 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2658 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2659 ConstantExpr::getNeg(cast<Constant>(Y)));
2660
2661 // X+C >u C2 -> (X & ~C2) != C
2662 // iff C & C2 == 0
2663 // C2+1 is a power of 2
2664 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2665 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2666 ConstantExpr::getNeg(cast<Constant>(Y)));
2667
2668 return nullptr;
2669 }
2670
matchThreeWayIntCompare(SelectInst * SI,Value * & LHS,Value * & RHS,ConstantInt * & Less,ConstantInt * & Equal,ConstantInt * & Greater)2671 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2672 Value *&RHS, ConstantInt *&Less,
2673 ConstantInt *&Equal,
2674 ConstantInt *&Greater) {
2675 // TODO: Generalize this to work with other comparison idioms or ensure
2676 // they get canonicalized into this form.
2677
2678 // select i1 (a == b),
2679 // i32 Equal,
2680 // i32 (select i1 (a < b), i32 Less, i32 Greater)
2681 // where Equal, Less and Greater are placeholders for any three constants.
2682 ICmpInst::Predicate PredA;
2683 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2684 !ICmpInst::isEquality(PredA))
2685 return false;
2686 Value *EqualVal = SI->getTrueValue();
2687 Value *UnequalVal = SI->getFalseValue();
2688 // We still can get non-canonical predicate here, so canonicalize.
2689 if (PredA == ICmpInst::ICMP_NE)
2690 std::swap(EqualVal, UnequalVal);
2691 if (!match(EqualVal, m_ConstantInt(Equal)))
2692 return false;
2693 ICmpInst::Predicate PredB;
2694 Value *LHS2, *RHS2;
2695 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2696 m_ConstantInt(Less), m_ConstantInt(Greater))))
2697 return false;
2698 // We can get predicate mismatch here, so canonicalize if possible:
2699 // First, ensure that 'LHS' match.
2700 if (LHS2 != LHS) {
2701 // x sgt y <--> y slt x
2702 std::swap(LHS2, RHS2);
2703 PredB = ICmpInst::getSwappedPredicate(PredB);
2704 }
2705 if (LHS2 != LHS)
2706 return false;
2707 // We also need to canonicalize 'RHS'.
2708 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2709 // x sgt C-1 <--> x sge C <--> not(x slt C)
2710 auto FlippedStrictness =
2711 InstCombiner::getFlippedStrictnessPredicateAndConstant(
2712 PredB, cast<Constant>(RHS2));
2713 if (!FlippedStrictness)
2714 return false;
2715 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2716 RHS2 = FlippedStrictness->second;
2717 // And kind-of perform the result swap.
2718 std::swap(Less, Greater);
2719 PredB = ICmpInst::ICMP_SLT;
2720 }
2721 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2722 }
2723
foldICmpSelectConstant(ICmpInst & Cmp,SelectInst * Select,ConstantInt * C)2724 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2725 SelectInst *Select,
2726 ConstantInt *C) {
2727
2728 assert(C && "Cmp RHS should be a constant int!");
2729 // If we're testing a constant value against the result of a three way
2730 // comparison, the result can be expressed directly in terms of the
2731 // original values being compared. Note: We could possibly be more
2732 // aggressive here and remove the hasOneUse test. The original select is
2733 // really likely to simplify or sink when we remove a test of the result.
2734 Value *OrigLHS, *OrigRHS;
2735 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2736 if (Cmp.hasOneUse() &&
2737 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2738 C3GreaterThan)) {
2739 assert(C1LessThan && C2Equal && C3GreaterThan);
2740
2741 bool TrueWhenLessThan =
2742 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2743 ->isAllOnesValue();
2744 bool TrueWhenEqual =
2745 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2746 ->isAllOnesValue();
2747 bool TrueWhenGreaterThan =
2748 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2749 ->isAllOnesValue();
2750
2751 // This generates the new instruction that will replace the original Cmp
2752 // Instruction. Instead of enumerating the various combinations when
2753 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2754 // false, we rely on chaining of ORs and future passes of InstCombine to
2755 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2756
2757 // When none of the three constants satisfy the predicate for the RHS (C),
2758 // the entire original Cmp can be simplified to a false.
2759 Value *Cond = Builder.getFalse();
2760 if (TrueWhenLessThan)
2761 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2762 OrigLHS, OrigRHS));
2763 if (TrueWhenEqual)
2764 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2765 OrigLHS, OrigRHS));
2766 if (TrueWhenGreaterThan)
2767 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2768 OrigLHS, OrigRHS));
2769
2770 return replaceInstUsesWith(Cmp, Cond);
2771 }
2772 return nullptr;
2773 }
2774
foldICmpBitCast(ICmpInst & Cmp,InstCombiner::BuilderTy & Builder)2775 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2776 InstCombiner::BuilderTy &Builder) {
2777 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2778 if (!Bitcast)
2779 return nullptr;
2780
2781 ICmpInst::Predicate Pred = Cmp.getPredicate();
2782 Value *Op1 = Cmp.getOperand(1);
2783 Value *BCSrcOp = Bitcast->getOperand(0);
2784
2785 // Make sure the bitcast doesn't change the number of vector elements.
2786 if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2787 Bitcast->getDestTy()->getScalarSizeInBits()) {
2788 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2789 Value *X;
2790 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2791 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
2792 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
2793 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2794 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2795 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2796 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2797 match(Op1, m_Zero()))
2798 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2799
2800 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2801 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2802 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2803
2804 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2805 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2806 return new ICmpInst(Pred, X,
2807 ConstantInt::getAllOnesValue(X->getType()));
2808 }
2809
2810 // Zero-equality checks are preserved through unsigned floating-point casts:
2811 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2812 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2813 if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2814 if (Cmp.isEquality() && match(Op1, m_Zero()))
2815 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2816
2817 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2818 // the FP extend/truncate because that cast does not change the sign-bit.
2819 // This is true for all standard IEEE-754 types and the X86 80-bit type.
2820 // The sign-bit is always the most significant bit in those types.
2821 const APInt *C;
2822 bool TrueIfSigned;
2823 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2824 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2825 if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2826 match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2827 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2828 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2829 Type *XType = X->getType();
2830
2831 // We can't currently handle Power style floating point operations here.
2832 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2833
2834 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2835 if (auto *XVTy = dyn_cast<VectorType>(XType))
2836 NewType = VectorType::get(NewType, XVTy->getElementCount());
2837 Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2838 if (TrueIfSigned)
2839 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2840 ConstantInt::getNullValue(NewType));
2841 else
2842 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2843 ConstantInt::getAllOnesValue(NewType));
2844 }
2845 }
2846 }
2847 }
2848
2849 // Test to see if the operands of the icmp are casted versions of other
2850 // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2851 if (Bitcast->getType()->isPointerTy() &&
2852 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2853 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2854 // so eliminate it as well.
2855 if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2856 Op1 = BC2->getOperand(0);
2857
2858 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2859 return new ICmpInst(Pred, BCSrcOp, Op1);
2860 }
2861
2862 // Folding: icmp <pred> iN X, C
2863 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2864 // and C is a splat of a K-bit pattern
2865 // and SC is a constant vector = <C', C', C', ..., C'>
2866 // Into:
2867 // %E = extractelement <M x iK> %vec, i32 C'
2868 // icmp <pred> iK %E, trunc(C)
2869 const APInt *C;
2870 if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2871 !Bitcast->getType()->isIntegerTy() ||
2872 !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2873 return nullptr;
2874
2875 Value *Vec;
2876 ArrayRef<int> Mask;
2877 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2878 // Check whether every element of Mask is the same constant
2879 if (is_splat(Mask)) {
2880 auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2881 auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2882 if (C->isSplat(EltTy->getBitWidth())) {
2883 // Fold the icmp based on the value of C
2884 // If C is M copies of an iK sized bit pattern,
2885 // then:
2886 // => %E = extractelement <N x iK> %vec, i32 Elem
2887 // icmp <pred> iK %SplatVal, <pattern>
2888 Value *Elem = Builder.getInt32(Mask[0]);
2889 Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2890 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2891 return new ICmpInst(Pred, Extract, NewC);
2892 }
2893 }
2894 }
2895 return nullptr;
2896 }
2897
2898 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2899 /// where X is some kind of instruction.
foldICmpInstWithConstant(ICmpInst & Cmp)2900 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
2901 const APInt *C;
2902 if (!match(Cmp.getOperand(1), m_APInt(C)))
2903 return nullptr;
2904
2905 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2906 switch (BO->getOpcode()) {
2907 case Instruction::Xor:
2908 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2909 return I;
2910 break;
2911 case Instruction::And:
2912 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2913 return I;
2914 break;
2915 case Instruction::Or:
2916 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2917 return I;
2918 break;
2919 case Instruction::Mul:
2920 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2921 return I;
2922 break;
2923 case Instruction::Shl:
2924 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2925 return I;
2926 break;
2927 case Instruction::LShr:
2928 case Instruction::AShr:
2929 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2930 return I;
2931 break;
2932 case Instruction::SRem:
2933 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2934 return I;
2935 break;
2936 case Instruction::UDiv:
2937 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2938 return I;
2939 LLVM_FALLTHROUGH;
2940 case Instruction::SDiv:
2941 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2942 return I;
2943 break;
2944 case Instruction::Sub:
2945 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2946 return I;
2947 break;
2948 case Instruction::Add:
2949 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2950 return I;
2951 break;
2952 default:
2953 break;
2954 }
2955 // TODO: These folds could be refactored to be part of the above calls.
2956 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2957 return I;
2958 }
2959
2960 // Match against CmpInst LHS being instructions other than binary operators.
2961
2962 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2963 // For now, we only support constant integers while folding the
2964 // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2965 // similar to the cases handled by binary ops above.
2966 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2967 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2968 return I;
2969 }
2970
2971 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2972 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2973 return I;
2974 }
2975
2976 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2977 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2978 return I;
2979
2980 return nullptr;
2981 }
2982
2983 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2984 /// icmp eq/ne BO, C.
foldICmpBinOpEqualityWithConstant(ICmpInst & Cmp,BinaryOperator * BO,const APInt & C)2985 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
2986 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
2987 // TODO: Some of these folds could work with arbitrary constants, but this
2988 // function is limited to scalar and vector splat constants.
2989 if (!Cmp.isEquality())
2990 return nullptr;
2991
2992 ICmpInst::Predicate Pred = Cmp.getPredicate();
2993 bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2994 Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2995 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2996
2997 switch (BO->getOpcode()) {
2998 case Instruction::SRem:
2999 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3000 if (C.isNullValue() && BO->hasOneUse()) {
3001 const APInt *BOC;
3002 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3003 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3004 return new ICmpInst(Pred, NewRem,
3005 Constant::getNullValue(BO->getType()));
3006 }
3007 }
3008 break;
3009 case Instruction::Add: {
3010 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3011 if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3012 if (BO->hasOneUse())
3013 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3014 } else if (C.isNullValue()) {
3015 // Replace ((add A, B) != 0) with (A != -B) if A or B is
3016 // efficiently invertible, or if the add has just this one use.
3017 if (Value *NegVal = dyn_castNegVal(BOp1))
3018 return new ICmpInst(Pred, BOp0, NegVal);
3019 if (Value *NegVal = dyn_castNegVal(BOp0))
3020 return new ICmpInst(Pred, NegVal, BOp1);
3021 if (BO->hasOneUse()) {
3022 Value *Neg = Builder.CreateNeg(BOp1);
3023 Neg->takeName(BO);
3024 return new ICmpInst(Pred, BOp0, Neg);
3025 }
3026 }
3027 break;
3028 }
3029 case Instruction::Xor:
3030 if (BO->hasOneUse()) {
3031 if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3032 // For the xor case, we can xor two constants together, eliminating
3033 // the explicit xor.
3034 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3035 } else if (C.isNullValue()) {
3036 // Replace ((xor A, B) != 0) with (A != B)
3037 return new ICmpInst(Pred, BOp0, BOp1);
3038 }
3039 }
3040 break;
3041 case Instruction::Sub:
3042 if (BO->hasOneUse()) {
3043 // Only check for constant LHS here, as constant RHS will be canonicalized
3044 // to add and use the fold above.
3045 if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
3046 // Replace ((sub BOC, B) != C) with (B != BOC-C).
3047 return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
3048 } else if (C.isNullValue()) {
3049 // Replace ((sub A, B) != 0) with (A != B).
3050 return new ICmpInst(Pred, BOp0, BOp1);
3051 }
3052 }
3053 break;
3054 case Instruction::Or: {
3055 const APInt *BOC;
3056 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3057 // Comparing if all bits outside of a constant mask are set?
3058 // Replace (X | C) == -1 with (X & ~C) == ~C.
3059 // This removes the -1 constant.
3060 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3061 Value *And = Builder.CreateAnd(BOp0, NotBOC);
3062 return new ICmpInst(Pred, And, NotBOC);
3063 }
3064 break;
3065 }
3066 case Instruction::And: {
3067 const APInt *BOC;
3068 if (match(BOp1, m_APInt(BOC))) {
3069 // If we have ((X & C) == C), turn it into ((X & C) != 0).
3070 if (C == *BOC && C.isPowerOf2())
3071 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3072 BO, Constant::getNullValue(RHS->getType()));
3073 }
3074 break;
3075 }
3076 case Instruction::UDiv:
3077 if (C.isNullValue()) {
3078 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3079 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3080 return new ICmpInst(NewPred, BOp1, BOp0);
3081 }
3082 break;
3083 default:
3084 break;
3085 }
3086 return nullptr;
3087 }
3088
3089 /// Fold an equality icmp with LLVM intrinsic and constant operand.
foldICmpEqIntrinsicWithConstant(ICmpInst & Cmp,IntrinsicInst * II,const APInt & C)3090 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3091 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3092 Type *Ty = II->getType();
3093 unsigned BitWidth = C.getBitWidth();
3094 switch (II->getIntrinsicID()) {
3095 case Intrinsic::abs:
3096 // abs(A) == 0 -> A == 0
3097 // abs(A) == INT_MIN -> A == INT_MIN
3098 if (C.isNullValue() || C.isMinSignedValue())
3099 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3100 ConstantInt::get(Ty, C));
3101 break;
3102
3103 case Intrinsic::bswap:
3104 // bswap(A) == C -> A == bswap(C)
3105 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3106 ConstantInt::get(Ty, C.byteSwap()));
3107
3108 case Intrinsic::ctlz:
3109 case Intrinsic::cttz: {
3110 // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
3111 if (C == BitWidth)
3112 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3113 ConstantInt::getNullValue(Ty));
3114
3115 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3116 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3117 // Limit to one use to ensure we don't increase instruction count.
3118 unsigned Num = C.getLimitedValue(BitWidth);
3119 if (Num != BitWidth && II->hasOneUse()) {
3120 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3121 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3122 : APInt::getHighBitsSet(BitWidth, Num + 1);
3123 APInt Mask2 = IsTrailing
3124 ? APInt::getOneBitSet(BitWidth, Num)
3125 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3126 return new ICmpInst(Cmp.getPredicate(),
3127 Builder.CreateAnd(II->getArgOperand(0), Mask1),
3128 ConstantInt::get(Ty, Mask2));
3129 }
3130 break;
3131 }
3132
3133 case Intrinsic::ctpop: {
3134 // popcount(A) == 0 -> A == 0 and likewise for !=
3135 // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
3136 bool IsZero = C.isNullValue();
3137 if (IsZero || C == BitWidth)
3138 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3139 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3140
3141 break;
3142 }
3143
3144 case Intrinsic::uadd_sat: {
3145 // uadd.sat(a, b) == 0 -> (a | b) == 0
3146 if (C.isNullValue()) {
3147 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3148 return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3149 }
3150 break;
3151 }
3152
3153 case Intrinsic::usub_sat: {
3154 // usub.sat(a, b) == 0 -> a <= b
3155 if (C.isNullValue()) {
3156 ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3157 ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3158 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3159 }
3160 break;
3161 }
3162 default:
3163 break;
3164 }
3165
3166 return nullptr;
3167 }
3168
3169 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
foldICmpIntrinsicWithConstant(ICmpInst & Cmp,IntrinsicInst * II,const APInt & C)3170 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3171 IntrinsicInst *II,
3172 const APInt &C) {
3173 if (Cmp.isEquality())
3174 return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3175
3176 Type *Ty = II->getType();
3177 unsigned BitWidth = C.getBitWidth();
3178 ICmpInst::Predicate Pred = Cmp.getPredicate();
3179 switch (II->getIntrinsicID()) {
3180 case Intrinsic::ctpop: {
3181 // (ctpop X > BitWidth - 1) --> X == -1
3182 Value *X = II->getArgOperand(0);
3183 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3184 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3185 ConstantInt::getAllOnesValue(Ty));
3186 // (ctpop X < BitWidth) --> X != -1
3187 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3188 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3189 ConstantInt::getAllOnesValue(Ty));
3190 break;
3191 }
3192 case Intrinsic::ctlz: {
3193 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3194 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3195 unsigned Num = C.getLimitedValue();
3196 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3197 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3198 II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3199 }
3200
3201 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3202 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3203 unsigned Num = C.getLimitedValue();
3204 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3205 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3206 II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3207 }
3208 break;
3209 }
3210 case Intrinsic::cttz: {
3211 // Limit to one use to ensure we don't increase instruction count.
3212 if (!II->hasOneUse())
3213 return nullptr;
3214
3215 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3216 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3217 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3218 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3219 Builder.CreateAnd(II->getArgOperand(0), Mask),
3220 ConstantInt::getNullValue(Ty));
3221 }
3222
3223 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3224 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3225 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3226 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3227 Builder.CreateAnd(II->getArgOperand(0), Mask),
3228 ConstantInt::getNullValue(Ty));
3229 }
3230 break;
3231 }
3232 default:
3233 break;
3234 }
3235
3236 return nullptr;
3237 }
3238
3239 /// Handle icmp with constant (but not simple integer constant) RHS.
foldICmpInstWithConstantNotInt(ICmpInst & I)3240 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3241 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3242 Constant *RHSC = dyn_cast<Constant>(Op1);
3243 Instruction *LHSI = dyn_cast<Instruction>(Op0);
3244 if (!RHSC || !LHSI)
3245 return nullptr;
3246
3247 switch (LHSI->getOpcode()) {
3248 case Instruction::GetElementPtr:
3249 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3250 if (RHSC->isNullValue() &&
3251 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3252 return new ICmpInst(
3253 I.getPredicate(), LHSI->getOperand(0),
3254 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3255 break;
3256 case Instruction::PHI:
3257 // Only fold icmp into the PHI if the phi and icmp are in the same
3258 // block. If in the same block, we're encouraging jump threading. If
3259 // not, we are just pessimizing the code by making an i1 phi.
3260 if (LHSI->getParent() == I.getParent())
3261 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3262 return NV;
3263 break;
3264 case Instruction::Select: {
3265 // If either operand of the select is a constant, we can fold the
3266 // comparison into the select arms, which will cause one to be
3267 // constant folded and the select turned into a bitwise or.
3268 Value *Op1 = nullptr, *Op2 = nullptr;
3269 ConstantInt *CI = nullptr;
3270 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3271 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3272 CI = dyn_cast<ConstantInt>(Op1);
3273 }
3274 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3275 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3276 CI = dyn_cast<ConstantInt>(Op2);
3277 }
3278
3279 // We only want to perform this transformation if it will not lead to
3280 // additional code. This is true if either both sides of the select
3281 // fold to a constant (in which case the icmp is replaced with a select
3282 // which will usually simplify) or this is the only user of the
3283 // select (in which case we are trading a select+icmp for a simpler
3284 // select+icmp) or all uses of the select can be replaced based on
3285 // dominance information ("Global cases").
3286 bool Transform = false;
3287 if (Op1 && Op2)
3288 Transform = true;
3289 else if (Op1 || Op2) {
3290 // Local case
3291 if (LHSI->hasOneUse())
3292 Transform = true;
3293 // Global cases
3294 else if (CI && !CI->isZero())
3295 // When Op1 is constant try replacing select with second operand.
3296 // Otherwise Op2 is constant and try replacing select with first
3297 // operand.
3298 Transform =
3299 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3300 }
3301 if (Transform) {
3302 if (!Op1)
3303 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3304 I.getName());
3305 if (!Op2)
3306 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3307 I.getName());
3308 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3309 }
3310 break;
3311 }
3312 case Instruction::IntToPtr:
3313 // icmp pred inttoptr(X), null -> icmp pred X, 0
3314 if (RHSC->isNullValue() &&
3315 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3316 return new ICmpInst(
3317 I.getPredicate(), LHSI->getOperand(0),
3318 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3319 break;
3320
3321 case Instruction::Load:
3322 // Try to optimize things like "A[i] > 4" to index computations.
3323 if (GetElementPtrInst *GEP =
3324 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3325 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3326 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3327 !cast<LoadInst>(LHSI)->isVolatile())
3328 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3329 return Res;
3330 }
3331 break;
3332 }
3333
3334 return nullptr;
3335 }
3336
3337 /// Some comparisons can be simplified.
3338 /// In this case, we are looking for comparisons that look like
3339 /// a check for a lossy truncation.
3340 /// Folds:
3341 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask
3342 /// Where Mask is some pattern that produces all-ones in low bits:
3343 /// (-1 >> y)
3344 /// ((-1 << y) >> y) <- non-canonical, has extra uses
3345 /// ~(-1 << y)
3346 /// ((1 << y) + (-1)) <- non-canonical, has extra uses
3347 /// The Mask can be a constant, too.
3348 /// For some predicates, the operands are commutative.
3349 /// For others, x can only be on a specific side.
foldICmpWithLowBitMaskedVal(ICmpInst & I,InstCombiner::BuilderTy & Builder)3350 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3351 InstCombiner::BuilderTy &Builder) {
3352 ICmpInst::Predicate SrcPred;
3353 Value *X, *M, *Y;
3354 auto m_VariableMask = m_CombineOr(
3355 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3356 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3357 m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3358 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3359 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3360 if (!match(&I, m_c_ICmp(SrcPred,
3361 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3362 m_Deferred(X))))
3363 return nullptr;
3364
3365 ICmpInst::Predicate DstPred;
3366 switch (SrcPred) {
3367 case ICmpInst::Predicate::ICMP_EQ:
3368 // x & (-1 >> y) == x -> x u<= (-1 >> y)
3369 DstPred = ICmpInst::Predicate::ICMP_ULE;
3370 break;
3371 case ICmpInst::Predicate::ICMP_NE:
3372 // x & (-1 >> y) != x -> x u> (-1 >> y)
3373 DstPred = ICmpInst::Predicate::ICMP_UGT;
3374 break;
3375 case ICmpInst::Predicate::ICMP_ULT:
3376 // x & (-1 >> y) u< x -> x u> (-1 >> y)
3377 // x u> x & (-1 >> y) -> x u> (-1 >> y)
3378 DstPred = ICmpInst::Predicate::ICMP_UGT;
3379 break;
3380 case ICmpInst::Predicate::ICMP_UGE:
3381 // x & (-1 >> y) u>= x -> x u<= (-1 >> y)
3382 // x u<= x & (-1 >> y) -> x u<= (-1 >> y)
3383 DstPred = ICmpInst::Predicate::ICMP_ULE;
3384 break;
3385 case ICmpInst::Predicate::ICMP_SLT:
3386 // x & (-1 >> y) s< x -> x s> (-1 >> y)
3387 // x s> x & (-1 >> y) -> x s> (-1 >> y)
3388 if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3389 return nullptr;
3390 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3391 return nullptr;
3392 DstPred = ICmpInst::Predicate::ICMP_SGT;
3393 break;
3394 case ICmpInst::Predicate::ICMP_SGE:
3395 // x & (-1 >> y) s>= x -> x s<= (-1 >> y)
3396 // x s<= x & (-1 >> y) -> x s<= (-1 >> y)
3397 if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3398 return nullptr;
3399 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3400 return nullptr;
3401 DstPred = ICmpInst::Predicate::ICMP_SLE;
3402 break;
3403 case ICmpInst::Predicate::ICMP_SGT:
3404 case ICmpInst::Predicate::ICMP_SLE:
3405 return nullptr;
3406 case ICmpInst::Predicate::ICMP_UGT:
3407 case ICmpInst::Predicate::ICMP_ULE:
3408 llvm_unreachable("Instsimplify took care of commut. variant");
3409 break;
3410 default:
3411 llvm_unreachable("All possible folds are handled.");
3412 }
3413
3414 // The mask value may be a vector constant that has undefined elements. But it
3415 // may not be safe to propagate those undefs into the new compare, so replace
3416 // those elements by copying an existing, defined, and safe scalar constant.
3417 Type *OpTy = M->getType();
3418 auto *VecC = dyn_cast<Constant>(M);
3419 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3420 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3421 Constant *SafeReplacementConstant = nullptr;
3422 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3423 if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3424 SafeReplacementConstant = VecC->getAggregateElement(i);
3425 break;
3426 }
3427 }
3428 assert(SafeReplacementConstant && "Failed to find undef replacement");
3429 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3430 }
3431
3432 return Builder.CreateICmp(DstPred, X, M);
3433 }
3434
3435 /// Some comparisons can be simplified.
3436 /// In this case, we are looking for comparisons that look like
3437 /// a check for a lossy signed truncation.
3438 /// Folds: (MaskedBits is a constant.)
3439 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3440 /// Into:
3441 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3442 /// Where KeptBits = bitwidth(%x) - MaskedBits
3443 static Value *
foldICmpWithTruncSignExtendedVal(ICmpInst & I,InstCombiner::BuilderTy & Builder)3444 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3445 InstCombiner::BuilderTy &Builder) {
3446 ICmpInst::Predicate SrcPred;
3447 Value *X;
3448 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3449 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3450 if (!match(&I, m_c_ICmp(SrcPred,
3451 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3452 m_APInt(C1))),
3453 m_Deferred(X))))
3454 return nullptr;
3455
3456 // Potential handling of non-splats: for each element:
3457 // * if both are undef, replace with constant 0.
3458 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3459 // * if both are not undef, and are different, bailout.
3460 // * else, only one is undef, then pick the non-undef one.
3461
3462 // The shift amount must be equal.
3463 if (*C0 != *C1)
3464 return nullptr;
3465 const APInt &MaskedBits = *C0;
3466 assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3467
3468 ICmpInst::Predicate DstPred;
3469 switch (SrcPred) {
3470 case ICmpInst::Predicate::ICMP_EQ:
3471 // ((%x << MaskedBits) a>> MaskedBits) == %x
3472 // =>
3473 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3474 DstPred = ICmpInst::Predicate::ICMP_ULT;
3475 break;
3476 case ICmpInst::Predicate::ICMP_NE:
3477 // ((%x << MaskedBits) a>> MaskedBits) != %x
3478 // =>
3479 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3480 DstPred = ICmpInst::Predicate::ICMP_UGE;
3481 break;
3482 // FIXME: are more folds possible?
3483 default:
3484 return nullptr;
3485 }
3486
3487 auto *XType = X->getType();
3488 const unsigned XBitWidth = XType->getScalarSizeInBits();
3489 const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3490 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3491
3492 // KeptBits = bitwidth(%x) - MaskedBits
3493 const APInt KeptBits = BitWidth - MaskedBits;
3494 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3495 // ICmpCst = (1 << KeptBits)
3496 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3497 assert(ICmpCst.isPowerOf2());
3498 // AddCst = (1 << (KeptBits-1))
3499 const APInt AddCst = ICmpCst.lshr(1);
3500 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3501
3502 // T0 = add %x, AddCst
3503 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3504 // T1 = T0 DstPred ICmpCst
3505 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3506
3507 return T1;
3508 }
3509
3510 // Given pattern:
3511 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3512 // we should move shifts to the same hand of 'and', i.e. rewrite as
3513 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
3514 // We are only interested in opposite logical shifts here.
3515 // One of the shifts can be truncated.
3516 // If we can, we want to end up creating 'lshr' shift.
3517 static Value *
foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst & I,const SimplifyQuery SQ,InstCombiner::BuilderTy & Builder)3518 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3519 InstCombiner::BuilderTy &Builder) {
3520 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3521 !I.getOperand(0)->hasOneUse())
3522 return nullptr;
3523
3524 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3525
3526 // Look for an 'and' of two logical shifts, one of which may be truncated.
3527 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3528 Instruction *XShift, *MaybeTruncation, *YShift;
3529 if (!match(
3530 I.getOperand(0),
3531 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3532 m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3533 m_AnyLogicalShift, m_Instruction(YShift))),
3534 m_Instruction(MaybeTruncation)))))
3535 return nullptr;
3536
3537 // We potentially looked past 'trunc', but only when matching YShift,
3538 // therefore YShift must have the widest type.
3539 Instruction *WidestShift = YShift;
3540 // Therefore XShift must have the shallowest type.
3541 // Or they both have identical types if there was no truncation.
3542 Instruction *NarrowestShift = XShift;
3543
3544 Type *WidestTy = WidestShift->getType();
3545 Type *NarrowestTy = NarrowestShift->getType();
3546 assert(NarrowestTy == I.getOperand(0)->getType() &&
3547 "We did not look past any shifts while matching XShift though.");
3548 bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3549
3550 // If YShift is a 'lshr', swap the shifts around.
3551 if (match(YShift, m_LShr(m_Value(), m_Value())))
3552 std::swap(XShift, YShift);
3553
3554 // The shifts must be in opposite directions.
3555 auto XShiftOpcode = XShift->getOpcode();
3556 if (XShiftOpcode == YShift->getOpcode())
3557 return nullptr; // Do not care about same-direction shifts here.
3558
3559 Value *X, *XShAmt, *Y, *YShAmt;
3560 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3561 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3562
3563 // If one of the values being shifted is a constant, then we will end with
3564 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3565 // however, we will need to ensure that we won't increase instruction count.
3566 if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3567 // At least one of the hands of the 'and' should be one-use shift.
3568 if (!match(I.getOperand(0),
3569 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3570 return nullptr;
3571 if (HadTrunc) {
3572 // Due to the 'trunc', we will need to widen X. For that either the old
3573 // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3574 if (!MaybeTruncation->hasOneUse() &&
3575 !NarrowestShift->getOperand(1)->hasOneUse())
3576 return nullptr;
3577 }
3578 }
3579
3580 // We have two shift amounts from two different shifts. The types of those
3581 // shift amounts may not match. If that's the case let's bailout now.
3582 if (XShAmt->getType() != YShAmt->getType())
3583 return nullptr;
3584
3585 // As input, we have the following pattern:
3586 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3587 // We want to rewrite that as:
3588 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
3589 // While we know that originally (Q+K) would not overflow
3590 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
3591 // shift amounts. so it may now overflow in smaller bitwidth.
3592 // To ensure that does not happen, we need to ensure that the total maximal
3593 // shift amount is still representable in that smaller bit width.
3594 unsigned MaximalPossibleTotalShiftAmount =
3595 (WidestTy->getScalarSizeInBits() - 1) +
3596 (NarrowestTy->getScalarSizeInBits() - 1);
3597 APInt MaximalRepresentableShiftAmount =
3598 APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
3599 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3600 return nullptr;
3601
3602 // Can we fold (XShAmt+YShAmt) ?
3603 auto *NewShAmt = dyn_cast_or_null<Constant>(
3604 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3605 /*isNUW=*/false, SQ.getWithInstruction(&I)));
3606 if (!NewShAmt)
3607 return nullptr;
3608 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3609 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3610
3611 // Is the new shift amount smaller than the bit width?
3612 // FIXME: could also rely on ConstantRange.
3613 if (!match(NewShAmt,
3614 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3615 APInt(WidestBitWidth, WidestBitWidth))))
3616 return nullptr;
3617
3618 // An extra legality check is needed if we had trunc-of-lshr.
3619 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3620 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3621 WidestShift]() {
3622 // It isn't obvious whether it's worth it to analyze non-constants here.
3623 // Also, let's basically give up on non-splat cases, pessimizing vectors.
3624 // If *any* of these preconditions matches we can perform the fold.
3625 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3626 ? NewShAmt->getSplatValue()
3627 : NewShAmt;
3628 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3629 if (NewShAmtSplat &&
3630 (NewShAmtSplat->isNullValue() ||
3631 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3632 return true;
3633 // We consider *min* leading zeros so a single outlier
3634 // blocks the transform as opposed to allowing it.
3635 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3636 KnownBits Known = computeKnownBits(C, SQ.DL);
3637 unsigned MinLeadZero = Known.countMinLeadingZeros();
3638 // If the value being shifted has at most lowest bit set we can fold.
3639 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3640 if (MaxActiveBits <= 1)
3641 return true;
3642 // Precondition: NewShAmt u<= countLeadingZeros(C)
3643 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3644 return true;
3645 }
3646 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3647 KnownBits Known = computeKnownBits(C, SQ.DL);
3648 unsigned MinLeadZero = Known.countMinLeadingZeros();
3649 // If the value being shifted has at most lowest bit set we can fold.
3650 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3651 if (MaxActiveBits <= 1)
3652 return true;
3653 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3654 if (NewShAmtSplat) {
3655 APInt AdjNewShAmt =
3656 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3657 if (AdjNewShAmt.ule(MinLeadZero))
3658 return true;
3659 }
3660 }
3661 return false; // Can't tell if it's ok.
3662 };
3663 if (!CanFold())
3664 return nullptr;
3665 }
3666
3667 // All good, we can do this fold.
3668 X = Builder.CreateZExt(X, WidestTy);
3669 Y = Builder.CreateZExt(Y, WidestTy);
3670 // The shift is the same that was for X.
3671 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3672 ? Builder.CreateLShr(X, NewShAmt)
3673 : Builder.CreateShl(X, NewShAmt);
3674 Value *T1 = Builder.CreateAnd(T0, Y);
3675 return Builder.CreateICmp(I.getPredicate(), T1,
3676 Constant::getNullValue(WidestTy));
3677 }
3678
3679 /// Fold
3680 /// (-1 u/ x) u< y
3681 /// ((x * y) u/ x) != y
3682 /// to
3683 /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3684 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3685 /// will mean that we are looking for the opposite answer.
foldUnsignedMultiplicationOverflowCheck(ICmpInst & I)3686 Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3687 ICmpInst::Predicate Pred;
3688 Value *X, *Y;
3689 Instruction *Mul;
3690 bool NeedNegation;
3691 // Look for: (-1 u/ x) u</u>= y
3692 if (!I.isEquality() &&
3693 match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3694 m_Value(Y)))) {
3695 Mul = nullptr;
3696
3697 // Are we checking that overflow does not happen, or does happen?
3698 switch (Pred) {
3699 case ICmpInst::Predicate::ICMP_ULT:
3700 NeedNegation = false;
3701 break; // OK
3702 case ICmpInst::Predicate::ICMP_UGE:
3703 NeedNegation = true;
3704 break; // OK
3705 default:
3706 return nullptr; // Wrong predicate.
3707 }
3708 } else // Look for: ((x * y) u/ x) !=/== y
3709 if (I.isEquality() &&
3710 match(&I, m_c_ICmp(Pred, m_Value(Y),
3711 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3712 m_Value(X)),
3713 m_Instruction(Mul)),
3714 m_Deferred(X)))))) {
3715 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3716 } else
3717 return nullptr;
3718
3719 BuilderTy::InsertPointGuard Guard(Builder);
3720 // If the pattern included (x * y), we'll want to insert new instructions
3721 // right before that original multiplication so that we can replace it.
3722 bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3723 if (MulHadOtherUses)
3724 Builder.SetInsertPoint(Mul);
3725
3726 Function *F = Intrinsic::getDeclaration(
3727 I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3728 CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3729
3730 // If the multiplication was used elsewhere, to ensure that we don't leave
3731 // "duplicate" instructions, replace uses of that original multiplication
3732 // with the multiplication result from the with.overflow intrinsic.
3733 if (MulHadOtherUses)
3734 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3735
3736 Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3737 if (NeedNegation) // This technically increases instruction count.
3738 Res = Builder.CreateNot(Res, "umul.not.ov");
3739
3740 // If we replaced the mul, erase it. Do this after all uses of Builder,
3741 // as the mul is used as insertion point.
3742 if (MulHadOtherUses)
3743 eraseInstFromFunction(*Mul);
3744
3745 return Res;
3746 }
3747
foldICmpXNegX(ICmpInst & I)3748 static Instruction *foldICmpXNegX(ICmpInst &I) {
3749 CmpInst::Predicate Pred;
3750 Value *X;
3751 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3752 return nullptr;
3753
3754 if (ICmpInst::isSigned(Pred))
3755 Pred = ICmpInst::getSwappedPredicate(Pred);
3756 else if (ICmpInst::isUnsigned(Pred))
3757 Pred = ICmpInst::getSignedPredicate(Pred);
3758 // else for equality-comparisons just keep the predicate.
3759
3760 return ICmpInst::Create(Instruction::ICmp, Pred, X,
3761 Constant::getNullValue(X->getType()), I.getName());
3762 }
3763
3764 /// Try to fold icmp (binop), X or icmp X, (binop).
3765 /// TODO: A large part of this logic is duplicated in InstSimplify's
3766 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3767 /// duplication.
foldICmpBinOp(ICmpInst & I,const SimplifyQuery & SQ)3768 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3769 const SimplifyQuery &SQ) {
3770 const SimplifyQuery Q = SQ.getWithInstruction(&I);
3771 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3772
3773 // Special logic for binary operators.
3774 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3775 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3776 if (!BO0 && !BO1)
3777 return nullptr;
3778
3779 if (Instruction *NewICmp = foldICmpXNegX(I))
3780 return NewICmp;
3781
3782 const CmpInst::Predicate Pred = I.getPredicate();
3783 Value *X;
3784
3785 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3786 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3787 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3788 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3789 return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3790 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3791 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3792 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3793 return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3794
3795 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3796 if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3797 NoOp0WrapProblem =
3798 ICmpInst::isEquality(Pred) ||
3799 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3800 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3801 if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3802 NoOp1WrapProblem =
3803 ICmpInst::isEquality(Pred) ||
3804 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3805 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3806
3807 // Analyze the case when either Op0 or Op1 is an add instruction.
3808 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3809 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3810 if (BO0 && BO0->getOpcode() == Instruction::Add) {
3811 A = BO0->getOperand(0);
3812 B = BO0->getOperand(1);
3813 }
3814 if (BO1 && BO1->getOpcode() == Instruction::Add) {
3815 C = BO1->getOperand(0);
3816 D = BO1->getOperand(1);
3817 }
3818
3819 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3820 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3821 if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3822 return new ICmpInst(Pred, A == Op1 ? B : A,
3823 Constant::getNullValue(Op1->getType()));
3824
3825 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3826 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3827 if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3828 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3829 C == Op0 ? D : C);
3830
3831 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3832 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3833 NoOp1WrapProblem) {
3834 // Determine Y and Z in the form icmp (X+Y), (X+Z).
3835 Value *Y, *Z;
3836 if (A == C) {
3837 // C + B == C + D -> B == D
3838 Y = B;
3839 Z = D;
3840 } else if (A == D) {
3841 // D + B == C + D -> B == C
3842 Y = B;
3843 Z = C;
3844 } else if (B == C) {
3845 // A + C == C + D -> A == D
3846 Y = A;
3847 Z = D;
3848 } else {
3849 assert(B == D);
3850 // A + D == C + D -> A == C
3851 Y = A;
3852 Z = C;
3853 }
3854 return new ICmpInst(Pred, Y, Z);
3855 }
3856
3857 // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3858 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3859 match(B, m_AllOnes()))
3860 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3861
3862 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3863 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3864 match(B, m_AllOnes()))
3865 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3866
3867 // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3868 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3869 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3870
3871 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3872 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3873 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3874
3875 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3876 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3877 match(D, m_AllOnes()))
3878 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3879
3880 // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3881 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3882 match(D, m_AllOnes()))
3883 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3884
3885 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3886 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3887 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3888
3889 // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3890 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3891 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3892
3893 // TODO: The subtraction-related identities shown below also hold, but
3894 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3895 // wouldn't happen even if they were implemented.
3896 //
3897 // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3898 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3899 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3900 // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3901
3902 // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3903 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3904 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3905
3906 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3907 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3908 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3909
3910 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3911 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3912 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3913
3914 // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3915 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3916 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3917
3918 // if C1 has greater magnitude than C2:
3919 // icmp (A + C1), (C + C2) -> icmp (A + C3), C
3920 // s.t. C3 = C1 - C2
3921 //
3922 // if C2 has greater magnitude than C1:
3923 // icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3924 // s.t. C3 = C2 - C1
3925 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3926 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3927 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3928 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3929 const APInt &AP1 = C1->getValue();
3930 const APInt &AP2 = C2->getValue();
3931 if (AP1.isNegative() == AP2.isNegative()) {
3932 APInt AP1Abs = C1->getValue().abs();
3933 APInt AP2Abs = C2->getValue().abs();
3934 if (AP1Abs.uge(AP2Abs)) {
3935 ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3936 bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1);
3937 bool HasNSW = BO0->hasNoSignedWrap();
3938 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
3939 return new ICmpInst(Pred, NewAdd, C);
3940 } else {
3941 ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3942 bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2);
3943 bool HasNSW = BO1->hasNoSignedWrap();
3944 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
3945 return new ICmpInst(Pred, A, NewAdd);
3946 }
3947 }
3948 }
3949
3950 // Analyze the case when either Op0 or Op1 is a sub instruction.
3951 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3952 A = nullptr;
3953 B = nullptr;
3954 C = nullptr;
3955 D = nullptr;
3956 if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3957 A = BO0->getOperand(0);
3958 B = BO0->getOperand(1);
3959 }
3960 if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3961 C = BO1->getOperand(0);
3962 D = BO1->getOperand(1);
3963 }
3964
3965 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3966 if (A == Op1 && NoOp0WrapProblem)
3967 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3968 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3969 if (C == Op0 && NoOp1WrapProblem)
3970 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3971
3972 // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3973 // (A - B) u>/u<= A --> B u>/u<= A
3974 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3975 return new ICmpInst(Pred, B, A);
3976 // C u</u>= (C - D) --> C u</u>= D
3977 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3978 return new ICmpInst(Pred, C, D);
3979 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0
3980 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
3981 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3982 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
3983 // C u<=/u> (C - D) --> C u</u>= D iff B != 0
3984 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
3985 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3986 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
3987
3988 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3989 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3990 return new ICmpInst(Pred, A, C);
3991
3992 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3993 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3994 return new ICmpInst(Pred, D, B);
3995
3996 // icmp (0-X) < cst --> x > -cst
3997 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3998 Value *X;
3999 if (match(BO0, m_Neg(m_Value(X))))
4000 if (Constant *RHSC = dyn_cast<Constant>(Op1))
4001 if (RHSC->isNotMinSignedValue())
4002 return new ICmpInst(I.getSwappedPredicate(), X,
4003 ConstantExpr::getNeg(RHSC));
4004 }
4005
4006 {
4007 // Try to remove shared constant multiplier from equality comparison:
4008 // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4009 Value *X, *Y;
4010 const APInt *C;
4011 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4012 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4013 if (!C->countTrailingZeros() ||
4014 (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4015 (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4016 return new ICmpInst(Pred, X, Y);
4017 }
4018
4019 BinaryOperator *SRem = nullptr;
4020 // icmp (srem X, Y), Y
4021 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4022 SRem = BO0;
4023 // icmp Y, (srem X, Y)
4024 else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4025 Op0 == BO1->getOperand(1))
4026 SRem = BO1;
4027 if (SRem) {
4028 // We don't check hasOneUse to avoid increasing register pressure because
4029 // the value we use is the same value this instruction was already using.
4030 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4031 default:
4032 break;
4033 case ICmpInst::ICMP_EQ:
4034 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4035 case ICmpInst::ICMP_NE:
4036 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4037 case ICmpInst::ICMP_SGT:
4038 case ICmpInst::ICMP_SGE:
4039 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4040 Constant::getAllOnesValue(SRem->getType()));
4041 case ICmpInst::ICMP_SLT:
4042 case ICmpInst::ICMP_SLE:
4043 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4044 Constant::getNullValue(SRem->getType()));
4045 }
4046 }
4047
4048 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4049 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4050 switch (BO0->getOpcode()) {
4051 default:
4052 break;
4053 case Instruction::Add:
4054 case Instruction::Sub:
4055 case Instruction::Xor: {
4056 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4057 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4058
4059 const APInt *C;
4060 if (match(BO0->getOperand(1), m_APInt(C))) {
4061 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4062 if (C->isSignMask()) {
4063 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4064 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4065 }
4066
4067 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4068 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4069 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4070 NewPred = I.getSwappedPredicate(NewPred);
4071 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4072 }
4073 }
4074 break;
4075 }
4076 case Instruction::Mul: {
4077 if (!I.isEquality())
4078 break;
4079
4080 const APInt *C;
4081 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
4082 !C->isOneValue()) {
4083 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4084 // Mask = -1 >> count-trailing-zeros(C).
4085 if (unsigned TZs = C->countTrailingZeros()) {
4086 Constant *Mask = ConstantInt::get(
4087 BO0->getType(),
4088 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4089 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4090 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4091 return new ICmpInst(Pred, And1, And2);
4092 }
4093 }
4094 break;
4095 }
4096 case Instruction::UDiv:
4097 case Instruction::LShr:
4098 if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4099 break;
4100 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4101
4102 case Instruction::SDiv:
4103 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4104 break;
4105 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4106
4107 case Instruction::AShr:
4108 if (!BO0->isExact() || !BO1->isExact())
4109 break;
4110 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4111
4112 case Instruction::Shl: {
4113 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4114 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4115 if (!NUW && !NSW)
4116 break;
4117 if (!NSW && I.isSigned())
4118 break;
4119 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4120 }
4121 }
4122 }
4123
4124 if (BO0) {
4125 // Transform A & (L - 1) `ult` L --> L != 0
4126 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4127 auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4128
4129 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4130 auto *Zero = Constant::getNullValue(BO0->getType());
4131 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4132 }
4133 }
4134
4135 if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
4136 return replaceInstUsesWith(I, V);
4137
4138 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4139 return replaceInstUsesWith(I, V);
4140
4141 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4142 return replaceInstUsesWith(I, V);
4143
4144 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4145 return replaceInstUsesWith(I, V);
4146
4147 return nullptr;
4148 }
4149
4150 /// Fold icmp Pred min|max(X, Y), X.
foldICmpWithMinMax(ICmpInst & Cmp)4151 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4152 ICmpInst::Predicate Pred = Cmp.getPredicate();
4153 Value *Op0 = Cmp.getOperand(0);
4154 Value *X = Cmp.getOperand(1);
4155
4156 // Canonicalize minimum or maximum operand to LHS of the icmp.
4157 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4158 match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4159 match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4160 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4161 std::swap(Op0, X);
4162 Pred = Cmp.getSwappedPredicate();
4163 }
4164
4165 Value *Y;
4166 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4167 // smin(X, Y) == X --> X s<= Y
4168 // smin(X, Y) s>= X --> X s<= Y
4169 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4170 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4171
4172 // smin(X, Y) != X --> X s> Y
4173 // smin(X, Y) s< X --> X s> Y
4174 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4175 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4176
4177 // These cases should be handled in InstSimplify:
4178 // smin(X, Y) s<= X --> true
4179 // smin(X, Y) s> X --> false
4180 return nullptr;
4181 }
4182
4183 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4184 // smax(X, Y) == X --> X s>= Y
4185 // smax(X, Y) s<= X --> X s>= Y
4186 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4187 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4188
4189 // smax(X, Y) != X --> X s< Y
4190 // smax(X, Y) s> X --> X s< Y
4191 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4192 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4193
4194 // These cases should be handled in InstSimplify:
4195 // smax(X, Y) s>= X --> true
4196 // smax(X, Y) s< X --> false
4197 return nullptr;
4198 }
4199
4200 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4201 // umin(X, Y) == X --> X u<= Y
4202 // umin(X, Y) u>= X --> X u<= Y
4203 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4204 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4205
4206 // umin(X, Y) != X --> X u> Y
4207 // umin(X, Y) u< X --> X u> Y
4208 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4209 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4210
4211 // These cases should be handled in InstSimplify:
4212 // umin(X, Y) u<= X --> true
4213 // umin(X, Y) u> X --> false
4214 return nullptr;
4215 }
4216
4217 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4218 // umax(X, Y) == X --> X u>= Y
4219 // umax(X, Y) u<= X --> X u>= Y
4220 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4221 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4222
4223 // umax(X, Y) != X --> X u< Y
4224 // umax(X, Y) u> X --> X u< Y
4225 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4226 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4227
4228 // These cases should be handled in InstSimplify:
4229 // umax(X, Y) u>= X --> true
4230 // umax(X, Y) u< X --> false
4231 return nullptr;
4232 }
4233
4234 return nullptr;
4235 }
4236
foldICmpEquality(ICmpInst & I)4237 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4238 if (!I.isEquality())
4239 return nullptr;
4240
4241 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4242 const CmpInst::Predicate Pred = I.getPredicate();
4243 Value *A, *B, *C, *D;
4244 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4245 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
4246 Value *OtherVal = A == Op1 ? B : A;
4247 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4248 }
4249
4250 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4251 // A^c1 == C^c2 --> A == C^(c1^c2)
4252 ConstantInt *C1, *C2;
4253 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4254 Op1->hasOneUse()) {
4255 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4256 Value *Xor = Builder.CreateXor(C, NC);
4257 return new ICmpInst(Pred, A, Xor);
4258 }
4259
4260 // A^B == A^D -> B == D
4261 if (A == C)
4262 return new ICmpInst(Pred, B, D);
4263 if (A == D)
4264 return new ICmpInst(Pred, B, C);
4265 if (B == C)
4266 return new ICmpInst(Pred, A, D);
4267 if (B == D)
4268 return new ICmpInst(Pred, A, C);
4269 }
4270 }
4271
4272 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4273 // A == (A^B) -> B == 0
4274 Value *OtherVal = A == Op0 ? B : A;
4275 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4276 }
4277
4278 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4279 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4280 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4281 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4282
4283 if (A == C) {
4284 X = B;
4285 Y = D;
4286 Z = A;
4287 } else if (A == D) {
4288 X = B;
4289 Y = C;
4290 Z = A;
4291 } else if (B == C) {
4292 X = A;
4293 Y = D;
4294 Z = B;
4295 } else if (B == D) {
4296 X = A;
4297 Y = C;
4298 Z = B;
4299 }
4300
4301 if (X) { // Build (X^Y) & Z
4302 Op1 = Builder.CreateXor(X, Y);
4303 Op1 = Builder.CreateAnd(Op1, Z);
4304 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4305 }
4306 }
4307
4308 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4309 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4310 ConstantInt *Cst1;
4311 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4312 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4313 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4314 match(Op1, m_ZExt(m_Value(A))))) {
4315 APInt Pow2 = Cst1->getValue() + 1;
4316 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4317 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4318 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4319 }
4320
4321 // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4322 // For lshr and ashr pairs.
4323 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4324 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4325 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4326 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4327 unsigned TypeBits = Cst1->getBitWidth();
4328 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4329 if (ShAmt < TypeBits && ShAmt != 0) {
4330 ICmpInst::Predicate NewPred =
4331 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4332 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4333 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4334 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4335 }
4336 }
4337
4338 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4339 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4340 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4341 unsigned TypeBits = Cst1->getBitWidth();
4342 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4343 if (ShAmt < TypeBits && ShAmt != 0) {
4344 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4345 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4346 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4347 I.getName() + ".mask");
4348 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4349 }
4350 }
4351
4352 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4353 // "icmp (and X, mask), cst"
4354 uint64_t ShAmt = 0;
4355 if (Op0->hasOneUse() &&
4356 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4357 match(Op1, m_ConstantInt(Cst1)) &&
4358 // Only do this when A has multiple uses. This is most important to do
4359 // when it exposes other optimizations.
4360 !A->hasOneUse()) {
4361 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4362
4363 if (ShAmt < ASize) {
4364 APInt MaskV =
4365 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4366 MaskV <<= ShAmt;
4367
4368 APInt CmpV = Cst1->getValue().zext(ASize);
4369 CmpV <<= ShAmt;
4370
4371 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4372 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4373 }
4374 }
4375
4376 // If both operands are byte-swapped or bit-reversed, just compare the
4377 // original values.
4378 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4379 // and handle more intrinsics.
4380 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4381 (match(Op0, m_BitReverse(m_Value(A))) &&
4382 match(Op1, m_BitReverse(m_Value(B)))))
4383 return new ICmpInst(Pred, A, B);
4384
4385 // Canonicalize checking for a power-of-2-or-zero value:
4386 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4387 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4388 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4389 m_Deferred(A)))) ||
4390 !match(Op1, m_ZeroInt()))
4391 A = nullptr;
4392
4393 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4394 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4395 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4396 A = Op1;
4397 else if (match(Op1,
4398 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4399 A = Op0;
4400
4401 if (A) {
4402 Type *Ty = A->getType();
4403 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4404 return Pred == ICmpInst::ICMP_EQ
4405 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4406 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4407 }
4408
4409 return nullptr;
4410 }
4411
foldICmpWithZextOrSext(ICmpInst & ICmp,InstCombiner::BuilderTy & Builder)4412 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4413 InstCombiner::BuilderTy &Builder) {
4414 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4415 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4416 Value *X;
4417 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4418 return nullptr;
4419
4420 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4421 bool IsSignedCmp = ICmp.isSigned();
4422 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4423 // If the signedness of the two casts doesn't agree (i.e. one is a sext
4424 // and the other is a zext), then we can't handle this.
4425 // TODO: This is too strict. We can handle some predicates (equality?).
4426 if (CastOp0->getOpcode() != CastOp1->getOpcode())
4427 return nullptr;
4428
4429 // Not an extension from the same type?
4430 Value *Y = CastOp1->getOperand(0);
4431 Type *XTy = X->getType(), *YTy = Y->getType();
4432 if (XTy != YTy) {
4433 // One of the casts must have one use because we are creating a new cast.
4434 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4435 return nullptr;
4436 // Extend the narrower operand to the type of the wider operand.
4437 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4438 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4439 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4440 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4441 else
4442 return nullptr;
4443 }
4444
4445 // (zext X) == (zext Y) --> X == Y
4446 // (sext X) == (sext Y) --> X == Y
4447 if (ICmp.isEquality())
4448 return new ICmpInst(ICmp.getPredicate(), X, Y);
4449
4450 // A signed comparison of sign extended values simplifies into a
4451 // signed comparison.
4452 if (IsSignedCmp && IsSignedExt)
4453 return new ICmpInst(ICmp.getPredicate(), X, Y);
4454
4455 // The other three cases all fold into an unsigned comparison.
4456 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4457 }
4458
4459 // Below here, we are only folding a compare with constant.
4460 auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4461 if (!C)
4462 return nullptr;
4463
4464 // Compute the constant that would happen if we truncated to SrcTy then
4465 // re-extended to DestTy.
4466 Type *SrcTy = CastOp0->getSrcTy();
4467 Type *DestTy = CastOp0->getDestTy();
4468 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4469 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4470
4471 // If the re-extended constant didn't change...
4472 if (Res2 == C) {
4473 if (ICmp.isEquality())
4474 return new ICmpInst(ICmp.getPredicate(), X, Res1);
4475
4476 // A signed comparison of sign extended values simplifies into a
4477 // signed comparison.
4478 if (IsSignedExt && IsSignedCmp)
4479 return new ICmpInst(ICmp.getPredicate(), X, Res1);
4480
4481 // The other three cases all fold into an unsigned comparison.
4482 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4483 }
4484
4485 // The re-extended constant changed, partly changed (in the case of a vector),
4486 // or could not be determined to be equal (in the case of a constant
4487 // expression), so the constant cannot be represented in the shorter type.
4488 // All the cases that fold to true or false will have already been handled
4489 // by SimplifyICmpInst, so only deal with the tricky case.
4490 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4491 return nullptr;
4492
4493 // Is source op positive?
4494 // icmp ult (sext X), C --> icmp sgt X, -1
4495 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4496 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4497
4498 // Is source op negative?
4499 // icmp ugt (sext X), C --> icmp slt X, 0
4500 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4501 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4502 }
4503
4504 /// Handle icmp (cast x), (cast or constant).
foldICmpWithCastOp(ICmpInst & ICmp)4505 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4506 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4507 if (!CastOp0)
4508 return nullptr;
4509 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4510 return nullptr;
4511
4512 Value *Op0Src = CastOp0->getOperand(0);
4513 Type *SrcTy = CastOp0->getSrcTy();
4514 Type *DestTy = CastOp0->getDestTy();
4515
4516 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4517 // integer type is the same size as the pointer type.
4518 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4519 if (isa<VectorType>(SrcTy)) {
4520 SrcTy = cast<VectorType>(SrcTy)->getElementType();
4521 DestTy = cast<VectorType>(DestTy)->getElementType();
4522 }
4523 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4524 };
4525 if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4526 CompatibleSizes(SrcTy, DestTy)) {
4527 Value *NewOp1 = nullptr;
4528 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4529 Value *PtrSrc = PtrToIntOp1->getOperand(0);
4530 if (PtrSrc->getType()->getPointerAddressSpace() ==
4531 Op0Src->getType()->getPointerAddressSpace()) {
4532 NewOp1 = PtrToIntOp1->getOperand(0);
4533 // If the pointer types don't match, insert a bitcast.
4534 if (Op0Src->getType() != NewOp1->getType())
4535 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4536 }
4537 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4538 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4539 }
4540
4541 if (NewOp1)
4542 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4543 }
4544
4545 return foldICmpWithZextOrSext(ICmp, Builder);
4546 }
4547
isNeutralValue(Instruction::BinaryOps BinaryOp,Value * RHS)4548 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4549 switch (BinaryOp) {
4550 default:
4551 llvm_unreachable("Unsupported binary op");
4552 case Instruction::Add:
4553 case Instruction::Sub:
4554 return match(RHS, m_Zero());
4555 case Instruction::Mul:
4556 return match(RHS, m_One());
4557 }
4558 }
4559
4560 OverflowResult
computeOverflow(Instruction::BinaryOps BinaryOp,bool IsSigned,Value * LHS,Value * RHS,Instruction * CxtI) const4561 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4562 bool IsSigned, Value *LHS, Value *RHS,
4563 Instruction *CxtI) const {
4564 switch (BinaryOp) {
4565 default:
4566 llvm_unreachable("Unsupported binary op");
4567 case Instruction::Add:
4568 if (IsSigned)
4569 return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4570 else
4571 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4572 case Instruction::Sub:
4573 if (IsSigned)
4574 return computeOverflowForSignedSub(LHS, RHS, CxtI);
4575 else
4576 return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4577 case Instruction::Mul:
4578 if (IsSigned)
4579 return computeOverflowForSignedMul(LHS, RHS, CxtI);
4580 else
4581 return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4582 }
4583 }
4584
OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,bool IsSigned,Value * LHS,Value * RHS,Instruction & OrigI,Value * & Result,Constant * & Overflow)4585 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4586 bool IsSigned, Value *LHS,
4587 Value *RHS, Instruction &OrigI,
4588 Value *&Result,
4589 Constant *&Overflow) {
4590 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4591 std::swap(LHS, RHS);
4592
4593 // If the overflow check was an add followed by a compare, the insertion point
4594 // may be pointing to the compare. We want to insert the new instructions
4595 // before the add in case there are uses of the add between the add and the
4596 // compare.
4597 Builder.SetInsertPoint(&OrigI);
4598
4599 Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4600 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4601 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4602
4603 if (isNeutralValue(BinaryOp, RHS)) {
4604 Result = LHS;
4605 Overflow = ConstantInt::getFalse(OverflowTy);
4606 return true;
4607 }
4608
4609 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4610 case OverflowResult::MayOverflow:
4611 return false;
4612 case OverflowResult::AlwaysOverflowsLow:
4613 case OverflowResult::AlwaysOverflowsHigh:
4614 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4615 Result->takeName(&OrigI);
4616 Overflow = ConstantInt::getTrue(OverflowTy);
4617 return true;
4618 case OverflowResult::NeverOverflows:
4619 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4620 Result->takeName(&OrigI);
4621 Overflow = ConstantInt::getFalse(OverflowTy);
4622 if (auto *Inst = dyn_cast<Instruction>(Result)) {
4623 if (IsSigned)
4624 Inst->setHasNoSignedWrap();
4625 else
4626 Inst->setHasNoUnsignedWrap();
4627 }
4628 return true;
4629 }
4630
4631 llvm_unreachable("Unexpected overflow result");
4632 }
4633
4634 /// Recognize and process idiom involving test for multiplication
4635 /// overflow.
4636 ///
4637 /// The caller has matched a pattern of the form:
4638 /// I = cmp u (mul(zext A, zext B), V
4639 /// The function checks if this is a test for overflow and if so replaces
4640 /// multiplication with call to 'mul.with.overflow' intrinsic.
4641 ///
4642 /// \param I Compare instruction.
4643 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of
4644 /// the compare instruction. Must be of integer type.
4645 /// \param OtherVal The other argument of compare instruction.
4646 /// \returns Instruction which must replace the compare instruction, NULL if no
4647 /// replacement required.
processUMulZExtIdiom(ICmpInst & I,Value * MulVal,Value * OtherVal,InstCombinerImpl & IC)4648 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4649 Value *OtherVal,
4650 InstCombinerImpl &IC) {
4651 // Don't bother doing this transformation for pointers, don't do it for
4652 // vectors.
4653 if (!isa<IntegerType>(MulVal->getType()))
4654 return nullptr;
4655
4656 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4657 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4658 auto *MulInstr = dyn_cast<Instruction>(MulVal);
4659 if (!MulInstr)
4660 return nullptr;
4661 assert(MulInstr->getOpcode() == Instruction::Mul);
4662
4663 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4664 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4665 assert(LHS->getOpcode() == Instruction::ZExt);
4666 assert(RHS->getOpcode() == Instruction::ZExt);
4667 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4668
4669 // Calculate type and width of the result produced by mul.with.overflow.
4670 Type *TyA = A->getType(), *TyB = B->getType();
4671 unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4672 WidthB = TyB->getPrimitiveSizeInBits();
4673 unsigned MulWidth;
4674 Type *MulType;
4675 if (WidthB > WidthA) {
4676 MulWidth = WidthB;
4677 MulType = TyB;
4678 } else {
4679 MulWidth = WidthA;
4680 MulType = TyA;
4681 }
4682
4683 // In order to replace the original mul with a narrower mul.with.overflow,
4684 // all uses must ignore upper bits of the product. The number of used low
4685 // bits must be not greater than the width of mul.with.overflow.
4686 if (MulVal->hasNUsesOrMore(2))
4687 for (User *U : MulVal->users()) {
4688 if (U == &I)
4689 continue;
4690 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4691 // Check if truncation ignores bits above MulWidth.
4692 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4693 if (TruncWidth > MulWidth)
4694 return nullptr;
4695 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4696 // Check if AND ignores bits above MulWidth.
4697 if (BO->getOpcode() != Instruction::And)
4698 return nullptr;
4699 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4700 const APInt &CVal = CI->getValue();
4701 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4702 return nullptr;
4703 } else {
4704 // In this case we could have the operand of the binary operation
4705 // being defined in another block, and performing the replacement
4706 // could break the dominance relation.
4707 return nullptr;
4708 }
4709 } else {
4710 // Other uses prohibit this transformation.
4711 return nullptr;
4712 }
4713 }
4714
4715 // Recognize patterns
4716 switch (I.getPredicate()) {
4717 case ICmpInst::ICMP_EQ:
4718 case ICmpInst::ICMP_NE:
4719 // Recognize pattern:
4720 // mulval = mul(zext A, zext B)
4721 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4722 ConstantInt *CI;
4723 Value *ValToMask;
4724 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4725 if (ValToMask != MulVal)
4726 return nullptr;
4727 const APInt &CVal = CI->getValue() + 1;
4728 if (CVal.isPowerOf2()) {
4729 unsigned MaskWidth = CVal.logBase2();
4730 if (MaskWidth == MulWidth)
4731 break; // Recognized
4732 }
4733 }
4734 return nullptr;
4735
4736 case ICmpInst::ICMP_UGT:
4737 // Recognize pattern:
4738 // mulval = mul(zext A, zext B)
4739 // cmp ugt mulval, max
4740 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4741 APInt MaxVal = APInt::getMaxValue(MulWidth);
4742 MaxVal = MaxVal.zext(CI->getBitWidth());
4743 if (MaxVal.eq(CI->getValue()))
4744 break; // Recognized
4745 }
4746 return nullptr;
4747
4748 case ICmpInst::ICMP_UGE:
4749 // Recognize pattern:
4750 // mulval = mul(zext A, zext B)
4751 // cmp uge mulval, max+1
4752 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4753 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4754 if (MaxVal.eq(CI->getValue()))
4755 break; // Recognized
4756 }
4757 return nullptr;
4758
4759 case ICmpInst::ICMP_ULE:
4760 // Recognize pattern:
4761 // mulval = mul(zext A, zext B)
4762 // cmp ule mulval, max
4763 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4764 APInt MaxVal = APInt::getMaxValue(MulWidth);
4765 MaxVal = MaxVal.zext(CI->getBitWidth());
4766 if (MaxVal.eq(CI->getValue()))
4767 break; // Recognized
4768 }
4769 return nullptr;
4770
4771 case ICmpInst::ICMP_ULT:
4772 // Recognize pattern:
4773 // mulval = mul(zext A, zext B)
4774 // cmp ule mulval, max + 1
4775 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4776 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4777 if (MaxVal.eq(CI->getValue()))
4778 break; // Recognized
4779 }
4780 return nullptr;
4781
4782 default:
4783 return nullptr;
4784 }
4785
4786 InstCombiner::BuilderTy &Builder = IC.Builder;
4787 Builder.SetInsertPoint(MulInstr);
4788
4789 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4790 Value *MulA = A, *MulB = B;
4791 if (WidthA < MulWidth)
4792 MulA = Builder.CreateZExt(A, MulType);
4793 if (WidthB < MulWidth)
4794 MulB = Builder.CreateZExt(B, MulType);
4795 Function *F = Intrinsic::getDeclaration(
4796 I.getModule(), Intrinsic::umul_with_overflow, MulType);
4797 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4798 IC.addToWorklist(MulInstr);
4799
4800 // If there are uses of mul result other than the comparison, we know that
4801 // they are truncation or binary AND. Change them to use result of
4802 // mul.with.overflow and adjust properly mask/size.
4803 if (MulVal->hasNUsesOrMore(2)) {
4804 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4805 for (User *U : make_early_inc_range(MulVal->users())) {
4806 if (U == &I || U == OtherVal)
4807 continue;
4808 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4809 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4810 IC.replaceInstUsesWith(*TI, Mul);
4811 else
4812 TI->setOperand(0, Mul);
4813 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4814 assert(BO->getOpcode() == Instruction::And);
4815 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4816 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4817 APInt ShortMask = CI->getValue().trunc(MulWidth);
4818 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4819 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4820 IC.replaceInstUsesWith(*BO, Zext);
4821 } else {
4822 llvm_unreachable("Unexpected Binary operation");
4823 }
4824 IC.addToWorklist(cast<Instruction>(U));
4825 }
4826 }
4827 if (isa<Instruction>(OtherVal))
4828 IC.addToWorklist(cast<Instruction>(OtherVal));
4829
4830 // The original icmp gets replaced with the overflow value, maybe inverted
4831 // depending on predicate.
4832 bool Inverse = false;
4833 switch (I.getPredicate()) {
4834 case ICmpInst::ICMP_NE:
4835 break;
4836 case ICmpInst::ICMP_EQ:
4837 Inverse = true;
4838 break;
4839 case ICmpInst::ICMP_UGT:
4840 case ICmpInst::ICMP_UGE:
4841 if (I.getOperand(0) == MulVal)
4842 break;
4843 Inverse = true;
4844 break;
4845 case ICmpInst::ICMP_ULT:
4846 case ICmpInst::ICMP_ULE:
4847 if (I.getOperand(1) == MulVal)
4848 break;
4849 Inverse = true;
4850 break;
4851 default:
4852 llvm_unreachable("Unexpected predicate");
4853 }
4854 if (Inverse) {
4855 Value *Res = Builder.CreateExtractValue(Call, 1);
4856 return BinaryOperator::CreateNot(Res);
4857 }
4858
4859 return ExtractValueInst::Create(Call, 1);
4860 }
4861
4862 /// When performing a comparison against a constant, it is possible that not all
4863 /// the bits in the LHS are demanded. This helper method computes the mask that
4864 /// IS demanded.
getDemandedBitsLHSMask(ICmpInst & I,unsigned BitWidth)4865 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4866 const APInt *RHS;
4867 if (!match(I.getOperand(1), m_APInt(RHS)))
4868 return APInt::getAllOnesValue(BitWidth);
4869
4870 // If this is a normal comparison, it demands all bits. If it is a sign bit
4871 // comparison, it only demands the sign bit.
4872 bool UnusedBit;
4873 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4874 return APInt::getSignMask(BitWidth);
4875
4876 switch (I.getPredicate()) {
4877 // For a UGT comparison, we don't care about any bits that
4878 // correspond to the trailing ones of the comparand. The value of these
4879 // bits doesn't impact the outcome of the comparison, because any value
4880 // greater than the RHS must differ in a bit higher than these due to carry.
4881 case ICmpInst::ICMP_UGT:
4882 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4883
4884 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4885 // Any value less than the RHS must differ in a higher bit because of carries.
4886 case ICmpInst::ICMP_ULT:
4887 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4888
4889 default:
4890 return APInt::getAllOnesValue(BitWidth);
4891 }
4892 }
4893
4894 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4895 /// should be swapped.
4896 /// The decision is based on how many times these two operands are reused
4897 /// as subtract operands and their positions in those instructions.
4898 /// The rationale is that several architectures use the same instruction for
4899 /// both subtract and cmp. Thus, it is better if the order of those operands
4900 /// match.
4901 /// \return true if Op0 and Op1 should be swapped.
swapMayExposeCSEOpportunities(const Value * Op0,const Value * Op1)4902 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4903 // Filter out pointer values as those cannot appear directly in subtract.
4904 // FIXME: we may want to go through inttoptrs or bitcasts.
4905 if (Op0->getType()->isPointerTy())
4906 return false;
4907 // If a subtract already has the same operands as a compare, swapping would be
4908 // bad. If a subtract has the same operands as a compare but in reverse order,
4909 // then swapping is good.
4910 int GoodToSwap = 0;
4911 for (const User *U : Op0->users()) {
4912 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4913 GoodToSwap++;
4914 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4915 GoodToSwap--;
4916 }
4917 return GoodToSwap > 0;
4918 }
4919
4920 /// Check that one use is in the same block as the definition and all
4921 /// other uses are in blocks dominated by a given block.
4922 ///
4923 /// \param DI Definition
4924 /// \param UI Use
4925 /// \param DB Block that must dominate all uses of \p DI outside
4926 /// the parent block
4927 /// \return true when \p UI is the only use of \p DI in the parent block
4928 /// and all other uses of \p DI are in blocks dominated by \p DB.
4929 ///
dominatesAllUses(const Instruction * DI,const Instruction * UI,const BasicBlock * DB) const4930 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
4931 const Instruction *UI,
4932 const BasicBlock *DB) const {
4933 assert(DI && UI && "Instruction not defined\n");
4934 // Ignore incomplete definitions.
4935 if (!DI->getParent())
4936 return false;
4937 // DI and UI must be in the same block.
4938 if (DI->getParent() != UI->getParent())
4939 return false;
4940 // Protect from self-referencing blocks.
4941 if (DI->getParent() == DB)
4942 return false;
4943 for (const User *U : DI->users()) {
4944 auto *Usr = cast<Instruction>(U);
4945 if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4946 return false;
4947 }
4948 return true;
4949 }
4950
4951 /// Return true when the instruction sequence within a block is select-cmp-br.
isChainSelectCmpBranch(const SelectInst * SI)4952 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4953 const BasicBlock *BB = SI->getParent();
4954 if (!BB)
4955 return false;
4956 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4957 if (!BI || BI->getNumSuccessors() != 2)
4958 return false;
4959 auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4960 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4961 return false;
4962 return true;
4963 }
4964
4965 /// True when a select result is replaced by one of its operands
4966 /// in select-icmp sequence. This will eventually result in the elimination
4967 /// of the select.
4968 ///
4969 /// \param SI Select instruction
4970 /// \param Icmp Compare instruction
4971 /// \param SIOpd Operand that replaces the select
4972 ///
4973 /// Notes:
4974 /// - The replacement is global and requires dominator information
4975 /// - The caller is responsible for the actual replacement
4976 ///
4977 /// Example:
4978 ///
4979 /// entry:
4980 /// %4 = select i1 %3, %C* %0, %C* null
4981 /// %5 = icmp eq %C* %4, null
4982 /// br i1 %5, label %9, label %7
4983 /// ...
4984 /// ; <label>:7 ; preds = %entry
4985 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4986 /// ...
4987 ///
4988 /// can be transformed to
4989 ///
4990 /// %5 = icmp eq %C* %0, null
4991 /// %6 = select i1 %3, i1 %5, i1 true
4992 /// br i1 %6, label %9, label %7
4993 /// ...
4994 /// ; <label>:7 ; preds = %entry
4995 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
4996 ///
4997 /// Similar when the first operand of the select is a constant or/and
4998 /// the compare is for not equal rather than equal.
4999 ///
5000 /// NOTE: The function is only called when the select and compare constants
5001 /// are equal, the optimization can work only for EQ predicates. This is not a
5002 /// major restriction since a NE compare should be 'normalized' to an equal
5003 /// compare, which usually happens in the combiner and test case
5004 /// select-cmp-br.ll checks for it.
replacedSelectWithOperand(SelectInst * SI,const ICmpInst * Icmp,const unsigned SIOpd)5005 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5006 const ICmpInst *Icmp,
5007 const unsigned SIOpd) {
5008 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5009 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5010 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5011 // The check for the single predecessor is not the best that can be
5012 // done. But it protects efficiently against cases like when SI's
5013 // home block has two successors, Succ and Succ1, and Succ1 predecessor
5014 // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5015 // replaced can be reached on either path. So the uniqueness check
5016 // guarantees that the path all uses of SI (outside SI's parent) are on
5017 // is disjoint from all other paths out of SI. But that information
5018 // is more expensive to compute, and the trade-off here is in favor
5019 // of compile-time. It should also be noticed that we check for a single
5020 // predecessor and not only uniqueness. This to handle the situation when
5021 // Succ and Succ1 points to the same basic block.
5022 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5023 NumSel++;
5024 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5025 return true;
5026 }
5027 }
5028 return false;
5029 }
5030
5031 /// Try to fold the comparison based on range information we can get by checking
5032 /// whether bits are known to be zero or one in the inputs.
foldICmpUsingKnownBits(ICmpInst & I)5033 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5034 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5035 Type *Ty = Op0->getType();
5036 ICmpInst::Predicate Pred = I.getPredicate();
5037
5038 // Get scalar or pointer size.
5039 unsigned BitWidth = Ty->isIntOrIntVectorTy()
5040 ? Ty->getScalarSizeInBits()
5041 : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5042
5043 if (!BitWidth)
5044 return nullptr;
5045
5046 KnownBits Op0Known(BitWidth);
5047 KnownBits Op1Known(BitWidth);
5048
5049 if (SimplifyDemandedBits(&I, 0,
5050 getDemandedBitsLHSMask(I, BitWidth),
5051 Op0Known, 0))
5052 return &I;
5053
5054 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
5055 Op1Known, 0))
5056 return &I;
5057
5058 // Given the known and unknown bits, compute a range that the LHS could be
5059 // in. Compute the Min, Max and RHS values based on the known bits. For the
5060 // EQ and NE we use unsigned values.
5061 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5062 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5063 if (I.isSigned()) {
5064 Op0Min = Op0Known.getSignedMinValue();
5065 Op0Max = Op0Known.getSignedMaxValue();
5066 Op1Min = Op1Known.getSignedMinValue();
5067 Op1Max = Op1Known.getSignedMaxValue();
5068 } else {
5069 Op0Min = Op0Known.getMinValue();
5070 Op0Max = Op0Known.getMaxValue();
5071 Op1Min = Op1Known.getMinValue();
5072 Op1Max = Op1Known.getMaxValue();
5073 }
5074
5075 // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5076 // out that the LHS or RHS is a constant. Constant fold this now, so that
5077 // code below can assume that Min != Max.
5078 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5079 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5080 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5081 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5082
5083 // Based on the range information we know about the LHS, see if we can
5084 // simplify this comparison. For example, (x&4) < 8 is always true.
5085 switch (Pred) {
5086 default:
5087 llvm_unreachable("Unknown icmp opcode!");
5088 case ICmpInst::ICMP_EQ:
5089 case ICmpInst::ICMP_NE: {
5090 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5091 return replaceInstUsesWith(
5092 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5093
5094 // If all bits are known zero except for one, then we know at most one bit
5095 // is set. If the comparison is against zero, then this is a check to see if
5096 // *that* bit is set.
5097 APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5098 if (Op1Known.isZero()) {
5099 // If the LHS is an AND with the same constant, look through it.
5100 Value *LHS = nullptr;
5101 const APInt *LHSC;
5102 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5103 *LHSC != Op0KnownZeroInverted)
5104 LHS = Op0;
5105
5106 Value *X;
5107 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5108 APInt ValToCheck = Op0KnownZeroInverted;
5109 Type *XTy = X->getType();
5110 if (ValToCheck.isPowerOf2()) {
5111 // ((1 << X) & 8) == 0 -> X != 3
5112 // ((1 << X) & 8) != 0 -> X == 3
5113 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5114 auto NewPred = ICmpInst::getInversePredicate(Pred);
5115 return new ICmpInst(NewPred, X, CmpC);
5116 } else if ((++ValToCheck).isPowerOf2()) {
5117 // ((1 << X) & 7) == 0 -> X >= 3
5118 // ((1 << X) & 7) != 0 -> X < 3
5119 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5120 auto NewPred =
5121 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5122 return new ICmpInst(NewPred, X, CmpC);
5123 }
5124 }
5125
5126 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5127 const APInt *CI;
5128 if (Op0KnownZeroInverted.isOneValue() &&
5129 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5130 // ((8 >>u X) & 1) == 0 -> X != 3
5131 // ((8 >>u X) & 1) != 0 -> X == 3
5132 unsigned CmpVal = CI->countTrailingZeros();
5133 auto NewPred = ICmpInst::getInversePredicate(Pred);
5134 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5135 }
5136 }
5137 break;
5138 }
5139 case ICmpInst::ICMP_ULT: {
5140 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5141 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5142 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5143 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5144 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5145 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5146
5147 const APInt *CmpC;
5148 if (match(Op1, m_APInt(CmpC))) {
5149 // A <u C -> A == C-1 if min(A)+1 == C
5150 if (*CmpC == Op0Min + 1)
5151 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5152 ConstantInt::get(Op1->getType(), *CmpC - 1));
5153 // X <u C --> X == 0, if the number of zero bits in the bottom of X
5154 // exceeds the log2 of C.
5155 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5156 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5157 Constant::getNullValue(Op1->getType()));
5158 }
5159 break;
5160 }
5161 case ICmpInst::ICMP_UGT: {
5162 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5163 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5164 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5165 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5166 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5167 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5168
5169 const APInt *CmpC;
5170 if (match(Op1, m_APInt(CmpC))) {
5171 // A >u C -> A == C+1 if max(a)-1 == C
5172 if (*CmpC == Op0Max - 1)
5173 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5174 ConstantInt::get(Op1->getType(), *CmpC + 1));
5175 // X >u C --> X != 0, if the number of zero bits in the bottom of X
5176 // exceeds the log2 of C.
5177 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5178 return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5179 Constant::getNullValue(Op1->getType()));
5180 }
5181 break;
5182 }
5183 case ICmpInst::ICMP_SLT: {
5184 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5185 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5186 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5187 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5188 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5189 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5190 const APInt *CmpC;
5191 if (match(Op1, m_APInt(CmpC))) {
5192 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5193 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5194 ConstantInt::get(Op1->getType(), *CmpC - 1));
5195 }
5196 break;
5197 }
5198 case ICmpInst::ICMP_SGT: {
5199 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5200 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5201 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5202 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5203 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5204 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5205 const APInt *CmpC;
5206 if (match(Op1, m_APInt(CmpC))) {
5207 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5208 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5209 ConstantInt::get(Op1->getType(), *CmpC + 1));
5210 }
5211 break;
5212 }
5213 case ICmpInst::ICMP_SGE:
5214 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5215 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5216 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5217 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5218 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5219 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5220 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5221 break;
5222 case ICmpInst::ICMP_SLE:
5223 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5224 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5225 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5226 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5227 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5228 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5229 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5230 break;
5231 case ICmpInst::ICMP_UGE:
5232 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5233 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5234 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5235 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5236 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5237 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5238 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5239 break;
5240 case ICmpInst::ICMP_ULE:
5241 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5242 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5243 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5244 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5245 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5246 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5247 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5248 break;
5249 }
5250
5251 // Turn a signed comparison into an unsigned one if both operands are known to
5252 // have the same sign.
5253 if (I.isSigned() &&
5254 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5255 (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5256 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5257
5258 return nullptr;
5259 }
5260
5261 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,Constant * C)5262 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5263 Constant *C) {
5264 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5265 "Only for relational integer predicates.");
5266
5267 Type *Type = C->getType();
5268 bool IsSigned = ICmpInst::isSigned(Pred);
5269
5270 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5271 bool WillIncrement =
5272 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5273
5274 // Check if the constant operand can be safely incremented/decremented
5275 // without overflowing/underflowing.
5276 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5277 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5278 };
5279
5280 Constant *SafeReplacementConstant = nullptr;
5281 if (auto *CI = dyn_cast<ConstantInt>(C)) {
5282 // Bail out if the constant can't be safely incremented/decremented.
5283 if (!ConstantIsOk(CI))
5284 return llvm::None;
5285 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5286 unsigned NumElts = FVTy->getNumElements();
5287 for (unsigned i = 0; i != NumElts; ++i) {
5288 Constant *Elt = C->getAggregateElement(i);
5289 if (!Elt)
5290 return llvm::None;
5291
5292 if (isa<UndefValue>(Elt))
5293 continue;
5294
5295 // Bail out if we can't determine if this constant is min/max or if we
5296 // know that this constant is min/max.
5297 auto *CI = dyn_cast<ConstantInt>(Elt);
5298 if (!CI || !ConstantIsOk(CI))
5299 return llvm::None;
5300
5301 if (!SafeReplacementConstant)
5302 SafeReplacementConstant = CI;
5303 }
5304 } else {
5305 // ConstantExpr?
5306 return llvm::None;
5307 }
5308
5309 // It may not be safe to change a compare predicate in the presence of
5310 // undefined elements, so replace those elements with the first safe constant
5311 // that we found.
5312 // TODO: in case of poison, it is safe; let's replace undefs only.
5313 if (C->containsUndefOrPoisonElement()) {
5314 assert(SafeReplacementConstant && "Replacement constant not set");
5315 C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5316 }
5317
5318 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5319
5320 // Increment or decrement the constant.
5321 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5322 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5323
5324 return std::make_pair(NewPred, NewC);
5325 }
5326
5327 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5328 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5329 /// allows them to be folded in visitICmpInst.
canonicalizeCmpWithConstant(ICmpInst & I)5330 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5331 ICmpInst::Predicate Pred = I.getPredicate();
5332 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5333 InstCombiner::isCanonicalPredicate(Pred))
5334 return nullptr;
5335
5336 Value *Op0 = I.getOperand(0);
5337 Value *Op1 = I.getOperand(1);
5338 auto *Op1C = dyn_cast<Constant>(Op1);
5339 if (!Op1C)
5340 return nullptr;
5341
5342 auto FlippedStrictness =
5343 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5344 if (!FlippedStrictness)
5345 return nullptr;
5346
5347 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5348 }
5349
5350 /// If we have a comparison with a non-canonical predicate, if we can update
5351 /// all the users, invert the predicate and adjust all the users.
canonicalizeICmpPredicate(CmpInst & I)5352 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5353 // Is the predicate already canonical?
5354 CmpInst::Predicate Pred = I.getPredicate();
5355 if (InstCombiner::isCanonicalPredicate(Pred))
5356 return nullptr;
5357
5358 // Can all users be adjusted to predicate inversion?
5359 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5360 return nullptr;
5361
5362 // Ok, we can canonicalize comparison!
5363 // Let's first invert the comparison's predicate.
5364 I.setPredicate(CmpInst::getInversePredicate(Pred));
5365 I.setName(I.getName() + ".not");
5366
5367 // And, adapt users.
5368 freelyInvertAllUsersOf(&I);
5369
5370 return &I;
5371 }
5372
5373 /// Integer compare with boolean values can always be turned into bitwise ops.
canonicalizeICmpBool(ICmpInst & I,InstCombiner::BuilderTy & Builder)5374 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5375 InstCombiner::BuilderTy &Builder) {
5376 Value *A = I.getOperand(0), *B = I.getOperand(1);
5377 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5378
5379 // A boolean compared to true/false can be simplified to Op0/true/false in
5380 // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5381 // Cases not handled by InstSimplify are always 'not' of Op0.
5382 if (match(B, m_Zero())) {
5383 switch (I.getPredicate()) {
5384 case CmpInst::ICMP_EQ: // A == 0 -> !A
5385 case CmpInst::ICMP_ULE: // A <=u 0 -> !A
5386 case CmpInst::ICMP_SGE: // A >=s 0 -> !A
5387 return BinaryOperator::CreateNot(A);
5388 default:
5389 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5390 }
5391 } else if (match(B, m_One())) {
5392 switch (I.getPredicate()) {
5393 case CmpInst::ICMP_NE: // A != 1 -> !A
5394 case CmpInst::ICMP_ULT: // A <u 1 -> !A
5395 case CmpInst::ICMP_SGT: // A >s -1 -> !A
5396 return BinaryOperator::CreateNot(A);
5397 default:
5398 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5399 }
5400 }
5401
5402 switch (I.getPredicate()) {
5403 default:
5404 llvm_unreachable("Invalid icmp instruction!");
5405 case ICmpInst::ICMP_EQ:
5406 // icmp eq i1 A, B -> ~(A ^ B)
5407 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5408
5409 case ICmpInst::ICMP_NE:
5410 // icmp ne i1 A, B -> A ^ B
5411 return BinaryOperator::CreateXor(A, B);
5412
5413 case ICmpInst::ICMP_UGT:
5414 // icmp ugt -> icmp ult
5415 std::swap(A, B);
5416 LLVM_FALLTHROUGH;
5417 case ICmpInst::ICMP_ULT:
5418 // icmp ult i1 A, B -> ~A & B
5419 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5420
5421 case ICmpInst::ICMP_SGT:
5422 // icmp sgt -> icmp slt
5423 std::swap(A, B);
5424 LLVM_FALLTHROUGH;
5425 case ICmpInst::ICMP_SLT:
5426 // icmp slt i1 A, B -> A & ~B
5427 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5428
5429 case ICmpInst::ICMP_UGE:
5430 // icmp uge -> icmp ule
5431 std::swap(A, B);
5432 LLVM_FALLTHROUGH;
5433 case ICmpInst::ICMP_ULE:
5434 // icmp ule i1 A, B -> ~A | B
5435 return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5436
5437 case ICmpInst::ICMP_SGE:
5438 // icmp sge -> icmp sle
5439 std::swap(A, B);
5440 LLVM_FALLTHROUGH;
5441 case ICmpInst::ICMP_SLE:
5442 // icmp sle i1 A, B -> A | ~B
5443 return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5444 }
5445 }
5446
5447 // Transform pattern like:
5448 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X
5449 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X
5450 // Into:
5451 // (X l>> Y) != 0
5452 // (X l>> Y) == 0
foldICmpWithHighBitMask(ICmpInst & Cmp,InstCombiner::BuilderTy & Builder)5453 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5454 InstCombiner::BuilderTy &Builder) {
5455 ICmpInst::Predicate Pred, NewPred;
5456 Value *X, *Y;
5457 if (match(&Cmp,
5458 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5459 switch (Pred) {
5460 case ICmpInst::ICMP_ULE:
5461 NewPred = ICmpInst::ICMP_NE;
5462 break;
5463 case ICmpInst::ICMP_UGT:
5464 NewPred = ICmpInst::ICMP_EQ;
5465 break;
5466 default:
5467 return nullptr;
5468 }
5469 } else if (match(&Cmp, m_c_ICmp(Pred,
5470 m_OneUse(m_CombineOr(
5471 m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5472 m_Add(m_Shl(m_One(), m_Value(Y)),
5473 m_AllOnes()))),
5474 m_Value(X)))) {
5475 // The variant with 'add' is not canonical, (the variant with 'not' is)
5476 // we only get it because it has extra uses, and can't be canonicalized,
5477
5478 switch (Pred) {
5479 case ICmpInst::ICMP_ULT:
5480 NewPred = ICmpInst::ICMP_NE;
5481 break;
5482 case ICmpInst::ICMP_UGE:
5483 NewPred = ICmpInst::ICMP_EQ;
5484 break;
5485 default:
5486 return nullptr;
5487 }
5488 } else
5489 return nullptr;
5490
5491 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5492 Constant *Zero = Constant::getNullValue(NewX->getType());
5493 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5494 }
5495
foldVectorCmp(CmpInst & Cmp,InstCombiner::BuilderTy & Builder)5496 static Instruction *foldVectorCmp(CmpInst &Cmp,
5497 InstCombiner::BuilderTy &Builder) {
5498 const CmpInst::Predicate Pred = Cmp.getPredicate();
5499 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5500 Value *V1, *V2;
5501 ArrayRef<int> M;
5502 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5503 return nullptr;
5504
5505 // If both arguments of the cmp are shuffles that use the same mask and
5506 // shuffle within a single vector, move the shuffle after the cmp:
5507 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5508 Type *V1Ty = V1->getType();
5509 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5510 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5511 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5512 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5513 }
5514
5515 // Try to canonicalize compare with splatted operand and splat constant.
5516 // TODO: We could generalize this for more than splats. See/use the code in
5517 // InstCombiner::foldVectorBinop().
5518 Constant *C;
5519 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5520 return nullptr;
5521
5522 // Length-changing splats are ok, so adjust the constants as needed:
5523 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5524 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5525 int MaskSplatIndex;
5526 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5527 // We allow undefs in matching, but this transform removes those for safety.
5528 // Demanded elements analysis should be able to recover some/all of that.
5529 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5530 ScalarC);
5531 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5532 Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5533 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()),
5534 NewM);
5535 }
5536
5537 return nullptr;
5538 }
5539
5540 // extract(uadd.with.overflow(A, B), 0) ult A
5541 // -> extract(uadd.with.overflow(A, B), 1)
foldICmpOfUAddOv(ICmpInst & I)5542 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5543 CmpInst::Predicate Pred = I.getPredicate();
5544 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5545
5546 Value *UAddOv;
5547 Value *A, *B;
5548 auto UAddOvResultPat = m_ExtractValue<0>(
5549 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5550 if (match(Op0, UAddOvResultPat) &&
5551 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5552 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5553 (match(A, m_One()) || match(B, m_One()))) ||
5554 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5555 (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5556 // extract(uadd.with.overflow(A, B), 0) < A
5557 // extract(uadd.with.overflow(A, 1), 0) == 0
5558 // extract(uadd.with.overflow(A, -1), 0) != -1
5559 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5560 else if (match(Op1, UAddOvResultPat) &&
5561 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5562 // A > extract(uadd.with.overflow(A, B), 0)
5563 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5564 else
5565 return nullptr;
5566
5567 return ExtractValueInst::Create(UAddOv, 1);
5568 }
5569
visitICmpInst(ICmpInst & I)5570 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5571 bool Changed = false;
5572 const SimplifyQuery Q = SQ.getWithInstruction(&I);
5573 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5574 unsigned Op0Cplxity = getComplexity(Op0);
5575 unsigned Op1Cplxity = getComplexity(Op1);
5576
5577 /// Orders the operands of the compare so that they are listed from most
5578 /// complex to least complex. This puts constants before unary operators,
5579 /// before binary operators.
5580 if (Op0Cplxity < Op1Cplxity ||
5581 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5582 I.swapOperands();
5583 std::swap(Op0, Op1);
5584 Changed = true;
5585 }
5586
5587 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5588 return replaceInstUsesWith(I, V);
5589
5590 // Comparing -val or val with non-zero is the same as just comparing val
5591 // ie, abs(val) != 0 -> val != 0
5592 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5593 Value *Cond, *SelectTrue, *SelectFalse;
5594 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5595 m_Value(SelectFalse)))) {
5596 if (Value *V = dyn_castNegVal(SelectTrue)) {
5597 if (V == SelectFalse)
5598 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5599 }
5600 else if (Value *V = dyn_castNegVal(SelectFalse)) {
5601 if (V == SelectTrue)
5602 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5603 }
5604 }
5605 }
5606
5607 if (Op0->getType()->isIntOrIntVectorTy(1))
5608 if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5609 return Res;
5610
5611 if (Instruction *Res = canonicalizeCmpWithConstant(I))
5612 return Res;
5613
5614 if (Instruction *Res = canonicalizeICmpPredicate(I))
5615 return Res;
5616
5617 if (Instruction *Res = foldICmpWithConstant(I))
5618 return Res;
5619
5620 if (Instruction *Res = foldICmpWithDominatingICmp(I))
5621 return Res;
5622
5623 if (Instruction *Res = foldICmpBinOp(I, Q))
5624 return Res;
5625
5626 if (Instruction *Res = foldICmpUsingKnownBits(I))
5627 return Res;
5628
5629 // Test if the ICmpInst instruction is used exclusively by a select as
5630 // part of a minimum or maximum operation. If so, refrain from doing
5631 // any other folding. This helps out other analyses which understand
5632 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5633 // and CodeGen. And in this case, at least one of the comparison
5634 // operands has at least one user besides the compare (the select),
5635 // which would often largely negate the benefit of folding anyway.
5636 //
5637 // Do the same for the other patterns recognized by matchSelectPattern.
5638 if (I.hasOneUse())
5639 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5640 Value *A, *B;
5641 SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5642 if (SPR.Flavor != SPF_UNKNOWN)
5643 return nullptr;
5644 }
5645
5646 // Do this after checking for min/max to prevent infinite looping.
5647 if (Instruction *Res = foldICmpWithZero(I))
5648 return Res;
5649
5650 // FIXME: We only do this after checking for min/max to prevent infinite
5651 // looping caused by a reverse canonicalization of these patterns for min/max.
5652 // FIXME: The organization of folds is a mess. These would naturally go into
5653 // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5654 // down here after the min/max restriction.
5655 ICmpInst::Predicate Pred = I.getPredicate();
5656 const APInt *C;
5657 if (match(Op1, m_APInt(C))) {
5658 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
5659 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5660 Constant *Zero = Constant::getNullValue(Op0->getType());
5661 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5662 }
5663
5664 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
5665 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5666 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5667 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5668 }
5669 }
5670
5671 if (Instruction *Res = foldICmpInstWithConstant(I))
5672 return Res;
5673
5674 // Try to match comparison as a sign bit test. Intentionally do this after
5675 // foldICmpInstWithConstant() to potentially let other folds to happen first.
5676 if (Instruction *New = foldSignBitTest(I))
5677 return New;
5678
5679 if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5680 return Res;
5681
5682 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5683 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5684 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5685 return NI;
5686 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5687 if (Instruction *NI = foldGEPICmp(GEP, Op0,
5688 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5689 return NI;
5690
5691 // Try to optimize equality comparisons against alloca-based pointers.
5692 if (Op0->getType()->isPointerTy() && I.isEquality()) {
5693 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5694 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
5695 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5696 return New;
5697 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
5698 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5699 return New;
5700 }
5701
5702 if (Instruction *Res = foldICmpBitCast(I, Builder))
5703 return Res;
5704
5705 // TODO: Hoist this above the min/max bailout.
5706 if (Instruction *R = foldICmpWithCastOp(I))
5707 return R;
5708
5709 if (Instruction *Res = foldICmpWithMinMax(I))
5710 return Res;
5711
5712 {
5713 Value *A, *B;
5714 // Transform (A & ~B) == 0 --> (A & B) != 0
5715 // and (A & ~B) != 0 --> (A & B) == 0
5716 // if A is a power of 2.
5717 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5718 match(Op1, m_Zero()) &&
5719 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5720 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5721 Op1);
5722
5723 // ~X < ~Y --> Y < X
5724 // ~X < C --> X > ~C
5725 if (match(Op0, m_Not(m_Value(A)))) {
5726 if (match(Op1, m_Not(m_Value(B))))
5727 return new ICmpInst(I.getPredicate(), B, A);
5728
5729 const APInt *C;
5730 if (match(Op1, m_APInt(C)))
5731 return new ICmpInst(I.getSwappedPredicate(), A,
5732 ConstantInt::get(Op1->getType(), ~(*C)));
5733 }
5734
5735 Instruction *AddI = nullptr;
5736 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5737 m_Instruction(AddI))) &&
5738 isa<IntegerType>(A->getType())) {
5739 Value *Result;
5740 Constant *Overflow;
5741 // m_UAddWithOverflow can match patterns that do not include an explicit
5742 // "add" instruction, so check the opcode of the matched op.
5743 if (AddI->getOpcode() == Instruction::Add &&
5744 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5745 Result, Overflow)) {
5746 replaceInstUsesWith(*AddI, Result);
5747 eraseInstFromFunction(*AddI);
5748 return replaceInstUsesWith(I, Overflow);
5749 }
5750 }
5751
5752 // (zext a) * (zext b) --> llvm.umul.with.overflow.
5753 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5754 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5755 return R;
5756 }
5757 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5758 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5759 return R;
5760 }
5761 }
5762
5763 if (Instruction *Res = foldICmpEquality(I))
5764 return Res;
5765
5766 if (Instruction *Res = foldICmpOfUAddOv(I))
5767 return Res;
5768
5769 // The 'cmpxchg' instruction returns an aggregate containing the old value and
5770 // an i1 which indicates whether or not we successfully did the swap.
5771 //
5772 // Replace comparisons between the old value and the expected value with the
5773 // indicator that 'cmpxchg' returns.
5774 //
5775 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
5776 // spuriously fail. In those cases, the old value may equal the expected
5777 // value but it is possible for the swap to not occur.
5778 if (I.getPredicate() == ICmpInst::ICMP_EQ)
5779 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5780 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5781 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5782 !ACXI->isWeak())
5783 return ExtractValueInst::Create(ACXI, 1);
5784
5785 {
5786 Value *X;
5787 const APInt *C;
5788 // icmp X+Cst, X
5789 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5790 return foldICmpAddOpConst(X, *C, I.getPredicate());
5791
5792 // icmp X, X+Cst
5793 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5794 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5795 }
5796
5797 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5798 return Res;
5799
5800 if (I.getType()->isVectorTy())
5801 if (Instruction *Res = foldVectorCmp(I, Builder))
5802 return Res;
5803
5804 return Changed ? &I : nullptr;
5805 }
5806
5807 /// Fold fcmp ([us]itofp x, cst) if possible.
foldFCmpIntToFPConst(FCmpInst & I,Instruction * LHSI,Constant * RHSC)5808 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
5809 Instruction *LHSI,
5810 Constant *RHSC) {
5811 if (!isa<ConstantFP>(RHSC)) return nullptr;
5812 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5813
5814 // Get the width of the mantissa. We don't want to hack on conversions that
5815 // might lose information from the integer, e.g. "i64 -> float"
5816 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5817 if (MantissaWidth == -1) return nullptr; // Unknown.
5818
5819 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5820
5821 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5822
5823 if (I.isEquality()) {
5824 FCmpInst::Predicate P = I.getPredicate();
5825 bool IsExact = false;
5826 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5827 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5828
5829 // If the floating point constant isn't an integer value, we know if we will
5830 // ever compare equal / not equal to it.
5831 if (!IsExact) {
5832 // TODO: Can never be -0.0 and other non-representable values
5833 APFloat RHSRoundInt(RHS);
5834 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5835 if (RHS != RHSRoundInt) {
5836 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5837 return replaceInstUsesWith(I, Builder.getFalse());
5838
5839 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5840 return replaceInstUsesWith(I, Builder.getTrue());
5841 }
5842 }
5843
5844 // TODO: If the constant is exactly representable, is it always OK to do
5845 // equality compares as integer?
5846 }
5847
5848 // Check to see that the input is converted from an integer type that is small
5849 // enough that preserves all bits. TODO: check here for "known" sign bits.
5850 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5851 unsigned InputSize = IntTy->getScalarSizeInBits();
5852
5853 // Following test does NOT adjust InputSize downwards for signed inputs,
5854 // because the most negative value still requires all the mantissa bits
5855 // to distinguish it from one less than that value.
5856 if ((int)InputSize > MantissaWidth) {
5857 // Conversion would lose accuracy. Check if loss can impact comparison.
5858 int Exp = ilogb(RHS);
5859 if (Exp == APFloat::IEK_Inf) {
5860 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5861 if (MaxExponent < (int)InputSize - !LHSUnsigned)
5862 // Conversion could create infinity.
5863 return nullptr;
5864 } else {
5865 // Note that if RHS is zero or NaN, then Exp is negative
5866 // and first condition is trivially false.
5867 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5868 // Conversion could affect comparison.
5869 return nullptr;
5870 }
5871 }
5872
5873 // Otherwise, we can potentially simplify the comparison. We know that it
5874 // will always come through as an integer value and we know the constant is
5875 // not a NAN (it would have been previously simplified).
5876 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5877
5878 ICmpInst::Predicate Pred;
5879 switch (I.getPredicate()) {
5880 default: llvm_unreachable("Unexpected predicate!");
5881 case FCmpInst::FCMP_UEQ:
5882 case FCmpInst::FCMP_OEQ:
5883 Pred = ICmpInst::ICMP_EQ;
5884 break;
5885 case FCmpInst::FCMP_UGT:
5886 case FCmpInst::FCMP_OGT:
5887 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5888 break;
5889 case FCmpInst::FCMP_UGE:
5890 case FCmpInst::FCMP_OGE:
5891 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5892 break;
5893 case FCmpInst::FCMP_ULT:
5894 case FCmpInst::FCMP_OLT:
5895 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5896 break;
5897 case FCmpInst::FCMP_ULE:
5898 case FCmpInst::FCMP_OLE:
5899 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5900 break;
5901 case FCmpInst::FCMP_UNE:
5902 case FCmpInst::FCMP_ONE:
5903 Pred = ICmpInst::ICMP_NE;
5904 break;
5905 case FCmpInst::FCMP_ORD:
5906 return replaceInstUsesWith(I, Builder.getTrue());
5907 case FCmpInst::FCMP_UNO:
5908 return replaceInstUsesWith(I, Builder.getFalse());
5909 }
5910
5911 // Now we know that the APFloat is a normal number, zero or inf.
5912
5913 // See if the FP constant is too large for the integer. For example,
5914 // comparing an i8 to 300.0.
5915 unsigned IntWidth = IntTy->getScalarSizeInBits();
5916
5917 if (!LHSUnsigned) {
5918 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5919 // and large values.
5920 APFloat SMax(RHS.getSemantics());
5921 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5922 APFloat::rmNearestTiesToEven);
5923 if (SMax < RHS) { // smax < 13123.0
5924 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5925 Pred == ICmpInst::ICMP_SLE)
5926 return replaceInstUsesWith(I, Builder.getTrue());
5927 return replaceInstUsesWith(I, Builder.getFalse());
5928 }
5929 } else {
5930 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5931 // +INF and large values.
5932 APFloat UMax(RHS.getSemantics());
5933 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5934 APFloat::rmNearestTiesToEven);
5935 if (UMax < RHS) { // umax < 13123.0
5936 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5937 Pred == ICmpInst::ICMP_ULE)
5938 return replaceInstUsesWith(I, Builder.getTrue());
5939 return replaceInstUsesWith(I, Builder.getFalse());
5940 }
5941 }
5942
5943 if (!LHSUnsigned) {
5944 // See if the RHS value is < SignedMin.
5945 APFloat SMin(RHS.getSemantics());
5946 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5947 APFloat::rmNearestTiesToEven);
5948 if (SMin > RHS) { // smin > 12312.0
5949 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5950 Pred == ICmpInst::ICMP_SGE)
5951 return replaceInstUsesWith(I, Builder.getTrue());
5952 return replaceInstUsesWith(I, Builder.getFalse());
5953 }
5954 } else {
5955 // See if the RHS value is < UnsignedMin.
5956 APFloat UMin(RHS.getSemantics());
5957 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
5958 APFloat::rmNearestTiesToEven);
5959 if (UMin > RHS) { // umin > 12312.0
5960 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5961 Pred == ICmpInst::ICMP_UGE)
5962 return replaceInstUsesWith(I, Builder.getTrue());
5963 return replaceInstUsesWith(I, Builder.getFalse());
5964 }
5965 }
5966
5967 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5968 // [0, UMAX], but it may still be fractional. See if it is fractional by
5969 // casting the FP value to the integer value and back, checking for equality.
5970 // Don't do this for zero, because -0.0 is not fractional.
5971 Constant *RHSInt = LHSUnsigned
5972 ? ConstantExpr::getFPToUI(RHSC, IntTy)
5973 : ConstantExpr::getFPToSI(RHSC, IntTy);
5974 if (!RHS.isZero()) {
5975 bool Equal = LHSUnsigned
5976 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5977 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5978 if (!Equal) {
5979 // If we had a comparison against a fractional value, we have to adjust
5980 // the compare predicate and sometimes the value. RHSC is rounded towards
5981 // zero at this point.
5982 switch (Pred) {
5983 default: llvm_unreachable("Unexpected integer comparison!");
5984 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
5985 return replaceInstUsesWith(I, Builder.getTrue());
5986 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
5987 return replaceInstUsesWith(I, Builder.getFalse());
5988 case ICmpInst::ICMP_ULE:
5989 // (float)int <= 4.4 --> int <= 4
5990 // (float)int <= -4.4 --> false
5991 if (RHS.isNegative())
5992 return replaceInstUsesWith(I, Builder.getFalse());
5993 break;
5994 case ICmpInst::ICMP_SLE:
5995 // (float)int <= 4.4 --> int <= 4
5996 // (float)int <= -4.4 --> int < -4
5997 if (RHS.isNegative())
5998 Pred = ICmpInst::ICMP_SLT;
5999 break;
6000 case ICmpInst::ICMP_ULT:
6001 // (float)int < -4.4 --> false
6002 // (float)int < 4.4 --> int <= 4
6003 if (RHS.isNegative())
6004 return replaceInstUsesWith(I, Builder.getFalse());
6005 Pred = ICmpInst::ICMP_ULE;
6006 break;
6007 case ICmpInst::ICMP_SLT:
6008 // (float)int < -4.4 --> int < -4
6009 // (float)int < 4.4 --> int <= 4
6010 if (!RHS.isNegative())
6011 Pred = ICmpInst::ICMP_SLE;
6012 break;
6013 case ICmpInst::ICMP_UGT:
6014 // (float)int > 4.4 --> int > 4
6015 // (float)int > -4.4 --> true
6016 if (RHS.isNegative())
6017 return replaceInstUsesWith(I, Builder.getTrue());
6018 break;
6019 case ICmpInst::ICMP_SGT:
6020 // (float)int > 4.4 --> int > 4
6021 // (float)int > -4.4 --> int >= -4
6022 if (RHS.isNegative())
6023 Pred = ICmpInst::ICMP_SGE;
6024 break;
6025 case ICmpInst::ICMP_UGE:
6026 // (float)int >= -4.4 --> true
6027 // (float)int >= 4.4 --> int > 4
6028 if (RHS.isNegative())
6029 return replaceInstUsesWith(I, Builder.getTrue());
6030 Pred = ICmpInst::ICMP_UGT;
6031 break;
6032 case ICmpInst::ICMP_SGE:
6033 // (float)int >= -4.4 --> int >= -4
6034 // (float)int >= 4.4 --> int > 4
6035 if (!RHS.isNegative())
6036 Pred = ICmpInst::ICMP_SGT;
6037 break;
6038 }
6039 }
6040 }
6041
6042 // Lower this FP comparison into an appropriate integer version of the
6043 // comparison.
6044 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6045 }
6046
6047 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
foldFCmpReciprocalAndZero(FCmpInst & I,Instruction * LHSI,Constant * RHSC)6048 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6049 Constant *RHSC) {
6050 // When C is not 0.0 and infinities are not allowed:
6051 // (C / X) < 0.0 is a sign-bit test of X
6052 // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6053 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6054 //
6055 // Proof:
6056 // Multiply (C / X) < 0.0 by X * X / C.
6057 // - X is non zero, if it is the flag 'ninf' is violated.
6058 // - C defines the sign of X * X * C. Thus it also defines whether to swap
6059 // the predicate. C is also non zero by definition.
6060 //
6061 // Thus X * X / C is non zero and the transformation is valid. [qed]
6062
6063 FCmpInst::Predicate Pred = I.getPredicate();
6064
6065 // Check that predicates are valid.
6066 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6067 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6068 return nullptr;
6069
6070 // Check that RHS operand is zero.
6071 if (!match(RHSC, m_AnyZeroFP()))
6072 return nullptr;
6073
6074 // Check fastmath flags ('ninf').
6075 if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6076 return nullptr;
6077
6078 // Check the properties of the dividend. It must not be zero to avoid a
6079 // division by zero (see Proof).
6080 const APFloat *C;
6081 if (!match(LHSI->getOperand(0), m_APFloat(C)))
6082 return nullptr;
6083
6084 if (C->isZero())
6085 return nullptr;
6086
6087 // Get swapped predicate if necessary.
6088 if (C->isNegative())
6089 Pred = I.getSwappedPredicate();
6090
6091 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6092 }
6093
6094 /// Optimize fabs(X) compared with zero.
foldFabsWithFcmpZero(FCmpInst & I,InstCombinerImpl & IC)6095 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6096 Value *X;
6097 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6098 !match(I.getOperand(1), m_PosZeroFP()))
6099 return nullptr;
6100
6101 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6102 I->setPredicate(P);
6103 return IC.replaceOperand(*I, 0, X);
6104 };
6105
6106 switch (I.getPredicate()) {
6107 case FCmpInst::FCMP_UGE:
6108 case FCmpInst::FCMP_OLT:
6109 // fabs(X) >= 0.0 --> true
6110 // fabs(X) < 0.0 --> false
6111 llvm_unreachable("fcmp should have simplified");
6112
6113 case FCmpInst::FCMP_OGT:
6114 // fabs(X) > 0.0 --> X != 0.0
6115 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6116
6117 case FCmpInst::FCMP_UGT:
6118 // fabs(X) u> 0.0 --> X u!= 0.0
6119 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6120
6121 case FCmpInst::FCMP_OLE:
6122 // fabs(X) <= 0.0 --> X == 0.0
6123 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6124
6125 case FCmpInst::FCMP_ULE:
6126 // fabs(X) u<= 0.0 --> X u== 0.0
6127 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6128
6129 case FCmpInst::FCMP_OGE:
6130 // fabs(X) >= 0.0 --> !isnan(X)
6131 assert(!I.hasNoNaNs() && "fcmp should have simplified");
6132 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6133
6134 case FCmpInst::FCMP_ULT:
6135 // fabs(X) u< 0.0 --> isnan(X)
6136 assert(!I.hasNoNaNs() && "fcmp should have simplified");
6137 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6138
6139 case FCmpInst::FCMP_OEQ:
6140 case FCmpInst::FCMP_UEQ:
6141 case FCmpInst::FCMP_ONE:
6142 case FCmpInst::FCMP_UNE:
6143 case FCmpInst::FCMP_ORD:
6144 case FCmpInst::FCMP_UNO:
6145 // Look through the fabs() because it doesn't change anything but the sign.
6146 // fabs(X) == 0.0 --> X == 0.0,
6147 // fabs(X) != 0.0 --> X != 0.0
6148 // isnan(fabs(X)) --> isnan(X)
6149 // !isnan(fabs(X) --> !isnan(X)
6150 return replacePredAndOp0(&I, I.getPredicate(), X);
6151
6152 default:
6153 return nullptr;
6154 }
6155 }
6156
visitFCmpInst(FCmpInst & I)6157 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6158 bool Changed = false;
6159
6160 /// Orders the operands of the compare so that they are listed from most
6161 /// complex to least complex. This puts constants before unary operators,
6162 /// before binary operators.
6163 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6164 I.swapOperands();
6165 Changed = true;
6166 }
6167
6168 const CmpInst::Predicate Pred = I.getPredicate();
6169 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6170 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6171 SQ.getWithInstruction(&I)))
6172 return replaceInstUsesWith(I, V);
6173
6174 // Simplify 'fcmp pred X, X'
6175 Type *OpType = Op0->getType();
6176 assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6177 if (Op0 == Op1) {
6178 switch (Pred) {
6179 default: break;
6180 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
6181 case FCmpInst::FCMP_ULT: // True if unordered or less than
6182 case FCmpInst::FCMP_UGT: // True if unordered or greater than
6183 case FCmpInst::FCMP_UNE: // True if unordered or not equal
6184 // Canonicalize these to be 'fcmp uno %X, 0.0'.
6185 I.setPredicate(FCmpInst::FCMP_UNO);
6186 I.setOperand(1, Constant::getNullValue(OpType));
6187 return &I;
6188
6189 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
6190 case FCmpInst::FCMP_OEQ: // True if ordered and equal
6191 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
6192 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
6193 // Canonicalize these to be 'fcmp ord %X, 0.0'.
6194 I.setPredicate(FCmpInst::FCMP_ORD);
6195 I.setOperand(1, Constant::getNullValue(OpType));
6196 return &I;
6197 }
6198 }
6199
6200 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6201 // then canonicalize the operand to 0.0.
6202 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6203 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6204 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6205
6206 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6207 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6208 }
6209
6210 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6211 Value *X, *Y;
6212 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6213 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6214
6215 // Test if the FCmpInst instruction is used exclusively by a select as
6216 // part of a minimum or maximum operation. If so, refrain from doing
6217 // any other folding. This helps out other analyses which understand
6218 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6219 // and CodeGen. And in this case, at least one of the comparison
6220 // operands has at least one user besides the compare (the select),
6221 // which would often largely negate the benefit of folding anyway.
6222 if (I.hasOneUse())
6223 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6224 Value *A, *B;
6225 SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6226 if (SPR.Flavor != SPF_UNKNOWN)
6227 return nullptr;
6228 }
6229
6230 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6231 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6232 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6233 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6234
6235 // Handle fcmp with instruction LHS and constant RHS.
6236 Instruction *LHSI;
6237 Constant *RHSC;
6238 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6239 switch (LHSI->getOpcode()) {
6240 case Instruction::PHI:
6241 // Only fold fcmp into the PHI if the phi and fcmp are in the same
6242 // block. If in the same block, we're encouraging jump threading. If
6243 // not, we are just pessimizing the code by making an i1 phi.
6244 if (LHSI->getParent() == I.getParent())
6245 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6246 return NV;
6247 break;
6248 case Instruction::SIToFP:
6249 case Instruction::UIToFP:
6250 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6251 return NV;
6252 break;
6253 case Instruction::FDiv:
6254 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6255 return NV;
6256 break;
6257 case Instruction::Load:
6258 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6259 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6260 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6261 !cast<LoadInst>(LHSI)->isVolatile())
6262 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6263 return Res;
6264 break;
6265 }
6266 }
6267
6268 if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6269 return R;
6270
6271 if (match(Op0, m_FNeg(m_Value(X)))) {
6272 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6273 Constant *C;
6274 if (match(Op1, m_Constant(C))) {
6275 Constant *NegC = ConstantExpr::getFNeg(C);
6276 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6277 }
6278 }
6279
6280 if (match(Op0, m_FPExt(m_Value(X)))) {
6281 // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6282 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6283 return new FCmpInst(Pred, X, Y, "", &I);
6284
6285 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6286 const APFloat *C;
6287 if (match(Op1, m_APFloat(C))) {
6288 const fltSemantics &FPSem =
6289 X->getType()->getScalarType()->getFltSemantics();
6290 bool Lossy;
6291 APFloat TruncC = *C;
6292 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6293
6294 // Avoid lossy conversions and denormals.
6295 // Zero is a special case that's OK to convert.
6296 APFloat Fabs = TruncC;
6297 Fabs.clearSign();
6298 if (!Lossy &&
6299 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6300 Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6301 return new FCmpInst(Pred, X, NewC, "", &I);
6302 }
6303 }
6304 }
6305
6306 // Convert a sign-bit test of an FP value into a cast and integer compare.
6307 // TODO: Simplify if the copysign constant is 0.0 or NaN.
6308 // TODO: Handle non-zero compare constants.
6309 // TODO: Handle other predicates.
6310 const APFloat *C;
6311 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6312 m_Value(X)))) &&
6313 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6314 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6315 if (auto *VecTy = dyn_cast<VectorType>(OpType))
6316 IntType = VectorType::get(IntType, VecTy->getElementCount());
6317
6318 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6319 if (Pred == FCmpInst::FCMP_OLT) {
6320 Value *IntX = Builder.CreateBitCast(X, IntType);
6321 return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6322 ConstantInt::getNullValue(IntType));
6323 }
6324 }
6325
6326 if (I.getType()->isVectorTy())
6327 if (Instruction *Res = foldVectorCmp(I, Builder))
6328 return Res;
6329
6330 return Changed ? &I : nullptr;
6331 }
6332