xref: /llvm-project/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp (revision 340706f311e088f51002593b8cc7291500ca024e)
1 //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PPC implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCFrameLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPCInstrBuilder.h"
16 #include "PPCInstrInfo.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCSubtarget.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/LivePhysRegs.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/RegisterScavenging.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/Target/TargetOptions.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "framelowering"
34 STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue");
35 STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue");
36 STATISTIC(NumPrologProbed, "Number of prologues probed");
37 
38 static cl::opt<bool>
39 EnablePEVectorSpills("ppc-enable-pe-vector-spills",
40                      cl::desc("Enable spills in prologue to vector registers."),
41                      cl::init(false), cl::Hidden);
42 
43 static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) {
44   if (STI.isAIXABI())
45     return STI.isPPC64() ? 16 : 8;
46   // SVR4 ABI:
47   return STI.isPPC64() ? 16 : 4;
48 }
49 
50 static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) {
51   if (STI.isAIXABI())
52     return STI.isPPC64() ? 40 : 20;
53   return STI.isELFv2ABI() ? 24 : 40;
54 }
55 
56 static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) {
57   // First slot in the general register save area.
58   return STI.isPPC64() ? -8U : -4U;
59 }
60 
61 static unsigned computeLinkageSize(const PPCSubtarget &STI) {
62   if (STI.isAIXABI() || STI.isPPC64())
63     return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4);
64 
65   // 32-bit SVR4 ABI:
66   return 8;
67 }
68 
69 static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) {
70   // Third slot in the general purpose register save area.
71   if (STI.is32BitELFABI() && STI.getTargetMachine().isPositionIndependent())
72     return -12U;
73 
74   // Second slot in the general purpose register save area.
75   return STI.isPPC64() ? -16U : -8U;
76 }
77 
78 static unsigned computeCRSaveOffset(const PPCSubtarget &STI) {
79   return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8;
80 }
81 
82 PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI)
83     : TargetFrameLowering(TargetFrameLowering::StackGrowsDown,
84                           STI.getPlatformStackAlignment(), 0),
85       Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)),
86       TOCSaveOffset(computeTOCSaveOffset(Subtarget)),
87       FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)),
88       LinkageSize(computeLinkageSize(Subtarget)),
89       BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)),
90       CRSaveOffset(computeCRSaveOffset(Subtarget)) {}
91 
92 // With the SVR4 ABI, callee-saved registers have fixed offsets on the stack.
93 const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots(
94     unsigned &NumEntries) const {
95 
96 // Floating-point register save area offsets.
97 #define CALLEE_SAVED_FPRS \
98       {PPC::F31, -8},     \
99       {PPC::F30, -16},    \
100       {PPC::F29, -24},    \
101       {PPC::F28, -32},    \
102       {PPC::F27, -40},    \
103       {PPC::F26, -48},    \
104       {PPC::F25, -56},    \
105       {PPC::F24, -64},    \
106       {PPC::F23, -72},    \
107       {PPC::F22, -80},    \
108       {PPC::F21, -88},    \
109       {PPC::F20, -96},    \
110       {PPC::F19, -104},   \
111       {PPC::F18, -112},   \
112       {PPC::F17, -120},   \
113       {PPC::F16, -128},   \
114       {PPC::F15, -136},   \
115       {PPC::F14, -144}
116 
117 // 32-bit general purpose register save area offsets shared by ELF and
118 // AIX. AIX has an extra CSR with r13.
119 #define CALLEE_SAVED_GPRS32 \
120       {PPC::R31, -4},       \
121       {PPC::R30, -8},       \
122       {PPC::R29, -12},      \
123       {PPC::R28, -16},      \
124       {PPC::R27, -20},      \
125       {PPC::R26, -24},      \
126       {PPC::R25, -28},      \
127       {PPC::R24, -32},      \
128       {PPC::R23, -36},      \
129       {PPC::R22, -40},      \
130       {PPC::R21, -44},      \
131       {PPC::R20, -48},      \
132       {PPC::R19, -52},      \
133       {PPC::R18, -56},      \
134       {PPC::R17, -60},      \
135       {PPC::R16, -64},      \
136       {PPC::R15, -68},      \
137       {PPC::R14, -72}
138 
139 // 64-bit general purpose register save area offsets.
140 #define CALLEE_SAVED_GPRS64 \
141       {PPC::X31, -8},       \
142       {PPC::X30, -16},      \
143       {PPC::X29, -24},      \
144       {PPC::X28, -32},      \
145       {PPC::X27, -40},      \
146       {PPC::X26, -48},      \
147       {PPC::X25, -56},      \
148       {PPC::X24, -64},      \
149       {PPC::X23, -72},      \
150       {PPC::X22, -80},      \
151       {PPC::X21, -88},      \
152       {PPC::X20, -96},      \
153       {PPC::X19, -104},     \
154       {PPC::X18, -112},     \
155       {PPC::X17, -120},     \
156       {PPC::X16, -128},     \
157       {PPC::X15, -136},     \
158       {PPC::X14, -144}
159 
160 // Vector register save area offsets.
161 #define CALLEE_SAVED_VRS \
162       {PPC::V31, -16},   \
163       {PPC::V30, -32},   \
164       {PPC::V29, -48},   \
165       {PPC::V28, -64},   \
166       {PPC::V27, -80},   \
167       {PPC::V26, -96},   \
168       {PPC::V25, -112},  \
169       {PPC::V24, -128},  \
170       {PPC::V23, -144},  \
171       {PPC::V22, -160},  \
172       {PPC::V21, -176},  \
173       {PPC::V20, -192}
174 
175   // Note that the offsets here overlap, but this is fixed up in
176   // processFunctionBeforeFrameFinalized.
177 
178   static const SpillSlot ELFOffsets32[] = {
179       CALLEE_SAVED_FPRS,
180       CALLEE_SAVED_GPRS32,
181 
182       // CR save area offset.  We map each of the nonvolatile CR fields
183       // to the slot for CR2, which is the first of the nonvolatile CR
184       // fields to be assigned, so that we only allocate one save slot.
185       // See PPCRegisterInfo::hasReservedSpillSlot() for more information.
186       {PPC::CR2, -4},
187 
188       // VRSAVE save area offset.
189       {PPC::VRSAVE, -4},
190 
191       CALLEE_SAVED_VRS,
192 
193       // SPE register save area (overlaps Vector save area).
194       {PPC::S31, -8},
195       {PPC::S30, -16},
196       {PPC::S29, -24},
197       {PPC::S28, -32},
198       {PPC::S27, -40},
199       {PPC::S26, -48},
200       {PPC::S25, -56},
201       {PPC::S24, -64},
202       {PPC::S23, -72},
203       {PPC::S22, -80},
204       {PPC::S21, -88},
205       {PPC::S20, -96},
206       {PPC::S19, -104},
207       {PPC::S18, -112},
208       {PPC::S17, -120},
209       {PPC::S16, -128},
210       {PPC::S15, -136},
211       {PPC::S14, -144}};
212 
213   static const SpillSlot ELFOffsets64[] = {
214       CALLEE_SAVED_FPRS,
215       CALLEE_SAVED_GPRS64,
216 
217       // VRSAVE save area offset.
218       {PPC::VRSAVE, -4},
219       CALLEE_SAVED_VRS
220   };
221 
222   static const SpillSlot AIXOffsets32[] = {CALLEE_SAVED_FPRS,
223                                            CALLEE_SAVED_GPRS32,
224                                            // Add AIX's extra CSR.
225                                            {PPC::R13, -76},
226                                            CALLEE_SAVED_VRS};
227 
228   static const SpillSlot AIXOffsets64[] = {
229       CALLEE_SAVED_FPRS, CALLEE_SAVED_GPRS64, CALLEE_SAVED_VRS};
230 
231   if (Subtarget.is64BitELFABI()) {
232     NumEntries = std::size(ELFOffsets64);
233     return ELFOffsets64;
234   }
235 
236   if (Subtarget.is32BitELFABI()) {
237     NumEntries = std::size(ELFOffsets32);
238     return ELFOffsets32;
239   }
240 
241   assert(Subtarget.isAIXABI() && "Unexpected ABI.");
242 
243   if (Subtarget.isPPC64()) {
244     NumEntries = std::size(AIXOffsets64);
245     return AIXOffsets64;
246   }
247 
248   NumEntries = std::size(AIXOffsets32);
249   return AIXOffsets32;
250 }
251 
252 static bool spillsCR(const MachineFunction &MF) {
253   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
254   return FuncInfo->isCRSpilled();
255 }
256 
257 static bool hasSpills(const MachineFunction &MF) {
258   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
259   return FuncInfo->hasSpills();
260 }
261 
262 static bool hasNonRISpills(const MachineFunction &MF) {
263   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
264   return FuncInfo->hasNonRISpills();
265 }
266 
267 /// MustSaveLR - Return true if this function requires that we save the LR
268 /// register onto the stack in the prolog and restore it in the epilog of the
269 /// function.
270 static bool MustSaveLR(const MachineFunction &MF, unsigned LR) {
271   const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>();
272 
273   // We need a save/restore of LR if there is any def of LR (which is
274   // defined by calls, including the PIC setup sequence), or if there is
275   // some use of the LR stack slot (e.g. for builtin_return_address).
276   // (LR comes in 32 and 64 bit versions.)
277   MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR);
278   return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired();
279 }
280 
281 /// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum
282 /// call frame size. Update the MachineFunction object with the stack size.
283 uint64_t
284 PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF,
285                                                 bool UseEstimate) const {
286   unsigned NewMaxCallFrameSize = 0;
287   uint64_t FrameSize = determineFrameLayout(MF, UseEstimate,
288                                             &NewMaxCallFrameSize);
289   MF.getFrameInfo().setStackSize(FrameSize);
290   MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize);
291   return FrameSize;
292 }
293 
294 /// determineFrameLayout - Determine the size of the frame and maximum call
295 /// frame size.
296 uint64_t
297 PPCFrameLowering::determineFrameLayout(const MachineFunction &MF,
298                                        bool UseEstimate,
299                                        unsigned *NewMaxCallFrameSize) const {
300   const MachineFrameInfo &MFI = MF.getFrameInfo();
301   const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
302 
303   // Get the number of bytes to allocate from the FrameInfo
304   uint64_t FrameSize =
305     UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize();
306 
307   // Get stack alignments. The frame must be aligned to the greatest of these:
308   Align TargetAlign = getStackAlign(); // alignment required per the ABI
309   Align MaxAlign = MFI.getMaxAlign();  // algmt required by data in frame
310   Align Alignment = std::max(TargetAlign, MaxAlign);
311 
312   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
313 
314   unsigned LR = RegInfo->getRARegister();
315   bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone);
316   bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca.
317                        !MFI.adjustsStack() &&       // No calls.
318                        !MustSaveLR(MF, LR) &&       // No need to save LR.
319                        !FI->mustSaveTOC() &&        // No need to save TOC.
320                        !RegInfo->hasBasePointer(MF) && // No special alignment.
321                        !MFI.isFrameAddressTaken();
322 
323   // Note: for PPC32 SVR4ABI, we can still generate stackless
324   // code if all local vars are reg-allocated.
325   bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize();
326 
327   // Check whether we can skip adjusting the stack pointer (by using red zone)
328   if (!DisableRedZone && CanUseRedZone && FitsInRedZone) {
329     // No need for frame
330     return 0;
331   }
332 
333   // Get the maximum call frame size of all the calls.
334   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
335 
336   // Maximum call frame needs to be at least big enough for linkage area.
337   unsigned minCallFrameSize = getLinkageSize();
338   maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize);
339 
340   // If we have dynamic alloca then maxCallFrameSize needs to be aligned so
341   // that allocations will be aligned.
342   if (MFI.hasVarSizedObjects())
343     maxCallFrameSize = alignTo(maxCallFrameSize, Alignment);
344 
345   // Update the new max call frame size if the caller passes in a valid pointer.
346   if (NewMaxCallFrameSize)
347     *NewMaxCallFrameSize = maxCallFrameSize;
348 
349   // Include call frame size in total.
350   FrameSize += maxCallFrameSize;
351 
352   // Make sure the frame is aligned.
353   FrameSize = alignTo(FrameSize, Alignment);
354 
355   return FrameSize;
356 }
357 
358 // hasFPImpl - Return true if the specified function actually has a dedicated
359 // frame pointer register.
360 bool PPCFrameLowering::hasFPImpl(const MachineFunction &MF) const {
361   const MachineFrameInfo &MFI = MF.getFrameInfo();
362   // FIXME: This is pretty much broken by design: hasFP() might be called really
363   // early, before the stack layout was calculated and thus hasFP() might return
364   // true or false here depending on the time of call.
365   return (MFI.getStackSize()) && needsFP(MF);
366 }
367 
368 // needsFP - Return true if the specified function should have a dedicated frame
369 // pointer register.  This is true if the function has variable sized allocas or
370 // if frame pointer elimination is disabled.
371 bool PPCFrameLowering::needsFP(const MachineFunction &MF) const {
372   const MachineFrameInfo &MFI = MF.getFrameInfo();
373 
374   // Naked functions have no stack frame pushed, so we don't have a frame
375   // pointer.
376   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
377     return false;
378 
379   return MF.getTarget().Options.DisableFramePointerElim(MF) ||
380          MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() ||
381          MF.exposesReturnsTwice() ||
382          (MF.getTarget().Options.GuaranteedTailCallOpt &&
383           MF.getInfo<PPCFunctionInfo>()->hasFastCall());
384 }
385 
386 void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const {
387   // When there is dynamic alloca in this function, we can not use the frame
388   // pointer X31/R31 for the frameaddress lowering. In this case, only X1/R1
389   // always points to the backchain.
390   bool is31 = needsFP(MF) && !MF.getFrameInfo().hasVarSizedObjects();
391   unsigned FPReg  = is31 ? PPC::R31 : PPC::R1;
392   unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1;
393 
394   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
395   bool HasBP = RegInfo->hasBasePointer(MF);
396   unsigned BPReg  = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg;
397   unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg;
398 
399   for (MachineBasicBlock &MBB : MF)
400     for (MachineBasicBlock::iterator MBBI = MBB.end(); MBBI != MBB.begin();) {
401       --MBBI;
402       for (MachineOperand &MO : MBBI->operands()) {
403         if (!MO.isReg())
404           continue;
405 
406         switch (MO.getReg()) {
407         case PPC::FP:
408           MO.setReg(FPReg);
409           break;
410         case PPC::FP8:
411           MO.setReg(FP8Reg);
412           break;
413         case PPC::BP:
414           MO.setReg(BPReg);
415           break;
416         case PPC::BP8:
417           MO.setReg(BP8Reg);
418           break;
419 
420         }
421       }
422     }
423 }
424 
425 /*  This function will do the following:
426     - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12
427       respectively (defaults recommended by the ABI) and return true
428     - If MBB is not an entry block, initialize the register scavenger and look
429       for available registers.
430     - If the defaults (R0/R12) are available, return true
431     - If TwoUniqueRegsRequired is set to true, it looks for two unique
432       registers. Otherwise, look for a single available register.
433       - If the required registers are found, set SR1 and SR2 and return true.
434       - If the required registers are not found, set SR2 or both SR1 and SR2 to
435         PPC::NoRegister and return false.
436 
437     Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired
438     is not set, this function will attempt to find two different registers, but
439     still return true if only one register is available (and set SR1 == SR2).
440 */
441 bool
442 PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB,
443                                       bool UseAtEnd,
444                                       bool TwoUniqueRegsRequired,
445                                       Register *SR1,
446                                       Register *SR2) const {
447   RegScavenger RS;
448   Register R0 =  Subtarget.isPPC64() ? PPC::X0 : PPC::R0;
449   Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12;
450 
451   // Set the defaults for the two scratch registers.
452   if (SR1)
453     *SR1 = R0;
454 
455   if (SR2) {
456     assert (SR1 && "Asking for the second scratch register but not the first?");
457     *SR2 = R12;
458   }
459 
460   // If MBB is an entry or exit block, use R0 and R12 as the scratch registers.
461   if ((UseAtEnd && MBB->isReturnBlock()) ||
462       (!UseAtEnd && (&MBB->getParent()->front() == MBB)))
463     return true;
464 
465   if (UseAtEnd) {
466     // The scratch register will be used before the first terminator (or at the
467     // end of the block if there are no terminators).
468     MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator();
469     if (MBBI == MBB->begin()) {
470       RS.enterBasicBlock(*MBB);
471     } else {
472       RS.enterBasicBlockEnd(*MBB);
473       RS.backward(MBBI);
474     }
475   } else {
476     // The scratch register will be used at the start of the block.
477     RS.enterBasicBlock(*MBB);
478   }
479 
480   // If the two registers are available, we're all good.
481   // Note that we only return here if both R0 and R12 are available because
482   // although the function may not require two unique registers, it may benefit
483   // from having two so we should try to provide them.
484   if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12))
485     return true;
486 
487   // Get the list of callee-saved registers for the target.
488   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
489   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent());
490 
491   // Get all the available registers in the block.
492   BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass :
493                                      &PPC::GPRCRegClass);
494 
495   // We shouldn't use callee-saved registers as scratch registers as they may be
496   // available when looking for a candidate block for shrink wrapping but not
497   // available when the actual prologue/epilogue is being emitted because they
498   // were added as live-in to the prologue block by PrologueEpilogueInserter.
499   for (int i = 0; CSRegs[i]; ++i)
500     BV.reset(CSRegs[i]);
501 
502   // Set the first scratch register to the first available one.
503   if (SR1) {
504     int FirstScratchReg = BV.find_first();
505     *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg;
506   }
507 
508   // If there is another one available, set the second scratch register to that.
509   // Otherwise, set it to either PPC::NoRegister if this function requires two
510   // or to whatever SR1 is set to if this function doesn't require two.
511   if (SR2) {
512     int SecondScratchReg = BV.find_next(*SR1);
513     if (SecondScratchReg != -1)
514       *SR2 = SecondScratchReg;
515     else
516       *SR2 = TwoUniqueRegsRequired ? Register() : *SR1;
517   }
518 
519   // Now that we've done our best to provide both registers, double check
520   // whether we were unable to provide enough.
521   if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U))
522     return false;
523 
524   return true;
525 }
526 
527 // We need a scratch register for spilling LR and for spilling CR. By default,
528 // we use two scratch registers to hide latency. However, if only one scratch
529 // register is available, we can adjust for that by not overlapping the spill
530 // code. However, if we need to realign the stack (i.e. have a base pointer)
531 // and the stack frame is large, we need two scratch registers.
532 // Also, stack probe requires two scratch registers, one for old sp, one for
533 // large frame and large probe size.
534 bool
535 PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const {
536   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
537   MachineFunction &MF = *(MBB->getParent());
538   bool HasBP = RegInfo->hasBasePointer(MF);
539   unsigned FrameSize = determineFrameLayout(MF);
540   int NegFrameSize = -FrameSize;
541   bool IsLargeFrame = !isInt<16>(NegFrameSize);
542   MachineFrameInfo &MFI = MF.getFrameInfo();
543   Align MaxAlign = MFI.getMaxAlign();
544   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
545   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
546 
547   return ((IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1) ||
548          TLI.hasInlineStackProbe(MF);
549 }
550 
551 bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
552   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
553 
554   return findScratchRegister(TmpMBB, false,
555                              twoUniqueScratchRegsRequired(TmpMBB));
556 }
557 
558 bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
559   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
560 
561   return findScratchRegister(TmpMBB, true);
562 }
563 
564 bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const {
565   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
566   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
567 
568   // Abort if there is no register info or function info.
569   if (!RegInfo || !FI)
570     return false;
571 
572   // Only move the stack update on ELFv2 ABI and PPC64.
573   if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64())
574     return false;
575 
576   // Check the frame size first and return false if it does not fit the
577   // requirements.
578   // We need a non-zero frame size as well as a frame that will fit in the red
579   // zone. This is because by moving the stack pointer update we are now storing
580   // to the red zone until the stack pointer is updated. If we get an interrupt
581   // inside the prologue but before the stack update we now have a number of
582   // stores to the red zone and those stores must all fit.
583   MachineFrameInfo &MFI = MF.getFrameInfo();
584   unsigned FrameSize = MFI.getStackSize();
585   if (!FrameSize || FrameSize > Subtarget.getRedZoneSize())
586     return false;
587 
588   // Frame pointers and base pointers complicate matters so don't do anything
589   // if we have them. For example having a frame pointer will sometimes require
590   // a copy of r1 into r31 and that makes keeping track of updates to r1 more
591   // difficult. Similar situation exists with setjmp.
592   if (hasFP(MF) || RegInfo->hasBasePointer(MF) || MF.exposesReturnsTwice())
593     return false;
594 
595   // Calls to fast_cc functions use different rules for passing parameters on
596   // the stack from the ABI and using PIC base in the function imposes
597   // similar restrictions to using the base pointer. It is not generally safe
598   // to move the stack pointer update in these situations.
599   if (FI->hasFastCall() || FI->usesPICBase())
600     return false;
601 
602   // Finally we can move the stack update if we do not require register
603   // scavenging. Register scavenging can introduce more spills and so
604   // may make the frame size larger than we have computed.
605   return !RegInfo->requiresFrameIndexScavenging(MF);
606 }
607 
608 void PPCFrameLowering::emitPrologue(MachineFunction &MF,
609                                     MachineBasicBlock &MBB) const {
610   MachineBasicBlock::iterator MBBI = MBB.begin();
611   MachineFrameInfo &MFI = MF.getFrameInfo();
612   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
613   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
614   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
615 
616   const MCRegisterInfo *MRI = MF.getContext().getRegisterInfo();
617   DebugLoc dl;
618   // AIX assembler does not support cfi directives.
619   const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
620 
621   const bool HasFastMFLR = Subtarget.hasFastMFLR();
622 
623   // Get processor type.
624   bool isPPC64 = Subtarget.isPPC64();
625   // Get the ABI.
626   bool isSVR4ABI = Subtarget.isSVR4ABI();
627   bool isELFv2ABI = Subtarget.isELFv2ABI();
628   assert((isSVR4ABI || Subtarget.isAIXABI()) && "Unsupported PPC ABI.");
629 
630   // Work out frame sizes.
631   uint64_t FrameSize = determineFrameLayoutAndUpdate(MF);
632   int64_t NegFrameSize = -FrameSize;
633   if (!isPPC64 && (!isInt<32>(FrameSize) || !isInt<32>(NegFrameSize)))
634     llvm_unreachable("Unhandled stack size!");
635 
636   if (MFI.isFrameAddressTaken())
637     replaceFPWithRealFP(MF);
638 
639   // Check if the link register (LR) must be saved.
640   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
641   bool MustSaveLR = FI->mustSaveLR();
642   bool MustSaveTOC = FI->mustSaveTOC();
643   const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
644   bool MustSaveCR = !MustSaveCRs.empty();
645   // Do we have a frame pointer and/or base pointer for this function?
646   bool HasFP = hasFP(MF);
647   bool HasBP = RegInfo->hasBasePointer(MF);
648   bool HasRedZone = isPPC64 || !isSVR4ABI;
649   const bool HasROPProtect = Subtarget.hasROPProtect();
650   bool HasPrivileged = Subtarget.hasPrivileged();
651 
652   Register SPReg       = isPPC64 ? PPC::X1  : PPC::R1;
653   Register BPReg = RegInfo->getBaseRegister(MF);
654   Register FPReg       = isPPC64 ? PPC::X31 : PPC::R31;
655   Register LRReg       = isPPC64 ? PPC::LR8 : PPC::LR;
656   Register TOCReg      = isPPC64 ? PPC::X2 :  PPC::R2;
657   Register ScratchReg;
658   Register TempReg     = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
659   //  ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.)
660   const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8
661                                                 : PPC::MFLR );
662   const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD
663                                                  : PPC::STW );
664   const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU
665                                                      : PPC::STWU );
666   const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX
667                                                         : PPC::STWUX);
668   const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
669                                               : PPC::OR );
670   const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8
671                                                             : PPC::SUBFC);
672   const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8
673                                                                : PPC::SUBFIC);
674   const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8
675                                                            : PPC::MFCR);
676   const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW);
677   const MCInstrDesc &HashST =
678       TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHSTP8 : PPC::HASHST8)
679                       : (HasPrivileged ? PPC::HASHSTP : PPC::HASHST));
680 
681   // Regarding this assert: Even though LR is saved in the caller's frame (i.e.,
682   // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no
683   // Red Zone, an asynchronous event (a form of "callee") could claim a frame &
684   // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR.
685   assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) &&
686          "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4.");
687 
688   // Using the same bool variable as below to suppress compiler warnings.
689   bool SingleScratchReg = findScratchRegister(
690       &MBB, false, twoUniqueScratchRegsRequired(&MBB), &ScratchReg, &TempReg);
691   assert(SingleScratchReg &&
692          "Required number of registers not available in this block");
693 
694   SingleScratchReg = ScratchReg == TempReg;
695 
696   int64_t LROffset = getReturnSaveOffset();
697 
698   int64_t FPOffset = 0;
699   if (HasFP) {
700     MachineFrameInfo &MFI = MF.getFrameInfo();
701     int FPIndex = FI->getFramePointerSaveIndex();
702     assert(FPIndex && "No Frame Pointer Save Slot!");
703     FPOffset = MFI.getObjectOffset(FPIndex);
704   }
705 
706   int64_t BPOffset = 0;
707   if (HasBP) {
708     MachineFrameInfo &MFI = MF.getFrameInfo();
709     int BPIndex = FI->getBasePointerSaveIndex();
710     assert(BPIndex && "No Base Pointer Save Slot!");
711     BPOffset = MFI.getObjectOffset(BPIndex);
712   }
713 
714   int64_t PBPOffset = 0;
715   if (FI->usesPICBase()) {
716     MachineFrameInfo &MFI = MF.getFrameInfo();
717     int PBPIndex = FI->getPICBasePointerSaveIndex();
718     assert(PBPIndex && "No PIC Base Pointer Save Slot!");
719     PBPOffset = MFI.getObjectOffset(PBPIndex);
720   }
721 
722   // Get stack alignments.
723   Align MaxAlign = MFI.getMaxAlign();
724   if (HasBP && MaxAlign > 1)
725     assert(Log2(MaxAlign) < 16 && "Invalid alignment!");
726 
727   // Frames of 32KB & larger require special handling because they cannot be
728   // indexed into with a simple STDU/STWU/STD/STW immediate offset operand.
729   bool isLargeFrame = !isInt<16>(NegFrameSize);
730 
731   // Check if we can move the stack update instruction (stdu) down the prologue
732   // past the callee saves. Hopefully this will avoid the situation where the
733   // saves are waiting for the update on the store with update to complete.
734   MachineBasicBlock::iterator StackUpdateLoc = MBBI;
735   bool MovingStackUpdateDown = false;
736 
737   // Check if we can move the stack update.
738   if (stackUpdateCanBeMoved(MF)) {
739     const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
740     for (CalleeSavedInfo CSI : Info) {
741       // If the callee saved register is spilled to a register instead of the
742       // stack then the spill no longer uses the stack pointer.
743       // This can lead to two consequences:
744       // 1) We no longer need to update the stack because the function does not
745       //    spill any callee saved registers to stack.
746       // 2) We have a situation where we still have to update the stack pointer
747       //    even though some registers are spilled to other registers. In
748       //    this case the current code moves the stack update to an incorrect
749       //    position.
750       // In either case we should abort moving the stack update operation.
751       if (CSI.isSpilledToReg()) {
752         StackUpdateLoc = MBBI;
753         MovingStackUpdateDown = false;
754         break;
755       }
756 
757       int FrIdx = CSI.getFrameIdx();
758       // If the frame index is not negative the callee saved info belongs to a
759       // stack object that is not a fixed stack object. We ignore non-fixed
760       // stack objects because we won't move the stack update pointer past them.
761       if (FrIdx >= 0)
762         continue;
763 
764       if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) {
765         StackUpdateLoc++;
766         MovingStackUpdateDown = true;
767       } else {
768         // We need all of the Frame Indices to meet these conditions.
769         // If they do not, abort the whole operation.
770         StackUpdateLoc = MBBI;
771         MovingStackUpdateDown = false;
772         break;
773       }
774     }
775 
776     // If the operation was not aborted then update the object offset.
777     if (MovingStackUpdateDown) {
778       for (CalleeSavedInfo CSI : Info) {
779         int FrIdx = CSI.getFrameIdx();
780         if (FrIdx < 0)
781           MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize);
782       }
783     }
784   }
785 
786   // Where in the prologue we move the CR fields depends on how many scratch
787   // registers we have, and if we need to save the link register or not. This
788   // lambda is to avoid duplicating the logic in 2 places.
789   auto BuildMoveFromCR = [&]() {
790     if (isELFv2ABI && MustSaveCRs.size() == 1) {
791     // In the ELFv2 ABI, we are not required to save all CR fields.
792     // If only one CR field is clobbered, it is more efficient to use
793     // mfocrf to selectively save just that field, because mfocrf has short
794     // latency compares to mfcr.
795       assert(isPPC64 && "V2 ABI is 64-bit only.");
796       MachineInstrBuilder MIB =
797           BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg);
798       MIB.addReg(MustSaveCRs[0], RegState::Kill);
799     } else {
800       MachineInstrBuilder MIB =
801           BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg);
802       for (unsigned CRfield : MustSaveCRs)
803         MIB.addReg(CRfield, RegState::ImplicitKill);
804     }
805   };
806 
807   // If we need to spill the CR and the LR but we don't have two separate
808   // registers available, we must spill them one at a time
809   if (MustSaveCR && SingleScratchReg && MustSaveLR) {
810     BuildMoveFromCR();
811     BuildMI(MBB, MBBI, dl, StoreWordInst)
812         .addReg(TempReg, getKillRegState(true))
813         .addImm(CRSaveOffset)
814         .addReg(SPReg);
815   }
816 
817   if (MustSaveLR)
818     BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg);
819 
820   if (MustSaveCR && !(SingleScratchReg && MustSaveLR))
821     BuildMoveFromCR();
822 
823   if (HasRedZone) {
824     if (HasFP)
825       BuildMI(MBB, MBBI, dl, StoreInst)
826         .addReg(FPReg)
827         .addImm(FPOffset)
828         .addReg(SPReg);
829     if (FI->usesPICBase())
830       BuildMI(MBB, MBBI, dl, StoreInst)
831         .addReg(PPC::R30)
832         .addImm(PBPOffset)
833         .addReg(SPReg);
834     if (HasBP)
835       BuildMI(MBB, MBBI, dl, StoreInst)
836         .addReg(BPReg)
837         .addImm(BPOffset)
838         .addReg(SPReg);
839   }
840 
841   // Generate the instruction to store the LR. In the case where ROP protection
842   // is required the register holding the LR should not be killed as it will be
843   // used by the hash store instruction.
844   auto SaveLR = [&](int64_t Offset) {
845     assert(MustSaveLR && "LR is not required to be saved!");
846     BuildMI(MBB, StackUpdateLoc, dl, StoreInst)
847         .addReg(ScratchReg, getKillRegState(!HasROPProtect))
848         .addImm(Offset)
849         .addReg(SPReg);
850 
851     // Add the ROP protection Hash Store instruction.
852     // NOTE: This is technically a violation of the ABI. The hash can be saved
853     // up to 512 bytes into the Protected Zone. This can be outside of the
854     // initial 288 byte volatile program storage region in the Protected Zone.
855     // However, this restriction will be removed in an upcoming revision of the
856     // ABI.
857     if (HasROPProtect) {
858       const int SaveIndex = FI->getROPProtectionHashSaveIndex();
859       const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex);
860       assert((ImmOffset <= -8 && ImmOffset >= -512) &&
861              "ROP hash save offset out of range.");
862       assert(((ImmOffset & 0x7) == 0) &&
863              "ROP hash save offset must be 8 byte aligned.");
864       BuildMI(MBB, StackUpdateLoc, dl, HashST)
865           .addReg(ScratchReg, getKillRegState(true))
866           .addImm(ImmOffset)
867           .addReg(SPReg);
868     }
869   };
870 
871   if (MustSaveLR && HasFastMFLR)
872       SaveLR(LROffset);
873 
874   if (MustSaveCR &&
875       !(SingleScratchReg && MustSaveLR)) {
876     assert(HasRedZone && "A red zone is always available on PPC64");
877     BuildMI(MBB, MBBI, dl, StoreWordInst)
878       .addReg(TempReg, getKillRegState(true))
879       .addImm(CRSaveOffset)
880       .addReg(SPReg);
881   }
882 
883   // Skip the rest if this is a leaf function & all spills fit in the Red Zone.
884   if (!FrameSize) {
885     if (MustSaveLR && !HasFastMFLR)
886       SaveLR(LROffset);
887     return;
888   }
889 
890   // Adjust stack pointer: r1 += NegFrameSize.
891   // If there is a preferred stack alignment, align R1 now
892 
893   if (HasBP && HasRedZone) {
894     // Save a copy of r1 as the base pointer.
895     BuildMI(MBB, MBBI, dl, OrInst, BPReg)
896       .addReg(SPReg)
897       .addReg(SPReg);
898   }
899 
900   // Have we generated a STUX instruction to claim stack frame? If so,
901   // the negated frame size will be placed in ScratchReg.
902   bool HasSTUX =
903       (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) ||
904       (HasBP && MaxAlign > 1) || isLargeFrame;
905 
906   // If we use STUX to update the stack pointer, we need the two scratch
907   // registers TempReg and ScratchReg, we have to save LR here which is stored
908   // in ScratchReg.
909   // If the offset can not be encoded into the store instruction, we also have
910   // to save LR here.
911   // If we are using ROP Protection we need to save the LR here as we cannot
912   // move the hashst instruction past the point where we get the stack frame.
913   if (MustSaveLR && !HasFastMFLR &&
914       (HasSTUX || !isInt<16>(FrameSize + LROffset) || HasROPProtect))
915     SaveLR(LROffset);
916 
917   // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain
918   // pointer is always stored at SP, we will get a free probe due to an essential
919   // STU(X) instruction.
920   if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) {
921     // To be consistent with other targets, a pseudo instruction is emitted and
922     // will be later expanded in `inlineStackProbe`.
923     BuildMI(MBB, MBBI, dl,
924             TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64
925                             : PPC::PROBED_STACKALLOC_32))
926         .addDef(TempReg)
927         .addDef(ScratchReg) // ScratchReg stores the old sp.
928         .addImm(NegFrameSize);
929     // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we
930     // update the ScratchReg to meet the assumption that ScratchReg contains
931     // the NegFrameSize. This solution is rather tricky.
932     if (!HasRedZone) {
933       BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
934           .addReg(ScratchReg)
935           .addReg(SPReg);
936     }
937   } else {
938     // This condition must be kept in sync with canUseAsPrologue.
939     if (HasBP && MaxAlign > 1) {
940       if (isPPC64)
941         BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg)
942             .addReg(SPReg)
943             .addImm(0)
944             .addImm(64 - Log2(MaxAlign));
945       else // PPC32...
946         BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg)
947             .addReg(SPReg)
948             .addImm(0)
949             .addImm(32 - Log2(MaxAlign))
950             .addImm(31);
951       if (!isLargeFrame) {
952         BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg)
953             .addReg(ScratchReg, RegState::Kill)
954             .addImm(NegFrameSize);
955       } else {
956         assert(!SingleScratchReg && "Only a single scratch reg available");
957         TII.materializeImmPostRA(MBB, MBBI, dl, TempReg, NegFrameSize);
958         BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg)
959             .addReg(ScratchReg, RegState::Kill)
960             .addReg(TempReg, RegState::Kill);
961       }
962 
963       BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
964           .addReg(SPReg, RegState::Kill)
965           .addReg(SPReg)
966           .addReg(ScratchReg);
967     } else if (!isLargeFrame) {
968       BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg)
969           .addReg(SPReg)
970           .addImm(NegFrameSize)
971           .addReg(SPReg);
972     } else {
973       TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, NegFrameSize);
974       BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
975           .addReg(SPReg, RegState::Kill)
976           .addReg(SPReg)
977           .addReg(ScratchReg);
978     }
979   }
980 
981   // Save the TOC register after the stack pointer update if a prologue TOC
982   // save is required for the function.
983   if (MustSaveTOC) {
984     assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2");
985     BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD))
986       .addReg(TOCReg, getKillRegState(true))
987       .addImm(TOCSaveOffset)
988       .addReg(SPReg);
989   }
990 
991   if (!HasRedZone) {
992     assert(!isPPC64 && "A red zone is always available on PPC64");
993     if (HasSTUX) {
994       // The negated frame size is in ScratchReg, and the SPReg has been
995       // decremented by the frame size: SPReg = old SPReg + ScratchReg.
996       // Since FPOffset, PBPOffset, etc. are relative to the beginning of
997       // the stack frame (i.e. the old SP), ideally, we would put the old
998       // SP into a register and use it as the base for the stores. The
999       // problem is that the only available register may be ScratchReg,
1000       // which could be R0, and R0 cannot be used as a base address.
1001 
1002       // First, set ScratchReg to the old SP. This may need to be modified
1003       // later.
1004       BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
1005         .addReg(ScratchReg, RegState::Kill)
1006         .addReg(SPReg);
1007 
1008       if (ScratchReg == PPC::R0) {
1009         // R0 cannot be used as a base register, but it can be used as an
1010         // index in a store-indexed.
1011         int LastOffset = 0;
1012         if (HasFP) {
1013           // R0 += (FPOffset-LastOffset).
1014           // Need addic, since addi treats R0 as 0.
1015           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1016             .addReg(ScratchReg)
1017             .addImm(FPOffset-LastOffset);
1018           LastOffset = FPOffset;
1019           // Store FP into *R0.
1020           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1021             .addReg(FPReg, RegState::Kill)  // Save FP.
1022             .addReg(PPC::ZERO)
1023             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1024         }
1025         if (FI->usesPICBase()) {
1026           // R0 += (PBPOffset-LastOffset).
1027           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1028             .addReg(ScratchReg)
1029             .addImm(PBPOffset-LastOffset);
1030           LastOffset = PBPOffset;
1031           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1032             .addReg(PPC::R30, RegState::Kill)  // Save PIC base pointer.
1033             .addReg(PPC::ZERO)
1034             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1035         }
1036         if (HasBP) {
1037           // R0 += (BPOffset-LastOffset).
1038           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1039             .addReg(ScratchReg)
1040             .addImm(BPOffset-LastOffset);
1041           LastOffset = BPOffset;
1042           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1043             .addReg(BPReg, RegState::Kill)  // Save BP.
1044             .addReg(PPC::ZERO)
1045             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1046           // BP = R0-LastOffset
1047           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg)
1048             .addReg(ScratchReg, RegState::Kill)
1049             .addImm(-LastOffset);
1050         }
1051       } else {
1052         // ScratchReg is not R0, so use it as the base register. It is
1053         // already set to the old SP, so we can use the offsets directly.
1054 
1055         // Now that the stack frame has been allocated, save all the necessary
1056         // registers using ScratchReg as the base address.
1057         if (HasFP)
1058           BuildMI(MBB, MBBI, dl, StoreInst)
1059             .addReg(FPReg)
1060             .addImm(FPOffset)
1061             .addReg(ScratchReg);
1062         if (FI->usesPICBase())
1063           BuildMI(MBB, MBBI, dl, StoreInst)
1064             .addReg(PPC::R30)
1065             .addImm(PBPOffset)
1066             .addReg(ScratchReg);
1067         if (HasBP) {
1068           BuildMI(MBB, MBBI, dl, StoreInst)
1069             .addReg(BPReg)
1070             .addImm(BPOffset)
1071             .addReg(ScratchReg);
1072           BuildMI(MBB, MBBI, dl, OrInst, BPReg)
1073             .addReg(ScratchReg, RegState::Kill)
1074             .addReg(ScratchReg);
1075         }
1076       }
1077     } else {
1078       // The frame size is a known 16-bit constant (fitting in the immediate
1079       // field of STWU). To be here we have to be compiling for PPC32.
1080       // Since the SPReg has been decreased by FrameSize, add it back to each
1081       // offset.
1082       if (HasFP)
1083         BuildMI(MBB, MBBI, dl, StoreInst)
1084           .addReg(FPReg)
1085           .addImm(FrameSize + FPOffset)
1086           .addReg(SPReg);
1087       if (FI->usesPICBase())
1088         BuildMI(MBB, MBBI, dl, StoreInst)
1089           .addReg(PPC::R30)
1090           .addImm(FrameSize + PBPOffset)
1091           .addReg(SPReg);
1092       if (HasBP) {
1093         BuildMI(MBB, MBBI, dl, StoreInst)
1094           .addReg(BPReg)
1095           .addImm(FrameSize + BPOffset)
1096           .addReg(SPReg);
1097         BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg)
1098           .addReg(SPReg)
1099           .addImm(FrameSize);
1100       }
1101     }
1102   }
1103 
1104   // Save the LR now.
1105   if (!HasSTUX && MustSaveLR && !HasFastMFLR &&
1106       isInt<16>(FrameSize + LROffset) && !HasROPProtect)
1107     SaveLR(LROffset + FrameSize);
1108 
1109   // Add Call Frame Information for the instructions we generated above.
1110   if (needsCFI) {
1111     unsigned CFIIndex;
1112 
1113     if (HasBP) {
1114       // Define CFA in terms of BP. Do this in preference to using FP/SP,
1115       // because if the stack needed aligning then CFA won't be at a fixed
1116       // offset from FP/SP.
1117       unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
1118       CFIIndex = MF.addFrameInst(
1119           MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1120     } else {
1121       // Adjust the definition of CFA to account for the change in SP.
1122       assert(NegFrameSize);
1123       CFIIndex = MF.addFrameInst(
1124           MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize));
1125     }
1126     BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1127         .addCFIIndex(CFIIndex);
1128 
1129     if (HasFP) {
1130       // Describe where FP was saved, at a fixed offset from CFA.
1131       unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
1132       CFIIndex = MF.addFrameInst(
1133           MCCFIInstruction::createOffset(nullptr, Reg, FPOffset));
1134       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1135           .addCFIIndex(CFIIndex);
1136     }
1137 
1138     if (FI->usesPICBase()) {
1139       // Describe where FP was saved, at a fixed offset from CFA.
1140       unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true);
1141       CFIIndex = MF.addFrameInst(
1142           MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset));
1143       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1144           .addCFIIndex(CFIIndex);
1145     }
1146 
1147     if (HasBP) {
1148       // Describe where BP was saved, at a fixed offset from CFA.
1149       unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
1150       CFIIndex = MF.addFrameInst(
1151           MCCFIInstruction::createOffset(nullptr, Reg, BPOffset));
1152       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1153           .addCFIIndex(CFIIndex);
1154     }
1155 
1156     if (MustSaveLR) {
1157       // Describe where LR was saved, at a fixed offset from CFA.
1158       unsigned Reg = MRI->getDwarfRegNum(LRReg, true);
1159       CFIIndex = MF.addFrameInst(
1160           MCCFIInstruction::createOffset(nullptr, Reg, LROffset));
1161       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1162           .addCFIIndex(CFIIndex);
1163     }
1164   }
1165 
1166   // If there is a frame pointer, copy R1 into R31
1167   if (HasFP) {
1168     BuildMI(MBB, MBBI, dl, OrInst, FPReg)
1169       .addReg(SPReg)
1170       .addReg(SPReg);
1171 
1172     if (!HasBP && needsCFI) {
1173       // Change the definition of CFA from SP+offset to FP+offset, because SP
1174       // will change at every alloca.
1175       unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
1176       unsigned CFIIndex = MF.addFrameInst(
1177           MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1178 
1179       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1180           .addCFIIndex(CFIIndex);
1181     }
1182   }
1183 
1184   if (needsCFI) {
1185     // Describe where callee saved registers were saved, at fixed offsets from
1186     // CFA.
1187     const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
1188     for (const CalleeSavedInfo &I : CSI) {
1189       Register Reg = I.getReg();
1190       if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue;
1191 
1192       // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just
1193       // subregisters of CR2. We just need to emit a move of CR2.
1194       if (PPC::CRBITRCRegClass.contains(Reg))
1195         continue;
1196 
1197       if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
1198         continue;
1199 
1200       // For 64-bit SVR4 when we have spilled CRs, the spill location
1201       // is SP+8, not a frame-relative slot.
1202       if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
1203         // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for
1204         // the whole CR word.  In the ELFv2 ABI, every CR that was
1205         // actually saved gets its own CFI record.
1206         Register CRReg = isELFv2ABI? Reg : PPC::CR2;
1207         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1208             nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset));
1209         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1210             .addCFIIndex(CFIIndex);
1211         continue;
1212       }
1213 
1214       if (I.isSpilledToReg()) {
1215         unsigned SpilledReg = I.getDstReg();
1216         unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister(
1217             nullptr, MRI->getDwarfRegNum(Reg, true),
1218             MRI->getDwarfRegNum(SpilledReg, true)));
1219         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1220           .addCFIIndex(CFIRegister);
1221       } else {
1222         int64_t Offset = MFI.getObjectOffset(I.getFrameIdx());
1223         // We have changed the object offset above but we do not want to change
1224         // the actual offsets in the CFI instruction so we have to undo the
1225         // offset change here.
1226         if (MovingStackUpdateDown)
1227           Offset -= NegFrameSize;
1228 
1229         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1230             nullptr, MRI->getDwarfRegNum(Reg, true), Offset));
1231         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1232             .addCFIIndex(CFIIndex);
1233       }
1234     }
1235   }
1236 }
1237 
1238 void PPCFrameLowering::inlineStackProbe(MachineFunction &MF,
1239                                         MachineBasicBlock &PrologMBB) const {
1240   bool isPPC64 = Subtarget.isPPC64();
1241   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
1242   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1243   MachineFrameInfo &MFI = MF.getFrameInfo();
1244   const MCRegisterInfo *MRI = MF.getContext().getRegisterInfo();
1245   // AIX assembler does not support cfi directives.
1246   const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
1247   auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
1248     int Opc = MI.getOpcode();
1249     return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32;
1250   });
1251   if (StackAllocMIPos == PrologMBB.end())
1252     return;
1253   const BasicBlock *ProbedBB = PrologMBB.getBasicBlock();
1254   MachineBasicBlock *CurrentMBB = &PrologMBB;
1255   DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos);
1256   MachineInstr &MI = *StackAllocMIPos;
1257   int64_t NegFrameSize = MI.getOperand(2).getImm();
1258   unsigned ProbeSize = TLI.getStackProbeSize(MF);
1259   int64_t NegProbeSize = -(int64_t)ProbeSize;
1260   assert(isInt<32>(NegProbeSize) && "Unhandled probe size");
1261   int64_t NumBlocks = NegFrameSize / NegProbeSize;
1262   int64_t NegResidualSize = NegFrameSize % NegProbeSize;
1263   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
1264   Register ScratchReg = MI.getOperand(0).getReg();
1265   Register FPReg = MI.getOperand(1).getReg();
1266   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1267   bool HasBP = RegInfo->hasBasePointer(MF);
1268   Register BPReg = RegInfo->getBaseRegister(MF);
1269   Align MaxAlign = MFI.getMaxAlign();
1270   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
1271   const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR);
1272   // Subroutines to generate .cfi_* directives.
1273   auto buildDefCFAReg = [&](MachineBasicBlock &MBB,
1274                             MachineBasicBlock::iterator MBBI, Register Reg) {
1275     unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
1276     unsigned CFIIndex = MF.addFrameInst(
1277         MCCFIInstruction::createDefCfaRegister(nullptr, RegNum));
1278     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1279         .addCFIIndex(CFIIndex);
1280   };
1281   auto buildDefCFA = [&](MachineBasicBlock &MBB,
1282                          MachineBasicBlock::iterator MBBI, Register Reg,
1283                          int Offset) {
1284     unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
1285     unsigned CFIIndex = MBB.getParent()->addFrameInst(
1286         MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset));
1287     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1288         .addCFIIndex(CFIIndex);
1289   };
1290   // Subroutine to determine if we can use the Imm as part of d-form.
1291   auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; };
1292   // Subroutine to materialize the Imm into TempReg.
1293   auto MaterializeImm = [&](MachineBasicBlock &MBB,
1294                             MachineBasicBlock::iterator MBBI, int64_t Imm,
1295                             Register &TempReg) {
1296     assert(isInt<32>(Imm) && "Unhandled imm");
1297     if (isInt<16>(Imm))
1298       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg)
1299           .addImm(Imm);
1300     else {
1301       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
1302           .addImm(Imm >> 16);
1303       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg)
1304           .addReg(TempReg)
1305           .addImm(Imm & 0xFFFF);
1306     }
1307   };
1308   // Subroutine to store frame pointer and decrease stack pointer by probe size.
1309   auto allocateAndProbe = [&](MachineBasicBlock &MBB,
1310                               MachineBasicBlock::iterator MBBI, int64_t NegSize,
1311                               Register NegSizeReg, bool UseDForm,
1312                               Register StoreReg) {
1313     if (UseDForm)
1314       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg)
1315           .addReg(StoreReg)
1316           .addImm(NegSize)
1317           .addReg(SPReg);
1318     else
1319       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
1320           .addReg(StoreReg)
1321           .addReg(SPReg)
1322           .addReg(NegSizeReg);
1323   };
1324   // Used to probe stack when realignment is required.
1325   // Note that, according to ABI's requirement, *sp must always equals the
1326   // value of back-chain pointer, only st(w|d)u(x) can be used to update sp.
1327   // Following is pseudo code:
1328   // final_sp = (sp & align) + negframesize;
1329   // neg_gap = final_sp - sp;
1330   // while (neg_gap < negprobesize) {
1331   //   stdu fp, negprobesize(sp);
1332   //   neg_gap -= negprobesize;
1333   // }
1334   // stdux fp, sp, neg_gap
1335   //
1336   // When HasBP & HasRedzone, back-chain pointer is already saved in BPReg
1337   // before probe code, we don't need to save it, so we get one additional reg
1338   // that can be used to materialize the probeside if needed to use xform.
1339   // Otherwise, we can NOT materialize probeside, so we can only use Dform for
1340   // now.
1341   //
1342   // The allocations are:
1343   // if (HasBP && HasRedzone) {
1344   //   r0: materialize the probesize if needed so that we can use xform.
1345   //   r12: `neg_gap`
1346   // } else {
1347   //   r0: back-chain pointer
1348   //   r12: `neg_gap`.
1349   // }
1350   auto probeRealignedStack = [&](MachineBasicBlock &MBB,
1351                                  MachineBasicBlock::iterator MBBI,
1352                                  Register ScratchReg, Register TempReg) {
1353     assert(HasBP && "The function is supposed to have base pointer when its "
1354                     "stack is realigned.");
1355     assert(isPowerOf2_64(ProbeSize) && "Probe size should be power of 2");
1356 
1357     // FIXME: We can eliminate this limitation if we get more infomation about
1358     // which part of redzone are already used. Used redzone can be treated
1359     // probed. But there might be `holes' in redzone probed, this could
1360     // complicate the implementation.
1361     assert(ProbeSize >= Subtarget.getRedZoneSize() &&
1362            "Probe size should be larger or equal to the size of red-zone so "
1363            "that red-zone is not clobbered by probing.");
1364 
1365     Register &FinalStackPtr = TempReg;
1366     // FIXME: We only support NegProbeSize materializable by DForm currently.
1367     // When HasBP && HasRedzone, we can use xform if we have an additional idle
1368     // register.
1369     NegProbeSize = std::max(NegProbeSize, -((int64_t)1 << 15));
1370     assert(isInt<16>(NegProbeSize) &&
1371            "NegProbeSize should be materializable by DForm");
1372     Register CRReg = PPC::CR0;
1373     // Layout of output assembly kinda like:
1374     // bb.0:
1375     //   ...
1376     //   sub $scratchreg, $finalsp, r1
1377     //   cmpdi $scratchreg, <negprobesize>
1378     //   bge bb.2
1379     // bb.1:
1380     //   stdu <backchain>, <negprobesize>(r1)
1381     //   sub $scratchreg, $scratchreg, negprobesize
1382     //   cmpdi $scratchreg, <negprobesize>
1383     //   blt bb.1
1384     // bb.2:
1385     //   stdux <backchain>, r1, $scratchreg
1386     MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
1387     MachineBasicBlock *ProbeLoopBodyMBB = MF.CreateMachineBasicBlock(ProbedBB);
1388     MF.insert(MBBInsertPoint, ProbeLoopBodyMBB);
1389     MachineBasicBlock *ProbeExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
1390     MF.insert(MBBInsertPoint, ProbeExitMBB);
1391     // bb.2
1392     {
1393       Register BackChainPointer = HasRedZone ? BPReg : TempReg;
1394       allocateAndProbe(*ProbeExitMBB, ProbeExitMBB->end(), 0, ScratchReg, false,
1395                        BackChainPointer);
1396       if (HasRedZone)
1397         // PROBED_STACKALLOC_64 assumes Operand(1) stores the old sp, copy BPReg
1398         // to TempReg to satisfy it.
1399         BuildMI(*ProbeExitMBB, ProbeExitMBB->end(), DL, CopyInst, TempReg)
1400             .addReg(BPReg)
1401             .addReg(BPReg);
1402       ProbeExitMBB->splice(ProbeExitMBB->end(), &MBB, MBBI, MBB.end());
1403       ProbeExitMBB->transferSuccessorsAndUpdatePHIs(&MBB);
1404     }
1405     // bb.0
1406     {
1407       BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), ScratchReg)
1408           .addReg(SPReg)
1409           .addReg(FinalStackPtr);
1410       if (!HasRedZone)
1411         BuildMI(&MBB, DL, CopyInst, TempReg).addReg(SPReg).addReg(SPReg);
1412       BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), CRReg)
1413           .addReg(ScratchReg)
1414           .addImm(NegProbeSize);
1415       BuildMI(&MBB, DL, TII.get(PPC::BCC))
1416           .addImm(PPC::PRED_GE)
1417           .addReg(CRReg)
1418           .addMBB(ProbeExitMBB);
1419       MBB.addSuccessor(ProbeLoopBodyMBB);
1420       MBB.addSuccessor(ProbeExitMBB);
1421     }
1422     // bb.1
1423     {
1424       Register BackChainPointer = HasRedZone ? BPReg : TempReg;
1425       allocateAndProbe(*ProbeLoopBodyMBB, ProbeLoopBodyMBB->end(), NegProbeSize,
1426                        0, true /*UseDForm*/, BackChainPointer);
1427       BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::ADDI8 : PPC::ADDI),
1428               ScratchReg)
1429           .addReg(ScratchReg)
1430           .addImm(-NegProbeSize);
1431       BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI),
1432               CRReg)
1433           .addReg(ScratchReg)
1434           .addImm(NegProbeSize);
1435       BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::BCC))
1436           .addImm(PPC::PRED_LT)
1437           .addReg(CRReg)
1438           .addMBB(ProbeLoopBodyMBB);
1439       ProbeLoopBodyMBB->addSuccessor(ProbeExitMBB);
1440       ProbeLoopBodyMBB->addSuccessor(ProbeLoopBodyMBB);
1441     }
1442     // Update liveins.
1443     fullyRecomputeLiveIns({ProbeExitMBB, ProbeLoopBodyMBB});
1444     return ProbeExitMBB;
1445   };
1446   // For case HasBP && MaxAlign > 1, we have to realign the SP by performing
1447   // SP = SP - SP % MaxAlign, thus make the probe more like dynamic probe since
1448   // the offset subtracted from SP is determined by SP's runtime value.
1449   if (HasBP && MaxAlign > 1) {
1450     // Calculate final stack pointer.
1451     if (isPPC64)
1452       BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLDICL), ScratchReg)
1453           .addReg(SPReg)
1454           .addImm(0)
1455           .addImm(64 - Log2(MaxAlign));
1456     else
1457       BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg)
1458           .addReg(SPReg)
1459           .addImm(0)
1460           .addImm(32 - Log2(MaxAlign))
1461           .addImm(31);
1462     BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF),
1463             FPReg)
1464         .addReg(ScratchReg)
1465         .addReg(SPReg);
1466     MaterializeImm(*CurrentMBB, {MI}, NegFrameSize, ScratchReg);
1467     BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
1468             FPReg)
1469         .addReg(ScratchReg)
1470         .addReg(FPReg);
1471     CurrentMBB = probeRealignedStack(*CurrentMBB, {MI}, ScratchReg, FPReg);
1472     if (needsCFI)
1473       buildDefCFAReg(*CurrentMBB, {MI}, FPReg);
1474   } else {
1475     // Initialize current frame pointer.
1476     BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg);
1477     // Use FPReg to calculate CFA.
1478     if (needsCFI)
1479       buildDefCFA(*CurrentMBB, {MI}, FPReg, 0);
1480     // Probe residual part.
1481     if (NegResidualSize) {
1482       bool ResidualUseDForm = CanUseDForm(NegResidualSize);
1483       if (!ResidualUseDForm)
1484         MaterializeImm(*CurrentMBB, {MI}, NegResidualSize, ScratchReg);
1485       allocateAndProbe(*CurrentMBB, {MI}, NegResidualSize, ScratchReg,
1486                        ResidualUseDForm, FPReg);
1487     }
1488     bool UseDForm = CanUseDForm(NegProbeSize);
1489     // If number of blocks is small, just probe them directly.
1490     if (NumBlocks < 3) {
1491       if (!UseDForm)
1492         MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
1493       for (int i = 0; i < NumBlocks; ++i)
1494         allocateAndProbe(*CurrentMBB, {MI}, NegProbeSize, ScratchReg, UseDForm,
1495                          FPReg);
1496       if (needsCFI) {
1497         // Restore using SPReg to calculate CFA.
1498         buildDefCFAReg(*CurrentMBB, {MI}, SPReg);
1499       }
1500     } else {
1501       // Since CTR is a volatile register and current shrinkwrap implementation
1502       // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a
1503       // CTR loop to probe.
1504       // Calculate trip count and stores it in CTRReg.
1505       MaterializeImm(*CurrentMBB, {MI}, NumBlocks, ScratchReg);
1506       BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR))
1507           .addReg(ScratchReg, RegState::Kill);
1508       if (!UseDForm)
1509         MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
1510       // Create MBBs of the loop.
1511       MachineFunction::iterator MBBInsertPoint =
1512           std::next(CurrentMBB->getIterator());
1513       MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB);
1514       MF.insert(MBBInsertPoint, LoopMBB);
1515       MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
1516       MF.insert(MBBInsertPoint, ExitMBB);
1517       // Synthesize the loop body.
1518       allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg,
1519                        UseDForm, FPReg);
1520       BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ))
1521           .addMBB(LoopMBB);
1522       LoopMBB->addSuccessor(ExitMBB);
1523       LoopMBB->addSuccessor(LoopMBB);
1524       // Synthesize the exit MBB.
1525       ExitMBB->splice(ExitMBB->end(), CurrentMBB,
1526                       std::next(MachineBasicBlock::iterator(MI)),
1527                       CurrentMBB->end());
1528       ExitMBB->transferSuccessorsAndUpdatePHIs(CurrentMBB);
1529       CurrentMBB->addSuccessor(LoopMBB);
1530       if (needsCFI) {
1531         // Restore using SPReg to calculate CFA.
1532         buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg);
1533       }
1534       // Update liveins.
1535       fullyRecomputeLiveIns({ExitMBB, LoopMBB});
1536     }
1537   }
1538   ++NumPrologProbed;
1539   MI.eraseFromParent();
1540 }
1541 
1542 void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
1543                                     MachineBasicBlock &MBB) const {
1544   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1545   DebugLoc dl;
1546 
1547   if (MBBI != MBB.end())
1548     dl = MBBI->getDebugLoc();
1549 
1550   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1551   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1552 
1553   // Get alignment info so we know how to restore the SP.
1554   const MachineFrameInfo &MFI = MF.getFrameInfo();
1555 
1556   // Get the number of bytes allocated from the FrameInfo.
1557   int64_t FrameSize = MFI.getStackSize();
1558 
1559   // Get processor type.
1560   bool isPPC64 = Subtarget.isPPC64();
1561 
1562   // Check if the link register (LR) has been saved.
1563   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1564   bool MustSaveLR = FI->mustSaveLR();
1565   const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
1566   bool MustSaveCR = !MustSaveCRs.empty();
1567   // Do we have a frame pointer and/or base pointer for this function?
1568   bool HasFP = hasFP(MF);
1569   bool HasBP = RegInfo->hasBasePointer(MF);
1570   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
1571   bool HasROPProtect = Subtarget.hasROPProtect();
1572   bool HasPrivileged = Subtarget.hasPrivileged();
1573 
1574   Register SPReg      = isPPC64 ? PPC::X1  : PPC::R1;
1575   Register BPReg = RegInfo->getBaseRegister(MF);
1576   Register FPReg      = isPPC64 ? PPC::X31 : PPC::R31;
1577   Register ScratchReg;
1578   Register TempReg     = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
1579   const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8
1580                                                  : PPC::MTLR );
1581   const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD
1582                                                  : PPC::LWZ );
1583   const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8
1584                                                            : PPC::LIS );
1585   const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
1586                                               : PPC::OR );
1587   const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8
1588                                                   : PPC::ORI );
1589   const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8
1590                                                    : PPC::ADDI );
1591   const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8
1592                                                 : PPC::ADD4 );
1593   const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8
1594                                                      : PPC::LWZ);
1595   const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8
1596                                                      : PPC::MTOCRF);
1597   const MCInstrDesc &HashChk =
1598       TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHCHKP8 : PPC::HASHCHK8)
1599                       : (HasPrivileged ? PPC::HASHCHKP : PPC::HASHCHK));
1600   int64_t LROffset = getReturnSaveOffset();
1601 
1602   int64_t FPOffset = 0;
1603 
1604   // Using the same bool variable as below to suppress compiler warnings.
1605   bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg,
1606                                               &TempReg);
1607   assert(SingleScratchReg &&
1608          "Could not find an available scratch register");
1609 
1610   SingleScratchReg = ScratchReg == TempReg;
1611 
1612   if (HasFP) {
1613     int FPIndex = FI->getFramePointerSaveIndex();
1614     assert(FPIndex && "No Frame Pointer Save Slot!");
1615     FPOffset = MFI.getObjectOffset(FPIndex);
1616   }
1617 
1618   int64_t BPOffset = 0;
1619   if (HasBP) {
1620       int BPIndex = FI->getBasePointerSaveIndex();
1621       assert(BPIndex && "No Base Pointer Save Slot!");
1622       BPOffset = MFI.getObjectOffset(BPIndex);
1623   }
1624 
1625   int64_t PBPOffset = 0;
1626   if (FI->usesPICBase()) {
1627     int PBPIndex = FI->getPICBasePointerSaveIndex();
1628     assert(PBPIndex && "No PIC Base Pointer Save Slot!");
1629     PBPOffset = MFI.getObjectOffset(PBPIndex);
1630   }
1631 
1632   bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn());
1633 
1634   if (IsReturnBlock) {
1635     unsigned RetOpcode = MBBI->getOpcode();
1636     bool UsesTCRet =  RetOpcode == PPC::TCRETURNri ||
1637                       RetOpcode == PPC::TCRETURNdi ||
1638                       RetOpcode == PPC::TCRETURNai ||
1639                       RetOpcode == PPC::TCRETURNri8 ||
1640                       RetOpcode == PPC::TCRETURNdi8 ||
1641                       RetOpcode == PPC::TCRETURNai8;
1642 
1643     if (UsesTCRet) {
1644       int MaxTCRetDelta = FI->getTailCallSPDelta();
1645       MachineOperand &StackAdjust = MBBI->getOperand(1);
1646       assert(StackAdjust.isImm() && "Expecting immediate value.");
1647       // Adjust stack pointer.
1648       int StackAdj = StackAdjust.getImm();
1649       int Delta = StackAdj - MaxTCRetDelta;
1650       assert((Delta >= 0) && "Delta must be positive");
1651       if (MaxTCRetDelta>0)
1652         FrameSize += (StackAdj +Delta);
1653       else
1654         FrameSize += StackAdj;
1655     }
1656   }
1657 
1658   // Frames of 32KB & larger require special handling because they cannot be
1659   // indexed into with a simple LD/LWZ immediate offset operand.
1660   bool isLargeFrame = !isInt<16>(FrameSize);
1661 
1662   // On targets without red zone, the SP needs to be restored last, so that
1663   // all live contents of the stack frame are upwards of the SP. This means
1664   // that we cannot restore SP just now, since there may be more registers
1665   // to restore from the stack frame (e.g. R31). If the frame size is not
1666   // a simple immediate value, we will need a spare register to hold the
1667   // restored SP. If the frame size is known and small, we can simply adjust
1668   // the offsets of the registers to be restored, and still use SP to restore
1669   // them. In such case, the final update of SP will be to add the frame
1670   // size to it.
1671   // To simplify the code, set RBReg to the base register used to restore
1672   // values from the stack, and set SPAdd to the value that needs to be added
1673   // to the SP at the end. The default values are as if red zone was present.
1674   unsigned RBReg = SPReg;
1675   uint64_t SPAdd = 0;
1676 
1677   // Check if we can move the stack update instruction up the epilogue
1678   // past the callee saves. This will allow the move to LR instruction
1679   // to be executed before the restores of the callee saves which means
1680   // that the callee saves can hide the latency from the MTLR instrcution.
1681   MachineBasicBlock::iterator StackUpdateLoc = MBBI;
1682   if (stackUpdateCanBeMoved(MF)) {
1683     const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo();
1684     for (CalleeSavedInfo CSI : Info) {
1685       // If the callee saved register is spilled to another register abort the
1686       // stack update movement.
1687       if (CSI.isSpilledToReg()) {
1688         StackUpdateLoc = MBBI;
1689         break;
1690       }
1691       int FrIdx = CSI.getFrameIdx();
1692       // If the frame index is not negative the callee saved info belongs to a
1693       // stack object that is not a fixed stack object. We ignore non-fixed
1694       // stack objects because we won't move the update of the stack pointer
1695       // past them.
1696       if (FrIdx >= 0)
1697         continue;
1698 
1699       if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0)
1700         StackUpdateLoc--;
1701       else {
1702         // Abort the operation as we can't update all CSR restores.
1703         StackUpdateLoc = MBBI;
1704         break;
1705       }
1706     }
1707   }
1708 
1709   if (FrameSize) {
1710     // In the prologue, the loaded (or persistent) stack pointer value is
1711     // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red
1712     // zone add this offset back now.
1713 
1714     // If the function has a base pointer, the stack pointer has been copied
1715     // to it so we can restore it by copying in the other direction.
1716     if (HasRedZone && HasBP) {
1717       BuildMI(MBB, MBBI, dl, OrInst, RBReg).
1718         addReg(BPReg).
1719         addReg(BPReg);
1720     }
1721     // If this function contained a fastcc call and GuaranteedTailCallOpt is
1722     // enabled (=> hasFastCall()==true) the fastcc call might contain a tail
1723     // call which invalidates the stack pointer value in SP(0). So we use the
1724     // value of R31 in this case. Similar situation exists with setjmp.
1725     else if (FI->hasFastCall() || MF.exposesReturnsTwice()) {
1726       assert(HasFP && "Expecting a valid frame pointer.");
1727       if (!HasRedZone)
1728         RBReg = FPReg;
1729       if (!isLargeFrame) {
1730         BuildMI(MBB, MBBI, dl, AddImmInst, RBReg)
1731           .addReg(FPReg).addImm(FrameSize);
1732       } else {
1733         TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, FrameSize);
1734         BuildMI(MBB, MBBI, dl, AddInst)
1735           .addReg(RBReg)
1736           .addReg(FPReg)
1737           .addReg(ScratchReg);
1738       }
1739     } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) {
1740       if (HasRedZone) {
1741         BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg)
1742           .addReg(SPReg)
1743           .addImm(FrameSize);
1744       } else {
1745         // Make sure that adding FrameSize will not overflow the max offset
1746         // size.
1747         assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 &&
1748                "Local offsets should be negative");
1749         SPAdd = FrameSize;
1750         FPOffset += FrameSize;
1751         BPOffset += FrameSize;
1752         PBPOffset += FrameSize;
1753       }
1754     } else {
1755       // We don't want to use ScratchReg as a base register, because it
1756       // could happen to be R0. Use FP instead, but make sure to preserve it.
1757       if (!HasRedZone) {
1758         // If FP is not saved, copy it to ScratchReg.
1759         if (!HasFP)
1760           BuildMI(MBB, MBBI, dl, OrInst, ScratchReg)
1761             .addReg(FPReg)
1762             .addReg(FPReg);
1763         RBReg = FPReg;
1764       }
1765       BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg)
1766         .addImm(0)
1767         .addReg(SPReg);
1768     }
1769   }
1770   assert(RBReg != ScratchReg && "Should have avoided ScratchReg");
1771   // If there is no red zone, ScratchReg may be needed for holding a useful
1772   // value (although not the base register). Make sure it is not overwritten
1773   // too early.
1774 
1775   // If we need to restore both the LR and the CR and we only have one
1776   // available scratch register, we must do them one at a time.
1777   if (MustSaveCR && SingleScratchReg && MustSaveLR) {
1778     // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg
1779     // is live here.
1780     assert(HasRedZone && "Expecting red zone");
1781     BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
1782       .addImm(CRSaveOffset)
1783       .addReg(SPReg);
1784     for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
1785       BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
1786         .addReg(TempReg, getKillRegState(i == e-1));
1787   }
1788 
1789   // Delay restoring of the LR if ScratchReg is needed. This is ok, since
1790   // LR is stored in the caller's stack frame. ScratchReg will be needed
1791   // if RBReg is anything other than SP. We shouldn't use ScratchReg as
1792   // a base register anyway, because it may happen to be R0.
1793   bool LoadedLR = false;
1794   if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) {
1795     BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg)
1796       .addImm(LROffset+SPAdd)
1797       .addReg(RBReg);
1798     LoadedLR = true;
1799   }
1800 
1801   if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) {
1802     assert(RBReg == SPReg && "Should be using SP as a base register");
1803     BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
1804       .addImm(CRSaveOffset)
1805       .addReg(RBReg);
1806   }
1807 
1808   if (HasFP) {
1809     // If there is red zone, restore FP directly, since SP has already been
1810     // restored. Otherwise, restore the value of FP into ScratchReg.
1811     if (HasRedZone || RBReg == SPReg)
1812       BuildMI(MBB, MBBI, dl, LoadInst, FPReg)
1813         .addImm(FPOffset)
1814         .addReg(SPReg);
1815     else
1816       BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
1817         .addImm(FPOffset)
1818         .addReg(RBReg);
1819   }
1820 
1821   if (FI->usesPICBase())
1822     BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30)
1823       .addImm(PBPOffset)
1824       .addReg(RBReg);
1825 
1826   if (HasBP)
1827     BuildMI(MBB, MBBI, dl, LoadInst, BPReg)
1828       .addImm(BPOffset)
1829       .addReg(RBReg);
1830 
1831   // There is nothing more to be loaded from the stack, so now we can
1832   // restore SP: SP = RBReg + SPAdd.
1833   if (RBReg != SPReg || SPAdd != 0) {
1834     assert(!HasRedZone && "This should not happen with red zone");
1835     // If SPAdd is 0, generate a copy.
1836     if (SPAdd == 0)
1837       BuildMI(MBB, MBBI, dl, OrInst, SPReg)
1838         .addReg(RBReg)
1839         .addReg(RBReg);
1840     else
1841       BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
1842         .addReg(RBReg)
1843         .addImm(SPAdd);
1844 
1845     assert(RBReg != ScratchReg && "Should be using FP or SP as base register");
1846     if (RBReg == FPReg)
1847       BuildMI(MBB, MBBI, dl, OrInst, FPReg)
1848         .addReg(ScratchReg)
1849         .addReg(ScratchReg);
1850 
1851     // Now load the LR from the caller's stack frame.
1852     if (MustSaveLR && !LoadedLR)
1853       BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
1854         .addImm(LROffset)
1855         .addReg(SPReg);
1856   }
1857 
1858   if (MustSaveCR &&
1859       !(SingleScratchReg && MustSaveLR))
1860     for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
1861       BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
1862         .addReg(TempReg, getKillRegState(i == e-1));
1863 
1864   if (MustSaveLR) {
1865     // If ROP protection is required, an extra instruction is added to compute a
1866     // hash and then compare it to the hash stored in the prologue.
1867     if (HasROPProtect) {
1868       const int SaveIndex = FI->getROPProtectionHashSaveIndex();
1869       const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex);
1870       assert((ImmOffset <= -8 && ImmOffset >= -512) &&
1871              "ROP hash check location offset out of range.");
1872       assert(((ImmOffset & 0x7) == 0) &&
1873              "ROP hash check location offset must be 8 byte aligned.");
1874       BuildMI(MBB, StackUpdateLoc, dl, HashChk)
1875           .addReg(ScratchReg)
1876           .addImm(ImmOffset)
1877           .addReg(SPReg);
1878     }
1879     BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg);
1880   }
1881 
1882   // Callee pop calling convention. Pop parameter/linkage area. Used for tail
1883   // call optimization
1884   if (IsReturnBlock) {
1885     unsigned RetOpcode = MBBI->getOpcode();
1886     if (MF.getTarget().Options.GuaranteedTailCallOpt &&
1887         (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) &&
1888         MF.getFunction().getCallingConv() == CallingConv::Fast) {
1889       PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1890       unsigned CallerAllocatedAmt = FI->getMinReservedArea();
1891 
1892       if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) {
1893         BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
1894           .addReg(SPReg).addImm(CallerAllocatedAmt);
1895       } else {
1896         BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
1897           .addImm(CallerAllocatedAmt >> 16);
1898         BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
1899           .addReg(ScratchReg, RegState::Kill)
1900           .addImm(CallerAllocatedAmt & 0xFFFF);
1901         BuildMI(MBB, MBBI, dl, AddInst)
1902           .addReg(SPReg)
1903           .addReg(FPReg)
1904           .addReg(ScratchReg);
1905       }
1906     } else {
1907       createTailCallBranchInstr(MBB);
1908     }
1909   }
1910 }
1911 
1912 void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const {
1913   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1914 
1915   // If we got this far a first terminator should exist.
1916   assert(MBBI != MBB.end() && "Failed to find the first terminator.");
1917 
1918   DebugLoc dl = MBBI->getDebugLoc();
1919   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1920 
1921   // Create branch instruction for pseudo tail call return instruction.
1922   // The TCRETURNdi variants are direct calls. Valid targets for those are
1923   // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel
1924   // since we can tail call external functions with PC-Rel (i.e. we don't need
1925   // to worry about different TOC pointers). Some of the external functions will
1926   // be MO_GlobalAddress while others like memcpy for example, are going to
1927   // be MO_ExternalSymbol.
1928   unsigned RetOpcode = MBBI->getOpcode();
1929   if (RetOpcode == PPC::TCRETURNdi) {
1930     MBBI = MBB.getLastNonDebugInstr();
1931     MachineOperand &JumpTarget = MBBI->getOperand(0);
1932     if (JumpTarget.isGlobal())
1933       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
1934         addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1935     else if (JumpTarget.isSymbol())
1936       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
1937         addExternalSymbol(JumpTarget.getSymbolName());
1938     else
1939       llvm_unreachable("Expecting Global or External Symbol");
1940   } else if (RetOpcode == PPC::TCRETURNri) {
1941     MBBI = MBB.getLastNonDebugInstr();
1942     assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
1943     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR));
1944   } else if (RetOpcode == PPC::TCRETURNai) {
1945     MBBI = MBB.getLastNonDebugInstr();
1946     MachineOperand &JumpTarget = MBBI->getOperand(0);
1947     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm());
1948   } else if (RetOpcode == PPC::TCRETURNdi8) {
1949     MBBI = MBB.getLastNonDebugInstr();
1950     MachineOperand &JumpTarget = MBBI->getOperand(0);
1951     if (JumpTarget.isGlobal())
1952       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
1953         addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1954     else if (JumpTarget.isSymbol())
1955       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
1956         addExternalSymbol(JumpTarget.getSymbolName());
1957     else
1958       llvm_unreachable("Expecting Global or External Symbol");
1959   } else if (RetOpcode == PPC::TCRETURNri8) {
1960     MBBI = MBB.getLastNonDebugInstr();
1961     assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
1962     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8));
1963   } else if (RetOpcode == PPC::TCRETURNai8) {
1964     MBBI = MBB.getLastNonDebugInstr();
1965     MachineOperand &JumpTarget = MBBI->getOperand(0);
1966     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm());
1967   }
1968 }
1969 
1970 void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF,
1971                                             BitVector &SavedRegs,
1972                                             RegScavenger *RS) const {
1973   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1974   if (Subtarget.isAIXABI())
1975     updateCalleeSaves(MF, SavedRegs);
1976 
1977   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1978 
1979   // Do not explicitly save the callee saved VSRp registers.
1980   // The individual VSR subregisters will be saved instead.
1981   SavedRegs.reset(PPC::VSRp26);
1982   SavedRegs.reset(PPC::VSRp27);
1983   SavedRegs.reset(PPC::VSRp28);
1984   SavedRegs.reset(PPC::VSRp29);
1985   SavedRegs.reset(PPC::VSRp30);
1986   SavedRegs.reset(PPC::VSRp31);
1987 
1988   //  Save and clear the LR state.
1989   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1990   unsigned LR = RegInfo->getRARegister();
1991   FI->setMustSaveLR(MustSaveLR(MF, LR));
1992   SavedRegs.reset(LR);
1993 
1994   //  Save R31 if necessary
1995   int FPSI = FI->getFramePointerSaveIndex();
1996   const bool isPPC64 = Subtarget.isPPC64();
1997   MachineFrameInfo &MFI = MF.getFrameInfo();
1998 
1999   // If the frame pointer save index hasn't been defined yet.
2000   if (!FPSI && needsFP(MF)) {
2001     // Find out what the fix offset of the frame pointer save area.
2002     int FPOffset = getFramePointerSaveOffset();
2003     // Allocate the frame index for frame pointer save area.
2004     FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
2005     // Save the result.
2006     FI->setFramePointerSaveIndex(FPSI);
2007   }
2008 
2009   int BPSI = FI->getBasePointerSaveIndex();
2010   if (!BPSI && RegInfo->hasBasePointer(MF)) {
2011     int BPOffset = getBasePointerSaveOffset();
2012     // Allocate the frame index for the base pointer save area.
2013     BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true);
2014     // Save the result.
2015     FI->setBasePointerSaveIndex(BPSI);
2016   }
2017 
2018   // Reserve stack space for the PIC Base register (R30).
2019   // Only used in SVR4 32-bit.
2020   if (FI->usesPICBase()) {
2021     int PBPSI = MFI.CreateFixedObject(4, -8, true);
2022     FI->setPICBasePointerSaveIndex(PBPSI);
2023   }
2024 
2025   // Make sure we don't explicitly spill r31, because, for example, we have
2026   // some inline asm which explicitly clobbers it, when we otherwise have a
2027   // frame pointer and are using r31's spill slot for the prologue/epilogue
2028   // code. Same goes for the base pointer and the PIC base register.
2029   if (needsFP(MF))
2030     SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31);
2031   if (RegInfo->hasBasePointer(MF)) {
2032     SavedRegs.reset(RegInfo->getBaseRegister(MF));
2033     // On AIX, when BaseRegister(R30) is used, need to spill r31 too to match
2034     // AIX trackback table requirement.
2035     if (!needsFP(MF) && !SavedRegs.test(isPPC64 ? PPC::X31 : PPC::R31) &&
2036         Subtarget.isAIXABI()) {
2037       assert(
2038           (RegInfo->getBaseRegister(MF) == (isPPC64 ? PPC::X30 : PPC::R30)) &&
2039           "Invalid base register on AIX!");
2040       SavedRegs.set(isPPC64 ? PPC::X31 : PPC::R31);
2041     }
2042   }
2043   if (FI->usesPICBase())
2044     SavedRegs.reset(PPC::R30);
2045 
2046   // Reserve stack space to move the linkage area to in case of a tail call.
2047   int TCSPDelta = 0;
2048   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2049       (TCSPDelta = FI->getTailCallSPDelta()) < 0) {
2050     MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true);
2051   }
2052 
2053   // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4.
2054   // For 64-bit SVR4, and all flavors of AIX we create a FixedStack
2055   // object at the offset of the CR-save slot in the linkage area. The actual
2056   // save and restore of the condition register will be created as part of the
2057   // prologue and epilogue insertion, but the FixedStack object is needed to
2058   // keep the CalleSavedInfo valid.
2059   if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) ||
2060        SavedRegs.test(PPC::CR4))) {
2061     const uint64_t SpillSize = 4; // Condition register is always 4 bytes.
2062     const int64_t SpillOffset =
2063         Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4;
2064     int FrameIdx =
2065         MFI.CreateFixedObject(SpillSize, SpillOffset,
2066                               /* IsImmutable */ true, /* IsAliased */ false);
2067     FI->setCRSpillFrameIndex(FrameIdx);
2068   }
2069 }
2070 
2071 void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF,
2072                                                        RegScavenger *RS) const {
2073   // Get callee saved register information.
2074   MachineFrameInfo &MFI = MF.getFrameInfo();
2075   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
2076 
2077   // If the function is shrink-wrapped, and if the function has a tail call, the
2078   // tail call might not be in the new RestoreBlock, so real branch instruction
2079   // won't be generated by emitEpilogue(), because shrink-wrap has chosen new
2080   // RestoreBlock. So we handle this case here.
2081   if (MFI.getSavePoint() && MFI.hasTailCall()) {
2082     MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
2083     for (MachineBasicBlock &MBB : MF) {
2084       if (MBB.isReturnBlock() && (&MBB) != RestoreBlock)
2085         createTailCallBranchInstr(MBB);
2086     }
2087   }
2088 
2089   // Early exit if no callee saved registers are modified!
2090   if (CSI.empty() && !needsFP(MF)) {
2091     addScavengingSpillSlot(MF, RS);
2092     return;
2093   }
2094 
2095   unsigned MinGPR = PPC::R31;
2096   unsigned MinG8R = PPC::X31;
2097   unsigned MinFPR = PPC::F31;
2098   unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31;
2099 
2100   bool HasGPSaveArea = false;
2101   bool HasG8SaveArea = false;
2102   bool HasFPSaveArea = false;
2103   bool HasVRSaveArea = false;
2104 
2105   SmallVector<CalleeSavedInfo, 18> GPRegs;
2106   SmallVector<CalleeSavedInfo, 18> G8Regs;
2107   SmallVector<CalleeSavedInfo, 18> FPRegs;
2108   SmallVector<CalleeSavedInfo, 18> VRegs;
2109 
2110   for (const CalleeSavedInfo &I : CSI) {
2111     Register Reg = I.getReg();
2112     assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() ||
2113             (Reg != PPC::X2 && Reg != PPC::R2)) &&
2114            "Not expecting to try to spill R2 in a function that must save TOC");
2115     if (PPC::GPRCRegClass.contains(Reg)) {
2116       HasGPSaveArea = true;
2117 
2118       GPRegs.push_back(I);
2119 
2120       if (Reg < MinGPR) {
2121         MinGPR = Reg;
2122       }
2123     } else if (PPC::G8RCRegClass.contains(Reg)) {
2124       HasG8SaveArea = true;
2125 
2126       G8Regs.push_back(I);
2127 
2128       if (Reg < MinG8R) {
2129         MinG8R = Reg;
2130       }
2131     } else if (PPC::F8RCRegClass.contains(Reg)) {
2132       HasFPSaveArea = true;
2133 
2134       FPRegs.push_back(I);
2135 
2136       if (Reg < MinFPR) {
2137         MinFPR = Reg;
2138       }
2139     } else if (PPC::CRBITRCRegClass.contains(Reg) ||
2140                PPC::CRRCRegClass.contains(Reg)) {
2141       ; // do nothing, as we already know whether CRs are spilled
2142     } else if (PPC::VRRCRegClass.contains(Reg) ||
2143                PPC::SPERCRegClass.contains(Reg)) {
2144       // Altivec and SPE are mutually exclusive, but have the same stack
2145       // alignment requirements, so overload the save area for both cases.
2146       HasVRSaveArea = true;
2147 
2148       VRegs.push_back(I);
2149 
2150       if (Reg < MinVR) {
2151         MinVR = Reg;
2152       }
2153     } else {
2154       llvm_unreachable("Unknown RegisterClass!");
2155     }
2156   }
2157 
2158   PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>();
2159   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2160 
2161   int64_t LowerBound = 0;
2162 
2163   // Take into account stack space reserved for tail calls.
2164   int TCSPDelta = 0;
2165   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2166       (TCSPDelta = PFI->getTailCallSPDelta()) < 0) {
2167     LowerBound = TCSPDelta;
2168   }
2169 
2170   // The Floating-point register save area is right below the back chain word
2171   // of the previous stack frame.
2172   if (HasFPSaveArea) {
2173     for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) {
2174       int FI = FPRegs[i].getFrameIdx();
2175 
2176       MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2177     }
2178 
2179     LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8;
2180   }
2181 
2182   // Check whether the frame pointer register is allocated. If so, make sure it
2183   // is spilled to the correct offset.
2184   if (needsFP(MF)) {
2185     int FI = PFI->getFramePointerSaveIndex();
2186     assert(FI && "No Frame Pointer Save Slot!");
2187     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2188     // FP is R31/X31, so no need to update MinGPR/MinG8R.
2189     HasGPSaveArea = true;
2190   }
2191 
2192   if (PFI->usesPICBase()) {
2193     int FI = PFI->getPICBasePointerSaveIndex();
2194     assert(FI && "No PIC Base Pointer Save Slot!");
2195     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2196 
2197     MinGPR = std::min<unsigned>(MinGPR, PPC::R30);
2198     HasGPSaveArea = true;
2199   }
2200 
2201   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2202   if (RegInfo->hasBasePointer(MF)) {
2203     int FI = PFI->getBasePointerSaveIndex();
2204     assert(FI && "No Base Pointer Save Slot!");
2205     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2206 
2207     Register BP = RegInfo->getBaseRegister(MF);
2208     if (PPC::G8RCRegClass.contains(BP)) {
2209       MinG8R = std::min<unsigned>(MinG8R, BP);
2210       HasG8SaveArea = true;
2211     } else if (PPC::GPRCRegClass.contains(BP)) {
2212       MinGPR = std::min<unsigned>(MinGPR, BP);
2213       HasGPSaveArea = true;
2214     }
2215   }
2216 
2217   // General register save area starts right below the Floating-point
2218   // register save area.
2219   if (HasGPSaveArea || HasG8SaveArea) {
2220     // Move general register save area spill slots down, taking into account
2221     // the size of the Floating-point register save area.
2222     for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) {
2223       if (!GPRegs[i].isSpilledToReg()) {
2224         int FI = GPRegs[i].getFrameIdx();
2225         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2226       }
2227     }
2228 
2229     // Move general register save area spill slots down, taking into account
2230     // the size of the Floating-point register save area.
2231     for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) {
2232       if (!G8Regs[i].isSpilledToReg()) {
2233         int FI = G8Regs[i].getFrameIdx();
2234         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2235       }
2236     }
2237 
2238     unsigned MinReg =
2239       std::min<unsigned>(TRI->getEncodingValue(MinGPR),
2240                          TRI->getEncodingValue(MinG8R));
2241 
2242     const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4;
2243     LowerBound -= (31 - MinReg + 1) * GPRegSize;
2244   }
2245 
2246   // For 32-bit only, the CR save area is below the general register
2247   // save area.  For 64-bit SVR4, the CR save area is addressed relative
2248   // to the stack pointer and hence does not need an adjustment here.
2249   // Only CR2 (the first nonvolatile spilled) has an associated frame
2250   // index so that we have a single uniform save area.
2251   if (spillsCR(MF) && Subtarget.is32BitELFABI()) {
2252     // Adjust the frame index of the CR spill slot.
2253     for (const auto &CSInfo : CSI) {
2254       if (CSInfo.getReg() == PPC::CR2) {
2255         int FI = CSInfo.getFrameIdx();
2256         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2257         break;
2258       }
2259     }
2260 
2261     LowerBound -= 4; // The CR save area is always 4 bytes long.
2262   }
2263 
2264   // Both Altivec and SPE have the same alignment and padding requirements
2265   // within the stack frame.
2266   if (HasVRSaveArea) {
2267     // Insert alignment padding, we need 16-byte alignment. Note: for positive
2268     // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since
2269     // we are using negative number here (the stack grows downward). We should
2270     // use formula : y = x & (~(n-1)). Where x is the size before aligning, n
2271     // is the alignment size ( n = 16 here) and y is the size after aligning.
2272     assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!");
2273     LowerBound &= ~(15);
2274 
2275     for (unsigned i = 0, e = VRegs.size(); i != e; ++i) {
2276       int FI = VRegs[i].getFrameIdx();
2277 
2278       MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2279     }
2280   }
2281 
2282   addScavengingSpillSlot(MF, RS);
2283 }
2284 
2285 void
2286 PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF,
2287                                          RegScavenger *RS) const {
2288   // Reserve a slot closest to SP or frame pointer if we have a dynalloc or
2289   // a large stack, which will require scavenging a register to materialize a
2290   // large offset.
2291 
2292   // We need to have a scavenger spill slot for spills if the frame size is
2293   // large. In case there is no free register for large-offset addressing,
2294   // this slot is used for the necessary emergency spill. Also, we need the
2295   // slot for dynamic stack allocations.
2296 
2297   // The scavenger might be invoked if the frame offset does not fit into
2298   // the 16-bit immediate in case of not SPE and 8-bit in case of SPE.
2299   // We don't know the complete frame size here because we've not yet computed
2300   // callee-saved register spills or the needed alignment padding.
2301   unsigned StackSize = determineFrameLayout(MF, true);
2302   MachineFrameInfo &MFI = MF.getFrameInfo();
2303   bool NeedSpills = Subtarget.hasSPE() ? !isInt<8>(StackSize) : !isInt<16>(StackSize);
2304 
2305   if (MFI.hasVarSizedObjects() || spillsCR(MF) || hasNonRISpills(MF) ||
2306       (hasSpills(MF) && NeedSpills)) {
2307     const TargetRegisterClass &GPRC = PPC::GPRCRegClass;
2308     const TargetRegisterClass &G8RC = PPC::G8RCRegClass;
2309     const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC;
2310     const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo();
2311     unsigned Size = TRI.getSpillSize(RC);
2312     Align Alignment = TRI.getSpillAlign(RC);
2313     RS->addScavengingFrameIndex(MFI.CreateSpillStackObject(Size, Alignment));
2314 
2315     // Might we have over-aligned allocas?
2316     bool HasAlVars =
2317         MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign();
2318 
2319     // These kinds of spills might need two registers.
2320     if (spillsCR(MF) || HasAlVars)
2321       RS->addScavengingFrameIndex(MFI.CreateSpillStackObject(Size, Alignment));
2322   }
2323 }
2324 
2325 // This function checks if a callee saved gpr can be spilled to a volatile
2326 // vector register. This occurs for leaf functions when the option
2327 // ppc-enable-pe-vector-spills is enabled. If there are any remaining registers
2328 // which were not spilled to vectors, return false so the target independent
2329 // code can handle them by assigning a FrameIdx to a stack slot.
2330 bool PPCFrameLowering::assignCalleeSavedSpillSlots(
2331     MachineFunction &MF, const TargetRegisterInfo *TRI,
2332     std::vector<CalleeSavedInfo> &CSI) const {
2333 
2334   if (CSI.empty())
2335     return true; // Early exit if no callee saved registers are modified!
2336 
2337   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2338   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2339   const MachineRegisterInfo &MRI = MF.getRegInfo();
2340 
2341   if (Subtarget.hasSPE()) {
2342     // In case of SPE we only have SuperRegs and CRs
2343     // in our CalleSaveInfo vector.
2344 
2345     for (auto &CalleeSaveReg : CSI) {
2346       MCPhysReg Reg = CalleeSaveReg.getReg();
2347       MCPhysReg Lower = RegInfo->getSubReg(Reg, 1);
2348       MCPhysReg Higher = RegInfo->getSubReg(Reg, 2);
2349 
2350       if ( // Check only for SuperRegs.
2351           Lower &&
2352           // Replace Reg if only lower-32 bits modified
2353           !MRI.isPhysRegModified(Higher))
2354         CalleeSaveReg = CalleeSavedInfo(Lower);
2355     }
2356   }
2357 
2358   // Early exit if cannot spill gprs to volatile vector registers.
2359   MachineFrameInfo &MFI = MF.getFrameInfo();
2360   if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector())
2361     return false;
2362 
2363   // Build a BitVector of VSRs that can be used for spilling GPRs.
2364   BitVector BVAllocatable = TRI->getAllocatableSet(MF);
2365   BitVector BVCalleeSaved(TRI->getNumRegs());
2366   for (unsigned i = 0; CSRegs[i]; ++i)
2367     BVCalleeSaved.set(CSRegs[i]);
2368 
2369   for (unsigned Reg : BVAllocatable.set_bits()) {
2370     // Set to 0 if the register is not a volatile VSX register, or if it is
2371     // used in the function.
2372     if (BVCalleeSaved[Reg] || !PPC::VSRCRegClass.contains(Reg) ||
2373         MRI.isPhysRegUsed(Reg))
2374       BVAllocatable.reset(Reg);
2375   }
2376 
2377   bool AllSpilledToReg = true;
2378   unsigned LastVSRUsedForSpill = 0;
2379   for (auto &CS : CSI) {
2380     if (BVAllocatable.none())
2381       return false;
2382 
2383     Register Reg = CS.getReg();
2384 
2385     if (!PPC::G8RCRegClass.contains(Reg)) {
2386       AllSpilledToReg = false;
2387       continue;
2388     }
2389 
2390     // For P9, we can reuse LastVSRUsedForSpill to spill two GPRs
2391     // into one VSR using the mtvsrdd instruction.
2392     if (LastVSRUsedForSpill != 0) {
2393       CS.setDstReg(LastVSRUsedForSpill);
2394       BVAllocatable.reset(LastVSRUsedForSpill);
2395       LastVSRUsedForSpill = 0;
2396       continue;
2397     }
2398 
2399     unsigned VolatileVFReg = BVAllocatable.find_first();
2400     if (VolatileVFReg < BVAllocatable.size()) {
2401       CS.setDstReg(VolatileVFReg);
2402       LastVSRUsedForSpill = VolatileVFReg;
2403     } else {
2404       AllSpilledToReg = false;
2405     }
2406   }
2407   return AllSpilledToReg;
2408 }
2409 
2410 bool PPCFrameLowering::spillCalleeSavedRegisters(
2411     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2412     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2413 
2414   MachineFunction *MF = MBB.getParent();
2415   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
2416   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2417   bool MustSaveTOC = FI->mustSaveTOC();
2418   DebugLoc DL;
2419   bool CRSpilled = false;
2420   MachineInstrBuilder CRMIB;
2421   BitVector Spilled(TRI->getNumRegs());
2422 
2423   VSRContainingGPRs.clear();
2424 
2425   // Map each VSR to GPRs to be spilled with into it. Single VSR can contain one
2426   // or two GPRs, so we need table to record information for later save/restore.
2427   for (const CalleeSavedInfo &Info : CSI) {
2428     if (Info.isSpilledToReg()) {
2429       auto &SpilledVSR = VSRContainingGPRs[Info.getDstReg()];
2430       assert(SpilledVSR.second == 0 &&
2431              "Can't spill more than two GPRs into VSR!");
2432       if (SpilledVSR.first == 0)
2433         SpilledVSR.first = Info.getReg();
2434       else
2435         SpilledVSR.second = Info.getReg();
2436     }
2437   }
2438 
2439   for (const CalleeSavedInfo &I : CSI) {
2440     Register Reg = I.getReg();
2441 
2442     // CR2 through CR4 are the nonvolatile CR fields.
2443     bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4;
2444 
2445     // Add the callee-saved register as live-in; it's killed at the spill.
2446     // Do not do this for callee-saved registers that are live-in to the
2447     // function because they will already be marked live-in and this will be
2448     // adding it for a second time. It is an error to add the same register
2449     // to the set more than once.
2450     const MachineRegisterInfo &MRI = MF->getRegInfo();
2451     bool IsLiveIn = MRI.isLiveIn(Reg);
2452     if (!IsLiveIn)
2453        MBB.addLiveIn(Reg);
2454 
2455     if (CRSpilled && IsCRField) {
2456       CRMIB.addReg(Reg, RegState::ImplicitKill);
2457       continue;
2458     }
2459 
2460     // The actual spill will happen in the prologue.
2461     if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
2462       continue;
2463 
2464     // Insert the spill to the stack frame.
2465     if (IsCRField) {
2466       PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
2467       if (!Subtarget.is32BitELFABI()) {
2468         // The actual spill will happen at the start of the prologue.
2469         FuncInfo->addMustSaveCR(Reg);
2470       } else {
2471         CRSpilled = true;
2472         FuncInfo->setSpillsCR();
2473 
2474         // 32-bit:  FP-relative.  Note that we made sure CR2-CR4 all have
2475         // the same frame index in PPCRegisterInfo::hasReservedSpillSlot.
2476         CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12)
2477                   .addReg(Reg, RegState::ImplicitKill);
2478 
2479         MBB.insert(MI, CRMIB);
2480         MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW))
2481                                          .addReg(PPC::R12,
2482                                                  getKillRegState(true)),
2483                                          I.getFrameIdx()));
2484       }
2485     } else {
2486       if (I.isSpilledToReg()) {
2487         unsigned Dst = I.getDstReg();
2488 
2489         if (Spilled[Dst])
2490           continue;
2491 
2492         if (VSRContainingGPRs[Dst].second != 0) {
2493           assert(Subtarget.hasP9Vector() &&
2494                  "mtvsrdd is unavailable on pre-P9 targets.");
2495 
2496           NumPESpillVSR += 2;
2497           BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRDD), Dst)
2498               .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true))
2499               .addReg(VSRContainingGPRs[Dst].second, getKillRegState(true));
2500         } else if (VSRContainingGPRs[Dst].second == 0) {
2501           assert(Subtarget.hasP8Vector() &&
2502                  "Can't move GPR to VSR on pre-P8 targets.");
2503 
2504           ++NumPESpillVSR;
2505           BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD),
2506                   TRI->getSubReg(Dst, PPC::sub_64))
2507               .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true));
2508         } else {
2509           llvm_unreachable("More than two GPRs spilled to a VSR!");
2510         }
2511         Spilled.set(Dst);
2512       } else {
2513         const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2514         // Use !IsLiveIn for the kill flag.
2515         // We do not want to kill registers that are live in this function
2516         // before their use because they will become undefined registers.
2517         // Functions without NoUnwind need to preserve the order of elements in
2518         // saved vector registers.
2519         if (Subtarget.needsSwapsForVSXMemOps() &&
2520             !MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
2521           TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn,
2522                                        I.getFrameIdx(), RC, TRI);
2523         else
2524           TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, I.getFrameIdx(), RC,
2525                                   TRI, Register());
2526       }
2527     }
2528   }
2529   return true;
2530 }
2531 
2532 static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled,
2533                        bool CR4Spilled, MachineBasicBlock &MBB,
2534                        MachineBasicBlock::iterator MI,
2535                        ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) {
2536 
2537   MachineFunction *MF = MBB.getParent();
2538   const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo();
2539   DebugLoc DL;
2540   unsigned MoveReg = PPC::R12;
2541 
2542   // 32-bit:  FP-relative
2543   MBB.insert(MI,
2544              addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg),
2545                                CSI[CSIIndex].getFrameIdx()));
2546 
2547   unsigned RestoreOp = PPC::MTOCRF;
2548   if (CR2Spilled)
2549     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2)
2550                .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled)));
2551 
2552   if (CR3Spilled)
2553     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3)
2554                .addReg(MoveReg, getKillRegState(!CR4Spilled)));
2555 
2556   if (CR4Spilled)
2557     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4)
2558                .addReg(MoveReg, getKillRegState(true)));
2559 }
2560 
2561 MachineBasicBlock::iterator PPCFrameLowering::
2562 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2563                               MachineBasicBlock::iterator I) const {
2564   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
2565   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2566       I->getOpcode() == PPC::ADJCALLSTACKUP) {
2567     // Add (actually subtract) back the amount the callee popped on return.
2568     if (int CalleeAmt =  I->getOperand(1).getImm()) {
2569       bool is64Bit = Subtarget.isPPC64();
2570       CalleeAmt *= -1;
2571       unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1;
2572       unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0;
2573       unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI;
2574       unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4;
2575       unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS;
2576       unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI;
2577       const DebugLoc &dl = I->getDebugLoc();
2578 
2579       if (isInt<16>(CalleeAmt)) {
2580         BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg)
2581           .addReg(StackReg, RegState::Kill)
2582           .addImm(CalleeAmt);
2583       } else {
2584         MachineBasicBlock::iterator MBBI = I;
2585         BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg)
2586           .addImm(CalleeAmt >> 16);
2587         BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg)
2588           .addReg(TmpReg, RegState::Kill)
2589           .addImm(CalleeAmt & 0xFFFF);
2590         BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg)
2591           .addReg(StackReg, RegState::Kill)
2592           .addReg(TmpReg);
2593       }
2594     }
2595   }
2596   // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions.
2597   return MBB.erase(I);
2598 }
2599 
2600 static bool isCalleeSavedCR(unsigned Reg) {
2601   return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4;
2602 }
2603 
2604 bool PPCFrameLowering::restoreCalleeSavedRegisters(
2605     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2606     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2607   MachineFunction *MF = MBB.getParent();
2608   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
2609   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2610   bool MustSaveTOC = FI->mustSaveTOC();
2611   bool CR2Spilled = false;
2612   bool CR3Spilled = false;
2613   bool CR4Spilled = false;
2614   unsigned CSIIndex = 0;
2615   BitVector Restored(TRI->getNumRegs());
2616 
2617   // Initialize insertion-point logic; we will be restoring in reverse
2618   // order of spill.
2619   MachineBasicBlock::iterator I = MI, BeforeI = I;
2620   bool AtStart = I == MBB.begin();
2621 
2622   if (!AtStart)
2623     --BeforeI;
2624 
2625   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2626     Register Reg = CSI[i].getReg();
2627 
2628     if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
2629       continue;
2630 
2631     // Restore of callee saved condition register field is handled during
2632     // epilogue insertion.
2633     if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI())
2634       continue;
2635 
2636     if (Reg == PPC::CR2) {
2637       CR2Spilled = true;
2638       // The spill slot is associated only with CR2, which is the
2639       // first nonvolatile spilled.  Save it here.
2640       CSIIndex = i;
2641       continue;
2642     } else if (Reg == PPC::CR3) {
2643       CR3Spilled = true;
2644       continue;
2645     } else if (Reg == PPC::CR4) {
2646       CR4Spilled = true;
2647       continue;
2648     } else {
2649       // On 32-bit ELF when we first encounter a non-CR register after seeing at
2650       // least one CR register, restore all spilled CRs together.
2651       if (CR2Spilled || CR3Spilled || CR4Spilled) {
2652         bool is31 = needsFP(*MF);
2653         restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI,
2654                    CSIIndex);
2655         CR2Spilled = CR3Spilled = CR4Spilled = false;
2656       }
2657 
2658       if (CSI[i].isSpilledToReg()) {
2659         DebugLoc DL;
2660         unsigned Dst = CSI[i].getDstReg();
2661 
2662         if (Restored[Dst])
2663           continue;
2664 
2665         if (VSRContainingGPRs[Dst].second != 0) {
2666           assert(Subtarget.hasP9Vector());
2667           NumPEReloadVSR += 2;
2668           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRLD),
2669                   VSRContainingGPRs[Dst].second)
2670               .addReg(Dst);
2671           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
2672                   VSRContainingGPRs[Dst].first)
2673               .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
2674         } else if (VSRContainingGPRs[Dst].second == 0) {
2675           assert(Subtarget.hasP8Vector());
2676           ++NumPEReloadVSR;
2677           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
2678                   VSRContainingGPRs[Dst].first)
2679               .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
2680         } else {
2681           llvm_unreachable("More than two GPRs spilled to a VSR!");
2682         }
2683 
2684         Restored.set(Dst);
2685 
2686       } else {
2687         // Default behavior for non-CR saves.
2688         const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2689 
2690         // Functions without NoUnwind need to preserve the order of elements in
2691         // saved vector registers.
2692         if (Subtarget.needsSwapsForVSXMemOps() &&
2693             !MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
2694           TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC,
2695                                         TRI);
2696         else
2697           TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI,
2698                                    Register());
2699 
2700         assert(I != MBB.begin() &&
2701                "loadRegFromStackSlot didn't insert any code!");
2702       }
2703     }
2704 
2705     // Insert in reverse order.
2706     if (AtStart)
2707       I = MBB.begin();
2708     else {
2709       I = BeforeI;
2710       ++I;
2711     }
2712   }
2713 
2714   // If we haven't yet spilled the CRs, do so now.
2715   if (CR2Spilled || CR3Spilled || CR4Spilled) {
2716     assert(Subtarget.is32BitELFABI() &&
2717            "Only set CR[2|3|4]Spilled on 32-bit SVR4.");
2718     bool is31 = needsFP(*MF);
2719     restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex);
2720   }
2721 
2722   return true;
2723 }
2724 
2725 uint64_t PPCFrameLowering::getTOCSaveOffset() const {
2726   return TOCSaveOffset;
2727 }
2728 
2729 uint64_t PPCFrameLowering::getFramePointerSaveOffset() const {
2730   return FramePointerSaveOffset;
2731 }
2732 
2733 uint64_t PPCFrameLowering::getBasePointerSaveOffset() const {
2734   return BasePointerSaveOffset;
2735 }
2736 
2737 bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2738   if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled())
2739     return false;
2740   return !MF.getSubtarget<PPCSubtarget>().is32BitELFABI();
2741 }
2742 
2743 void PPCFrameLowering::updateCalleeSaves(const MachineFunction &MF,
2744                                          BitVector &SavedRegs) const {
2745   // The AIX ABI uses traceback tables for EH which require that if callee-saved
2746   // register N is used, all registers N-31 must be saved/restored.
2747   // NOTE: The check for AIX is not actually what is relevant. Traceback tables
2748   // on Linux have the same requirements. It is just that AIX is the only ABI
2749   // for which we actually use traceback tables. If another ABI needs to be
2750   // supported that also uses them, we can add a check such as
2751   // Subtarget.usesTraceBackTables().
2752   assert(Subtarget.isAIXABI() &&
2753          "Function updateCalleeSaves should only be called for AIX.");
2754 
2755   // If there are no callee saves then there is nothing to do.
2756   if (SavedRegs.none())
2757     return;
2758 
2759   const MCPhysReg *CSRegs =
2760       Subtarget.getRegisterInfo()->getCalleeSavedRegs(&MF);
2761   MCPhysReg LowestGPR = PPC::R31;
2762   MCPhysReg LowestG8R = PPC::X31;
2763   MCPhysReg LowestFPR = PPC::F31;
2764   MCPhysReg LowestVR = PPC::V31;
2765 
2766   // Traverse the CSRs twice so as not to rely on ascending ordering of
2767   // registers in the array. The first pass finds the lowest numbered
2768   // register and the second pass marks all higher numbered registers
2769   // for spilling.
2770   for (int i = 0; CSRegs[i]; i++) {
2771     // Get the lowest numbered register for each class that actually needs
2772     // to be saved.
2773     MCPhysReg Cand = CSRegs[i];
2774     if (!SavedRegs.test(Cand))
2775       continue;
2776     // When R2/X2 is a CSR and not used for passing arguments, it is allocated
2777     // earlier than other volatile registers. R2/X2 is not contiguous with
2778     // R13/X13 to R31/X31.
2779     if (Cand == PPC::X2 || Cand == PPC::R2) {
2780       SavedRegs.set(Cand);
2781       continue;
2782     }
2783 
2784     if (PPC::GPRCRegClass.contains(Cand) && Cand < LowestGPR)
2785       LowestGPR = Cand;
2786     else if (PPC::G8RCRegClass.contains(Cand) && Cand < LowestG8R)
2787       LowestG8R = Cand;
2788     else if ((PPC::F4RCRegClass.contains(Cand) ||
2789               PPC::F8RCRegClass.contains(Cand)) &&
2790              Cand < LowestFPR)
2791       LowestFPR = Cand;
2792     else if (PPC::VRRCRegClass.contains(Cand) && Cand < LowestVR)
2793       LowestVR = Cand;
2794   }
2795 
2796   for (int i = 0; CSRegs[i]; i++) {
2797     MCPhysReg Cand = CSRegs[i];
2798     if ((PPC::GPRCRegClass.contains(Cand) && Cand > LowestGPR) ||
2799         (PPC::G8RCRegClass.contains(Cand) && Cand > LowestG8R) ||
2800         ((PPC::F4RCRegClass.contains(Cand) ||
2801           PPC::F8RCRegClass.contains(Cand)) &&
2802          Cand > LowestFPR) ||
2803         (PPC::VRRCRegClass.contains(Cand) && Cand > LowestVR))
2804       SavedRegs.set(Cand);
2805   }
2806 }
2807 
2808 uint64_t PPCFrameLowering::getStackThreshold() const {
2809   // On PPC64, we use `stux r1, r1, <scratch_reg>` to extend the stack;
2810   // use `add r1, r1, <scratch_reg>` to release the stack frame.
2811   // Scratch register contains a signed 64-bit number, which is negative
2812   // when extending the stack and is positive when releasing the stack frame.
2813   // To make `stux` and `add` paired, the absolute value of the number contained
2814   // in the scratch register should be the same. Thus the maximum stack size
2815   // is (2^63)-1, i.e., LONG_MAX.
2816   if (Subtarget.isPPC64())
2817     return LONG_MAX;
2818 
2819   return TargetFrameLowering::getStackThreshold();
2820 }
2821