xref: /llvm-project/llvm/lib/Target/ARM/ARMSubtarget.cpp (revision 7bb363bdd4e87ee0b1ded74ef2616643153ff756)
1 //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ARM specific subclass of TargetSubtargetInfo.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARM.h"
14 
15 #include "ARMCallLowering.h"
16 #include "ARMFrameLowering.h"
17 #include "ARMInstrInfo.h"
18 #include "ARMLegalizerInfo.h"
19 #include "ARMRegisterBankInfo.h"
20 #include "ARMSubtarget.h"
21 #include "ARMTargetMachine.h"
22 #include "MCTargetDesc/ARMMCTargetDesc.h"
23 #include "Thumb1FrameLowering.h"
24 #include "Thumb1InstrInfo.h"
25 #include "Thumb2InstrInfo.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalValue.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCTargetOptions.h"
35 #include "llvm/Support/CodeGen.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/TargetParser/ARMTargetParser.h"
39 #include "llvm/TargetParser/Triple.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "arm-subtarget"
44 
45 #define GET_SUBTARGETINFO_TARGET_DESC
46 #define GET_SUBTARGETINFO_CTOR
47 #include "ARMGenSubtargetInfo.inc"
48 
49 static cl::opt<bool>
50 UseFusedMulOps("arm-use-mulops",
51                cl::init(true), cl::Hidden);
52 
53 enum ITMode {
54   DefaultIT,
55   RestrictedIT
56 };
57 
58 static cl::opt<ITMode>
59     IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
60        cl::values(clEnumValN(DefaultIT, "arm-default-it",
61                              "Generate any type of IT block"),
62                   clEnumValN(RestrictedIT, "arm-restrict-it",
63                              "Disallow complex IT blocks")));
64 
65 /// ForceFastISel - Use the fast-isel, even for subtargets where it is not
66 /// currently supported (for testing only).
67 static cl::opt<bool>
68 ForceFastISel("arm-force-fast-isel",
69                cl::init(false), cl::Hidden);
70 
71 /// initializeSubtargetDependencies - Initializes using a CPU and feature string
72 /// so that we can use initializer lists for subtarget initialization.
73 ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
74                                                             StringRef FS) {
75   initializeEnvironment();
76   initSubtargetFeatures(CPU, FS);
77   return *this;
78 }
79 
80 ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU,
81                                                         StringRef FS) {
82   ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS);
83   if (STI.isThumb1Only())
84     return (ARMFrameLowering *)new Thumb1FrameLowering(STI);
85 
86   return new ARMFrameLowering(STI);
87 }
88 
89 ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
90                            const std::string &FS,
91                            const ARMBaseTargetMachine &TM, bool IsLittle,
92                            bool MinSize)
93     : ARMGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
94       UseMulOps(UseFusedMulOps), CPUString(CPU), OptMinSize(MinSize),
95       IsLittle(IsLittle), TargetTriple(TT), Options(TM.Options), TM(TM),
96       FrameLowering(initializeFrameLowering(CPU, FS)),
97       // At this point initializeSubtargetDependencies has been called so
98       // we can query directly.
99       InstrInfo(isThumb1Only()
100                     ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
101                     : !isThumb()
102                           ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
103                           : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
104       TLInfo(TM, *this) {
105 
106   CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering()));
107   Legalizer.reset(new ARMLegalizerInfo(*this));
108 
109   auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo());
110 
111   // FIXME: At this point, we can't rely on Subtarget having RBI.
112   // It's awkward to mix passing RBI and the Subtarget; should we pass
113   // TII/TRI as well?
114   InstSelector.reset(createARMInstructionSelector(TM, *this, *RBI));
115 
116   RegBankInfo.reset(RBI);
117 }
118 
119 const CallLowering *ARMSubtarget::getCallLowering() const {
120   return CallLoweringInfo.get();
121 }
122 
123 InstructionSelector *ARMSubtarget::getInstructionSelector() const {
124   return InstSelector.get();
125 }
126 
127 const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const {
128   return Legalizer.get();
129 }
130 
131 const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const {
132   return RegBankInfo.get();
133 }
134 
135 bool ARMSubtarget::isXRaySupported() const {
136   // We don't currently suppport Thumb, but Windows requires Thumb.
137   return hasV6Ops() && hasARMOps() && !isTargetWindows();
138 }
139 
140 void ARMSubtarget::initializeEnvironment() {
141   // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this
142   // directly from it, but we can try to make sure they're consistent when both
143   // available.
144   UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() &&
145                Options.ExceptionModel == ExceptionHandling::None) ||
146               Options.ExceptionModel == ExceptionHandling::SjLj;
147   assert((!TM.getMCAsmInfo() ||
148           (TM.getMCAsmInfo()->getExceptionHandlingType() ==
149            ExceptionHandling::SjLj) == UseSjLjEH) &&
150          "inconsistent sjlj choice between CodeGen and MC");
151 }
152 
153 void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
154   if (CPUString.empty()) {
155     CPUString = "generic";
156 
157     if (isTargetDarwin()) {
158       StringRef ArchName = TargetTriple.getArchName();
159       ARM::ArchKind AK = ARM::parseArch(ArchName);
160       if (AK == ARM::ArchKind::ARMV7S)
161         // Default to the Swift CPU when targeting armv7s/thumbv7s.
162         CPUString = "swift";
163       else if (AK == ARM::ArchKind::ARMV7K)
164         // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k.
165         // ARMv7k does not use SjLj exception handling.
166         CPUString = "cortex-a7";
167     }
168   }
169 
170   // Insert the architecture feature derived from the target triple into the
171   // feature string. This is important for setting features that are implied
172   // based on the architecture version.
173   std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
174   if (!FS.empty()) {
175     if (!ArchFS.empty())
176       ArchFS = (Twine(ArchFS) + "," + FS).str();
177     else
178       ArchFS = std::string(FS);
179   }
180   ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, ArchFS);
181 
182   // FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
183   // Assert this for now to make the change obvious.
184   assert(hasV6T2Ops() || !hasThumb2());
185 
186   if (genExecuteOnly()) {
187     // Execute only support for >= v8-M Baseline requires movt support
188     if (hasV8MBaselineOps())
189       NoMovt = false;
190     if (!hasV6MOps())
191       report_fatal_error("Cannot generate execute-only code for this target");
192   }
193 
194   // Keep a pointer to static instruction cost data for the specified CPU.
195   SchedModel = getSchedModelForCPU(CPUString);
196 
197   // Initialize scheduling itinerary for the specified CPU.
198   InstrItins = getInstrItineraryForCPU(CPUString);
199 
200   // FIXME: this is invalid for WindowsCE
201   if (isTargetWindows())
202     NoARM = true;
203 
204   if (isAAPCS_ABI())
205     stackAlignment = Align(8);
206   if (isTargetNaCl() || isAAPCS16_ABI())
207     stackAlignment = Align(16);
208 
209   // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
210   // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
211   // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
212   // support in the assembler and linker to be used. This would need to be
213   // fixed to fully support tail calls in Thumb1.
214   //
215   // For ARMv8-M, we /do/ implement tail calls.  Doing this is tricky for v8-M
216   // baseline, since the LDM/POP instruction on Thumb doesn't take LR.  This
217   // means if we need to reload LR, it takes extra instructions, which outweighs
218   // the value of the tail call; but here we don't know yet whether LR is going
219   // to be used. We take the optimistic approach of generating the tail call and
220   // perhaps taking a hit if we need to restore the LR.
221 
222   // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
223   // but we need to make sure there are enough registers; the only valid
224   // registers are the 4 used for parameters.  We don't currently do this
225   // case.
226 
227   SupportsTailCall = !isThumb1Only() || hasV8MBaselineOps();
228 
229   if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0))
230     SupportsTailCall = false;
231 
232   switch (IT) {
233   case DefaultIT:
234     RestrictIT = false;
235     break;
236   case RestrictedIT:
237     RestrictIT = true;
238     break;
239   }
240 
241   // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
242   const FeatureBitset &Bits = getFeatureBits();
243   if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters
244       (Options.UnsafeFPMath || isTargetDarwin()))
245     HasNEONForFP = true;
246 
247   if (isRWPI())
248     ReserveR9 = true;
249 
250   // If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2
251   if (MVEVectorCostFactor == 0)
252     MVEVectorCostFactor = 2;
253 
254   // FIXME: Teach TableGen to deal with these instead of doing it manually here.
255   switch (ARMProcFamily) {
256   case Others:
257   case CortexA5:
258     break;
259   case CortexA7:
260     LdStMultipleTiming = DoubleIssue;
261     break;
262   case CortexA8:
263     LdStMultipleTiming = DoubleIssue;
264     break;
265   case CortexA9:
266     LdStMultipleTiming = DoubleIssueCheckUnalignedAccess;
267     PreISelOperandLatencyAdjustment = 1;
268     break;
269   case CortexA12:
270     break;
271   case CortexA15:
272     MaxInterleaveFactor = 2;
273     PreISelOperandLatencyAdjustment = 1;
274     PartialUpdateClearance = 12;
275     break;
276   case CortexA17:
277   case CortexA32:
278   case CortexA35:
279   case CortexA53:
280   case CortexA55:
281   case CortexA57:
282   case CortexA72:
283   case CortexA73:
284   case CortexA75:
285   case CortexA76:
286   case CortexA77:
287   case CortexA78:
288   case CortexA78AE:
289   case CortexA78C:
290   case CortexA510:
291   case CortexA710:
292   case CortexR4:
293   case CortexR5:
294   case CortexR7:
295   case CortexM3:
296   case CortexM55:
297   case CortexM7:
298   case CortexM85:
299   case CortexR52:
300   case CortexR52plus:
301   case CortexX1:
302   case CortexX1C:
303     break;
304   case Exynos:
305     LdStMultipleTiming = SingleIssuePlusExtras;
306     MaxInterleaveFactor = 4;
307     if (!isThumb())
308       PreferBranchLogAlignment = 3;
309     break;
310   case Kryo:
311     break;
312   case Krait:
313     PreISelOperandLatencyAdjustment = 1;
314     break;
315   case NeoverseV1:
316     break;
317   case Swift:
318     MaxInterleaveFactor = 2;
319     LdStMultipleTiming = SingleIssuePlusExtras;
320     PreISelOperandLatencyAdjustment = 1;
321     PartialUpdateClearance = 12;
322     break;
323   }
324 }
325 
326 bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); }
327 
328 bool ARMSubtarget::isAPCS_ABI() const {
329   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
330   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
331 }
332 bool ARMSubtarget::isAAPCS_ABI() const {
333   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
334   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS ||
335          TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
336 }
337 bool ARMSubtarget::isAAPCS16_ABI() const {
338   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
339   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
340 }
341 
342 bool ARMSubtarget::isROPI() const {
343   return TM.getRelocationModel() == Reloc::ROPI ||
344          TM.getRelocationModel() == Reloc::ROPI_RWPI;
345 }
346 bool ARMSubtarget::isRWPI() const {
347   return TM.getRelocationModel() == Reloc::RWPI ||
348          TM.getRelocationModel() == Reloc::ROPI_RWPI;
349 }
350 
351 bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const {
352   if (!TM.shouldAssumeDSOLocal(GV))
353     return true;
354 
355   // 32 bit macho has no relocation for a-b if a is undefined, even if b is in
356   // the section that is being relocated. This means we have to use o load even
357   // for GVs that are known to be local to the dso.
358   if (isTargetMachO() && TM.isPositionIndependent() &&
359       (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
360     return true;
361 
362   return false;
363 }
364 
365 bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const {
366   return isTargetELF() && TM.isPositionIndependent() && !GV->isDSOLocal();
367 }
368 
369 unsigned ARMSubtarget::getMispredictionPenalty() const {
370   return SchedModel.MispredictPenalty;
371 }
372 
373 bool ARMSubtarget::enableMachineScheduler() const {
374   // The MachineScheduler can increase register usage, so we use more high
375   // registers and end up with more T2 instructions that cannot be converted to
376   // T1 instructions. At least until we do better at converting to thumb1
377   // instructions, on cortex-m at Oz where we are size-paranoid, don't use the
378   // Machine scheduler, relying on the DAG register pressure scheduler instead.
379   if (isMClass() && hasMinSize())
380     return false;
381   // Enable the MachineScheduler before register allocation for subtargets
382   // with the use-misched feature.
383   return useMachineScheduler();
384 }
385 
386 bool ARMSubtarget::enableSubRegLiveness() const {
387   // Enable SubRegLiveness for MVE to better optimize s subregs for mqpr regs
388   // and q subregs for qqqqpr regs.
389   return hasMVEIntegerOps();
390 }
391 
392 bool ARMSubtarget::enableMachinePipeliner() const {
393   // Enable the MachinePipeliner before register allocation for subtargets
394   // with the use-mipipeliner feature.
395   return getSchedModel().hasInstrSchedModel() && useMachinePipeliner();
396 }
397 
398 bool ARMSubtarget::useDFAforSMS() const { return false; }
399 
400 // This overrides the PostRAScheduler bit in the SchedModel for any CPU.
401 bool ARMSubtarget::enablePostRAScheduler() const {
402   if (enableMachineScheduler())
403     return false;
404   if (disablePostRAScheduler())
405     return false;
406   // Thumb1 cores will generally not benefit from post-ra scheduling
407   return !isThumb1Only();
408 }
409 
410 bool ARMSubtarget::enablePostRAMachineScheduler() const {
411   if (!enableMachineScheduler())
412     return false;
413   if (disablePostRAScheduler())
414     return false;
415   return !isThumb1Only();
416 }
417 
418 bool ARMSubtarget::useStride4VFPs() const {
419   // For general targets, the prologue can grow when VFPs are allocated with
420   // stride 4 (more vpush instructions). But WatchOS uses a compact unwind
421   // format which it's more important to get right.
422   return isTargetWatchABI() ||
423          (useWideStrideVFP() && !OptMinSize);
424 }
425 
426 bool ARMSubtarget::useMovt() const {
427   // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
428   // immediates as it is inherently position independent, and may be out of
429   // range otherwise.
430   return !NoMovt && hasV8MBaselineOps() &&
431          (isTargetWindows() || !OptMinSize || genExecuteOnly());
432 }
433 
434 bool ARMSubtarget::useFastISel() const {
435   // Enable fast-isel for any target, for testing only.
436   if (ForceFastISel)
437     return true;
438 
439   // Limit fast-isel to the targets that are or have been tested.
440   if (!hasV6Ops())
441     return false;
442 
443   // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
444   return TM.Options.EnableFastISel &&
445          ((isTargetMachO() && !isThumb1Only()) ||
446           (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb()));
447 }
448 
449 unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const {
450   // The GPR register class has multiple possible allocation orders, with
451   // tradeoffs preferred by different sub-architectures and optimisation goals.
452   // The allocation orders are:
453   // 0: (the default tablegen order, not used)
454   // 1: r14, r0-r13
455   // 2: r0-r7
456   // 3: r0-r7, r12, lr, r8-r11
457   // Note that the register allocator will change this order so that
458   // callee-saved registers are used later, as they require extra work in the
459   // prologue/epilogue (though we sometimes override that).
460 
461   // For thumb1-only targets, only the low registers are allocatable.
462   if (isThumb1Only())
463     return 2;
464 
465   // Allocate low registers first, so we can select more 16-bit instructions.
466   // We also (in ignoreCSRForAllocationOrder) override  the default behaviour
467   // with regards to callee-saved registers, because pushing extra registers is
468   // much cheaper (in terms of code size) than using high registers. After
469   // that, we allocate r12 (doesn't need to be saved), lr (saving it means we
470   // can return with the pop, don't need an extra "bx lr") and then the rest of
471   // the high registers.
472   if (isThumb2() && MF.getFunction().hasMinSize())
473     return 3;
474 
475   // Otherwise, allocate in the default order, using LR first because saving it
476   // allows a shorter epilogue sequence.
477   return 1;
478 }
479 
480 bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF,
481                                                MCRegister PhysReg) const {
482   // To minimize code size in Thumb2, we prefer the usage of low regs (lower
483   // cost per use) so we can  use narrow encoding. By default, caller-saved
484   // registers (e.g. lr, r12) are always  allocated first, regardless of
485   // their cost per use. When optForMinSize, we prefer the low regs even if
486   // they are CSR because usually push/pop can be folded into existing ones.
487   return isThumb2() && MF.getFunction().hasMinSize() &&
488          ARM::GPRRegClass.contains(PhysReg);
489 }
490 
491 ARMSubtarget::PushPopSplitVariation
492 ARMSubtarget::getPushPopSplitVariation(const MachineFunction &MF) const {
493   const Function &F = MF.getFunction();
494   const MachineFrameInfo &MFI = MF.getFrameInfo();
495   const std::vector<CalleeSavedInfo> CSI =
496       MF.getFrameInfo().getCalleeSavedInfo();
497 
498   // Thumb1 always splits the pushes at R7, because the Thumb1 push instruction
499   // cannot use high registers except for lr.
500   if (isThumb1Only())
501     return SplitR7;
502 
503   // If R7 is the frame pointer, we must split at R7 to ensure that the
504   // previous frame pointer (R7) and return address (LR) are adjacent on the
505   // stack, to form a valid frame record.
506   if (getFramePointerReg() == ARM::R7 &&
507       MF.getTarget().Options.FramePointerIsReserved(MF))
508     return SplitR7;
509 
510   // Returns SplitR11WindowsSEH when the stack pointer needs to be
511   // restored from the frame pointer r11 + an offset and Windows CFI is enabled.
512   // This stack unwinding cannot be expressed with SEH unwind opcodes when done
513   // with a single push, making it necessary to split the push into r4-r10, and
514   // another containing r11+lr.
515   if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
516       F.needsUnwindTableEntry() &&
517       (MFI.hasVarSizedObjects() || getRegisterInfo()->hasStackRealignment(MF)))
518     return SplitR11WindowsSEH;
519 
520   // Returns SplitR11AAPCSSignRA when the frame pointer is R11, requiring R11
521   // and LR to be adjacent on the stack, and branch signing is enabled,
522   // requiring R12 to be on the stack.
523   if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress() &&
524       getFramePointerReg() == ARM::R11 &&
525       MF.getTarget().Options.FramePointerIsReserved(MF))
526     return SplitR11AAPCSSignRA;
527   return NoSplit;
528 }
529