1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ code generation targeting the Microsoft Visual C++ ABI. 10 // The class in this file generates structures that follow the Microsoft 11 // Visual C++ ABI, which is actually not very well documented at all outside 12 // of Microsoft. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGVTables.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenTypes.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/CXXInheritance.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/VTableBuilder.h" 29 #include "clang/CodeGen/ConstantInitBuilder.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/ADT/StringSet.h" 32 #include "llvm/IR/Intrinsics.h" 33 34 using namespace clang; 35 using namespace CodeGen; 36 37 namespace { 38 39 /// Holds all the vbtable globals for a given class. 40 struct VBTableGlobals { 41 const VPtrInfoVector *VBTables; 42 SmallVector<llvm::GlobalVariable *, 2> Globals; 43 }; 44 45 class MicrosoftCXXABI : public CGCXXABI { 46 public: 47 MicrosoftCXXABI(CodeGenModule &CGM) 48 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), 49 ClassHierarchyDescriptorType(nullptr), 50 CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr), 51 ThrowInfoType(nullptr) { 52 assert(!(CGM.getLangOpts().isExplicitDefaultVisibilityExportMapping() || 53 CGM.getLangOpts().isAllDefaultVisibilityExportMapping()) && 54 "visibility export mapping option unimplemented in this ABI"); 55 } 56 57 bool HasThisReturn(GlobalDecl GD) const override; 58 bool hasMostDerivedReturn(GlobalDecl GD) const override; 59 60 bool classifyReturnType(CGFunctionInfo &FI) const override; 61 62 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; 63 64 bool isSRetParameterAfterThis() const override { return true; } 65 66 bool isThisCompleteObject(GlobalDecl GD) const override { 67 // The Microsoft ABI doesn't use separate complete-object vs. 68 // base-object variants of constructors, but it does of destructors. 69 if (isa<CXXDestructorDecl>(GD.getDecl())) { 70 switch (GD.getDtorType()) { 71 case Dtor_Complete: 72 case Dtor_Deleting: 73 return true; 74 75 case Dtor_Base: 76 return false; 77 78 case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?"); 79 } 80 llvm_unreachable("bad dtor kind"); 81 } 82 83 // No other kinds. 84 return false; 85 } 86 87 size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD, 88 FunctionArgList &Args) const override { 89 assert(Args.size() >= 2 && 90 "expected the arglist to have at least two args!"); 91 // The 'most_derived' parameter goes second if the ctor is variadic and 92 // has v-bases. 93 if (CD->getParent()->getNumVBases() > 0 && 94 CD->getType()->castAs<FunctionProtoType>()->isVariadic()) 95 return 2; 96 return 1; 97 } 98 99 std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override { 100 std::vector<CharUnits> VBPtrOffsets; 101 const ASTContext &Context = getContext(); 102 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 103 104 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 105 for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) { 106 const ASTRecordLayout &SubobjectLayout = 107 Context.getASTRecordLayout(VBT->IntroducingObject); 108 CharUnits Offs = VBT->NonVirtualOffset; 109 Offs += SubobjectLayout.getVBPtrOffset(); 110 if (VBT->getVBaseWithVPtr()) 111 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 112 VBPtrOffsets.push_back(Offs); 113 } 114 llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end()); 115 return VBPtrOffsets; 116 } 117 118 StringRef GetPureVirtualCallName() override { return "_purecall"; } 119 StringRef GetDeletedVirtualCallName() override { return "_purecall"; } 120 121 void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, 122 Address Ptr, QualType ElementType, 123 const CXXDestructorDecl *Dtor) override; 124 125 void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; 126 void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; 127 128 void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; 129 130 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, 131 const VPtrInfo &Info); 132 133 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; 134 CatchTypeInfo 135 getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override; 136 137 /// MSVC needs an extra flag to indicate a catchall. 138 CatchTypeInfo getCatchAllTypeInfo() override { 139 // For -EHa catch(...) must handle HW exception 140 // Adjective = HT_IsStdDotDot (0x40), only catch C++ exceptions 141 if (getContext().getLangOpts().EHAsynch) 142 return CatchTypeInfo{nullptr, 0}; 143 else 144 return CatchTypeInfo{nullptr, 0x40}; 145 } 146 147 bool shouldTypeidBeNullChecked(QualType SrcRecordTy) override; 148 void EmitBadTypeidCall(CodeGenFunction &CGF) override; 149 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, 150 Address ThisPtr, 151 llvm::Type *StdTypeInfoPtrTy) override; 152 153 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 154 QualType SrcRecordTy) override; 155 156 bool shouldEmitExactDynamicCast(QualType DestRecordTy) override { 157 // TODO: Add support for exact dynamic_casts. 158 return false; 159 } 160 llvm::Value *emitExactDynamicCast(CodeGenFunction &CGF, Address Value, 161 QualType SrcRecordTy, QualType DestTy, 162 QualType DestRecordTy, 163 llvm::BasicBlock *CastSuccess, 164 llvm::BasicBlock *CastFail) override { 165 llvm_unreachable("unsupported"); 166 } 167 168 llvm::Value *emitDynamicCastCall(CodeGenFunction &CGF, Address Value, 169 QualType SrcRecordTy, QualType DestTy, 170 QualType DestRecordTy, 171 llvm::BasicBlock *CastEnd) override; 172 173 llvm::Value *emitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 174 QualType SrcRecordTy) override; 175 176 bool EmitBadCastCall(CodeGenFunction &CGF) override; 177 bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override { 178 return false; 179 } 180 181 llvm::Value * 182 GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, 183 const CXXRecordDecl *ClassDecl, 184 const CXXRecordDecl *BaseClassDecl) override; 185 186 llvm::BasicBlock * 187 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 188 const CXXRecordDecl *RD) override; 189 190 llvm::BasicBlock * 191 EmitDtorCompleteObjectHandler(CodeGenFunction &CGF); 192 193 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, 194 const CXXRecordDecl *RD) override; 195 196 void EmitCXXConstructors(const CXXConstructorDecl *D) override; 197 198 // Background on MSVC destructors 199 // ============================== 200 // 201 // Both Itanium and MSVC ABIs have destructor variants. The variant names 202 // roughly correspond in the following way: 203 // Itanium Microsoft 204 // Base -> no name, just ~Class 205 // Complete -> vbase destructor 206 // Deleting -> scalar deleting destructor 207 // vector deleting destructor 208 // 209 // The base and complete destructors are the same as in Itanium, although the 210 // complete destructor does not accept a VTT parameter when there are virtual 211 // bases. A separate mechanism involving vtordisps is used to ensure that 212 // virtual methods of destroyed subobjects are not called. 213 // 214 // The deleting destructors accept an i32 bitfield as a second parameter. Bit 215 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this 216 // pointer points to an array. The scalar deleting destructor assumes that 217 // bit 2 is zero, and therefore does not contain a loop. 218 // 219 // For virtual destructors, only one entry is reserved in the vftable, and it 220 // always points to the vector deleting destructor. The vector deleting 221 // destructor is the most general, so it can be used to destroy objects in 222 // place, delete single heap objects, or delete arrays. 223 // 224 // A TU defining a non-inline destructor is only guaranteed to emit a base 225 // destructor, and all of the other variants are emitted on an as-needed basis 226 // in COMDATs. Because a non-base destructor can be emitted in a TU that 227 // lacks a definition for the destructor, non-base destructors must always 228 // delegate to or alias the base destructor. 229 230 AddedStructorArgCounts 231 buildStructorSignature(GlobalDecl GD, 232 SmallVectorImpl<CanQualType> &ArgTys) override; 233 234 /// Non-base dtors should be emitted as delegating thunks in this ABI. 235 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, 236 CXXDtorType DT) const override { 237 return DT != Dtor_Base; 238 } 239 240 void setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 241 const CXXDestructorDecl *Dtor, 242 CXXDtorType DT) const override; 243 244 llvm::GlobalValue::LinkageTypes 245 getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor, 246 CXXDtorType DT) const override; 247 248 void EmitCXXDestructors(const CXXDestructorDecl *D) override; 249 250 const CXXRecordDecl *getThisArgumentTypeForMethod(GlobalDecl GD) override { 251 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 252 253 if (MD->isVirtual()) { 254 GlobalDecl LookupGD = GD; 255 if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) { 256 // Complete dtors take a pointer to the complete object, 257 // thus don't need adjustment. 258 if (GD.getDtorType() == Dtor_Complete) 259 return MD->getParent(); 260 261 // There's only Dtor_Deleting in vftable but it shares the this 262 // adjustment with the base one, so look up the deleting one instead. 263 LookupGD = GlobalDecl(DD, Dtor_Deleting); 264 } 265 MethodVFTableLocation ML = 266 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 267 268 // The vbases might be ordered differently in the final overrider object 269 // and the complete object, so the "this" argument may sometimes point to 270 // memory that has no particular type (e.g. past the complete object). 271 // In this case, we just use a generic pointer type. 272 // FIXME: might want to have a more precise type in the non-virtual 273 // multiple inheritance case. 274 if (ML.VBase || !ML.VFPtrOffset.isZero()) 275 return nullptr; 276 } 277 return MD->getParent(); 278 } 279 280 Address 281 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, 282 Address This, 283 bool VirtualCall) override; 284 285 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, 286 FunctionArgList &Params) override; 287 288 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; 289 290 AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF, 291 const CXXConstructorDecl *D, 292 CXXCtorType Type, 293 bool ForVirtualBase, 294 bool Delegating) override; 295 296 llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF, 297 const CXXDestructorDecl *DD, 298 CXXDtorType Type, 299 bool ForVirtualBase, 300 bool Delegating) override; 301 302 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, 303 CXXDtorType Type, bool ForVirtualBase, 304 bool Delegating, Address This, 305 QualType ThisTy) override; 306 307 void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD, 308 llvm::GlobalVariable *VTable); 309 310 void emitVTableDefinitions(CodeGenVTables &CGVT, 311 const CXXRecordDecl *RD) override; 312 313 bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, 314 CodeGenFunction::VPtr Vptr) override; 315 316 /// Don't initialize vptrs if dynamic class 317 /// is marked with the 'novtable' attribute. 318 bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { 319 return !VTableClass->hasAttr<MSNoVTableAttr>(); 320 } 321 322 llvm::Constant * 323 getVTableAddressPoint(BaseSubobject Base, 324 const CXXRecordDecl *VTableClass) override; 325 326 llvm::Value *getVTableAddressPointInStructor( 327 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, 328 BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; 329 330 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, 331 CharUnits VPtrOffset) override; 332 333 CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, 334 Address This, llvm::Type *Ty, 335 SourceLocation Loc) override; 336 337 llvm::Value * 338 EmitVirtualDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, 339 CXXDtorType DtorType, Address This, 340 DeleteOrMemberCallExpr E, 341 llvm::CallBase **CallOrInvoke) override; 342 343 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, 344 CallArgList &CallArgs) override { 345 assert(GD.getDtorType() == Dtor_Deleting && 346 "Only deleting destructor thunks are available in this ABI"); 347 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)), 348 getContext().IntTy); 349 } 350 351 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; 352 353 llvm::GlobalVariable * 354 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 355 llvm::GlobalVariable::LinkageTypes Linkage); 356 357 llvm::GlobalVariable * 358 getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 359 const CXXRecordDecl *DstRD) { 360 SmallString<256> OutName; 361 llvm::raw_svector_ostream Out(OutName); 362 getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out); 363 StringRef MangledName = OutName.str(); 364 365 if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName)) 366 return VDispMap; 367 368 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 369 unsigned NumEntries = 1 + SrcRD->getNumVBases(); 370 SmallVector<llvm::Constant *, 4> Map(NumEntries, 371 llvm::UndefValue::get(CGM.IntTy)); 372 Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0); 373 bool AnyDifferent = false; 374 for (const auto &I : SrcRD->vbases()) { 375 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 376 if (!DstRD->isVirtuallyDerivedFrom(VBase)) 377 continue; 378 379 unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase); 380 unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase); 381 Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4); 382 AnyDifferent |= SrcVBIndex != DstVBIndex; 383 } 384 // This map would be useless, don't use it. 385 if (!AnyDifferent) 386 return nullptr; 387 388 llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size()); 389 llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map); 390 llvm::GlobalValue::LinkageTypes Linkage = 391 SrcRD->isExternallyVisible() && DstRD->isExternallyVisible() 392 ? llvm::GlobalValue::LinkOnceODRLinkage 393 : llvm::GlobalValue::InternalLinkage; 394 auto *VDispMap = new llvm::GlobalVariable( 395 CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage, 396 /*Initializer=*/Init, MangledName); 397 return VDispMap; 398 } 399 400 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, 401 llvm::GlobalVariable *GV) const; 402 403 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, 404 GlobalDecl GD, bool ReturnAdjustment) override { 405 GVALinkage Linkage = 406 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl())); 407 408 if (Linkage == GVA_Internal) 409 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); 410 else if (ReturnAdjustment) 411 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); 412 else 413 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 414 } 415 416 bool exportThunk() override { return false; } 417 418 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, 419 const CXXRecordDecl * /*UnadjustedClass*/, 420 const ThunkInfo &TI) override; 421 422 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 423 const CXXRecordDecl * /*UnadjustedClass*/, 424 const ReturnAdjustment &RA) override; 425 426 void EmitThreadLocalInitFuncs( 427 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 428 ArrayRef<llvm::Function *> CXXThreadLocalInits, 429 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; 430 431 bool usesThreadWrapperFunction(const VarDecl *VD) const override { 432 return getContext().getLangOpts().isCompatibleWithMSVC( 433 LangOptions::MSVC2019_5) && 434 CGM.getCodeGenOpts().TlsGuards && 435 (!isEmittedWithConstantInitializer(VD) || mayNeedDestruction(VD)); 436 } 437 LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, 438 QualType LValType) override; 439 440 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 441 llvm::GlobalVariable *DeclPtr, 442 bool PerformInit) override; 443 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 444 llvm::FunctionCallee Dtor, 445 llvm::Constant *Addr) override; 446 447 // ==== Notes on array cookies ========= 448 // 449 // MSVC seems to only use cookies when the class has a destructor; a 450 // two-argument usual array deallocation function isn't sufficient. 451 // 452 // For example, this code prints "100" and "1": 453 // struct A { 454 // char x; 455 // void *operator new[](size_t sz) { 456 // printf("%u\n", sz); 457 // return malloc(sz); 458 // } 459 // void operator delete[](void *p, size_t sz) { 460 // printf("%u\n", sz); 461 // free(p); 462 // } 463 // }; 464 // int main() { 465 // A *p = new A[100]; 466 // delete[] p; 467 // } 468 // Whereas it prints "104" and "104" if you give A a destructor. 469 470 bool requiresArrayCookie(const CXXDeleteExpr *expr, 471 QualType elementType) override; 472 bool requiresArrayCookie(const CXXNewExpr *expr) override; 473 CharUnits getArrayCookieSizeImpl(QualType type) override; 474 Address InitializeArrayCookie(CodeGenFunction &CGF, 475 Address NewPtr, 476 llvm::Value *NumElements, 477 const CXXNewExpr *expr, 478 QualType ElementType) override; 479 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, 480 Address allocPtr, 481 CharUnits cookieSize) override; 482 483 friend struct MSRTTIBuilder; 484 485 bool isImageRelative() const { 486 return CGM.getTarget().getPointerWidth(LangAS::Default) == 64; 487 } 488 489 // 5 routines for constructing the llvm types for MS RTTI structs. 490 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { 491 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor"); 492 TDTypeName += llvm::utostr(TypeInfoString.size()); 493 llvm::StructType *&TypeDescriptorType = 494 TypeDescriptorTypeMap[TypeInfoString.size()]; 495 if (TypeDescriptorType) 496 return TypeDescriptorType; 497 llvm::Type *FieldTypes[] = { 498 CGM.Int8PtrPtrTy, 499 CGM.Int8PtrTy, 500 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)}; 501 TypeDescriptorType = 502 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName); 503 return TypeDescriptorType; 504 } 505 506 llvm::Type *getImageRelativeType(llvm::Type *PtrType) { 507 if (!isImageRelative()) 508 return PtrType; 509 return CGM.IntTy; 510 } 511 512 llvm::StructType *getBaseClassDescriptorType() { 513 if (BaseClassDescriptorType) 514 return BaseClassDescriptorType; 515 llvm::Type *FieldTypes[] = { 516 getImageRelativeType(CGM.Int8PtrTy), 517 CGM.IntTy, 518 CGM.IntTy, 519 CGM.IntTy, 520 CGM.IntTy, 521 CGM.IntTy, 522 getImageRelativeType(CGM.UnqualPtrTy), 523 }; 524 BaseClassDescriptorType = llvm::StructType::create( 525 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor"); 526 return BaseClassDescriptorType; 527 } 528 529 llvm::StructType *getClassHierarchyDescriptorType() { 530 if (ClassHierarchyDescriptorType) 531 return ClassHierarchyDescriptorType; 532 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. 533 llvm::Type *FieldTypes[] = {CGM.IntTy, CGM.IntTy, CGM.IntTy, 534 getImageRelativeType(CGM.UnqualPtrTy)}; 535 ClassHierarchyDescriptorType = 536 llvm::StructType::create(FieldTypes, "rtti.ClassHierarchyDescriptor"); 537 return ClassHierarchyDescriptorType; 538 } 539 540 llvm::StructType *getCompleteObjectLocatorType() { 541 if (CompleteObjectLocatorType) 542 return CompleteObjectLocatorType; 543 llvm::Type *FieldTypes[] = { 544 CGM.IntTy, 545 CGM.IntTy, 546 CGM.IntTy, 547 getImageRelativeType(CGM.Int8PtrTy), 548 getImageRelativeType(CGM.UnqualPtrTy), 549 getImageRelativeType(CGM.VoidTy), 550 }; 551 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); 552 if (!isImageRelative()) 553 FieldTypesRef = FieldTypesRef.drop_back(); 554 CompleteObjectLocatorType = 555 llvm::StructType::create(FieldTypesRef, "rtti.CompleteObjectLocator"); 556 return CompleteObjectLocatorType; 557 } 558 559 llvm::GlobalVariable *getImageBase() { 560 StringRef Name = "__ImageBase"; 561 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) 562 return GV; 563 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, 565 /*isConstant=*/true, 566 llvm::GlobalValue::ExternalLinkage, 567 /*Initializer=*/nullptr, Name); 568 CGM.setDSOLocal(GV); 569 return GV; 570 } 571 572 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { 573 if (!isImageRelative()) 574 return PtrVal; 575 576 if (PtrVal->isNullValue()) 577 return llvm::Constant::getNullValue(CGM.IntTy); 578 579 llvm::Constant *ImageBaseAsInt = 580 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy); 581 llvm::Constant *PtrValAsInt = 582 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy); 583 llvm::Constant *Diff = 584 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt, 585 /*HasNUW=*/true, /*HasNSW=*/true); 586 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy); 587 } 588 589 private: 590 MicrosoftMangleContext &getMangleContext() { 591 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext()); 592 } 593 594 llvm::Constant *getZeroInt() { 595 return llvm::ConstantInt::get(CGM.IntTy, 0); 596 } 597 598 llvm::Constant *getAllOnesInt() { 599 return llvm::Constant::getAllOnesValue(CGM.IntTy); 600 } 601 602 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override; 603 604 void 605 GetNullMemberPointerFields(const MemberPointerType *MPT, 606 llvm::SmallVectorImpl<llvm::Constant *> &fields); 607 608 /// Shared code for virtual base adjustment. Returns the offset from 609 /// the vbptr to the virtual base. Optionally returns the address of the 610 /// vbptr itself. 611 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 612 Address Base, 613 llvm::Value *VBPtrOffset, 614 llvm::Value *VBTableOffset, 615 llvm::Value **VBPtr = nullptr); 616 617 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 618 Address Base, 619 int32_t VBPtrOffset, 620 int32_t VBTableOffset, 621 llvm::Value **VBPtr = nullptr) { 622 assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s"); 623 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 624 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset); 625 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr); 626 } 627 628 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 629 performBaseAdjustment(CodeGenFunction &CGF, Address Value, 630 QualType SrcRecordTy); 631 632 /// Performs a full virtual base adjustment. Used to dereference 633 /// pointers to members of virtual bases. 634 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, 635 const CXXRecordDecl *RD, Address Base, 636 llvm::Value *VirtualBaseAdjustmentOffset, 637 llvm::Value *VBPtrOffset /* optional */); 638 639 /// Emits a full member pointer with the fields common to data and 640 /// function member pointers. 641 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, 642 bool IsMemberFunction, 643 const CXXRecordDecl *RD, 644 CharUnits NonVirtualBaseAdjustment, 645 unsigned VBTableIndex); 646 647 bool MemberPointerConstantIsNull(const MemberPointerType *MPT, 648 llvm::Constant *MP); 649 650 /// - Initialize all vbptrs of 'this' with RD as the complete type. 651 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); 652 653 /// Caching wrapper around VBTableBuilder::enumerateVBTables(). 654 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); 655 656 /// Generate a thunk for calling a virtual member function MD. 657 llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 658 const MethodVFTableLocation &ML); 659 660 llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD, 661 CharUnits offset); 662 663 public: 664 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; 665 666 bool isZeroInitializable(const MemberPointerType *MPT) override; 667 668 bool isMemberPointerConvertible(const MemberPointerType *MPT) const override { 669 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 670 return RD->hasAttr<MSInheritanceAttr>(); 671 } 672 673 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; 674 675 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, 676 CharUnits offset) override; 677 llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; 678 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; 679 680 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, 681 llvm::Value *L, 682 llvm::Value *R, 683 const MemberPointerType *MPT, 684 bool Inequality) override; 685 686 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 687 llvm::Value *MemPtr, 688 const MemberPointerType *MPT) override; 689 690 llvm::Value * 691 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, 692 Address Base, llvm::Value *MemPtr, 693 const MemberPointerType *MPT) override; 694 695 llvm::Value *EmitNonNullMemberPointerConversion( 696 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 697 CastKind CK, CastExpr::path_const_iterator PathBegin, 698 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 699 CGBuilderTy &Builder); 700 701 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, 702 const CastExpr *E, 703 llvm::Value *Src) override; 704 705 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, 706 llvm::Constant *Src) override; 707 708 llvm::Constant *EmitMemberPointerConversion( 709 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 710 CastKind CK, CastExpr::path_const_iterator PathBegin, 711 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src); 712 713 CGCallee 714 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, 715 Address This, llvm::Value *&ThisPtrForCall, 716 llvm::Value *MemPtr, 717 const MemberPointerType *MPT) override; 718 719 void emitCXXStructor(GlobalDecl GD) override; 720 721 llvm::StructType *getCatchableTypeType() { 722 if (CatchableTypeType) 723 return CatchableTypeType; 724 llvm::Type *FieldTypes[] = { 725 CGM.IntTy, // Flags 726 getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor 727 CGM.IntTy, // NonVirtualAdjustment 728 CGM.IntTy, // OffsetToVBPtr 729 CGM.IntTy, // VBTableIndex 730 CGM.IntTy, // Size 731 getImageRelativeType(CGM.Int8PtrTy) // CopyCtor 732 }; 733 CatchableTypeType = llvm::StructType::create( 734 CGM.getLLVMContext(), FieldTypes, "eh.CatchableType"); 735 return CatchableTypeType; 736 } 737 738 llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) { 739 llvm::StructType *&CatchableTypeArrayType = 740 CatchableTypeArrayTypeMap[NumEntries]; 741 if (CatchableTypeArrayType) 742 return CatchableTypeArrayType; 743 744 llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray."); 745 CTATypeName += llvm::utostr(NumEntries); 746 llvm::Type *CTType = getImageRelativeType(CGM.UnqualPtrTy); 747 llvm::Type *FieldTypes[] = { 748 CGM.IntTy, // NumEntries 749 llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes 750 }; 751 CatchableTypeArrayType = 752 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName); 753 return CatchableTypeArrayType; 754 } 755 756 llvm::StructType *getThrowInfoType() { 757 if (ThrowInfoType) 758 return ThrowInfoType; 759 llvm::Type *FieldTypes[] = { 760 CGM.IntTy, // Flags 761 getImageRelativeType(CGM.Int8PtrTy), // CleanupFn 762 getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat 763 getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray 764 }; 765 ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, 766 "eh.ThrowInfo"); 767 return ThrowInfoType; 768 } 769 770 llvm::FunctionCallee getThrowFn() { 771 // _CxxThrowException is passed an exception object and a ThrowInfo object 772 // which describes the exception. 773 llvm::Type *Args[] = {CGM.Int8PtrTy, CGM.UnqualPtrTy}; 774 llvm::FunctionType *FTy = 775 llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false); 776 llvm::FunctionCallee Throw = 777 CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"); 778 // _CxxThrowException is stdcall on 32-bit x86 platforms. 779 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) { 780 if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee())) 781 Fn->setCallingConv(llvm::CallingConv::X86_StdCall); 782 } 783 return Throw; 784 } 785 786 llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 787 CXXCtorType CT); 788 789 llvm::Constant *getCatchableType(QualType T, 790 uint32_t NVOffset = 0, 791 int32_t VBPtrOffset = -1, 792 uint32_t VBIndex = 0); 793 794 llvm::GlobalVariable *getCatchableTypeArray(QualType T); 795 796 llvm::GlobalVariable *getThrowInfo(QualType T) override; 797 798 std::pair<llvm::Value *, const CXXRecordDecl *> 799 LoadVTablePtr(CodeGenFunction &CGF, Address This, 800 const CXXRecordDecl *RD) override; 801 802 bool 803 isPermittedToBeHomogeneousAggregate(const CXXRecordDecl *RD) const override; 804 805 private: 806 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; 807 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; 808 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; 809 /// All the vftables that have been referenced. 810 VFTablesMapTy VFTablesMap; 811 VTablesMapTy VTablesMap; 812 813 /// This set holds the record decls we've deferred vtable emission for. 814 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; 815 816 817 /// All the vbtables which have been referenced. 818 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; 819 820 /// Info on the global variable used to guard initialization of static locals. 821 /// The BitIndex field is only used for externally invisible declarations. 822 struct GuardInfo { 823 GuardInfo() = default; 824 llvm::GlobalVariable *Guard = nullptr; 825 unsigned BitIndex = 0; 826 }; 827 828 /// Map from DeclContext to the current guard variable. We assume that the 829 /// AST is visited in source code order. 830 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; 831 llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap; 832 llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap; 833 834 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; 835 llvm::StructType *BaseClassDescriptorType; 836 llvm::StructType *ClassHierarchyDescriptorType; 837 llvm::StructType *CompleteObjectLocatorType; 838 839 llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays; 840 841 llvm::StructType *CatchableTypeType; 842 llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap; 843 llvm::StructType *ThrowInfoType; 844 }; 845 846 } 847 848 CGCXXABI::RecordArgABI 849 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { 850 // Use the default C calling convention rules for things that can be passed in 851 // registers, i.e. non-trivially copyable records or records marked with 852 // [[trivial_abi]]. 853 if (RD->canPassInRegisters()) 854 return RAA_Default; 855 856 switch (CGM.getTarget().getTriple().getArch()) { 857 default: 858 // FIXME: Implement for other architectures. 859 return RAA_Indirect; 860 861 case llvm::Triple::thumb: 862 // Pass things indirectly for now because it is simple. 863 // FIXME: This is incompatible with MSVC for arguments with a dtor and no 864 // copy ctor. 865 return RAA_Indirect; 866 867 case llvm::Triple::x86: { 868 // If the argument has *required* alignment greater than four bytes, pass 869 // it indirectly. Prior to MSVC version 19.14, passing overaligned 870 // arguments was not supported and resulted in a compiler error. In 19.14 871 // and later versions, such arguments are now passed indirectly. 872 TypeInfo Info = getContext().getTypeInfo(RD->getTypeForDecl()); 873 if (Info.isAlignRequired() && Info.Align > 4) 874 return RAA_Indirect; 875 876 // If C++ prohibits us from making a copy, construct the arguments directly 877 // into argument memory. 878 return RAA_DirectInMemory; 879 } 880 881 case llvm::Triple::x86_64: 882 case llvm::Triple::aarch64: 883 return RAA_Indirect; 884 } 885 886 llvm_unreachable("invalid enum"); 887 } 888 889 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, 890 const CXXDeleteExpr *DE, 891 Address Ptr, 892 QualType ElementType, 893 const CXXDestructorDecl *Dtor) { 894 // FIXME: Provide a source location here even though there's no 895 // CXXMemberCallExpr for dtor call. 896 bool UseGlobalDelete = DE->isGlobalDelete(); 897 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 898 llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE, 899 /*CallOrInvoke=*/nullptr); 900 if (UseGlobalDelete) 901 CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType); 902 } 903 904 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { 905 llvm::Value *Args[] = {llvm::ConstantPointerNull::get(CGM.Int8PtrTy), 906 llvm::ConstantPointerNull::get(CGM.UnqualPtrTy)}; 907 llvm::FunctionCallee Fn = getThrowFn(); 908 if (isNoReturn) 909 CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args); 910 else 911 CGF.EmitRuntimeCallOrInvoke(Fn, Args); 912 } 913 914 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF, 915 const CXXCatchStmt *S) { 916 // In the MS ABI, the runtime handles the copy, and the catch handler is 917 // responsible for destruction. 918 VarDecl *CatchParam = S->getExceptionDecl(); 919 llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock(); 920 llvm::CatchPadInst *CPI = 921 cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHIIt()); 922 CGF.CurrentFuncletPad = CPI; 923 924 // If this is a catch-all or the catch parameter is unnamed, we don't need to 925 // emit an alloca to the object. 926 if (!CatchParam || !CatchParam->getDeclName()) { 927 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 928 return; 929 } 930 931 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 932 CPI->setArgOperand(2, var.getObjectAddress(CGF).emitRawPointer(CGF)); 933 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 934 CGF.EmitAutoVarCleanups(var); 935 } 936 937 /// We need to perform a generic polymorphic operation (like a typeid 938 /// or a cast), which requires an object with a vfptr. Adjust the 939 /// address to point to an object with a vfptr. 940 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 941 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value, 942 QualType SrcRecordTy) { 943 Value = Value.withElementType(CGF.Int8Ty); 944 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 945 const ASTContext &Context = getContext(); 946 947 // If the class itself has a vfptr, great. This check implicitly 948 // covers non-virtual base subobjects: a class with its own virtual 949 // functions would be a candidate to be a primary base. 950 if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr()) 951 return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0), 952 SrcDecl); 953 954 // Okay, one of the vbases must have a vfptr, or else this isn't 955 // actually a polymorphic class. 956 const CXXRecordDecl *PolymorphicBase = nullptr; 957 for (auto &Base : SrcDecl->vbases()) { 958 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 959 if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) { 960 PolymorphicBase = BaseDecl; 961 break; 962 } 963 } 964 assert(PolymorphicBase && "polymorphic class has no apparent vfptr?"); 965 966 llvm::Value *Offset = 967 GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase); 968 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP( 969 Value.getElementType(), Value.emitRawPointer(CGF), Offset); 970 CharUnits VBaseAlign = 971 CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase); 972 return std::make_tuple(Address(Ptr, CGF.Int8Ty, VBaseAlign), Offset, 973 PolymorphicBase); 974 } 975 976 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(QualType SrcRecordTy) { 977 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 978 return !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 979 } 980 981 static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF, 982 llvm::Value *Argument) { 983 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 984 llvm::FunctionType *FTy = 985 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false); 986 llvm::Value *Args[] = {Argument}; 987 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid"); 988 return CGF.EmitRuntimeCallOrInvoke(Fn, Args); 989 } 990 991 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { 992 llvm::CallBase *Call = 993 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy)); 994 Call->setDoesNotReturn(); 995 CGF.Builder.CreateUnreachable(); 996 } 997 998 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, 999 QualType SrcRecordTy, 1000 Address ThisPtr, 1001 llvm::Type *StdTypeInfoPtrTy) { 1002 std::tie(ThisPtr, std::ignore, std::ignore) = 1003 performBaseAdjustment(CGF, ThisPtr, SrcRecordTy); 1004 llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.emitRawPointer(CGF)); 1005 return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy); 1006 } 1007 1008 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 1009 QualType SrcRecordTy) { 1010 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 1011 return SrcIsPtr && 1012 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 1013 } 1014 1015 llvm::Value *MicrosoftCXXABI::emitDynamicCastCall( 1016 CodeGenFunction &CGF, Address This, QualType SrcRecordTy, QualType DestTy, 1017 QualType DestRecordTy, llvm::BasicBlock *CastEnd) { 1018 llvm::Value *SrcRTTI = 1019 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1020 llvm::Value *DestRTTI = 1021 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1022 1023 llvm::Value *Offset; 1024 std::tie(This, Offset, std::ignore) = 1025 performBaseAdjustment(CGF, This, SrcRecordTy); 1026 llvm::Value *ThisPtr = This.emitRawPointer(CGF); 1027 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty); 1028 1029 // PVOID __RTDynamicCast( 1030 // PVOID inptr, 1031 // LONG VfDelta, 1032 // PVOID SrcType, 1033 // PVOID TargetType, 1034 // BOOL isReference) 1035 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, 1036 CGF.Int8PtrTy, CGF.Int32Ty}; 1037 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1038 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1039 "__RTDynamicCast"); 1040 llvm::Value *Args[] = { 1041 ThisPtr, Offset, SrcRTTI, DestRTTI, 1042 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())}; 1043 return CGF.EmitRuntimeCallOrInvoke(Function, Args); 1044 } 1045 1046 llvm::Value *MicrosoftCXXABI::emitDynamicCastToVoid(CodeGenFunction &CGF, 1047 Address Value, 1048 QualType SrcRecordTy) { 1049 std::tie(Value, std::ignore, std::ignore) = 1050 performBaseAdjustment(CGF, Value, SrcRecordTy); 1051 1052 // PVOID __RTCastToVoid( 1053 // PVOID inptr) 1054 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 1055 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1056 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1057 "__RTCastToVoid"); 1058 llvm::Value *Args[] = {Value.emitRawPointer(CGF)}; 1059 return CGF.EmitRuntimeCall(Function, Args); 1060 } 1061 1062 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { 1063 return false; 1064 } 1065 1066 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset( 1067 CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, 1068 const CXXRecordDecl *BaseClassDecl) { 1069 const ASTContext &Context = getContext(); 1070 int64_t VBPtrChars = 1071 Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity(); 1072 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars); 1073 CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy); 1074 CharUnits VBTableChars = 1075 IntSize * 1076 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl); 1077 llvm::Value *VBTableOffset = 1078 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity()); 1079 1080 llvm::Value *VBPtrToNewBase = 1081 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset); 1082 VBPtrToNewBase = 1083 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy); 1084 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase); 1085 } 1086 1087 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { 1088 return isa<CXXConstructorDecl>(GD.getDecl()); 1089 } 1090 1091 static bool isDeletingDtor(GlobalDecl GD) { 1092 return isa<CXXDestructorDecl>(GD.getDecl()) && 1093 GD.getDtorType() == Dtor_Deleting; 1094 } 1095 1096 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const { 1097 return isDeletingDtor(GD); 1098 } 1099 1100 static bool isTrivialForMSVC(const CXXRecordDecl *RD, QualType Ty, 1101 CodeGenModule &CGM) { 1102 // On AArch64, HVAs that can be passed in registers can also be returned 1103 // in registers. (Note this is using the MSVC definition of an HVA; see 1104 // isPermittedToBeHomogeneousAggregate().) 1105 const Type *Base = nullptr; 1106 uint64_t NumElts = 0; 1107 if (CGM.getTarget().getTriple().isAArch64() && 1108 CGM.getABIInfo().isHomogeneousAggregate(Ty, Base, NumElts) && 1109 isa<VectorType>(Base)) { 1110 return true; 1111 } 1112 1113 // We use the C++14 definition of an aggregate, so we also 1114 // check for: 1115 // No private or protected non static data members. 1116 // No base classes 1117 // No virtual functions 1118 // Additionally, we need to ensure that there is a trivial copy assignment 1119 // operator, a trivial destructor, no user-provided constructors and no 1120 // deleted copy assignment operator. 1121 1122 // We need to cover two cases when checking for a deleted copy assignment 1123 // operator. 1124 // 1125 // struct S { int& r; }; 1126 // The above will have an implicit copy assignment operator that is deleted 1127 // and there will not be a `CXXMethodDecl` for the copy assignment operator. 1128 // This is handled by the `needsImplicitCopyAssignment()` check below. 1129 // 1130 // struct S { S& operator=(const S&) = delete; int i; }; 1131 // The above will not have an implicit copy assignment operator that is 1132 // deleted but there is a deleted `CXXMethodDecl` for the declared copy 1133 // assignment operator. This is handled by the `isDeleted()` check below. 1134 1135 if (RD->hasProtectedFields() || RD->hasPrivateFields()) 1136 return false; 1137 if (RD->getNumBases() > 0) 1138 return false; 1139 if (RD->isPolymorphic()) 1140 return false; 1141 if (RD->hasNonTrivialCopyAssignment()) 1142 return false; 1143 if (RD->needsImplicitCopyAssignment() && !RD->hasSimpleCopyAssignment()) 1144 return false; 1145 for (const Decl *D : RD->decls()) { 1146 if (auto *Ctor = dyn_cast<CXXConstructorDecl>(D)) { 1147 if (Ctor->isUserProvided()) 1148 return false; 1149 } else if (auto *Template = dyn_cast<FunctionTemplateDecl>(D)) { 1150 if (isa<CXXConstructorDecl>(Template->getTemplatedDecl())) 1151 return false; 1152 } else if (auto *MethodDecl = dyn_cast<CXXMethodDecl>(D)) { 1153 if (MethodDecl->isCopyAssignmentOperator() && MethodDecl->isDeleted()) 1154 return false; 1155 } 1156 } 1157 if (RD->hasNonTrivialDestructor()) 1158 return false; 1159 return true; 1160 } 1161 1162 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { 1163 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); 1164 if (!RD) 1165 return false; 1166 1167 bool isTrivialForABI = RD->canPassInRegisters() && 1168 isTrivialForMSVC(RD, FI.getReturnType(), CGM); 1169 1170 // MSVC always returns structs indirectly from C++ instance methods. 1171 bool isIndirectReturn = !isTrivialForABI || FI.isInstanceMethod(); 1172 1173 if (isIndirectReturn) { 1174 CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); 1175 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 1176 1177 // MSVC always passes `this` before the `sret` parameter. 1178 FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod()); 1179 1180 // On AArch64, use the `inreg` attribute if the object is considered to not 1181 // be trivially copyable, or if this is an instance method struct return. 1182 FI.getReturnInfo().setInReg(CGM.getTarget().getTriple().isAArch64()); 1183 1184 return true; 1185 } 1186 1187 // Otherwise, use the C ABI rules. 1188 return false; 1189 } 1190 1191 llvm::BasicBlock * 1192 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 1193 const CXXRecordDecl *RD) { 1194 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1195 assert(IsMostDerivedClass && 1196 "ctor for a class with virtual bases must have an implicit parameter"); 1197 llvm::Value *IsCompleteObject = 1198 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1199 1200 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases"); 1201 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases"); 1202 CGF.Builder.CreateCondBr(IsCompleteObject, 1203 CallVbaseCtorsBB, SkipVbaseCtorsBB); 1204 1205 CGF.EmitBlock(CallVbaseCtorsBB); 1206 1207 // Fill in the vbtable pointers here. 1208 EmitVBPtrStores(CGF, RD); 1209 1210 // CGF will put the base ctor calls in this basic block for us later. 1211 1212 return SkipVbaseCtorsBB; 1213 } 1214 1215 llvm::BasicBlock * 1216 MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) { 1217 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1218 assert(IsMostDerivedClass && 1219 "ctor for a class with virtual bases must have an implicit parameter"); 1220 llvm::Value *IsCompleteObject = 1221 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1222 1223 llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases"); 1224 llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases"); 1225 CGF.Builder.CreateCondBr(IsCompleteObject, 1226 CallVbaseDtorsBB, SkipVbaseDtorsBB); 1227 1228 CGF.EmitBlock(CallVbaseDtorsBB); 1229 // CGF will put the base dtor calls in this basic block for us later. 1230 1231 return SkipVbaseDtorsBB; 1232 } 1233 1234 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( 1235 CodeGenFunction &CGF, const CXXRecordDecl *RD) { 1236 // In most cases, an override for a vbase virtual method can adjust 1237 // the "this" parameter by applying a constant offset. 1238 // However, this is not enough while a constructor or a destructor of some 1239 // class X is being executed if all the following conditions are met: 1240 // - X has virtual bases, (1) 1241 // - X overrides a virtual method M of a vbase Y, (2) 1242 // - X itself is a vbase of the most derived class. 1243 // 1244 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X 1245 // which holds the extra amount of "this" adjustment we must do when we use 1246 // the X vftables (i.e. during X ctor or dtor). 1247 // Outside the ctors and dtors, the values of vtorDisps are zero. 1248 1249 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1250 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; 1251 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); 1252 CGBuilderTy &Builder = CGF.Builder; 1253 1254 llvm::Value *Int8This = nullptr; // Initialize lazily. 1255 1256 for (const CXXBaseSpecifier &S : RD->vbases()) { 1257 const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl(); 1258 auto I = VBaseMap.find(VBase); 1259 assert(I != VBaseMap.end()); 1260 if (!I->second.hasVtorDisp()) 1261 continue; 1262 1263 llvm::Value *VBaseOffset = 1264 GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase); 1265 uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity(); 1266 1267 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). 1268 llvm::Value *VtorDispValue = Builder.CreateSub( 1269 VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset), 1270 "vtordisp.value"); 1271 VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty); 1272 1273 if (!Int8This) 1274 Int8This = getThisValue(CGF); 1275 1276 llvm::Value *VtorDispPtr = 1277 Builder.CreateInBoundsGEP(CGF.Int8Ty, Int8This, VBaseOffset); 1278 // vtorDisp is always the 32-bits before the vbase in the class layout. 1279 VtorDispPtr = Builder.CreateConstGEP1_32(CGF.Int8Ty, VtorDispPtr, -4); 1280 1281 Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr, 1282 CharUnits::fromQuantity(4)); 1283 } 1284 } 1285 1286 static bool hasDefaultCXXMethodCC(ASTContext &Context, 1287 const CXXMethodDecl *MD) { 1288 CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention( 1289 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 1290 CallingConv ActualCallingConv = 1291 MD->getType()->castAs<FunctionProtoType>()->getCallConv(); 1292 return ExpectedCallingConv == ActualCallingConv; 1293 } 1294 1295 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { 1296 // There's only one constructor type in this ABI. 1297 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); 1298 1299 // Exported default constructors either have a simple call-site where they use 1300 // the typical calling convention and have a single 'this' pointer for an 1301 // argument -or- they get a wrapper function which appropriately thunks to the 1302 // real default constructor. This thunk is the default constructor closure. 1303 if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor() && 1304 D->isDefined()) { 1305 if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) { 1306 llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure); 1307 Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage); 1308 CGM.setGVProperties(Fn, D); 1309 } 1310 } 1311 } 1312 1313 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, 1314 const CXXRecordDecl *RD) { 1315 Address This = getThisAddress(CGF); 1316 This = This.withElementType(CGM.Int8Ty); 1317 const ASTContext &Context = getContext(); 1318 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1319 1320 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 1321 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 1322 const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I]; 1323 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 1324 const ASTRecordLayout &SubobjectLayout = 1325 Context.getASTRecordLayout(VBT->IntroducingObject); 1326 CharUnits Offs = VBT->NonVirtualOffset; 1327 Offs += SubobjectLayout.getVBPtrOffset(); 1328 if (VBT->getVBaseWithVPtr()) 1329 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 1330 Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs); 1331 llvm::Value *GVPtr = 1332 CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0); 1333 VBPtr = VBPtr.withElementType(GVPtr->getType()); 1334 CGF.Builder.CreateStore(GVPtr, VBPtr); 1335 } 1336 } 1337 1338 CGCXXABI::AddedStructorArgCounts 1339 MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD, 1340 SmallVectorImpl<CanQualType> &ArgTys) { 1341 AddedStructorArgCounts Added; 1342 // TODO: 'for base' flag 1343 if (isa<CXXDestructorDecl>(GD.getDecl()) && 1344 GD.getDtorType() == Dtor_Deleting) { 1345 // The scalar deleting destructor takes an implicit int parameter. 1346 ArgTys.push_back(getContext().IntTy); 1347 ++Added.Suffix; 1348 } 1349 auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl()); 1350 if (!CD) 1351 return Added; 1352 1353 // All parameters are already in place except is_most_derived, which goes 1354 // after 'this' if it's variadic and last if it's not. 1355 1356 const CXXRecordDecl *Class = CD->getParent(); 1357 const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>(); 1358 if (Class->getNumVBases()) { 1359 if (FPT->isVariadic()) { 1360 ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy); 1361 ++Added.Prefix; 1362 } else { 1363 ArgTys.push_back(getContext().IntTy); 1364 ++Added.Suffix; 1365 } 1366 } 1367 1368 return Added; 1369 } 1370 1371 void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 1372 const CXXDestructorDecl *Dtor, 1373 CXXDtorType DT) const { 1374 // Deleting destructor variants are never imported or exported. Give them the 1375 // default storage class. 1376 if (DT == Dtor_Deleting) { 1377 GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1378 } else { 1379 const NamedDecl *ND = Dtor; 1380 CGM.setDLLImportDLLExport(GV, ND); 1381 } 1382 } 1383 1384 llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage( 1385 GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const { 1386 // Internal things are always internal, regardless of attributes. After this, 1387 // we know the thunk is externally visible. 1388 if (Linkage == GVA_Internal) 1389 return llvm::GlobalValue::InternalLinkage; 1390 1391 switch (DT) { 1392 case Dtor_Base: 1393 // The base destructor most closely tracks the user-declared constructor, so 1394 // we delegate back to the normal declarator case. 1395 return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage); 1396 case Dtor_Complete: 1397 // The complete destructor is like an inline function, but it may be 1398 // imported and therefore must be exported as well. This requires changing 1399 // the linkage if a DLL attribute is present. 1400 if (Dtor->hasAttr<DLLExportAttr>()) 1401 return llvm::GlobalValue::WeakODRLinkage; 1402 if (Dtor->hasAttr<DLLImportAttr>()) 1403 return llvm::GlobalValue::AvailableExternallyLinkage; 1404 return llvm::GlobalValue::LinkOnceODRLinkage; 1405 case Dtor_Deleting: 1406 // Deleting destructors are like inline functions. They have vague linkage 1407 // and are emitted everywhere they are used. They are internal if the class 1408 // is internal. 1409 return llvm::GlobalValue::LinkOnceODRLinkage; 1410 case Dtor_Comdat: 1411 llvm_unreachable("MS C++ ABI does not support comdat dtors"); 1412 } 1413 llvm_unreachable("invalid dtor type"); 1414 } 1415 1416 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { 1417 // The TU defining a dtor is only guaranteed to emit a base destructor. All 1418 // other destructor variants are delegating thunks. 1419 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); 1420 1421 // If the class is dllexported, emit the complete (vbase) destructor wherever 1422 // the base dtor is emitted. 1423 // FIXME: To match MSVC, this should only be done when the class is exported 1424 // with -fdllexport-inlines enabled. 1425 if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>()) 1426 CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); 1427 } 1428 1429 CharUnits 1430 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { 1431 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1432 1433 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1434 // Complete destructors take a pointer to the complete object as a 1435 // parameter, thus don't need this adjustment. 1436 if (GD.getDtorType() == Dtor_Complete) 1437 return CharUnits(); 1438 1439 // There's no Dtor_Base in vftable but it shares the this adjustment with 1440 // the deleting one, so look it up instead. 1441 GD = GlobalDecl(DD, Dtor_Deleting); 1442 } 1443 1444 MethodVFTableLocation ML = 1445 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); 1446 CharUnits Adjustment = ML.VFPtrOffset; 1447 1448 // Normal virtual instance methods need to adjust from the vfptr that first 1449 // defined the virtual method to the virtual base subobject, but destructors 1450 // do not. The vector deleting destructor thunk applies this adjustment for 1451 // us if necessary. 1452 if (isa<CXXDestructorDecl>(MD)) 1453 Adjustment = CharUnits::Zero(); 1454 1455 if (ML.VBase) { 1456 const ASTRecordLayout &DerivedLayout = 1457 getContext().getASTRecordLayout(MD->getParent()); 1458 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase); 1459 } 1460 1461 return Adjustment; 1462 } 1463 1464 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( 1465 CodeGenFunction &CGF, GlobalDecl GD, Address This, 1466 bool VirtualCall) { 1467 if (!VirtualCall) { 1468 // If the call of a virtual function is not virtual, we just have to 1469 // compensate for the adjustment the virtual function does in its prologue. 1470 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); 1471 if (Adjustment.isZero()) 1472 return This; 1473 1474 This = This.withElementType(CGF.Int8Ty); 1475 assert(Adjustment.isPositive()); 1476 return CGF.Builder.CreateConstByteGEP(This, Adjustment); 1477 } 1478 1479 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1480 1481 GlobalDecl LookupGD = GD; 1482 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1483 // Complete dtors take a pointer to the complete object, 1484 // thus don't need adjustment. 1485 if (GD.getDtorType() == Dtor_Complete) 1486 return This; 1487 1488 // There's only Dtor_Deleting in vftable but it shares the this adjustment 1489 // with the base one, so look up the deleting one instead. 1490 LookupGD = GlobalDecl(DD, Dtor_Deleting); 1491 } 1492 MethodVFTableLocation ML = 1493 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 1494 1495 CharUnits StaticOffset = ML.VFPtrOffset; 1496 1497 // Base destructors expect 'this' to point to the beginning of the base 1498 // subobject, not the first vfptr that happens to contain the virtual dtor. 1499 // However, we still need to apply the virtual base adjustment. 1500 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 1501 StaticOffset = CharUnits::Zero(); 1502 1503 Address Result = This; 1504 if (ML.VBase) { 1505 Result = Result.withElementType(CGF.Int8Ty); 1506 1507 const CXXRecordDecl *Derived = MD->getParent(); 1508 const CXXRecordDecl *VBase = ML.VBase; 1509 llvm::Value *VBaseOffset = 1510 GetVirtualBaseClassOffset(CGF, Result, Derived, VBase); 1511 llvm::Value *VBasePtr = CGF.Builder.CreateInBoundsGEP( 1512 Result.getElementType(), Result.emitRawPointer(CGF), VBaseOffset); 1513 CharUnits VBaseAlign = 1514 CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase); 1515 Result = Address(VBasePtr, CGF.Int8Ty, VBaseAlign); 1516 } 1517 if (!StaticOffset.isZero()) { 1518 assert(StaticOffset.isPositive()); 1519 Result = Result.withElementType(CGF.Int8Ty); 1520 if (ML.VBase) { 1521 // Non-virtual adjustment might result in a pointer outside the allocated 1522 // object, e.g. if the final overrider class is laid out after the virtual 1523 // base that declares a method in the most derived class. 1524 // FIXME: Update the code that emits this adjustment in thunks prologues. 1525 Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset); 1526 } else { 1527 Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset); 1528 } 1529 } 1530 return Result; 1531 } 1532 1533 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, 1534 QualType &ResTy, 1535 FunctionArgList &Params) { 1536 ASTContext &Context = getContext(); 1537 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1538 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); 1539 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1540 auto *IsMostDerived = ImplicitParamDecl::Create( 1541 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1542 &Context.Idents.get("is_most_derived"), Context.IntTy, 1543 ImplicitParamKind::Other); 1544 // The 'most_derived' parameter goes second if the ctor is variadic and last 1545 // if it's not. Dtors can't be variadic. 1546 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1547 if (FPT->isVariadic()) 1548 Params.insert(Params.begin() + 1, IsMostDerived); 1549 else 1550 Params.push_back(IsMostDerived); 1551 getStructorImplicitParamDecl(CGF) = IsMostDerived; 1552 } else if (isDeletingDtor(CGF.CurGD)) { 1553 auto *ShouldDelete = ImplicitParamDecl::Create( 1554 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1555 &Context.Idents.get("should_call_delete"), Context.IntTy, 1556 ImplicitParamKind::Other); 1557 Params.push_back(ShouldDelete); 1558 getStructorImplicitParamDecl(CGF) = ShouldDelete; 1559 } 1560 } 1561 1562 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 1563 // Naked functions have no prolog. 1564 if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) 1565 return; 1566 1567 // Overridden virtual methods of non-primary bases need to adjust the incoming 1568 // 'this' pointer in the prologue. In this hierarchy, C::b will subtract 1569 // sizeof(void*) to adjust from B* to C*: 1570 // struct A { virtual void a(); }; 1571 // struct B { virtual void b(); }; 1572 // struct C : A, B { virtual void b(); }; 1573 // 1574 // Leave the value stored in the 'this' alloca unadjusted, so that the 1575 // debugger sees the unadjusted value. Microsoft debuggers require this, and 1576 // will apply the ThisAdjustment in the method type information. 1577 // FIXME: Do something better for DWARF debuggers, which won't expect this, 1578 // without making our codegen depend on debug info settings. 1579 llvm::Value *This = loadIncomingCXXThis(CGF); 1580 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1581 if (!CGF.CurFuncIsThunk && MD->isVirtual()) { 1582 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD); 1583 if (!Adjustment.isZero()) { 1584 assert(Adjustment.isPositive()); 1585 This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This, 1586 -Adjustment.getQuantity()); 1587 } 1588 } 1589 setCXXABIThisValue(CGF, This); 1590 1591 // If this is a function that the ABI specifies returns 'this', initialize 1592 // the return slot to 'this' at the start of the function. 1593 // 1594 // Unlike the setting of return types, this is done within the ABI 1595 // implementation instead of by clients of CGCXXABI because: 1596 // 1) getThisValue is currently protected 1597 // 2) in theory, an ABI could implement 'this' returns some other way; 1598 // HasThisReturn only specifies a contract, not the implementation 1599 if (HasThisReturn(CGF.CurGD) || hasMostDerivedReturn(CGF.CurGD)) 1600 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); 1601 1602 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1603 assert(getStructorImplicitParamDecl(CGF) && 1604 "no implicit parameter for a constructor with virtual bases?"); 1605 getStructorImplicitParamValue(CGF) 1606 = CGF.Builder.CreateLoad( 1607 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1608 "is_most_derived"); 1609 } 1610 1611 if (isDeletingDtor(CGF.CurGD)) { 1612 assert(getStructorImplicitParamDecl(CGF) && 1613 "no implicit parameter for a deleting destructor?"); 1614 getStructorImplicitParamValue(CGF) 1615 = CGF.Builder.CreateLoad( 1616 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1617 "should_call_delete"); 1618 } 1619 } 1620 1621 CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs( 1622 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, 1623 bool ForVirtualBase, bool Delegating) { 1624 assert(Type == Ctor_Complete || Type == Ctor_Base); 1625 1626 // Check if we need a 'most_derived' parameter. 1627 if (!D->getParent()->getNumVBases()) 1628 return AddedStructorArgs{}; 1629 1630 // Add the 'most_derived' argument second if we are variadic or last if not. 1631 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1632 llvm::Value *MostDerivedArg; 1633 if (Delegating) { 1634 MostDerivedArg = getStructorImplicitParamValue(CGF); 1635 } else { 1636 MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete); 1637 } 1638 if (FPT->isVariadic()) { 1639 return AddedStructorArgs::prefix({{MostDerivedArg, getContext().IntTy}}); 1640 } 1641 return AddedStructorArgs::suffix({{MostDerivedArg, getContext().IntTy}}); 1642 } 1643 1644 llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam( 1645 CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, 1646 bool ForVirtualBase, bool Delegating) { 1647 return nullptr; 1648 } 1649 1650 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, 1651 const CXXDestructorDecl *DD, 1652 CXXDtorType Type, bool ForVirtualBase, 1653 bool Delegating, Address This, 1654 QualType ThisTy) { 1655 // Use the base destructor variant in place of the complete destructor variant 1656 // if the class has no virtual bases. This effectively implements some of the 1657 // -mconstructor-aliases optimization, but as part of the MS C++ ABI. 1658 if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0) 1659 Type = Dtor_Base; 1660 1661 GlobalDecl GD(DD, Type); 1662 CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD); 1663 1664 if (DD->isVirtual()) { 1665 assert(Type != CXXDtorType::Dtor_Deleting && 1666 "The deleting destructor should only be called via a virtual call"); 1667 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type), 1668 This, false); 1669 } 1670 1671 llvm::BasicBlock *BaseDtorEndBB = nullptr; 1672 if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) { 1673 BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF); 1674 } 1675 1676 llvm::Value *Implicit = 1677 getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase, 1678 Delegating); // = nullptr 1679 CGF.EmitCXXDestructorCall(GD, Callee, CGF.getAsNaturalPointerTo(This, ThisTy), 1680 ThisTy, 1681 /*ImplicitParam=*/Implicit, 1682 /*ImplicitParamTy=*/QualType(), /*E=*/nullptr); 1683 if (BaseDtorEndBB) { 1684 // Complete object handler should continue to be the remaining 1685 CGF.Builder.CreateBr(BaseDtorEndBB); 1686 CGF.EmitBlock(BaseDtorEndBB); 1687 } 1688 } 1689 1690 void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info, 1691 const CXXRecordDecl *RD, 1692 llvm::GlobalVariable *VTable) { 1693 // Emit type metadata on vtables with LTO or IR instrumentation. 1694 // In IR instrumentation, the type metadata could be used to find out vtable 1695 // definitions (for type profiling) among all global variables. 1696 if (!CGM.getCodeGenOpts().LTOUnit && 1697 !CGM.getCodeGenOpts().hasProfileIRInstr()) 1698 return; 1699 1700 // TODO: Should VirtualFunctionElimination also be supported here? 1701 // See similar handling in CodeGenModule::EmitVTableTypeMetadata. 1702 if (CGM.getCodeGenOpts().WholeProgramVTables) { 1703 llvm::DenseSet<const CXXRecordDecl *> Visited; 1704 llvm::GlobalObject::VCallVisibility TypeVis = 1705 CGM.GetVCallVisibilityLevel(RD, Visited); 1706 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) 1707 VTable->setVCallVisibilityMetadata(TypeVis); 1708 } 1709 1710 // The location of the first virtual function pointer in the virtual table, 1711 // aka the "address point" on Itanium. This is at offset 0 if RTTI is 1712 // disabled, or sizeof(void*) if RTTI is enabled. 1713 CharUnits AddressPoint = 1714 getContext().getLangOpts().RTTIData 1715 ? getContext().toCharUnitsFromBits( 1716 getContext().getTargetInfo().getPointerWidth(LangAS::Default)) 1717 : CharUnits::Zero(); 1718 1719 if (Info.PathToIntroducingObject.empty()) { 1720 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1721 return; 1722 } 1723 1724 // Add a bitset entry for the least derived base belonging to this vftable. 1725 CGM.AddVTableTypeMetadata(VTable, AddressPoint, 1726 Info.PathToIntroducingObject.back()); 1727 1728 // Add a bitset entry for each derived class that is laid out at the same 1729 // offset as the least derived base. 1730 for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) { 1731 const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1]; 1732 const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I]; 1733 1734 const ASTRecordLayout &Layout = 1735 getContext().getASTRecordLayout(DerivedRD); 1736 CharUnits Offset; 1737 auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD); 1738 if (VBI == Layout.getVBaseOffsetsMap().end()) 1739 Offset = Layout.getBaseClassOffset(BaseRD); 1740 else 1741 Offset = VBI->second.VBaseOffset; 1742 if (!Offset.isZero()) 1743 return; 1744 CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD); 1745 } 1746 1747 // Finally do the same for the most derived class. 1748 if (Info.FullOffsetInMDC.isZero()) 1749 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1750 } 1751 1752 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, 1753 const CXXRecordDecl *RD) { 1754 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1755 const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD); 1756 1757 for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) { 1758 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC); 1759 if (VTable->hasInitializer()) 1760 continue; 1761 1762 const VTableLayout &VTLayout = 1763 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC); 1764 1765 llvm::Constant *RTTI = nullptr; 1766 if (any_of(VTLayout.vtable_components(), 1767 [](const VTableComponent &VTC) { return VTC.isRTTIKind(); })) 1768 RTTI = getMSCompleteObjectLocator(RD, *Info); 1769 1770 ConstantInitBuilder builder(CGM); 1771 auto components = builder.beginStruct(); 1772 CGVT.createVTableInitializer(components, VTLayout, RTTI, 1773 VTable->hasLocalLinkage()); 1774 components.finishAndSetAsInitializer(VTable); 1775 1776 emitVTableTypeMetadata(*Info, RD, VTable); 1777 } 1778 } 1779 1780 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField( 1781 CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { 1782 return Vptr.NearestVBase != nullptr; 1783 } 1784 1785 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( 1786 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, 1787 const CXXRecordDecl *NearestVBase) { 1788 llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass); 1789 if (!VTableAddressPoint) { 1790 assert(Base.getBase()->getNumVBases() && 1791 !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); 1792 } 1793 return VTableAddressPoint; 1794 } 1795 1796 static void mangleVFTableName(MicrosoftMangleContext &MangleContext, 1797 const CXXRecordDecl *RD, const VPtrInfo &VFPtr, 1798 SmallString<256> &Name) { 1799 llvm::raw_svector_ostream Out(Name); 1800 MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out); 1801 } 1802 1803 llvm::Constant * 1804 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base, 1805 const CXXRecordDecl *VTableClass) { 1806 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); 1807 VFTableIdTy ID(VTableClass, Base.getBaseOffset()); 1808 return VFTablesMap[ID]; 1809 } 1810 1811 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, 1812 CharUnits VPtrOffset) { 1813 // getAddrOfVTable may return 0 if asked to get an address of a vtable which 1814 // shouldn't be used in the given record type. We want to cache this result in 1815 // VFTablesMap, thus a simple zero check is not sufficient. 1816 1817 VFTableIdTy ID(RD, VPtrOffset); 1818 VTablesMapTy::iterator I; 1819 bool Inserted; 1820 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr)); 1821 if (!Inserted) 1822 return I->second; 1823 1824 llvm::GlobalVariable *&VTable = I->second; 1825 1826 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 1827 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); 1828 1829 if (DeferredVFTables.insert(RD).second) { 1830 // We haven't processed this record type before. 1831 // Queue up this vtable for possible deferred emission. 1832 CGM.addDeferredVTable(RD); 1833 1834 #ifndef NDEBUG 1835 // Create all the vftables at once in order to make sure each vftable has 1836 // a unique mangled name. 1837 llvm::StringSet<> ObservedMangledNames; 1838 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { 1839 SmallString<256> Name; 1840 mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name); 1841 if (!ObservedMangledNames.insert(Name.str()).second) 1842 llvm_unreachable("Already saw this mangling before?"); 1843 } 1844 #endif 1845 } 1846 1847 const std::unique_ptr<VPtrInfo> *VFPtrI = 1848 llvm::find_if(VFPtrs, [&](const std::unique_ptr<VPtrInfo> &VPI) { 1849 return VPI->FullOffsetInMDC == VPtrOffset; 1850 }); 1851 if (VFPtrI == VFPtrs.end()) { 1852 VFTablesMap[ID] = nullptr; 1853 return nullptr; 1854 } 1855 const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI; 1856 1857 SmallString<256> VFTableName; 1858 mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName); 1859 1860 // Classes marked __declspec(dllimport) need vftables generated on the 1861 // import-side in order to support features like constexpr. No other 1862 // translation unit relies on the emission of the local vftable, translation 1863 // units are expected to generate them as needed. 1864 // 1865 // Because of this unique behavior, we maintain this logic here instead of 1866 // getVTableLinkage. 1867 llvm::GlobalValue::LinkageTypes VFTableLinkage = 1868 RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage 1869 : CGM.getVTableLinkage(RD); 1870 bool VFTableComesFromAnotherTU = 1871 llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) || 1872 llvm::GlobalValue::isExternalLinkage(VFTableLinkage); 1873 bool VTableAliasIsRequred = 1874 !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData; 1875 1876 if (llvm::GlobalValue *VFTable = 1877 CGM.getModule().getNamedGlobal(VFTableName)) { 1878 VFTablesMap[ID] = VFTable; 1879 VTable = VTableAliasIsRequred 1880 ? cast<llvm::GlobalVariable>( 1881 cast<llvm::GlobalAlias>(VFTable)->getAliaseeObject()) 1882 : cast<llvm::GlobalVariable>(VFTable); 1883 return VTable; 1884 } 1885 1886 const VTableLayout &VTLayout = 1887 VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC); 1888 llvm::GlobalValue::LinkageTypes VTableLinkage = 1889 VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage; 1890 1891 StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str(); 1892 1893 llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); 1894 1895 // Create a backing variable for the contents of VTable. The VTable may 1896 // or may not include space for a pointer to RTTI data. 1897 llvm::GlobalValue *VFTable; 1898 VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType, 1899 /*isConstant=*/true, VTableLinkage, 1900 /*Initializer=*/nullptr, VTableName); 1901 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1902 1903 llvm::Comdat *C = nullptr; 1904 if (!VFTableComesFromAnotherTU && 1905 llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) 1906 C = CGM.getModule().getOrInsertComdat(VFTableName.str()); 1907 1908 // Only insert a pointer into the VFTable for RTTI data if we are not 1909 // importing it. We never reference the RTTI data directly so there is no 1910 // need to make room for it. 1911 if (VTableAliasIsRequred) { 1912 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0), 1913 llvm::ConstantInt::get(CGM.Int32Ty, 0), 1914 llvm::ConstantInt::get(CGM.Int32Ty, 1)}; 1915 // Create a GEP which points just after the first entry in the VFTable, 1916 // this should be the location of the first virtual method. 1917 llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr( 1918 VTable->getValueType(), VTable, GEPIndices); 1919 if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) { 1920 VFTableLinkage = llvm::GlobalValue::ExternalLinkage; 1921 if (C) 1922 C->setSelectionKind(llvm::Comdat::Largest); 1923 } 1924 VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy, 1925 /*AddressSpace=*/0, VFTableLinkage, 1926 VFTableName.str(), VTableGEP, 1927 &CGM.getModule()); 1928 VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1929 } else { 1930 // We don't need a GlobalAlias to be a symbol for the VTable if we won't 1931 // be referencing any RTTI data. 1932 // The GlobalVariable will end up being an appropriate definition of the 1933 // VFTable. 1934 VFTable = VTable; 1935 } 1936 if (C) 1937 VTable->setComdat(C); 1938 1939 if (RD->hasAttr<DLLExportAttr>()) 1940 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1941 1942 VFTablesMap[ID] = VFTable; 1943 return VTable; 1944 } 1945 1946 CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, 1947 GlobalDecl GD, 1948 Address This, 1949 llvm::Type *Ty, 1950 SourceLocation Loc) { 1951 CGBuilderTy &Builder = CGF.Builder; 1952 1953 Ty = CGF.UnqualPtrTy; 1954 Address VPtr = 1955 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1956 1957 auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl()); 1958 llvm::Value *VTable = 1959 CGF.GetVTablePtr(VPtr, CGF.UnqualPtrTy, MethodDecl->getParent()); 1960 1961 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1962 MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD); 1963 1964 // Compute the identity of the most derived class whose virtual table is 1965 // located at the MethodVFTableLocation ML. 1966 auto getObjectWithVPtr = [&] { 1967 return llvm::find_if(VFTContext.getVFPtrOffsets( 1968 ML.VBase ? ML.VBase : MethodDecl->getParent()), 1969 [&](const std::unique_ptr<VPtrInfo> &Info) { 1970 return Info->FullOffsetInMDC == ML.VFPtrOffset; 1971 }) 1972 ->get() 1973 ->ObjectWithVPtr; 1974 }; 1975 1976 llvm::Value *VFunc; 1977 if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { 1978 VFunc = CGF.EmitVTableTypeCheckedLoad( 1979 getObjectWithVPtr(), VTable, Ty, 1980 ML.Index * 1981 CGM.getContext().getTargetInfo().getPointerWidth(LangAS::Default) / 1982 8); 1983 } else { 1984 if (CGM.getCodeGenOpts().PrepareForLTO) 1985 CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc); 1986 1987 llvm::Value *VFuncPtr = 1988 Builder.CreateConstInBoundsGEP1_64(Ty, VTable, ML.Index, "vfn"); 1989 VFunc = Builder.CreateAlignedLoad(Ty, VFuncPtr, CGF.getPointerAlign()); 1990 } 1991 1992 CGCallee Callee(GD, VFunc); 1993 return Callee; 1994 } 1995 1996 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall( 1997 CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, 1998 Address This, DeleteOrMemberCallExpr E, llvm::CallBase **CallOrInvoke) { 1999 auto *CE = E.dyn_cast<const CXXMemberCallExpr *>(); 2000 auto *D = E.dyn_cast<const CXXDeleteExpr *>(); 2001 assert((CE != nullptr) ^ (D != nullptr)); 2002 assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); 2003 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); 2004 2005 // We have only one destructor in the vftable but can get both behaviors 2006 // by passing an implicit int parameter. 2007 GlobalDecl GD(Dtor, Dtor_Deleting); 2008 const CGFunctionInfo *FInfo = 2009 &CGM.getTypes().arrangeCXXStructorDeclaration(GD); 2010 llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); 2011 CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty); 2012 2013 ASTContext &Context = getContext(); 2014 llvm::Value *ImplicitParam = llvm::ConstantInt::get( 2015 llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()), 2016 DtorType == Dtor_Deleting); 2017 2018 QualType ThisTy; 2019 if (CE) { 2020 ThisTy = CE->getObjectType(); 2021 } else { 2022 ThisTy = D->getDestroyedType(); 2023 } 2024 2025 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 2026 RValue RV = 2027 CGF.EmitCXXDestructorCall(GD, Callee, This.emitRawPointer(CGF), ThisTy, 2028 ImplicitParam, Context.IntTy, CE, CallOrInvoke); 2029 return RV.getScalarVal(); 2030 } 2031 2032 const VBTableGlobals & 2033 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { 2034 // At this layer, we can key the cache off of a single class, which is much 2035 // easier than caching each vbtable individually. 2036 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry; 2037 bool Added; 2038 std::tie(Entry, Added) = 2039 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals())); 2040 VBTableGlobals &VBGlobals = Entry->second; 2041 if (!Added) 2042 return VBGlobals; 2043 2044 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2045 VBGlobals.VBTables = &Context.enumerateVBTables(RD); 2046 2047 // Cache the globals for all vbtables so we don't have to recompute the 2048 // mangled names. 2049 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); 2050 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), 2051 E = VBGlobals.VBTables->end(); 2052 I != E; ++I) { 2053 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage)); 2054 } 2055 2056 return VBGlobals; 2057 } 2058 2059 llvm::Function * 2060 MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 2061 const MethodVFTableLocation &ML) { 2062 assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) && 2063 "can't form pointers to ctors or virtual dtors"); 2064 2065 // Calculate the mangled name. 2066 SmallString<256> ThunkName; 2067 llvm::raw_svector_ostream Out(ThunkName); 2068 getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out); 2069 2070 // If the thunk has been generated previously, just return it. 2071 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 2072 return cast<llvm::Function>(GV); 2073 2074 // Create the llvm::Function. 2075 const CGFunctionInfo &FnInfo = 2076 CGM.getTypes().arrangeUnprototypedMustTailThunk(MD); 2077 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 2078 llvm::Function *ThunkFn = 2079 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage, 2080 ThunkName.str(), &CGM.getModule()); 2081 assert(ThunkFn->getName() == ThunkName && "name was uniqued!"); 2082 2083 ThunkFn->setLinkage(MD->isExternallyVisible() 2084 ? llvm::GlobalValue::LinkOnceODRLinkage 2085 : llvm::GlobalValue::InternalLinkage); 2086 if (MD->isExternallyVisible()) 2087 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 2088 2089 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false); 2090 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); 2091 2092 // Add the "thunk" attribute so that LLVM knows that the return type is 2093 // meaningless. These thunks can be used to call functions with differing 2094 // return types, and the caller is required to cast the prototype 2095 // appropriately to extract the correct value. 2096 ThunkFn->addFnAttr("thunk"); 2097 2098 // These thunks can be compared, so they are not unnamed. 2099 ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 2100 2101 // Start codegen. 2102 CodeGenFunction CGF(CGM); 2103 CGF.CurGD = GlobalDecl(MD); 2104 CGF.CurFuncIsThunk = true; 2105 2106 // Build FunctionArgs, but only include the implicit 'this' parameter 2107 // declaration. 2108 FunctionArgList FunctionArgs; 2109 buildThisParam(CGF, FunctionArgs); 2110 2111 // Start defining the function. 2112 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 2113 FunctionArgs, MD->getLocation(), SourceLocation()); 2114 2115 ApplyDebugLocation AL(CGF, MD->getLocation()); 2116 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 2117 2118 // Load the vfptr and then callee from the vftable. The callee should have 2119 // adjusted 'this' so that the vfptr is at offset zero. 2120 llvm::Type *ThunkPtrTy = CGF.UnqualPtrTy; 2121 llvm::Value *VTable = 2122 CGF.GetVTablePtr(getThisAddress(CGF), CGF.UnqualPtrTy, MD->getParent()); 2123 2124 llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64( 2125 ThunkPtrTy, VTable, ML.Index, "vfn"); 2126 llvm::Value *Callee = 2127 CGF.Builder.CreateAlignedLoad(ThunkPtrTy, VFuncPtr, CGF.getPointerAlign()); 2128 2129 CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee}); 2130 2131 return ThunkFn; 2132 } 2133 2134 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { 2135 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 2136 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 2137 const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I]; 2138 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 2139 if (GV->isDeclaration()) 2140 emitVBTableDefinition(*VBT, RD, GV); 2141 } 2142 } 2143 2144 llvm::GlobalVariable * 2145 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 2146 llvm::GlobalVariable::LinkageTypes Linkage) { 2147 SmallString<256> OutName; 2148 llvm::raw_svector_ostream Out(OutName); 2149 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out); 2150 StringRef Name = OutName.str(); 2151 2152 llvm::ArrayType *VBTableType = 2153 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases()); 2154 2155 assert(!CGM.getModule().getNamedGlobal(Name) && 2156 "vbtable with this name already exists: mangling bug?"); 2157 CharUnits Alignment = 2158 CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy); 2159 llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( 2160 Name, VBTableType, Linkage, Alignment.getAsAlign()); 2161 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2162 2163 if (RD->hasAttr<DLLImportAttr>()) 2164 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2165 else if (RD->hasAttr<DLLExportAttr>()) 2166 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2167 2168 if (!GV->hasExternalLinkage()) 2169 emitVBTableDefinition(VBT, RD, GV); 2170 2171 return GV; 2172 } 2173 2174 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, 2175 const CXXRecordDecl *RD, 2176 llvm::GlobalVariable *GV) const { 2177 const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr; 2178 2179 assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() && 2180 "should only emit vbtables for classes with vbtables"); 2181 2182 const ASTRecordLayout &BaseLayout = 2183 getContext().getASTRecordLayout(VBT.IntroducingObject); 2184 const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD); 2185 2186 SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(), 2187 nullptr); 2188 2189 // The offset from ObjectWithVPtr's vbptr to itself always leads. 2190 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); 2191 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity()); 2192 2193 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2194 for (const auto &I : ObjectWithVPtr->vbases()) { 2195 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 2196 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); 2197 assert(!Offset.isNegative()); 2198 2199 // Make it relative to the subobject vbptr. 2200 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; 2201 if (VBT.getVBaseWithVPtr()) 2202 CompleteVBPtrOffset += 2203 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr()); 2204 Offset -= CompleteVBPtrOffset; 2205 2206 unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase); 2207 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?"); 2208 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity()); 2209 } 2210 2211 assert(Offsets.size() == 2212 cast<llvm::ArrayType>(GV->getValueType())->getNumElements()); 2213 llvm::ArrayType *VBTableType = 2214 llvm::ArrayType::get(CGM.IntTy, Offsets.size()); 2215 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets); 2216 GV->setInitializer(Init); 2217 2218 if (RD->hasAttr<DLLImportAttr>()) 2219 GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage); 2220 } 2221 2222 llvm::Value *MicrosoftCXXABI::performThisAdjustment( 2223 CodeGenFunction &CGF, Address This, 2224 const CXXRecordDecl * /*UnadjustedClass*/, const ThunkInfo &TI) { 2225 const ThisAdjustment &TA = TI.This; 2226 if (TA.isEmpty()) 2227 return This.emitRawPointer(CGF); 2228 2229 This = This.withElementType(CGF.Int8Ty); 2230 2231 llvm::Value *V; 2232 if (TA.Virtual.isEmpty()) { 2233 V = This.emitRawPointer(CGF); 2234 } else { 2235 assert(TA.Virtual.Microsoft.VtordispOffset < 0); 2236 // Adjust the this argument based on the vtordisp value. 2237 Address VtorDispPtr = 2238 CGF.Builder.CreateConstInBoundsByteGEP(This, 2239 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset)); 2240 VtorDispPtr = VtorDispPtr.withElementType(CGF.Int32Ty); 2241 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp"); 2242 V = CGF.Builder.CreateGEP(This.getElementType(), This.emitRawPointer(CGF), 2243 CGF.Builder.CreateNeg(VtorDisp)); 2244 2245 // Unfortunately, having applied the vtordisp means that we no 2246 // longer really have a known alignment for the vbptr step. 2247 // We'll assume the vbptr is pointer-aligned. 2248 2249 if (TA.Virtual.Microsoft.VBPtrOffset) { 2250 // If the final overrider is defined in a virtual base other than the one 2251 // that holds the vfptr, we have to use a vtordispex thunk which looks up 2252 // the vbtable of the derived class. 2253 assert(TA.Virtual.Microsoft.VBPtrOffset > 0); 2254 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); 2255 llvm::Value *VBPtr; 2256 llvm::Value *VBaseOffset = GetVBaseOffsetFromVBPtr( 2257 CGF, Address(V, CGF.Int8Ty, CGF.getPointerAlign()), 2258 -TA.Virtual.Microsoft.VBPtrOffset, 2259 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr); 2260 V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset); 2261 } 2262 } 2263 2264 if (TA.NonVirtual) { 2265 // Non-virtual adjustment might result in a pointer outside the allocated 2266 // object, e.g. if the final overrider class is laid out after the virtual 2267 // base that declares a method in the most derived class. 2268 V = CGF.Builder.CreateConstGEP1_32(CGF.Int8Ty, V, TA.NonVirtual); 2269 } 2270 2271 // Don't need to bitcast back, the call CodeGen will handle this. 2272 return V; 2273 } 2274 2275 llvm::Value *MicrosoftCXXABI::performReturnAdjustment( 2276 CodeGenFunction &CGF, Address Ret, 2277 const CXXRecordDecl * /*UnadjustedClass*/, const ReturnAdjustment &RA) { 2278 2279 if (RA.isEmpty()) 2280 return Ret.emitRawPointer(CGF); 2281 2282 Ret = Ret.withElementType(CGF.Int8Ty); 2283 2284 llvm::Value *V = Ret.emitRawPointer(CGF); 2285 if (RA.Virtual.Microsoft.VBIndex) { 2286 assert(RA.Virtual.Microsoft.VBIndex > 0); 2287 int32_t IntSize = CGF.getIntSize().getQuantity(); 2288 llvm::Value *VBPtr; 2289 llvm::Value *VBaseOffset = 2290 GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset, 2291 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr); 2292 V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset); 2293 } 2294 2295 if (RA.NonVirtual) 2296 V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual); 2297 2298 return V; 2299 } 2300 2301 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, 2302 QualType elementType) { 2303 // Microsoft seems to completely ignore the possibility of a 2304 // two-argument usual deallocation function. 2305 return elementType.isDestructedType(); 2306 } 2307 2308 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { 2309 // Microsoft seems to completely ignore the possibility of a 2310 // two-argument usual deallocation function. 2311 return expr->getAllocatedType().isDestructedType(); 2312 } 2313 2314 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { 2315 // The array cookie is always a size_t; we then pad that out to the 2316 // alignment of the element type. 2317 ASTContext &Ctx = getContext(); 2318 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), 2319 Ctx.getTypeAlignInChars(type)); 2320 } 2321 2322 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, 2323 Address allocPtr, 2324 CharUnits cookieSize) { 2325 Address numElementsPtr = allocPtr.withElementType(CGF.SizeTy); 2326 return CGF.Builder.CreateLoad(numElementsPtr); 2327 } 2328 2329 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 2330 Address newPtr, 2331 llvm::Value *numElements, 2332 const CXXNewExpr *expr, 2333 QualType elementType) { 2334 assert(requiresArrayCookie(expr)); 2335 2336 // The size of the cookie. 2337 CharUnits cookieSize = getArrayCookieSizeImpl(elementType); 2338 2339 // Compute an offset to the cookie. 2340 Address cookiePtr = newPtr; 2341 2342 // Write the number of elements into the appropriate slot. 2343 Address numElementsPtr = cookiePtr.withElementType(CGF.SizeTy); 2344 CGF.Builder.CreateStore(numElements, numElementsPtr); 2345 2346 // Finally, compute a pointer to the actual data buffer by skipping 2347 // over the cookie completely. 2348 return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); 2349 } 2350 2351 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD, 2352 llvm::FunctionCallee Dtor, 2353 llvm::Constant *Addr) { 2354 // Create a function which calls the destructor. 2355 llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr); 2356 2357 // extern "C" int __tlregdtor(void (*f)(void)); 2358 llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get( 2359 CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false); 2360 2361 llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction( 2362 TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true); 2363 if (llvm::Function *TLRegDtorFn = 2364 dyn_cast<llvm::Function>(TLRegDtor.getCallee())) 2365 TLRegDtorFn->setDoesNotThrow(); 2366 2367 CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub); 2368 } 2369 2370 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 2371 llvm::FunctionCallee Dtor, 2372 llvm::Constant *Addr) { 2373 if (D.isNoDestroy(CGM.getContext())) 2374 return; 2375 2376 if (D.getTLSKind()) 2377 return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr); 2378 2379 // HLSL doesn't support atexit. 2380 if (CGM.getLangOpts().HLSL) 2381 return CGM.AddCXXDtorEntry(Dtor, Addr); 2382 2383 // The default behavior is to use atexit. 2384 CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr); 2385 } 2386 2387 void MicrosoftCXXABI::EmitThreadLocalInitFuncs( 2388 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 2389 ArrayRef<llvm::Function *> CXXThreadLocalInits, 2390 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { 2391 if (CXXThreadLocalInits.empty()) 2392 return; 2393 2394 CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() == 2395 llvm::Triple::x86 2396 ? "/include:___dyn_tls_init@12" 2397 : "/include:__dyn_tls_init"); 2398 2399 // This will create a GV in the .CRT$XDU section. It will point to our 2400 // initialization function. The CRT will call all of these function 2401 // pointers at start-up time and, eventually, at thread-creation time. 2402 auto AddToXDU = [&CGM](llvm::Function *InitFunc) { 2403 llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable( 2404 CGM.getModule(), InitFunc->getType(), /*isConstant=*/true, 2405 llvm::GlobalVariable::InternalLinkage, InitFunc, 2406 Twine(InitFunc->getName(), "$initializer$")); 2407 InitFuncPtr->setSection(".CRT$XDU"); 2408 // This variable has discardable linkage, we have to add it to @llvm.used to 2409 // ensure it won't get discarded. 2410 CGM.addUsedGlobal(InitFuncPtr); 2411 return InitFuncPtr; 2412 }; 2413 2414 std::vector<llvm::Function *> NonComdatInits; 2415 for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) { 2416 llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>( 2417 CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I]))); 2418 llvm::Function *F = CXXThreadLocalInits[I]; 2419 2420 // If the GV is already in a comdat group, then we have to join it. 2421 if (llvm::Comdat *C = GV->getComdat()) 2422 AddToXDU(F)->setComdat(C); 2423 else 2424 NonComdatInits.push_back(F); 2425 } 2426 2427 if (!NonComdatInits.empty()) { 2428 llvm::FunctionType *FTy = 2429 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 2430 llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction( 2431 FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(), 2432 SourceLocation(), /*TLS=*/true); 2433 CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits); 2434 2435 AddToXDU(InitFunc); 2436 } 2437 } 2438 2439 static llvm::GlobalValue *getTlsGuardVar(CodeGenModule &CGM) { 2440 // __tls_guard comes from the MSVC runtime and reflects 2441 // whether TLS has been initialized for a particular thread. 2442 // It is set from within __dyn_tls_init by the runtime. 2443 // Every library and executable has its own variable. 2444 llvm::Type *VTy = llvm::Type::getInt8Ty(CGM.getLLVMContext()); 2445 llvm::Constant *TlsGuardConstant = 2446 CGM.CreateRuntimeVariable(VTy, "__tls_guard"); 2447 llvm::GlobalValue *TlsGuard = cast<llvm::GlobalValue>(TlsGuardConstant); 2448 2449 TlsGuard->setThreadLocal(true); 2450 2451 return TlsGuard; 2452 } 2453 2454 static llvm::FunctionCallee getDynTlsOnDemandInitFn(CodeGenModule &CGM) { 2455 // __dyn_tls_on_demand_init comes from the MSVC runtime and triggers 2456 // dynamic TLS initialization by calling __dyn_tls_init internally. 2457 llvm::FunctionType *FTy = 2458 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), {}, 2459 /*isVarArg=*/false); 2460 return CGM.CreateRuntimeFunction( 2461 FTy, "__dyn_tls_on_demand_init", 2462 llvm::AttributeList::get(CGM.getLLVMContext(), 2463 llvm::AttributeList::FunctionIndex, 2464 llvm::Attribute::NoUnwind), 2465 /*Local=*/true); 2466 } 2467 2468 static void emitTlsGuardCheck(CodeGenFunction &CGF, llvm::GlobalValue *TlsGuard, 2469 llvm::BasicBlock *DynInitBB, 2470 llvm::BasicBlock *ContinueBB) { 2471 llvm::LoadInst *TlsGuardValue = 2472 CGF.Builder.CreateLoad(Address(TlsGuard, CGF.Int8Ty, CharUnits::One())); 2473 llvm::Value *CmpResult = 2474 CGF.Builder.CreateICmpEQ(TlsGuardValue, CGF.Builder.getInt8(0)); 2475 CGF.Builder.CreateCondBr(CmpResult, DynInitBB, ContinueBB); 2476 } 2477 2478 static void emitDynamicTlsInitializationCall(CodeGenFunction &CGF, 2479 llvm::GlobalValue *TlsGuard, 2480 llvm::BasicBlock *ContinueBB) { 2481 llvm::FunctionCallee Initializer = getDynTlsOnDemandInitFn(CGF.CGM); 2482 llvm::Function *InitializerFunction = 2483 cast<llvm::Function>(Initializer.getCallee()); 2484 llvm::CallInst *CallVal = CGF.Builder.CreateCall(InitializerFunction); 2485 CallVal->setCallingConv(InitializerFunction->getCallingConv()); 2486 2487 CGF.Builder.CreateBr(ContinueBB); 2488 } 2489 2490 static void emitDynamicTlsInitialization(CodeGenFunction &CGF) { 2491 llvm::BasicBlock *DynInitBB = 2492 CGF.createBasicBlock("dyntls.dyn_init", CGF.CurFn); 2493 llvm::BasicBlock *ContinueBB = 2494 CGF.createBasicBlock("dyntls.continue", CGF.CurFn); 2495 2496 llvm::GlobalValue *TlsGuard = getTlsGuardVar(CGF.CGM); 2497 2498 emitTlsGuardCheck(CGF, TlsGuard, DynInitBB, ContinueBB); 2499 CGF.Builder.SetInsertPoint(DynInitBB); 2500 emitDynamicTlsInitializationCall(CGF, TlsGuard, ContinueBB); 2501 CGF.Builder.SetInsertPoint(ContinueBB); 2502 } 2503 2504 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, 2505 const VarDecl *VD, 2506 QualType LValType) { 2507 // Dynamic TLS initialization works by checking the state of a 2508 // guard variable (__tls_guard) to see whether TLS initialization 2509 // for a thread has happend yet. 2510 // If not, the initialization is triggered on-demand 2511 // by calling __dyn_tls_on_demand_init. 2512 emitDynamicTlsInitialization(CGF); 2513 2514 // Emit the variable just like any regular global variable. 2515 2516 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2517 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2518 2519 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2520 Address Addr(V, RealVarTy, Alignment); 2521 2522 LValue LV = VD->getType()->isReferenceType() 2523 ? CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2524 AlignmentSource::Decl) 2525 : CGF.MakeAddrLValue(Addr, LValType, AlignmentSource::Decl); 2526 return LV; 2527 } 2528 2529 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) { 2530 StringRef VarName("_Init_thread_epoch"); 2531 CharUnits Align = CGM.getIntAlign(); 2532 if (auto *GV = CGM.getModule().getNamedGlobal(VarName)) 2533 return ConstantAddress(GV, GV->getValueType(), Align); 2534 auto *GV = new llvm::GlobalVariable( 2535 CGM.getModule(), CGM.IntTy, 2536 /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage, 2537 /*Initializer=*/nullptr, VarName, 2538 /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel); 2539 GV->setAlignment(Align.getAsAlign()); 2540 return ConstantAddress(GV, GV->getValueType(), Align); 2541 } 2542 2543 static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) { 2544 llvm::FunctionType *FTy = 2545 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2546 CGM.UnqualPtrTy, /*isVarArg=*/false); 2547 return CGM.CreateRuntimeFunction( 2548 FTy, "_Init_thread_header", 2549 llvm::AttributeList::get(CGM.getLLVMContext(), 2550 llvm::AttributeList::FunctionIndex, 2551 llvm::Attribute::NoUnwind), 2552 /*Local=*/true); 2553 } 2554 2555 static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) { 2556 llvm::FunctionType *FTy = 2557 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2558 CGM.UnqualPtrTy, /*isVarArg=*/false); 2559 return CGM.CreateRuntimeFunction( 2560 FTy, "_Init_thread_footer", 2561 llvm::AttributeList::get(CGM.getLLVMContext(), 2562 llvm::AttributeList::FunctionIndex, 2563 llvm::Attribute::NoUnwind), 2564 /*Local=*/true); 2565 } 2566 2567 static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) { 2568 llvm::FunctionType *FTy = 2569 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2570 CGM.UnqualPtrTy, /*isVarArg=*/false); 2571 return CGM.CreateRuntimeFunction( 2572 FTy, "_Init_thread_abort", 2573 llvm::AttributeList::get(CGM.getLLVMContext(), 2574 llvm::AttributeList::FunctionIndex, 2575 llvm::Attribute::NoUnwind), 2576 /*Local=*/true); 2577 } 2578 2579 namespace { 2580 struct ResetGuardBit final : EHScopeStack::Cleanup { 2581 Address Guard; 2582 unsigned GuardNum; 2583 ResetGuardBit(Address Guard, unsigned GuardNum) 2584 : Guard(Guard), GuardNum(GuardNum) {} 2585 2586 void Emit(CodeGenFunction &CGF, Flags flags) override { 2587 // Reset the bit in the mask so that the static variable may be 2588 // reinitialized. 2589 CGBuilderTy &Builder = CGF.Builder; 2590 llvm::LoadInst *LI = Builder.CreateLoad(Guard); 2591 llvm::ConstantInt *Mask = 2592 llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum)); 2593 Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard); 2594 } 2595 }; 2596 2597 struct CallInitThreadAbort final : EHScopeStack::Cleanup { 2598 llvm::Value *Guard; 2599 CallInitThreadAbort(RawAddress Guard) : Guard(Guard.getPointer()) {} 2600 2601 void Emit(CodeGenFunction &CGF, Flags flags) override { 2602 // Calling _Init_thread_abort will reset the guard's state. 2603 CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard); 2604 } 2605 }; 2606 } 2607 2608 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 2609 llvm::GlobalVariable *GV, 2610 bool PerformInit) { 2611 // MSVC only uses guards for static locals. 2612 if (!D.isStaticLocal()) { 2613 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); 2614 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. 2615 llvm::Function *F = CGF.CurFn; 2616 F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 2617 F->setComdat(CGM.getModule().getOrInsertComdat(F->getName())); 2618 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2619 return; 2620 } 2621 2622 bool ThreadlocalStatic = D.getTLSKind(); 2623 bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics; 2624 2625 // Thread-safe static variables which aren't thread-specific have a 2626 // per-variable guard. 2627 bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic; 2628 2629 CGBuilderTy &Builder = CGF.Builder; 2630 llvm::IntegerType *GuardTy = CGF.Int32Ty; 2631 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0); 2632 CharUnits GuardAlign = CharUnits::fromQuantity(4); 2633 2634 // Get the guard variable for this function if we have one already. 2635 GuardInfo *GI = nullptr; 2636 if (ThreadlocalStatic) 2637 GI = &ThreadLocalGuardVariableMap[D.getDeclContext()]; 2638 else if (!ThreadsafeStatic) 2639 GI = &GuardVariableMap[D.getDeclContext()]; 2640 2641 llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr; 2642 unsigned GuardNum; 2643 if (D.isExternallyVisible()) { 2644 // Externally visible variables have to be numbered in Sema to properly 2645 // handle unreachable VarDecls. 2646 GuardNum = getContext().getStaticLocalNumber(&D); 2647 assert(GuardNum > 0); 2648 GuardNum--; 2649 } else if (HasPerVariableGuard) { 2650 GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++; 2651 } else { 2652 // Non-externally visible variables are numbered here in CodeGen. 2653 GuardNum = GI->BitIndex++; 2654 } 2655 2656 if (!HasPerVariableGuard && GuardNum >= 32) { 2657 if (D.isExternallyVisible()) 2658 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations"); 2659 GuardNum %= 32; 2660 GuardVar = nullptr; 2661 } 2662 2663 if (!GuardVar) { 2664 // Mangle the name for the guard. 2665 SmallString<256> GuardName; 2666 { 2667 llvm::raw_svector_ostream Out(GuardName); 2668 if (HasPerVariableGuard) 2669 getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum, 2670 Out); 2671 else 2672 getMangleContext().mangleStaticGuardVariable(&D, Out); 2673 } 2674 2675 // Create the guard variable with a zero-initializer. Just absorb linkage, 2676 // visibility and dll storage class from the guarded variable. 2677 GuardVar = 2678 new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false, 2679 GV->getLinkage(), Zero, GuardName.str()); 2680 GuardVar->setVisibility(GV->getVisibility()); 2681 GuardVar->setDLLStorageClass(GV->getDLLStorageClass()); 2682 GuardVar->setAlignment(GuardAlign.getAsAlign()); 2683 if (GuardVar->isWeakForLinker()) 2684 GuardVar->setComdat( 2685 CGM.getModule().getOrInsertComdat(GuardVar->getName())); 2686 if (D.getTLSKind()) 2687 CGM.setTLSMode(GuardVar, D); 2688 if (GI && !HasPerVariableGuard) 2689 GI->Guard = GuardVar; 2690 } 2691 2692 ConstantAddress GuardAddr(GuardVar, GuardTy, GuardAlign); 2693 2694 assert(GuardVar->getLinkage() == GV->getLinkage() && 2695 "static local from the same function had different linkage"); 2696 2697 if (!HasPerVariableGuard) { 2698 // Pseudo code for the test: 2699 // if (!(GuardVar & MyGuardBit)) { 2700 // GuardVar |= MyGuardBit; 2701 // ... initialize the object ...; 2702 // } 2703 2704 // Test our bit from the guard variable. 2705 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum); 2706 llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr); 2707 llvm::Value *NeedsInit = 2708 Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero); 2709 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2710 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2711 CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock, 2712 CodeGenFunction::GuardKind::VariableGuard, &D); 2713 2714 // Set our bit in the guard variable and emit the initializer and add a global 2715 // destructor if appropriate. 2716 CGF.EmitBlock(InitBlock); 2717 Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr); 2718 CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum); 2719 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2720 CGF.PopCleanupBlock(); 2721 Builder.CreateBr(EndBlock); 2722 2723 // Continue. 2724 CGF.EmitBlock(EndBlock); 2725 } else { 2726 // Pseudo code for the test: 2727 // if (TSS > _Init_thread_epoch) { 2728 // _Init_thread_header(&TSS); 2729 // if (TSS == -1) { 2730 // ... initialize the object ...; 2731 // _Init_thread_footer(&TSS); 2732 // } 2733 // } 2734 // 2735 // The algorithm is almost identical to what can be found in the appendix 2736 // found in N2325. 2737 2738 // This BasicBLock determines whether or not we have any work to do. 2739 llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr); 2740 FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2741 llvm::LoadInst *InitThreadEpoch = 2742 Builder.CreateLoad(getInitThreadEpochPtr(CGM)); 2743 llvm::Value *IsUninitialized = 2744 Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch); 2745 llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt"); 2746 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2747 CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock, 2748 CodeGenFunction::GuardKind::VariableGuard, &D); 2749 2750 // This BasicBlock attempts to determine whether or not this thread is 2751 // responsible for doing the initialization. 2752 CGF.EmitBlock(AttemptInitBlock); 2753 CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM), 2754 GuardAddr.getPointer()); 2755 llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr); 2756 SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2757 llvm::Value *ShouldDoInit = 2758 Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt()); 2759 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2760 Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock); 2761 2762 // Ok, we ended up getting selected as the initializing thread. 2763 CGF.EmitBlock(InitBlock); 2764 CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr); 2765 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2766 CGF.PopCleanupBlock(); 2767 CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM), 2768 GuardAddr.getPointer()); 2769 Builder.CreateBr(EndBlock); 2770 2771 CGF.EmitBlock(EndBlock); 2772 } 2773 } 2774 2775 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { 2776 // Null-ness for function memptrs only depends on the first field, which is 2777 // the function pointer. The rest don't matter, so we can zero initialize. 2778 if (MPT->isMemberFunctionPointer()) 2779 return true; 2780 2781 // The virtual base adjustment field is always -1 for null, so if we have one 2782 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a 2783 // valid field offset. 2784 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2785 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2786 return (!inheritanceModelHasVBTableOffsetField(Inheritance) && 2787 RD->nullFieldOffsetIsZero()); 2788 } 2789 2790 llvm::Type * 2791 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { 2792 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2793 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2794 llvm::SmallVector<llvm::Type *, 4> fields; 2795 if (MPT->isMemberFunctionPointer()) 2796 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk 2797 else 2798 fields.push_back(CGM.IntTy); // FieldOffset 2799 2800 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2801 Inheritance)) 2802 fields.push_back(CGM.IntTy); 2803 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2804 fields.push_back(CGM.IntTy); 2805 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2806 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset 2807 2808 if (fields.size() == 1) 2809 return fields[0]; 2810 return llvm::StructType::get(CGM.getLLVMContext(), fields); 2811 } 2812 2813 void MicrosoftCXXABI:: 2814 GetNullMemberPointerFields(const MemberPointerType *MPT, 2815 llvm::SmallVectorImpl<llvm::Constant *> &fields) { 2816 assert(fields.empty()); 2817 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2818 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2819 if (MPT->isMemberFunctionPointer()) { 2820 // FunctionPointerOrVirtualThunk 2821 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2822 } else { 2823 if (RD->nullFieldOffsetIsZero()) 2824 fields.push_back(getZeroInt()); // FieldOffset 2825 else 2826 fields.push_back(getAllOnesInt()); // FieldOffset 2827 } 2828 2829 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2830 Inheritance)) 2831 fields.push_back(getZeroInt()); 2832 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2833 fields.push_back(getZeroInt()); 2834 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2835 fields.push_back(getAllOnesInt()); 2836 } 2837 2838 llvm::Constant * 2839 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { 2840 llvm::SmallVector<llvm::Constant *, 4> fields; 2841 GetNullMemberPointerFields(MPT, fields); 2842 if (fields.size() == 1) 2843 return fields[0]; 2844 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields); 2845 assert(Res->getType() == ConvertMemberPointerType(MPT)); 2846 return Res; 2847 } 2848 2849 llvm::Constant * 2850 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, 2851 bool IsMemberFunction, 2852 const CXXRecordDecl *RD, 2853 CharUnits NonVirtualBaseAdjustment, 2854 unsigned VBTableIndex) { 2855 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2856 2857 // Single inheritance class member pointer are represented as scalars instead 2858 // of aggregates. 2859 if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance)) 2860 return FirstField; 2861 2862 llvm::SmallVector<llvm::Constant *, 4> fields; 2863 fields.push_back(FirstField); 2864 2865 if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance)) 2866 fields.push_back(llvm::ConstantInt::get( 2867 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity())); 2868 2869 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) { 2870 CharUnits Offs = CharUnits::Zero(); 2871 if (VBTableIndex) 2872 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 2873 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity())); 2874 } 2875 2876 // The rest of the fields are adjusted by conversions to a more derived class. 2877 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2878 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex)); 2879 2880 return llvm::ConstantStruct::getAnon(fields); 2881 } 2882 2883 llvm::Constant * 2884 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, 2885 CharUnits offset) { 2886 return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset); 2887 } 2888 2889 llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD, 2890 CharUnits offset) { 2891 if (RD->getMSInheritanceModel() == 2892 MSInheritanceModel::Virtual) 2893 offset -= getContext().getOffsetOfBaseWithVBPtr(RD); 2894 llvm::Constant *FirstField = 2895 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity()); 2896 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, 2897 CharUnits::Zero(), /*VBTableIndex=*/0); 2898 } 2899 2900 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, 2901 QualType MPType) { 2902 const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>(); 2903 const ValueDecl *MPD = MP.getMemberPointerDecl(); 2904 if (!MPD) 2905 return EmitNullMemberPointer(DstTy); 2906 2907 ASTContext &Ctx = getContext(); 2908 ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath(); 2909 2910 llvm::Constant *C; 2911 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) { 2912 C = EmitMemberFunctionPointer(MD); 2913 } else { 2914 // For a pointer to data member, start off with the offset of the field in 2915 // the class in which it was declared, and convert from there if necessary. 2916 // For indirect field decls, get the outermost anonymous field and use the 2917 // parent class. 2918 CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD)); 2919 const FieldDecl *FD = dyn_cast<FieldDecl>(MPD); 2920 if (!FD) 2921 FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin()); 2922 const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent()); 2923 RD = RD->getMostRecentNonInjectedDecl(); 2924 C = EmitMemberDataPointer(RD, FieldOffset); 2925 } 2926 2927 if (!MemberPointerPath.empty()) { 2928 const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext()); 2929 const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr(); 2930 const MemberPointerType *SrcTy = 2931 Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy) 2932 ->castAs<MemberPointerType>(); 2933 2934 bool DerivedMember = MP.isMemberPointerToDerivedMember(); 2935 SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath; 2936 const CXXRecordDecl *PrevRD = SrcRD; 2937 for (const CXXRecordDecl *PathElem : MemberPointerPath) { 2938 const CXXRecordDecl *Base = nullptr; 2939 const CXXRecordDecl *Derived = nullptr; 2940 if (DerivedMember) { 2941 Base = PathElem; 2942 Derived = PrevRD; 2943 } else { 2944 Base = PrevRD; 2945 Derived = PathElem; 2946 } 2947 for (const CXXBaseSpecifier &BS : Derived->bases()) 2948 if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == 2949 Base->getCanonicalDecl()) 2950 DerivedToBasePath.push_back(&BS); 2951 PrevRD = PathElem; 2952 } 2953 assert(DerivedToBasePath.size() == MemberPointerPath.size()); 2954 2955 CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer 2956 : CK_BaseToDerivedMemberPointer; 2957 C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(), 2958 DerivedToBasePath.end(), C); 2959 } 2960 return C; 2961 } 2962 2963 llvm::Constant * 2964 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { 2965 assert(MD->isInstance() && "Member function must not be static!"); 2966 2967 CharUnits NonVirtualBaseAdjustment = CharUnits::Zero(); 2968 const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl(); 2969 CodeGenTypes &Types = CGM.getTypes(); 2970 2971 unsigned VBTableIndex = 0; 2972 llvm::Constant *FirstField; 2973 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 2974 if (!MD->isVirtual()) { 2975 llvm::Type *Ty; 2976 // Check whether the function has a computable LLVM signature. 2977 if (Types.isFuncTypeConvertible(FPT)) { 2978 // The function has a computable LLVM signature; use the correct type. 2979 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); 2980 } else { 2981 // Use an arbitrary non-function type to tell GetAddrOfFunction that the 2982 // function type is incomplete. 2983 Ty = CGM.PtrDiffTy; 2984 } 2985 FirstField = CGM.GetAddrOfFunction(MD, Ty); 2986 } else { 2987 auto &VTableContext = CGM.getMicrosoftVTableContext(); 2988 MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD); 2989 FirstField = EmitVirtualMemPtrThunk(MD, ML); 2990 // Include the vfptr adjustment if the method is in a non-primary vftable. 2991 NonVirtualBaseAdjustment += ML.VFPtrOffset; 2992 if (ML.VBase) 2993 VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4; 2994 } 2995 2996 if (VBTableIndex == 0 && 2997 RD->getMSInheritanceModel() == 2998 MSInheritanceModel::Virtual) 2999 NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD); 3000 3001 // The rest of the fields are common with data member pointers. 3002 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, 3003 NonVirtualBaseAdjustment, VBTableIndex); 3004 } 3005 3006 /// Member pointers are the same if they're either bitwise identical *or* both 3007 /// null. Null-ness for function members is determined by the first field, 3008 /// while for data member pointers we must compare all fields. 3009 llvm::Value * 3010 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, 3011 llvm::Value *L, 3012 llvm::Value *R, 3013 const MemberPointerType *MPT, 3014 bool Inequality) { 3015 CGBuilderTy &Builder = CGF.Builder; 3016 3017 // Handle != comparisons by switching the sense of all boolean operations. 3018 llvm::ICmpInst::Predicate Eq; 3019 llvm::Instruction::BinaryOps And, Or; 3020 if (Inequality) { 3021 Eq = llvm::ICmpInst::ICMP_NE; 3022 And = llvm::Instruction::Or; 3023 Or = llvm::Instruction::And; 3024 } else { 3025 Eq = llvm::ICmpInst::ICMP_EQ; 3026 And = llvm::Instruction::And; 3027 Or = llvm::Instruction::Or; 3028 } 3029 3030 // If this is a single field member pointer (single inheritance), this is a 3031 // single icmp. 3032 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3033 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3034 if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(), 3035 Inheritance)) 3036 return Builder.CreateICmp(Eq, L, R); 3037 3038 // Compare the first field. 3039 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0"); 3040 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0"); 3041 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first"); 3042 3043 // Compare everything other than the first field. 3044 llvm::Value *Res = nullptr; 3045 llvm::StructType *LType = cast<llvm::StructType>(L->getType()); 3046 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { 3047 llvm::Value *LF = Builder.CreateExtractValue(L, I); 3048 llvm::Value *RF = Builder.CreateExtractValue(R, I); 3049 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest"); 3050 if (Res) 3051 Res = Builder.CreateBinOp(And, Res, Cmp); 3052 else 3053 Res = Cmp; 3054 } 3055 3056 // Check if the first field is 0 if this is a function pointer. 3057 if (MPT->isMemberFunctionPointer()) { 3058 // (l1 == r1 && ...) || l0 == 0 3059 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType()); 3060 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero"); 3061 Res = Builder.CreateBinOp(Or, Res, IsZero); 3062 } 3063 3064 // Combine the comparison of the first field, which must always be true for 3065 // this comparison to succeeed. 3066 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp"); 3067 } 3068 3069 llvm::Value * 3070 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 3071 llvm::Value *MemPtr, 3072 const MemberPointerType *MPT) { 3073 CGBuilderTy &Builder = CGF.Builder; 3074 llvm::SmallVector<llvm::Constant *, 4> fields; 3075 // We only need one field for member functions. 3076 if (MPT->isMemberFunctionPointer()) 3077 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 3078 else 3079 GetNullMemberPointerFields(MPT, fields); 3080 assert(!fields.empty()); 3081 llvm::Value *FirstField = MemPtr; 3082 if (MemPtr->getType()->isStructTy()) 3083 FirstField = Builder.CreateExtractValue(MemPtr, 0); 3084 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0"); 3085 3086 // For function member pointers, we only need to test the function pointer 3087 // field. The other fields if any can be garbage. 3088 if (MPT->isMemberFunctionPointer()) 3089 return Res; 3090 3091 // Otherwise, emit a series of compares and combine the results. 3092 for (int I = 1, E = fields.size(); I < E; ++I) { 3093 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I); 3094 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp"); 3095 Res = Builder.CreateOr(Res, Next, "memptr.tobool"); 3096 } 3097 return Res; 3098 } 3099 3100 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, 3101 llvm::Constant *Val) { 3102 // Function pointers are null if the pointer in the first field is null. 3103 if (MPT->isMemberFunctionPointer()) { 3104 llvm::Constant *FirstField = Val->getType()->isStructTy() ? 3105 Val->getAggregateElement(0U) : Val; 3106 return FirstField->isNullValue(); 3107 } 3108 3109 // If it's not a function pointer and it's zero initializable, we can easily 3110 // check zero. 3111 if (isZeroInitializable(MPT) && Val->isNullValue()) 3112 return true; 3113 3114 // Otherwise, break down all the fields for comparison. Hopefully these 3115 // little Constants are reused, while a big null struct might not be. 3116 llvm::SmallVector<llvm::Constant *, 4> Fields; 3117 GetNullMemberPointerFields(MPT, Fields); 3118 if (Fields.size() == 1) { 3119 assert(Val->getType()->isIntegerTy()); 3120 return Val == Fields[0]; 3121 } 3122 3123 unsigned I, E; 3124 for (I = 0, E = Fields.size(); I != E; ++I) { 3125 if (Val->getAggregateElement(I) != Fields[I]) 3126 break; 3127 } 3128 return I == E; 3129 } 3130 3131 llvm::Value * 3132 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 3133 Address This, 3134 llvm::Value *VBPtrOffset, 3135 llvm::Value *VBTableOffset, 3136 llvm::Value **VBPtrOut) { 3137 CGBuilderTy &Builder = CGF.Builder; 3138 // Load the vbtable pointer from the vbptr in the instance. 3139 llvm::Value *VBPtr = Builder.CreateInBoundsGEP( 3140 CGM.Int8Ty, This.emitRawPointer(CGF), VBPtrOffset, "vbptr"); 3141 if (VBPtrOut) 3142 *VBPtrOut = VBPtr; 3143 3144 CharUnits VBPtrAlign; 3145 if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) { 3146 VBPtrAlign = This.getAlignment().alignmentAtOffset( 3147 CharUnits::fromQuantity(CI->getSExtValue())); 3148 } else { 3149 VBPtrAlign = CGF.getPointerAlign(); 3150 } 3151 3152 llvm::Value *VBTable = 3153 Builder.CreateAlignedLoad(CGM.UnqualPtrTy, VBPtr, VBPtrAlign, "vbtable"); 3154 3155 // Translate from byte offset to table index. It improves analyzability. 3156 llvm::Value *VBTableIndex = Builder.CreateAShr( 3157 VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2), 3158 "vbtindex", /*isExact=*/true); 3159 3160 // Load an i32 offset from the vb-table. 3161 llvm::Value *VBaseOffs = 3162 Builder.CreateInBoundsGEP(CGM.Int32Ty, VBTable, VBTableIndex); 3163 return Builder.CreateAlignedLoad(CGM.Int32Ty, VBaseOffs, 3164 CharUnits::fromQuantity(4), "vbase_offs"); 3165 } 3166 3167 // Returns an adjusted base cast to i8*, since we do more address arithmetic on 3168 // it. 3169 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( 3170 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, 3171 Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { 3172 CGBuilderTy &Builder = CGF.Builder; 3173 Base = Base.withElementType(CGM.Int8Ty); 3174 llvm::BasicBlock *OriginalBB = nullptr; 3175 llvm::BasicBlock *SkipAdjustBB = nullptr; 3176 llvm::BasicBlock *VBaseAdjustBB = nullptr; 3177 3178 // In the unspecified inheritance model, there might not be a vbtable at all, 3179 // in which case we need to skip the virtual base lookup. If there is a 3180 // vbtable, the first entry is a no-op entry that gives back the original 3181 // base, so look for a virtual base adjustment offset of zero. 3182 if (VBPtrOffset) { 3183 OriginalBB = Builder.GetInsertBlock(); 3184 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust"); 3185 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust"); 3186 llvm::Value *IsVirtual = 3187 Builder.CreateICmpNE(VBTableOffset, getZeroInt(), 3188 "memptr.is_vbase"); 3189 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB); 3190 CGF.EmitBlock(VBaseAdjustBB); 3191 } 3192 3193 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll 3194 // know the vbptr offset. 3195 if (!VBPtrOffset) { 3196 CharUnits offs = CharUnits::Zero(); 3197 if (!RD->hasDefinition()) { 3198 DiagnosticsEngine &Diags = CGF.CGM.getDiags(); 3199 unsigned DiagID = Diags.getCustomDiagID( 3200 DiagnosticsEngine::Error, 3201 "member pointer representation requires a " 3202 "complete class type for %0 to perform this expression"); 3203 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange(); 3204 } else if (RD->getNumVBases()) 3205 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 3206 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity()); 3207 } 3208 llvm::Value *VBPtr = nullptr; 3209 llvm::Value *VBaseOffs = 3210 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr); 3211 llvm::Value *AdjustedBase = 3212 Builder.CreateInBoundsGEP(CGM.Int8Ty, VBPtr, VBaseOffs); 3213 3214 // Merge control flow with the case where we didn't have to adjust. 3215 if (VBaseAdjustBB) { 3216 Builder.CreateBr(SkipAdjustBB); 3217 CGF.EmitBlock(SkipAdjustBB); 3218 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base"); 3219 Phi->addIncoming(Base.emitRawPointer(CGF), OriginalBB); 3220 Phi->addIncoming(AdjustedBase, VBaseAdjustBB); 3221 return Phi; 3222 } 3223 return AdjustedBase; 3224 } 3225 3226 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( 3227 CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, 3228 const MemberPointerType *MPT) { 3229 assert(MPT->isMemberDataPointer()); 3230 CGBuilderTy &Builder = CGF.Builder; 3231 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3232 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3233 3234 // Extract the fields we need, regardless of model. We'll apply them if we 3235 // have them. 3236 llvm::Value *FieldOffset = MemPtr; 3237 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3238 llvm::Value *VBPtrOffset = nullptr; 3239 if (MemPtr->getType()->isStructTy()) { 3240 // We need to extract values. 3241 unsigned I = 0; 3242 FieldOffset = Builder.CreateExtractValue(MemPtr, I++); 3243 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3244 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3245 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3246 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3247 } 3248 3249 llvm::Value *Addr; 3250 if (VirtualBaseAdjustmentOffset) { 3251 Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset, 3252 VBPtrOffset); 3253 } else { 3254 Addr = Base.emitRawPointer(CGF); 3255 } 3256 3257 // Apply the offset, which we assume is non-null. 3258 return Builder.CreateInBoundsGEP(CGF.Int8Ty, Addr, FieldOffset, 3259 "memptr.offset"); 3260 } 3261 3262 llvm::Value * 3263 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, 3264 const CastExpr *E, 3265 llvm::Value *Src) { 3266 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 3267 E->getCastKind() == CK_BaseToDerivedMemberPointer || 3268 E->getCastKind() == CK_ReinterpretMemberPointer); 3269 3270 // Use constant emission if we can. 3271 if (isa<llvm::Constant>(Src)) 3272 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src)); 3273 3274 // We may be adding or dropping fields from the member pointer, so we need 3275 // both types and the inheritance models of both records. 3276 const MemberPointerType *SrcTy = 3277 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3278 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3279 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3280 3281 // If the classes use the same null representation, reinterpret_cast is a nop. 3282 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; 3283 if (IsReinterpret && IsFunc) 3284 return Src; 3285 3286 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3287 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3288 if (IsReinterpret && 3289 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) 3290 return Src; 3291 3292 CGBuilderTy &Builder = CGF.Builder; 3293 3294 // Branch past the conversion if Src is null. 3295 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy); 3296 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy); 3297 3298 // C++ 5.2.10p9: The null member pointer value is converted to the null member 3299 // pointer value of the destination type. 3300 if (IsReinterpret) { 3301 // For reinterpret casts, sema ensures that src and dst are both functions 3302 // or data and have the same size, which means the LLVM types should match. 3303 assert(Src->getType() == DstNull->getType()); 3304 return Builder.CreateSelect(IsNotNull, Src, DstNull); 3305 } 3306 3307 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); 3308 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert"); 3309 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted"); 3310 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB); 3311 CGF.EmitBlock(ConvertBB); 3312 3313 llvm::Value *Dst = EmitNonNullMemberPointerConversion( 3314 SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src, 3315 Builder); 3316 3317 Builder.CreateBr(ContinueBB); 3318 3319 // In the continuation, choose between DstNull and Dst. 3320 CGF.EmitBlock(ContinueBB); 3321 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted"); 3322 Phi->addIncoming(DstNull, OriginalBB); 3323 Phi->addIncoming(Dst, ConvertBB); 3324 return Phi; 3325 } 3326 3327 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion( 3328 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3329 CastExpr::path_const_iterator PathBegin, 3330 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 3331 CGBuilderTy &Builder) { 3332 const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3333 const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3334 MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel(); 3335 MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel(); 3336 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3337 bool IsConstant = isa<llvm::Constant>(Src); 3338 3339 // Decompose src. 3340 llvm::Value *FirstField = Src; 3341 llvm::Value *NonVirtualBaseAdjustment = getZeroInt(); 3342 llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt(); 3343 llvm::Value *VBPtrOffset = getZeroInt(); 3344 if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) { 3345 // We need to extract values. 3346 unsigned I = 0; 3347 FirstField = Builder.CreateExtractValue(Src, I++); 3348 if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance)) 3349 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++); 3350 if (inheritanceModelHasVBPtrOffsetField(SrcInheritance)) 3351 VBPtrOffset = Builder.CreateExtractValue(Src, I++); 3352 if (inheritanceModelHasVBTableOffsetField(SrcInheritance)) 3353 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++); 3354 } 3355 3356 bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer); 3357 const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy; 3358 const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl(); 3359 3360 // For data pointers, we adjust the field offset directly. For functions, we 3361 // have a separate field. 3362 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; 3363 3364 // The virtual inheritance model has a quirk: the virtual base table is always 3365 // referenced when dereferencing a member pointer even if the member pointer 3366 // is non-virtual. This is accounted for by adjusting the non-virtual offset 3367 // to point backwards to the top of the MDC from the first VBase. Undo this 3368 // adjustment to normalize the member pointer. 3369 llvm::Value *SrcVBIndexEqZero = 3370 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3371 if (SrcInheritance == MSInheritanceModel::Virtual) { 3372 if (int64_t SrcOffsetToFirstVBase = 3373 getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) { 3374 llvm::Value *UndoSrcAdjustment = Builder.CreateSelect( 3375 SrcVBIndexEqZero, 3376 llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase), 3377 getZeroInt()); 3378 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment); 3379 } 3380 } 3381 3382 // A non-zero vbindex implies that we are dealing with a source member in a 3383 // floating virtual base in addition to some non-virtual offset. If the 3384 // vbindex is zero, we are dealing with a source that exists in a non-virtual, 3385 // fixed, base. The difference between these two cases is that the vbindex + 3386 // nvoffset *always* point to the member regardless of what context they are 3387 // evaluated in so long as the vbindex is adjusted. A member inside a fixed 3388 // base requires explicit nv adjustment. 3389 llvm::Constant *BaseClassOffset = llvm::ConstantInt::get( 3390 CGM.IntTy, 3391 CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd) 3392 .getQuantity()); 3393 3394 llvm::Value *NVDisp; 3395 if (IsDerivedToBase) 3396 NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj"); 3397 else 3398 NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj"); 3399 3400 NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt()); 3401 3402 // Update the vbindex to an appropriate value in the destination because 3403 // SrcRD's vbtable might not be a strict prefix of the one in DstRD. 3404 llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero; 3405 if (inheritanceModelHasVBTableOffsetField(DstInheritance) && 3406 inheritanceModelHasVBTableOffsetField(SrcInheritance)) { 3407 if (llvm::GlobalVariable *VDispMap = 3408 getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) { 3409 llvm::Value *VBIndex = Builder.CreateExactUDiv( 3410 VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4)); 3411 if (IsConstant) { 3412 llvm::Constant *Mapping = VDispMap->getInitializer(); 3413 VirtualBaseAdjustmentOffset = 3414 Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex)); 3415 } else { 3416 llvm::Value *Idxs[] = {getZeroInt(), VBIndex}; 3417 VirtualBaseAdjustmentOffset = Builder.CreateAlignedLoad( 3418 CGM.IntTy, Builder.CreateInBoundsGEP(VDispMap->getValueType(), 3419 VDispMap, Idxs), 3420 CharUnits::fromQuantity(4)); 3421 } 3422 3423 DstVBIndexEqZero = 3424 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3425 } 3426 } 3427 3428 // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize 3429 // it to the offset of the vbptr. 3430 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) { 3431 llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get( 3432 CGM.IntTy, 3433 getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity()); 3434 VBPtrOffset = 3435 Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset); 3436 } 3437 3438 // Likewise, apply a similar adjustment so that dereferencing the member 3439 // pointer correctly accounts for the distance between the start of the first 3440 // virtual base and the top of the MDC. 3441 if (DstInheritance == MSInheritanceModel::Virtual) { 3442 if (int64_t DstOffsetToFirstVBase = 3443 getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) { 3444 llvm::Value *DoDstAdjustment = Builder.CreateSelect( 3445 DstVBIndexEqZero, 3446 llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase), 3447 getZeroInt()); 3448 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment); 3449 } 3450 } 3451 3452 // Recompose dst from the null struct and the adjusted fields from src. 3453 llvm::Value *Dst; 3454 if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) { 3455 Dst = FirstField; 3456 } else { 3457 Dst = llvm::PoisonValue::get(ConvertMemberPointerType(DstTy)); 3458 unsigned Idx = 0; 3459 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++); 3460 if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance)) 3461 Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++); 3462 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) 3463 Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++); 3464 if (inheritanceModelHasVBTableOffsetField(DstInheritance)) 3465 Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++); 3466 } 3467 return Dst; 3468 } 3469 3470 llvm::Constant * 3471 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, 3472 llvm::Constant *Src) { 3473 const MemberPointerType *SrcTy = 3474 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3475 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3476 3477 CastKind CK = E->getCastKind(); 3478 3479 return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(), 3480 E->path_end(), Src); 3481 } 3482 3483 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion( 3484 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3485 CastExpr::path_const_iterator PathBegin, 3486 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) { 3487 assert(CK == CK_DerivedToBaseMemberPointer || 3488 CK == CK_BaseToDerivedMemberPointer || 3489 CK == CK_ReinterpretMemberPointer); 3490 // If src is null, emit a new null for dst. We can't return src because dst 3491 // might have a new representation. 3492 if (MemberPointerConstantIsNull(SrcTy, Src)) 3493 return EmitNullMemberPointer(DstTy); 3494 3495 // We don't need to do anything for reinterpret_casts of non-null member 3496 // pointers. We should only get here when the two type representations have 3497 // the same size. 3498 if (CK == CK_ReinterpretMemberPointer) 3499 return Src; 3500 3501 CGBuilderTy Builder(CGM, CGM.getLLVMContext()); 3502 auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion( 3503 SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder)); 3504 3505 return Dst; 3506 } 3507 3508 CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( 3509 CodeGenFunction &CGF, const Expr *E, Address This, 3510 llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, 3511 const MemberPointerType *MPT) { 3512 assert(MPT->isMemberFunctionPointer()); 3513 const FunctionProtoType *FPT = 3514 MPT->getPointeeType()->castAs<FunctionProtoType>(); 3515 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3516 CGBuilderTy &Builder = CGF.Builder; 3517 3518 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3519 3520 // Extract the fields we need, regardless of model. We'll apply them if we 3521 // have them. 3522 llvm::Value *FunctionPointer = MemPtr; 3523 llvm::Value *NonVirtualBaseAdjustment = nullptr; 3524 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3525 llvm::Value *VBPtrOffset = nullptr; 3526 if (MemPtr->getType()->isStructTy()) { 3527 // We need to extract values. 3528 unsigned I = 0; 3529 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++); 3530 if (inheritanceModelHasNVOffsetField(MPT, Inheritance)) 3531 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++); 3532 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3533 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3534 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3535 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3536 } 3537 3538 if (VirtualBaseAdjustmentOffset) { 3539 ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This, 3540 VirtualBaseAdjustmentOffset, VBPtrOffset); 3541 } else { 3542 ThisPtrForCall = This.emitRawPointer(CGF); 3543 } 3544 3545 if (NonVirtualBaseAdjustment) 3546 ThisPtrForCall = Builder.CreateInBoundsGEP(CGF.Int8Ty, ThisPtrForCall, 3547 NonVirtualBaseAdjustment); 3548 3549 CGCallee Callee(FPT, FunctionPointer); 3550 return Callee; 3551 } 3552 3553 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { 3554 return new MicrosoftCXXABI(CGM); 3555 } 3556 3557 // MS RTTI Overview: 3558 // The run time type information emitted by cl.exe contains 5 distinct types of 3559 // structures. Many of them reference each other. 3560 // 3561 // TypeInfo: Static classes that are returned by typeid. 3562 // 3563 // CompleteObjectLocator: Referenced by vftables. They contain information 3564 // required for dynamic casting, including OffsetFromTop. They also contain 3565 // a reference to the TypeInfo for the type and a reference to the 3566 // CompleteHierarchyDescriptor for the type. 3567 // 3568 // ClassHierarchyDescriptor: Contains information about a class hierarchy. 3569 // Used during dynamic_cast to walk a class hierarchy. References a base 3570 // class array and the size of said array. 3571 // 3572 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is 3573 // somewhat of a misnomer because the most derived class is also in the list 3574 // as well as multiple copies of virtual bases (if they occur multiple times 3575 // in the hierarchy.) The BaseClassArray contains one BaseClassDescriptor for 3576 // every path in the hierarchy, in pre-order depth first order. Note, we do 3577 // not declare a specific llvm type for BaseClassArray, it's merely an array 3578 // of BaseClassDescriptor pointers. 3579 // 3580 // BaseClassDescriptor: Contains information about a class in a class hierarchy. 3581 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that 3582 // BaseClassArray is. It contains information about a class within a 3583 // hierarchy such as: is this base is ambiguous and what is its offset in the 3584 // vbtable. The names of the BaseClassDescriptors have all of their fields 3585 // mangled into them so they can be aggressively deduplicated by the linker. 3586 3587 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { 3588 StringRef MangledName("??_7type_info@@6B@"); 3589 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName)) 3590 return VTable; 3591 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, 3592 /*isConstant=*/true, 3593 llvm::GlobalVariable::ExternalLinkage, 3594 /*Initializer=*/nullptr, MangledName); 3595 } 3596 3597 namespace { 3598 3599 /// A Helper struct that stores information about a class in a class 3600 /// hierarchy. The information stored in these structs struct is used during 3601 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. 3602 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with 3603 // implicit depth first pre-order tree connectivity. getFirstChild and 3604 // getNextSibling allow us to walk the tree efficiently. 3605 struct MSRTTIClass { 3606 enum { 3607 IsPrivateOnPath = 1 | 8, 3608 IsAmbiguous = 2, 3609 IsPrivate = 4, 3610 IsVirtual = 16, 3611 HasHierarchyDescriptor = 64 3612 }; 3613 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} 3614 uint32_t initialize(const MSRTTIClass *Parent, 3615 const CXXBaseSpecifier *Specifier); 3616 3617 MSRTTIClass *getFirstChild() { return this + 1; } 3618 static MSRTTIClass *getNextChild(MSRTTIClass *Child) { 3619 return Child + 1 + Child->NumBases; 3620 } 3621 3622 const CXXRecordDecl *RD, *VirtualRoot; 3623 uint32_t Flags, NumBases, OffsetInVBase; 3624 }; 3625 3626 /// Recursively initialize the base class array. 3627 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, 3628 const CXXBaseSpecifier *Specifier) { 3629 Flags = HasHierarchyDescriptor; 3630 if (!Parent) { 3631 VirtualRoot = nullptr; 3632 OffsetInVBase = 0; 3633 } else { 3634 if (Specifier->getAccessSpecifier() != AS_public) 3635 Flags |= IsPrivate | IsPrivateOnPath; 3636 if (Specifier->isVirtual()) { 3637 Flags |= IsVirtual; 3638 VirtualRoot = RD; 3639 OffsetInVBase = 0; 3640 } else { 3641 if (Parent->Flags & IsPrivateOnPath) 3642 Flags |= IsPrivateOnPath; 3643 VirtualRoot = Parent->VirtualRoot; 3644 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() 3645 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity(); 3646 } 3647 } 3648 NumBases = 0; 3649 MSRTTIClass *Child = getFirstChild(); 3650 for (const CXXBaseSpecifier &Base : RD->bases()) { 3651 NumBases += Child->initialize(this, &Base) + 1; 3652 Child = getNextChild(Child); 3653 } 3654 return NumBases; 3655 } 3656 3657 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { 3658 switch (Ty->getLinkage()) { 3659 case Linkage::Invalid: 3660 llvm_unreachable("Linkage hasn't been computed!"); 3661 3662 case Linkage::None: 3663 case Linkage::Internal: 3664 case Linkage::UniqueExternal: 3665 return llvm::GlobalValue::InternalLinkage; 3666 3667 case Linkage::VisibleNone: 3668 case Linkage::Module: 3669 case Linkage::External: 3670 return llvm::GlobalValue::LinkOnceODRLinkage; 3671 } 3672 llvm_unreachable("Invalid linkage!"); 3673 } 3674 3675 /// An ephemeral helper class for building MS RTTI types. It caches some 3676 /// calls to the module and information about the most derived class in a 3677 /// hierarchy. 3678 struct MSRTTIBuilder { 3679 enum { 3680 HasBranchingHierarchy = 1, 3681 HasVirtualBranchingHierarchy = 2, 3682 HasAmbiguousBases = 4 3683 }; 3684 3685 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) 3686 : CGM(ABI.CGM), Context(CGM.getContext()), 3687 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), 3688 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))), 3689 ABI(ABI) {} 3690 3691 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); 3692 llvm::GlobalVariable * 3693 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); 3694 llvm::GlobalVariable *getClassHierarchyDescriptor(); 3695 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info); 3696 3697 CodeGenModule &CGM; 3698 ASTContext &Context; 3699 llvm::LLVMContext &VMContext; 3700 llvm::Module &Module; 3701 const CXXRecordDecl *RD; 3702 llvm::GlobalVariable::LinkageTypes Linkage; 3703 MicrosoftCXXABI &ABI; 3704 }; 3705 3706 } // namespace 3707 3708 /// Recursively serializes a class hierarchy in pre-order depth first 3709 /// order. 3710 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, 3711 const CXXRecordDecl *RD) { 3712 Classes.push_back(MSRTTIClass(RD)); 3713 for (const CXXBaseSpecifier &Base : RD->bases()) 3714 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl()); 3715 } 3716 3717 /// Find ambiguity among base classes. 3718 static void 3719 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { 3720 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; 3721 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; 3722 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; 3723 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { 3724 if ((Class->Flags & MSRTTIClass::IsVirtual) && 3725 !VirtualBases.insert(Class->RD).second) { 3726 Class = MSRTTIClass::getNextChild(Class); 3727 continue; 3728 } 3729 if (!UniqueBases.insert(Class->RD).second) 3730 AmbiguousBases.insert(Class->RD); 3731 Class++; 3732 } 3733 if (AmbiguousBases.empty()) 3734 return; 3735 for (MSRTTIClass &Class : Classes) 3736 if (AmbiguousBases.count(Class.RD)) 3737 Class.Flags |= MSRTTIClass::IsAmbiguous; 3738 } 3739 3740 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { 3741 SmallString<256> MangledName; 3742 { 3743 llvm::raw_svector_ostream Out(MangledName); 3744 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out); 3745 } 3746 3747 // Check to see if we've already declared this ClassHierarchyDescriptor. 3748 if (auto CHD = Module.getNamedGlobal(MangledName)) 3749 return CHD; 3750 3751 // Serialize the class hierarchy and initialize the CHD Fields. 3752 SmallVector<MSRTTIClass, 8> Classes; 3753 serializeClassHierarchy(Classes, RD); 3754 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 3755 detectAmbiguousBases(Classes); 3756 int Flags = 0; 3757 for (const MSRTTIClass &Class : Classes) { 3758 if (Class.RD->getNumBases() > 1) 3759 Flags |= HasBranchingHierarchy; 3760 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We 3761 // believe the field isn't actually used. 3762 if (Class.Flags & MSRTTIClass::IsAmbiguous) 3763 Flags |= HasAmbiguousBases; 3764 } 3765 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) 3766 Flags |= HasVirtualBranchingHierarchy; 3767 // These gep indices are used to get the address of the first element of the 3768 // base class array. 3769 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), 3770 llvm::ConstantInt::get(CGM.IntTy, 0)}; 3771 3772 // Forward-declare the class hierarchy descriptor 3773 auto Type = ABI.getClassHierarchyDescriptorType(); 3774 auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3775 /*Initializer=*/nullptr, 3776 MangledName); 3777 if (CHD->isWeakForLinker()) 3778 CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName())); 3779 3780 auto *Bases = getBaseClassArray(Classes); 3781 3782 // Initialize the base class ClassHierarchyDescriptor. 3783 llvm::Constant *Fields[] = { 3784 llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime 3785 llvm::ConstantInt::get(CGM.IntTy, Flags), 3786 llvm::ConstantInt::get(CGM.IntTy, Classes.size()), 3787 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr( 3788 Bases->getValueType(), Bases, 3789 llvm::ArrayRef<llvm::Value *>(GEPIndices))), 3790 }; 3791 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3792 return CHD; 3793 } 3794 3795 llvm::GlobalVariable * 3796 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { 3797 SmallString<256> MangledName; 3798 { 3799 llvm::raw_svector_ostream Out(MangledName); 3800 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out); 3801 } 3802 3803 // Forward-declare the base class array. 3804 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit 3805 // mode) bytes of padding. We provide a pointer sized amount of padding by 3806 // adding +1 to Classes.size(). The sections have pointer alignment and are 3807 // marked pick-any so it shouldn't matter. 3808 llvm::Type *PtrType = ABI.getImageRelativeType(CGM.UnqualPtrTy); 3809 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1); 3810 auto *BCA = 3811 new llvm::GlobalVariable(Module, ArrType, 3812 /*isConstant=*/true, Linkage, 3813 /*Initializer=*/nullptr, MangledName); 3814 if (BCA->isWeakForLinker()) 3815 BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName())); 3816 3817 // Initialize the BaseClassArray. 3818 SmallVector<llvm::Constant *, 8> BaseClassArrayData; 3819 for (MSRTTIClass &Class : Classes) 3820 BaseClassArrayData.push_back( 3821 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class))); 3822 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType)); 3823 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData)); 3824 return BCA; 3825 } 3826 3827 llvm::GlobalVariable * 3828 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { 3829 // Compute the fields for the BaseClassDescriptor. They are computed up front 3830 // because they are mangled into the name of the object. 3831 uint32_t OffsetInVBTable = 0; 3832 int32_t VBPtrOffset = -1; 3833 if (Class.VirtualRoot) { 3834 auto &VTableContext = CGM.getMicrosoftVTableContext(); 3835 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4; 3836 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity(); 3837 } 3838 3839 SmallString<256> MangledName; 3840 { 3841 llvm::raw_svector_ostream Out(MangledName); 3842 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( 3843 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable, 3844 Class.Flags, Out); 3845 } 3846 3847 // Check to see if we've already declared this object. 3848 if (auto BCD = Module.getNamedGlobal(MangledName)) 3849 return BCD; 3850 3851 // Forward-declare the base class descriptor. 3852 auto Type = ABI.getBaseClassDescriptorType(); 3853 auto BCD = 3854 new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3855 /*Initializer=*/nullptr, MangledName); 3856 if (BCD->isWeakForLinker()) 3857 BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName())); 3858 3859 // Initialize the BaseClassDescriptor. 3860 llvm::Constant *Fields[] = { 3861 ABI.getImageRelativeConstant( 3862 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))), 3863 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases), 3864 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase), 3865 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 3866 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable), 3867 llvm::ConstantInt::get(CGM.IntTy, Class.Flags), 3868 ABI.getImageRelativeConstant( 3869 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), 3870 }; 3871 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3872 return BCD; 3873 } 3874 3875 llvm::GlobalVariable * 3876 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) { 3877 SmallString<256> MangledName; 3878 { 3879 llvm::raw_svector_ostream Out(MangledName); 3880 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out); 3881 } 3882 3883 // Check to see if we've already computed this complete object locator. 3884 if (auto COL = Module.getNamedGlobal(MangledName)) 3885 return COL; 3886 3887 // Compute the fields of the complete object locator. 3888 int OffsetToTop = Info.FullOffsetInMDC.getQuantity(); 3889 int VFPtrOffset = 0; 3890 // The offset includes the vtordisp if one exists. 3891 if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr()) 3892 if (Context.getASTRecordLayout(RD) 3893 .getVBaseOffsetsMap() 3894 .find(VBase) 3895 ->second.hasVtorDisp()) 3896 VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4; 3897 3898 // Forward-declare the complete object locator. 3899 llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); 3900 auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3901 /*Initializer=*/nullptr, MangledName); 3902 3903 // Initialize the CompleteObjectLocator. 3904 llvm::Constant *Fields[] = { 3905 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()), 3906 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop), 3907 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset), 3908 ABI.getImageRelativeConstant( 3909 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))), 3910 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()), 3911 ABI.getImageRelativeConstant(COL), 3912 }; 3913 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); 3914 if (!ABI.isImageRelative()) 3915 FieldsRef = FieldsRef.drop_back(); 3916 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef)); 3917 if (COL->isWeakForLinker()) 3918 COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName())); 3919 return COL; 3920 } 3921 3922 static QualType decomposeTypeForEH(ASTContext &Context, QualType T, 3923 bool &IsConst, bool &IsVolatile, 3924 bool &IsUnaligned) { 3925 T = Context.getExceptionObjectType(T); 3926 3927 // C++14 [except.handle]p3: 3928 // A handler is a match for an exception object of type E if [...] 3929 // - the handler is of type cv T or const T& where T is a pointer type and 3930 // E is a pointer type that can be converted to T by [...] 3931 // - a qualification conversion 3932 IsConst = false; 3933 IsVolatile = false; 3934 IsUnaligned = false; 3935 QualType PointeeType = T->getPointeeType(); 3936 if (!PointeeType.isNull()) { 3937 IsConst = PointeeType.isConstQualified(); 3938 IsVolatile = PointeeType.isVolatileQualified(); 3939 IsUnaligned = PointeeType.getQualifiers().hasUnaligned(); 3940 } 3941 3942 // Member pointer types like "const int A::*" are represented by having RTTI 3943 // for "int A::*" and separately storing the const qualifier. 3944 if (const auto *MPTy = T->getAs<MemberPointerType>()) 3945 T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(), 3946 MPTy->getClass()); 3947 3948 // Pointer types like "const int * const *" are represented by having RTTI 3949 // for "const int **" and separately storing the const qualifier. 3950 if (T->isPointerType()) 3951 T = Context.getPointerType(PointeeType.getUnqualifiedType()); 3952 3953 return T; 3954 } 3955 3956 CatchTypeInfo 3957 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type, 3958 QualType CatchHandlerType) { 3959 // TypeDescriptors for exceptions never have qualified pointer types, 3960 // qualifiers are stored separately in order to support qualification 3961 // conversions. 3962 bool IsConst, IsVolatile, IsUnaligned; 3963 Type = 3964 decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned); 3965 3966 bool IsReference = CatchHandlerType->isReferenceType(); 3967 3968 uint32_t Flags = 0; 3969 if (IsConst) 3970 Flags |= 1; 3971 if (IsVolatile) 3972 Flags |= 2; 3973 if (IsUnaligned) 3974 Flags |= 4; 3975 if (IsReference) 3976 Flags |= 8; 3977 3978 return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(), 3979 Flags}; 3980 } 3981 3982 /// Gets a TypeDescriptor. Returns a llvm::Constant * rather than a 3983 /// llvm::GlobalVariable * because different type descriptors have different 3984 /// types, and need to be abstracted. They are abstracting by casting the 3985 /// address to an Int8PtrTy. 3986 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { 3987 SmallString<256> MangledName; 3988 { 3989 llvm::raw_svector_ostream Out(MangledName); 3990 getMangleContext().mangleCXXRTTI(Type, Out); 3991 } 3992 3993 // Check to see if we've already declared this TypeDescriptor. 3994 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 3995 return GV; 3996 3997 // Note for the future: If we would ever like to do deferred emission of 3998 // RTTI, check if emitting vtables opportunistically need any adjustment. 3999 4000 // Compute the fields for the TypeDescriptor. 4001 SmallString<256> TypeInfoString; 4002 { 4003 llvm::raw_svector_ostream Out(TypeInfoString); 4004 getMangleContext().mangleCXXRTTIName(Type, Out); 4005 } 4006 4007 // Declare and initialize the TypeDescriptor. 4008 llvm::Constant *Fields[] = { 4009 getTypeInfoVTable(CGM), // VFPtr 4010 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data 4011 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)}; 4012 llvm::StructType *TypeDescriptorType = 4013 getTypeDescriptorType(TypeInfoString); 4014 auto *Var = new llvm::GlobalVariable( 4015 CGM.getModule(), TypeDescriptorType, /*isConstant=*/false, 4016 getLinkageForRTTI(Type), 4017 llvm::ConstantStruct::get(TypeDescriptorType, Fields), 4018 MangledName); 4019 if (Var->isWeakForLinker()) 4020 Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName())); 4021 return Var; 4022 } 4023 4024 /// Gets or a creates a Microsoft CompleteObjectLocator. 4025 llvm::GlobalVariable * 4026 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, 4027 const VPtrInfo &Info) { 4028 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); 4029 } 4030 4031 void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) { 4032 if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) { 4033 // There are no constructor variants, always emit the complete destructor. 4034 llvm::Function *Fn = 4035 CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete)); 4036 CGM.maybeSetTrivialComdat(*ctor, *Fn); 4037 return; 4038 } 4039 4040 auto *dtor = cast<CXXDestructorDecl>(GD.getDecl()); 4041 4042 // Emit the base destructor if the base and complete (vbase) destructors are 4043 // equivalent. This effectively implements -mconstructor-aliases as part of 4044 // the ABI. 4045 if (GD.getDtorType() == Dtor_Complete && 4046 dtor->getParent()->getNumVBases() == 0) 4047 GD = GD.getWithDtorType(Dtor_Base); 4048 4049 // The base destructor is equivalent to the base destructor of its 4050 // base class if there is exactly one non-virtual base class with a 4051 // non-trivial destructor, there are no fields with a non-trivial 4052 // destructor, and the body of the destructor is trivial. 4053 if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor)) 4054 return; 4055 4056 llvm::Function *Fn = CGM.codegenCXXStructor(GD); 4057 if (Fn->isWeakForLinker()) 4058 Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName())); 4059 } 4060 4061 llvm::Function * 4062 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 4063 CXXCtorType CT) { 4064 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 4065 4066 // Calculate the mangled name. 4067 SmallString<256> ThunkName; 4068 llvm::raw_svector_ostream Out(ThunkName); 4069 getMangleContext().mangleName(GlobalDecl(CD, CT), Out); 4070 4071 // If the thunk has been generated previously, just return it. 4072 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 4073 return cast<llvm::Function>(GV); 4074 4075 // Create the llvm::Function. 4076 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT); 4077 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 4078 const CXXRecordDecl *RD = CD->getParent(); 4079 QualType RecordTy = getContext().getRecordType(RD); 4080 llvm::Function *ThunkFn = llvm::Function::Create( 4081 ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule()); 4082 ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>( 4083 FnInfo.getEffectiveCallingConvention())); 4084 if (ThunkFn->isWeakForLinker()) 4085 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 4086 bool IsCopy = CT == Ctor_CopyingClosure; 4087 4088 // Start codegen. 4089 CodeGenFunction CGF(CGM); 4090 CGF.CurGD = GlobalDecl(CD, Ctor_Complete); 4091 4092 // Build FunctionArgs. 4093 FunctionArgList FunctionArgs; 4094 4095 // A constructor always starts with a 'this' pointer as its first argument. 4096 buildThisParam(CGF, FunctionArgs); 4097 4098 // Following the 'this' pointer is a reference to the source object that we 4099 // are copying from. 4100 ImplicitParamDecl SrcParam( 4101 getContext(), /*DC=*/nullptr, SourceLocation(), 4102 &getContext().Idents.get("src"), 4103 getContext().getLValueReferenceType(RecordTy, 4104 /*SpelledAsLValue=*/true), 4105 ImplicitParamKind::Other); 4106 if (IsCopy) 4107 FunctionArgs.push_back(&SrcParam); 4108 4109 // Constructors for classes which utilize virtual bases have an additional 4110 // parameter which indicates whether or not it is being delegated to by a more 4111 // derived constructor. 4112 ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr, 4113 SourceLocation(), 4114 &getContext().Idents.get("is_most_derived"), 4115 getContext().IntTy, ImplicitParamKind::Other); 4116 // Only add the parameter to the list if the class has virtual bases. 4117 if (RD->getNumVBases() > 0) 4118 FunctionArgs.push_back(&IsMostDerived); 4119 4120 // Start defining the function. 4121 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4122 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 4123 FunctionArgs, CD->getLocation(), SourceLocation()); 4124 // Create a scope with an artificial location for the body of this function. 4125 auto AL = ApplyDebugLocation::CreateArtificial(CGF); 4126 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 4127 llvm::Value *This = getThisValue(CGF); 4128 4129 llvm::Value *SrcVal = 4130 IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src") 4131 : nullptr; 4132 4133 CallArgList Args; 4134 4135 // Push the this ptr. 4136 Args.add(RValue::get(This), CD->getThisType()); 4137 4138 // Push the src ptr. 4139 if (SrcVal) 4140 Args.add(RValue::get(SrcVal), SrcParam.getType()); 4141 4142 // Add the rest of the default arguments. 4143 SmallVector<const Stmt *, 4> ArgVec; 4144 ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0); 4145 for (const ParmVarDecl *PD : params) { 4146 assert(PD->hasDefaultArg() && "ctor closure lacks default args"); 4147 ArgVec.push_back(PD->getDefaultArg()); 4148 } 4149 4150 CodeGenFunction::RunCleanupsScope Cleanups(CGF); 4151 4152 const auto *FPT = CD->getType()->castAs<FunctionProtoType>(); 4153 CGF.EmitCallArgs(Args, FPT, llvm::ArrayRef(ArgVec), CD, IsCopy ? 1 : 0); 4154 4155 // Insert any ABI-specific implicit constructor arguments. 4156 AddedStructorArgCounts ExtraArgs = 4157 addImplicitConstructorArgs(CGF, CD, Ctor_Complete, 4158 /*ForVirtualBase=*/false, 4159 /*Delegating=*/false, Args); 4160 // Call the destructor with our arguments. 4161 llvm::Constant *CalleePtr = 4162 CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4163 CGCallee Callee = 4164 CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete)); 4165 const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall( 4166 Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix); 4167 CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args); 4168 4169 Cleanups.ForceCleanup(); 4170 4171 // Emit the ret instruction, remove any temporary instructions created for the 4172 // aid of CodeGen. 4173 CGF.FinishFunction(SourceLocation()); 4174 4175 return ThunkFn; 4176 } 4177 4178 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T, 4179 uint32_t NVOffset, 4180 int32_t VBPtrOffset, 4181 uint32_t VBIndex) { 4182 assert(!T->isReferenceType()); 4183 4184 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 4185 const CXXConstructorDecl *CD = 4186 RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr; 4187 CXXCtorType CT = Ctor_Complete; 4188 if (CD) 4189 if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1) 4190 CT = Ctor_CopyingClosure; 4191 4192 uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity(); 4193 SmallString<256> MangledName; 4194 { 4195 llvm::raw_svector_ostream Out(MangledName); 4196 getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset, 4197 VBPtrOffset, VBIndex, Out); 4198 } 4199 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4200 return getImageRelativeConstant(GV); 4201 4202 // The TypeDescriptor is used by the runtime to determine if a catch handler 4203 // is appropriate for the exception object. 4204 llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T)); 4205 4206 // The runtime is responsible for calling the copy constructor if the 4207 // exception is caught by value. 4208 llvm::Constant *CopyCtor; 4209 if (CD) { 4210 if (CT == Ctor_CopyingClosure) 4211 CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure); 4212 else 4213 CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4214 } else { 4215 CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4216 } 4217 CopyCtor = getImageRelativeConstant(CopyCtor); 4218 4219 bool IsScalar = !RD; 4220 bool HasVirtualBases = false; 4221 bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason. 4222 QualType PointeeType = T; 4223 if (T->isPointerType()) 4224 PointeeType = T->getPointeeType(); 4225 if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) { 4226 HasVirtualBases = RD->getNumVBases() > 0; 4227 if (IdentifierInfo *II = RD->getIdentifier()) 4228 IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace(); 4229 } 4230 4231 // Encode the relevant CatchableType properties into the Flags bitfield. 4232 // FIXME: Figure out how bits 2 or 8 can get set. 4233 uint32_t Flags = 0; 4234 if (IsScalar) 4235 Flags |= 1; 4236 if (HasVirtualBases) 4237 Flags |= 4; 4238 if (IsStdBadAlloc) 4239 Flags |= 16; 4240 4241 llvm::Constant *Fields[] = { 4242 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4243 TD, // TypeDescriptor 4244 llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment 4245 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr 4246 llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex 4247 llvm::ConstantInt::get(CGM.IntTy, Size), // Size 4248 CopyCtor // CopyCtor 4249 }; 4250 llvm::StructType *CTType = getCatchableTypeType(); 4251 auto *GV = new llvm::GlobalVariable( 4252 CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T), 4253 llvm::ConstantStruct::get(CTType, Fields), MangledName); 4254 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4255 GV->setSection(".xdata"); 4256 if (GV->isWeakForLinker()) 4257 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4258 return getImageRelativeConstant(GV); 4259 } 4260 4261 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) { 4262 assert(!T->isReferenceType()); 4263 4264 // See if we've already generated a CatchableTypeArray for this type before. 4265 llvm::GlobalVariable *&CTA = CatchableTypeArrays[T]; 4266 if (CTA) 4267 return CTA; 4268 4269 // Ensure that we don't have duplicate entries in our CatchableTypeArray by 4270 // using a SmallSetVector. Duplicates may arise due to virtual bases 4271 // occurring more than once in the hierarchy. 4272 llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes; 4273 4274 // C++14 [except.handle]p3: 4275 // A handler is a match for an exception object of type E if [...] 4276 // - the handler is of type cv T or cv T& and T is an unambiguous public 4277 // base class of E, or 4278 // - the handler is of type cv T or const T& where T is a pointer type and 4279 // E is a pointer type that can be converted to T by [...] 4280 // - a standard pointer conversion (4.10) not involving conversions to 4281 // pointers to private or protected or ambiguous classes 4282 const CXXRecordDecl *MostDerivedClass = nullptr; 4283 bool IsPointer = T->isPointerType(); 4284 if (IsPointer) 4285 MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl(); 4286 else 4287 MostDerivedClass = T->getAsCXXRecordDecl(); 4288 4289 // Collect all the unambiguous public bases of the MostDerivedClass. 4290 if (MostDerivedClass) { 4291 const ASTContext &Context = getContext(); 4292 const ASTRecordLayout &MostDerivedLayout = 4293 Context.getASTRecordLayout(MostDerivedClass); 4294 MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext(); 4295 SmallVector<MSRTTIClass, 8> Classes; 4296 serializeClassHierarchy(Classes, MostDerivedClass); 4297 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 4298 detectAmbiguousBases(Classes); 4299 for (const MSRTTIClass &Class : Classes) { 4300 // Skip any ambiguous or private bases. 4301 if (Class.Flags & 4302 (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous)) 4303 continue; 4304 // Write down how to convert from a derived pointer to a base pointer. 4305 uint32_t OffsetInVBTable = 0; 4306 int32_t VBPtrOffset = -1; 4307 if (Class.VirtualRoot) { 4308 OffsetInVBTable = 4309 VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4; 4310 VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity(); 4311 } 4312 4313 // Turn our record back into a pointer if the exception object is a 4314 // pointer. 4315 QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0); 4316 if (IsPointer) 4317 RTTITy = Context.getPointerType(RTTITy); 4318 CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase, 4319 VBPtrOffset, OffsetInVBTable)); 4320 } 4321 } 4322 4323 // C++14 [except.handle]p3: 4324 // A handler is a match for an exception object of type E if 4325 // - The handler is of type cv T or cv T& and E and T are the same type 4326 // (ignoring the top-level cv-qualifiers) 4327 CatchableTypes.insert(getCatchableType(T)); 4328 4329 // C++14 [except.handle]p3: 4330 // A handler is a match for an exception object of type E if 4331 // - the handler is of type cv T or const T& where T is a pointer type and 4332 // E is a pointer type that can be converted to T by [...] 4333 // - a standard pointer conversion (4.10) not involving conversions to 4334 // pointers to private or protected or ambiguous classes 4335 // 4336 // C++14 [conv.ptr]p2: 4337 // A prvalue of type "pointer to cv T," where T is an object type, can be 4338 // converted to a prvalue of type "pointer to cv void". 4339 if (IsPointer && T->getPointeeType()->isObjectType()) 4340 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4341 4342 // C++14 [except.handle]p3: 4343 // A handler is a match for an exception object of type E if [...] 4344 // - the handler is of type cv T or const T& where T is a pointer or 4345 // pointer to member type and E is std::nullptr_t. 4346 // 4347 // We cannot possibly list all possible pointer types here, making this 4348 // implementation incompatible with the standard. However, MSVC includes an 4349 // entry for pointer-to-void in this case. Let's do the same. 4350 if (T->isNullPtrType()) 4351 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4352 4353 uint32_t NumEntries = CatchableTypes.size(); 4354 llvm::Type *CTType = getImageRelativeType(CGM.UnqualPtrTy); 4355 llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries); 4356 llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries); 4357 llvm::Constant *Fields[] = { 4358 llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries 4359 llvm::ConstantArray::get( 4360 AT, llvm::ArrayRef(CatchableTypes.begin(), 4361 CatchableTypes.end())) // CatchableTypes 4362 }; 4363 SmallString<256> MangledName; 4364 { 4365 llvm::raw_svector_ostream Out(MangledName); 4366 getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out); 4367 } 4368 CTA = new llvm::GlobalVariable( 4369 CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T), 4370 llvm::ConstantStruct::get(CTAType, Fields), MangledName); 4371 CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4372 CTA->setSection(".xdata"); 4373 if (CTA->isWeakForLinker()) 4374 CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName())); 4375 return CTA; 4376 } 4377 4378 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) { 4379 bool IsConst, IsVolatile, IsUnaligned; 4380 T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned); 4381 4382 // The CatchableTypeArray enumerates the various (CV-unqualified) types that 4383 // the exception object may be caught as. 4384 llvm::GlobalVariable *CTA = getCatchableTypeArray(T); 4385 // The first field in a CatchableTypeArray is the number of CatchableTypes. 4386 // This is used as a component of the mangled name which means that we need to 4387 // know what it is in order to see if we have previously generated the 4388 // ThrowInfo. 4389 uint32_t NumEntries = 4390 cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U)) 4391 ->getLimitedValue(); 4392 4393 SmallString<256> MangledName; 4394 { 4395 llvm::raw_svector_ostream Out(MangledName); 4396 getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned, 4397 NumEntries, Out); 4398 } 4399 4400 // Reuse a previously generated ThrowInfo if we have generated an appropriate 4401 // one before. 4402 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4403 return GV; 4404 4405 // The RTTI TypeDescriptor uses an unqualified type but catch clauses must 4406 // be at least as CV qualified. Encode this requirement into the Flags 4407 // bitfield. 4408 uint32_t Flags = 0; 4409 if (IsConst) 4410 Flags |= 1; 4411 if (IsVolatile) 4412 Flags |= 2; 4413 if (IsUnaligned) 4414 Flags |= 4; 4415 4416 // The cleanup-function (a destructor) must be called when the exception 4417 // object's lifetime ends. 4418 llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4419 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4420 if (CXXDestructorDecl *DtorD = RD->getDestructor()) 4421 if (!DtorD->isTrivial()) 4422 CleanupFn = CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)); 4423 // This is unused as far as we can tell, initialize it to null. 4424 llvm::Constant *ForwardCompat = 4425 getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy)); 4426 llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(CTA); 4427 llvm::StructType *TIType = getThrowInfoType(); 4428 llvm::Constant *Fields[] = { 4429 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4430 getImageRelativeConstant(CleanupFn), // CleanupFn 4431 ForwardCompat, // ForwardCompat 4432 PointerToCatchableTypes // CatchableTypeArray 4433 }; 4434 auto *GV = new llvm::GlobalVariable( 4435 CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T), 4436 llvm::ConstantStruct::get(TIType, Fields), MangledName.str()); 4437 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4438 GV->setSection(".xdata"); 4439 if (GV->isWeakForLinker()) 4440 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4441 return GV; 4442 } 4443 4444 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { 4445 const Expr *SubExpr = E->getSubExpr(); 4446 assert(SubExpr && "SubExpr cannot be null"); 4447 QualType ThrowType = SubExpr->getType(); 4448 // The exception object lives on the stack and it's address is passed to the 4449 // runtime function. 4450 Address AI = CGF.CreateMemTemp(ThrowType); 4451 CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(), 4452 /*IsInit=*/true); 4453 4454 // The so-called ThrowInfo is used to describe how the exception object may be 4455 // caught. 4456 llvm::GlobalVariable *TI = getThrowInfo(ThrowType); 4457 4458 // Call into the runtime to throw the exception. 4459 llvm::Value *Args[] = {AI.emitRawPointer(CGF), TI}; 4460 CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args); 4461 } 4462 4463 std::pair<llvm::Value *, const CXXRecordDecl *> 4464 MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, 4465 const CXXRecordDecl *RD) { 4466 std::tie(This, std::ignore, RD) = 4467 performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0)); 4468 return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD}; 4469 } 4470 4471 bool MicrosoftCXXABI::isPermittedToBeHomogeneousAggregate( 4472 const CXXRecordDecl *RD) const { 4473 // All aggregates are permitted to be HFA on non-ARM platforms, which mostly 4474 // affects vectorcall on x64/x86. 4475 if (!CGM.getTarget().getTriple().isAArch64()) 4476 return true; 4477 // MSVC Windows on Arm64 has its own rules for determining if a type is HFA 4478 // that are inconsistent with the AAPCS64 ABI. The following are our best 4479 // determination of those rules so far, based on observation of MSVC's 4480 // behavior. 4481 if (RD->isEmpty()) 4482 return false; 4483 if (RD->isPolymorphic()) 4484 return false; 4485 if (RD->hasNonTrivialCopyAssignment()) 4486 return false; 4487 if (RD->hasNonTrivialDestructor()) 4488 return false; 4489 if (RD->hasNonTrivialDefaultConstructor()) 4490 return false; 4491 // These two are somewhat redundant given the caller 4492 // (ABIInfo::isHomogeneousAggregate) checks the bases and fields, but that 4493 // caller doesn't consider empty bases/fields to be non-homogenous, but it 4494 // looks like Microsoft's AArch64 ABI does care about these empty types & 4495 // anything containing/derived from one is non-homogeneous. 4496 // Instead we could add another CXXABI entry point to query this property and 4497 // have ABIInfo::isHomogeneousAggregate use that property. 4498 // I don't think any other of the features listed above could be true of a 4499 // base/field while not true of the outer struct. For example, if you have a 4500 // base/field that has an non-trivial copy assignment/dtor/default ctor, then 4501 // the outer struct's corresponding operation must be non-trivial. 4502 for (const CXXBaseSpecifier &B : RD->bases()) { 4503 if (const CXXRecordDecl *FRD = B.getType()->getAsCXXRecordDecl()) { 4504 if (!isPermittedToBeHomogeneousAggregate(FRD)) 4505 return false; 4506 } 4507 } 4508 // empty fields seem to be caught by the ABIInfo::isHomogeneousAggregate 4509 // checking for padding - but maybe there are ways to end up with an empty 4510 // field without padding? Not that I know of, so don't check fields here & 4511 // rely on the padding check. 4512 return true; 4513 } 4514