1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // This file contains the ARM implementation of TargetFrameLowering class. 14 // 15 // On ARM, stack frames are structured as follows: 16 // 17 // The stack grows downward. 18 // 19 // All of the individual frame areas on the frame below are optional, i.e. it's 20 // possible to create a function so that the particular area isn't present 21 // in the frame. 22 // 23 // At function entry, the "frame" looks as follows: 24 // 25 // | | Higher address 26 // |-----------------------------------| 27 // | | 28 // | arguments passed on the stack | 29 // | | 30 // |-----------------------------------| <- sp 31 // | | Lower address 32 // 33 // 34 // After the prologue has run, the frame has the following general structure. 35 // Technically the last frame area (VLAs) doesn't get created until in the 36 // main function body, after the prologue is run. However, it's depicted here 37 // for completeness. 38 // 39 // | | Higher address 40 // |-----------------------------------| 41 // | | 42 // | arguments passed on the stack | 43 // | | 44 // |-----------------------------------| <- (sp at function entry) 45 // | | 46 // | varargs from registers | 47 // | | 48 // |-----------------------------------| 49 // | | 50 // | prev_lr | 51 // | prev_fp | 52 // | (a.k.a. "frame record") | 53 // | | 54 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11) 55 // | | 56 // | callee-saved gpr registers | 57 // | | 58 // |-----------------------------------| 59 // | | 60 // | callee-saved fp/simd regs | 61 // | | 62 // |-----------------------------------| 63 // |.empty.space.to.make.part.below....| 64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 65 // |.the.standard.8-byte.alignment.....| compile time; if present) 66 // |-----------------------------------| 67 // | | 68 // | local variables of fixed size | 69 // | including spill slots | 70 // |-----------------------------------| <- base pointer (not defined by ABI, 71 // |.variable-sized.local.variables....| LLVM chooses r6) 72 // |.(VLAs)............................| (size of this area is unknown at 73 // |...................................| compile time) 74 // |-----------------------------------| <- sp 75 // | | Lower address 76 // 77 // 78 // To access the data in a frame, at-compile time, a constant offset must be 79 // computable from one of the pointers (fp, bp, sp) to access it. The size 80 // of the areas with a dotted background cannot be computed at compile-time 81 // if they are present, making it required to have all three of fp, bp and 82 // sp to be set up to be able to access all contents in the frame areas, 83 // assuming all of the frame areas are non-empty. 84 // 85 // For most functions, some of the frame areas are empty. For those functions, 86 // it may not be necessary to set up fp or bp: 87 // * A base pointer is definitely needed when there are both VLAs and local 88 // variables with more-than-default alignment requirements. 89 // * A frame pointer is definitely needed when there are local variables with 90 // more-than-default alignment requirements. 91 // 92 // In some cases when a base pointer is not strictly needed, it is generated 93 // anyway when offsets from the frame pointer to access local variables become 94 // so large that the offset can't be encoded in the immediate fields of loads 95 // or stores. 96 // 97 // The frame pointer might be chosen to be r7 or r11, depending on the target 98 // architecture and operating system. See ARMSubtarget::getFramePointerReg for 99 // details. 100 // 101 // Outgoing function arguments must be at the bottom of the stack frame when 102 // calling another function. If we do not have variable-sized stack objects, we 103 // can allocate a "reserved call frame" area at the bottom of the local 104 // variable area, large enough for all outgoing calls. If we do have VLAs, then 105 // the stack pointer must be decremented and incremented around each call to 106 // make space for the arguments below the VLAs. 107 // 108 //===----------------------------------------------------------------------===// 109 110 #include "ARMFrameLowering.h" 111 #include "ARMBaseInstrInfo.h" 112 #include "ARMBaseRegisterInfo.h" 113 #include "ARMConstantPoolValue.h" 114 #include "ARMMachineFunctionInfo.h" 115 #include "ARMSubtarget.h" 116 #include "MCTargetDesc/ARMAddressingModes.h" 117 #include "MCTargetDesc/ARMBaseInfo.h" 118 #include "Utils/ARMBaseInfo.h" 119 #include "llvm/ADT/BitVector.h" 120 #include "llvm/ADT/STLExtras.h" 121 #include "llvm/ADT/SmallPtrSet.h" 122 #include "llvm/ADT/SmallVector.h" 123 #include "llvm/CodeGen/MachineBasicBlock.h" 124 #include "llvm/CodeGen/MachineConstantPool.h" 125 #include "llvm/CodeGen/MachineFrameInfo.h" 126 #include "llvm/CodeGen/MachineFunction.h" 127 #include "llvm/CodeGen/MachineInstr.h" 128 #include "llvm/CodeGen/MachineInstrBuilder.h" 129 #include "llvm/CodeGen/MachineJumpTableInfo.h" 130 #include "llvm/CodeGen/MachineModuleInfo.h" 131 #include "llvm/CodeGen/MachineOperand.h" 132 #include "llvm/CodeGen/MachineRegisterInfo.h" 133 #include "llvm/CodeGen/RegisterScavenging.h" 134 #include "llvm/CodeGen/TargetInstrInfo.h" 135 #include "llvm/CodeGen/TargetOpcodes.h" 136 #include "llvm/CodeGen/TargetRegisterInfo.h" 137 #include "llvm/CodeGen/TargetSubtargetInfo.h" 138 #include "llvm/IR/Attributes.h" 139 #include "llvm/IR/CallingConv.h" 140 #include "llvm/IR/DebugLoc.h" 141 #include "llvm/IR/Function.h" 142 #include "llvm/MC/MCAsmInfo.h" 143 #include "llvm/MC/MCContext.h" 144 #include "llvm/MC/MCDwarf.h" 145 #include "llvm/MC/MCInstrDesc.h" 146 #include "llvm/MC/MCRegisterInfo.h" 147 #include "llvm/Support/CodeGen.h" 148 #include "llvm/Support/CommandLine.h" 149 #include "llvm/Support/Compiler.h" 150 #include "llvm/Support/Debug.h" 151 #include "llvm/Support/ErrorHandling.h" 152 #include "llvm/Support/raw_ostream.h" 153 #include "llvm/Target/TargetMachine.h" 154 #include "llvm/Target/TargetOptions.h" 155 #include <algorithm> 156 #include <cassert> 157 #include <cstddef> 158 #include <cstdint> 159 #include <iterator> 160 #include <utility> 161 #include <vector> 162 163 #define DEBUG_TYPE "arm-frame-lowering" 164 165 using namespace llvm; 166 167 static cl::opt<bool> 168 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 169 cl::desc("Align ARM NEON spills in prolog and epilog")); 170 171 static MachineBasicBlock::iterator 172 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 173 unsigned NumAlignedDPRCS2Regs); 174 175 enum class SpillArea { 176 GPRCS1, 177 GPRCS2, 178 DPRCS1, 179 DPRCS2, 180 GPRCS3, 181 FPCXT, 182 }; 183 184 /// Get the spill area that Reg should be saved into in the prologue. 185 SpillArea getSpillArea(Register Reg, 186 ARMSubtarget::PushPopSplitVariation Variation, 187 unsigned NumAlignedDPRCS2Regs, 188 const ARMBaseRegisterInfo *RegInfo) { 189 // NoSplit: 190 // push {r0-r12, lr} GPRCS1 191 // vpush {r8-d15} DPRCS1 192 // 193 // SplitR7: 194 // push {r0-r7, lr} GPRCS1 195 // push {r8-r12} GPRCS2 196 // vpush {r8-d15} DPRCS1 197 // 198 // SplitR11WindowsSEH: 199 // push {r0-r10, r12} GPRCS1 200 // vpush {r8-d15} DPRCS1 201 // push {r11, lr} GPRCS3 202 // 203 // SplitR11AAPCSSignRA: 204 // push {r0-r10, r12} GPRSC1 205 // push {r11, lr} GPRCS2 206 // vpush {r8-d15} DPRCS1 207 208 // If FPCXTNS is spilled (for CMSE secure entryfunctions), it is always at 209 // the top of the stack frame. 210 // The DPRCS2 region is used for ABIs which only guarantee 4-byte alignment 211 // of SP. If used, it will be below the other save areas, after the stack has 212 // been re-aligned. 213 214 switch (Reg) { 215 default: 216 dbgs() << "Don't know where to spill " << printReg(Reg, RegInfo) << "\n"; 217 llvm_unreachable("Don't know where to spill this register"); 218 break; 219 220 case ARM::FPCXTNS: 221 return SpillArea::FPCXT; 222 223 case ARM::R0: 224 case ARM::R1: 225 case ARM::R2: 226 case ARM::R3: 227 case ARM::R4: 228 case ARM::R5: 229 case ARM::R6: 230 case ARM::R7: 231 return SpillArea::GPRCS1; 232 233 case ARM::R8: 234 case ARM::R9: 235 case ARM::R10: 236 if (Variation == ARMSubtarget::SplitR7) 237 return SpillArea::GPRCS2; 238 else 239 return SpillArea::GPRCS1; 240 241 case ARM::R11: 242 if (Variation == ARMSubtarget::SplitR7 || 243 Variation == ARMSubtarget::SplitR11AAPCSSignRA) 244 return SpillArea::GPRCS2; 245 if (Variation == ARMSubtarget::SplitR11WindowsSEH) 246 return SpillArea::GPRCS3; 247 248 return SpillArea::GPRCS1; 249 250 case ARM::R12: 251 if (Variation == ARMSubtarget::SplitR7) 252 return SpillArea::GPRCS2; 253 else 254 return SpillArea::GPRCS1; 255 256 case ARM::LR: 257 if (Variation == ARMSubtarget::SplitR11AAPCSSignRA) 258 return SpillArea::GPRCS2; 259 if (Variation == ARMSubtarget::SplitR11WindowsSEH) 260 return SpillArea::GPRCS3; 261 262 return SpillArea::GPRCS1; 263 264 case ARM::D0: 265 case ARM::D1: 266 case ARM::D2: 267 case ARM::D3: 268 case ARM::D4: 269 case ARM::D5: 270 case ARM::D6: 271 case ARM::D7: 272 return SpillArea::DPRCS1; 273 274 case ARM::D8: 275 case ARM::D9: 276 case ARM::D10: 277 case ARM::D11: 278 case ARM::D12: 279 case ARM::D13: 280 case ARM::D14: 281 case ARM::D15: 282 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 283 return SpillArea::DPRCS2; 284 else 285 return SpillArea::DPRCS1; 286 287 case ARM::D16: 288 case ARM::D17: 289 case ARM::D18: 290 case ARM::D19: 291 case ARM::D20: 292 case ARM::D21: 293 case ARM::D22: 294 case ARM::D23: 295 case ARM::D24: 296 case ARM::D25: 297 case ARM::D26: 298 case ARM::D27: 299 case ARM::D28: 300 case ARM::D29: 301 case ARM::D30: 302 case ARM::D31: 303 return SpillArea::DPRCS1; 304 } 305 } 306 307 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 308 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), 309 STI(sti) {} 310 311 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { 312 // iOS always has a FP for backtracking, force other targets to keep their FP 313 // when doing FastISel. The emitted code is currently superior, and in cases 314 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 315 return MF.getSubtarget<ARMSubtarget>().useFastISel(); 316 } 317 318 /// Returns true if the target can safely skip saving callee-saved registers 319 /// for noreturn nounwind functions. 320 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 321 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 322 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 323 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 324 325 // Frame pointer and link register are not treated as normal CSR, thus we 326 // can always skip CSR saves for nonreturning functions. 327 return true; 328 } 329 330 /// hasFPImpl - Return true if the specified function should have a dedicated 331 /// frame pointer register. This is true if the function has variable sized 332 /// allocas or if frame pointer elimination is disabled. 333 bool ARMFrameLowering::hasFPImpl(const MachineFunction &MF) const { 334 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 335 const MachineFrameInfo &MFI = MF.getFrameInfo(); 336 337 // Check to see if the target want to forcibly keep frame pointer. 338 if (keepFramePointer(MF)) 339 return true; 340 341 // ABI-required frame pointer. 342 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 343 return true; 344 345 // Frame pointer required for use within this function. 346 return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 347 MFI.isFrameAddressTaken()); 348 } 349 350 /// isFPReserved - Return true if the frame pointer register should be 351 /// considered a reserved register on the scope of the specified function. 352 bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const { 353 return hasFP(MF) || MF.getTarget().Options.FramePointerIsReserved(MF); 354 } 355 356 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 357 /// not required, we reserve argument space for call sites in the function 358 /// immediately on entry to the current function. This eliminates the need for 359 /// add/sub sp brackets around call sites. Returns true if the call frame is 360 /// included as part of the stack frame. 361 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 362 const MachineFrameInfo &MFI = MF.getFrameInfo(); 363 unsigned CFSize = MFI.getMaxCallFrameSize(); 364 // It's not always a good idea to include the call frame as part of the 365 // stack frame. ARM (especially Thumb) has small immediate offset to 366 // address the stack frame. So a large call frame can cause poor codegen 367 // and may even makes it impossible to scavenge a register. 368 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 369 return false; 370 371 return !MFI.hasVarSizedObjects(); 372 } 373 374 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 375 /// call frame pseudos can be simplified. Unlike most targets, having a FP 376 /// is not sufficient here since we still may reference some objects via SP 377 /// even when FP is available in Thumb2 mode. 378 bool 379 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 380 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 381 } 382 383 // Returns how much of the incoming argument stack area we should clean up in an 384 // epilogue. For the C calling convention this will be 0, for guaranteed tail 385 // call conventions it can be positive (a normal return or a tail call to a 386 // function that uses less stack space for arguments) or negative (for a tail 387 // call to a function that needs more stack space than us for arguments). 388 static int getArgumentStackToRestore(MachineFunction &MF, 389 MachineBasicBlock &MBB) { 390 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 391 bool IsTailCallReturn = false; 392 if (MBB.end() != MBBI) { 393 unsigned RetOpcode = MBBI->getOpcode(); 394 IsTailCallReturn = RetOpcode == ARM::TCRETURNdi || 395 RetOpcode == ARM::TCRETURNri || 396 RetOpcode == ARM::TCRETURNrinotr12; 397 } 398 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 399 400 int ArgumentPopSize = 0; 401 if (IsTailCallReturn) { 402 MachineOperand &StackAdjust = MBBI->getOperand(1); 403 404 // For a tail-call in a callee-pops-arguments environment, some or all of 405 // the stack may actually be in use for the call's arguments, this is 406 // calculated during LowerCall and consumed here... 407 ArgumentPopSize = StackAdjust.getImm(); 408 } else { 409 // ... otherwise the amount to pop is *all* of the argument space, 410 // conveniently stored in the MachineFunctionInfo by 411 // LowerFormalArguments. This will, of course, be zero for the C calling 412 // convention. 413 ArgumentPopSize = AFI->getArgumentStackToRestore(); 414 } 415 416 return ArgumentPopSize; 417 } 418 419 static bool needsWinCFI(const MachineFunction &MF) { 420 const Function &F = MF.getFunction(); 421 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 422 F.needsUnwindTableEntry(); 423 } 424 425 // Given a load or a store instruction, generate an appropriate unwinding SEH 426 // code on Windows. 427 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI, 428 const TargetInstrInfo &TII, 429 unsigned Flags) { 430 unsigned Opc = MBBI->getOpcode(); 431 MachineBasicBlock *MBB = MBBI->getParent(); 432 MachineFunction &MF = *MBB->getParent(); 433 DebugLoc DL = MBBI->getDebugLoc(); 434 MachineInstrBuilder MIB; 435 const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>(); 436 const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 437 438 Flags |= MachineInstr::NoMerge; 439 440 switch (Opc) { 441 default: 442 report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc)); 443 break; 444 case ARM::t2ADDri: // add.w r11, sp, #xx 445 case ARM::t2ADDri12: // add.w r11, sp, #xx 446 case ARM::t2MOVTi16: // movt r4, #xx 447 case ARM::tBL: // bl __chkstk 448 // These are harmless if used for just setting up a frame pointer, 449 // but that frame pointer can't be relied upon for unwinding, unless 450 // set up with SEH_SaveSP. 451 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 452 .addImm(/*Wide=*/1) 453 .setMIFlags(Flags); 454 break; 455 456 case ARM::t2MOVi16: { // mov(w) r4, #xx 457 bool Wide = MBBI->getOperand(1).getImm() >= 256; 458 if (!Wide) { 459 MachineInstrBuilder NewInstr = 460 BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags()); 461 NewInstr.add(MBBI->getOperand(0)); 462 NewInstr.add(t1CondCodeOp(/*isDead=*/true)); 463 for (MachineOperand &MO : llvm::drop_begin(MBBI->operands())) 464 NewInstr.add(MO); 465 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 466 MBB->erase(MBBI); 467 MBBI = NewMBBI; 468 } 469 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags); 470 break; 471 } 472 473 case ARM::tBLXr: // blx r12 (__chkstk) 474 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 475 .addImm(/*Wide=*/0) 476 .setMIFlags(Flags); 477 break; 478 479 case ARM::t2MOVi32imm: // movw+movt 480 // This pseudo instruction expands into two mov instructions. If the 481 // second operand is a symbol reference, this will stay as two wide 482 // instructions, movw+movt. If they're immediates, the first one can 483 // end up as a narrow mov though. 484 // As two SEH instructions are appended here, they won't get interleaved 485 // between the two final movw/movt instructions, but it doesn't make any 486 // practical difference. 487 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 488 .addImm(/*Wide=*/1) 489 .setMIFlags(Flags); 490 MBB->insertAfter(MBBI, MIB); 491 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 492 .addImm(/*Wide=*/1) 493 .setMIFlags(Flags); 494 break; 495 496 case ARM::t2STR_PRE: 497 if (MBBI->getOperand(0).getReg() == ARM::SP && 498 MBBI->getOperand(2).getReg() == ARM::SP && 499 MBBI->getOperand(3).getImm() == -4) { 500 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 501 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 502 .addImm(1ULL << Reg) 503 .addImm(/*Wide=*/1) 504 .setMIFlags(Flags); 505 } else { 506 report_fatal_error("No matching SEH Opcode for t2STR_PRE"); 507 } 508 break; 509 510 case ARM::t2LDR_POST: 511 if (MBBI->getOperand(1).getReg() == ARM::SP && 512 MBBI->getOperand(2).getReg() == ARM::SP && 513 MBBI->getOperand(3).getImm() == 4) { 514 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 515 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 516 .addImm(1ULL << Reg) 517 .addImm(/*Wide=*/1) 518 .setMIFlags(Flags); 519 } else { 520 report_fatal_error("No matching SEH Opcode for t2LDR_POST"); 521 } 522 break; 523 524 case ARM::t2LDMIA_RET: 525 case ARM::t2LDMIA_UPD: 526 case ARM::t2STMDB_UPD: { 527 unsigned Mask = 0; 528 bool Wide = false; 529 for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) { 530 const MachineOperand &MO = MBBI->getOperand(i); 531 if (!MO.isReg() || MO.isImplicit()) 532 continue; 533 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 534 if (Reg == 15) 535 Reg = 14; 536 if (Reg >= 8 && Reg <= 13) 537 Wide = true; 538 else if (Opc == ARM::t2LDMIA_UPD && Reg == 14) 539 Wide = true; 540 Mask |= 1 << Reg; 541 } 542 if (!Wide) { 543 unsigned NewOpc; 544 switch (Opc) { 545 case ARM::t2LDMIA_RET: 546 NewOpc = ARM::tPOP_RET; 547 break; 548 case ARM::t2LDMIA_UPD: 549 NewOpc = ARM::tPOP; 550 break; 551 case ARM::t2STMDB_UPD: 552 NewOpc = ARM::tPUSH; 553 break; 554 default: 555 llvm_unreachable(""); 556 } 557 MachineInstrBuilder NewInstr = 558 BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags()); 559 for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) 560 NewInstr.add(MBBI->getOperand(i)); 561 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 562 MBB->erase(MBBI); 563 MBBI = NewMBBI; 564 } 565 unsigned SEHOpc = 566 (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs; 567 MIB = BuildMI(MF, DL, TII.get(SEHOpc)) 568 .addImm(Mask) 569 .addImm(Wide ? 1 : 0) 570 .setMIFlags(Flags); 571 break; 572 } 573 case ARM::VSTMDDB_UPD: 574 case ARM::VLDMDIA_UPD: { 575 int First = -1, Last = 0; 576 for (const MachineOperand &MO : llvm::drop_begin(MBBI->operands(), 4)) { 577 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 578 if (First == -1) 579 First = Reg; 580 Last = Reg; 581 } 582 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs)) 583 .addImm(First) 584 .addImm(Last) 585 .setMIFlags(Flags); 586 break; 587 } 588 case ARM::tSUBspi: 589 case ARM::tADDspi: 590 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 591 .addImm(MBBI->getOperand(2).getImm() * 4) 592 .addImm(/*Wide=*/0) 593 .setMIFlags(Flags); 594 break; 595 case ARM::t2SUBspImm: 596 case ARM::t2SUBspImm12: 597 case ARM::t2ADDspImm: 598 case ARM::t2ADDspImm12: 599 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 600 .addImm(MBBI->getOperand(2).getImm()) 601 .addImm(/*Wide=*/1) 602 .setMIFlags(Flags); 603 break; 604 605 case ARM::tMOVr: 606 if (MBBI->getOperand(1).getReg() == ARM::SP && 607 (Flags & MachineInstr::FrameSetup)) { 608 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 609 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 610 .addImm(Reg) 611 .setMIFlags(Flags); 612 } else if (MBBI->getOperand(0).getReg() == ARM::SP && 613 (Flags & MachineInstr::FrameDestroy)) { 614 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 615 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 616 .addImm(Reg) 617 .setMIFlags(Flags); 618 } else { 619 report_fatal_error("No SEH Opcode for MOV"); 620 } 621 break; 622 623 case ARM::tBX_RET: 624 case ARM::TCRETURNri: 625 case ARM::TCRETURNrinotr12: 626 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 627 .addImm(/*Wide=*/0) 628 .setMIFlags(Flags); 629 break; 630 631 case ARM::TCRETURNdi: 632 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 633 .addImm(/*Wide=*/1) 634 .setMIFlags(Flags); 635 break; 636 } 637 return MBB->insertAfter(MBBI, MIB); 638 } 639 640 static MachineBasicBlock::iterator 641 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) { 642 if (MBBI == MBB.begin()) 643 return MachineBasicBlock::iterator(); 644 return std::prev(MBBI); 645 } 646 647 static void insertSEHRange(MachineBasicBlock &MBB, 648 MachineBasicBlock::iterator Start, 649 const MachineBasicBlock::iterator &End, 650 const ARMBaseInstrInfo &TII, unsigned MIFlags) { 651 if (Start.isValid()) 652 Start = std::next(Start); 653 else 654 Start = MBB.begin(); 655 656 for (auto MI = Start; MI != End;) { 657 auto Next = std::next(MI); 658 // Check if this instruction already has got a SEH opcode added. In that 659 // case, don't do this generic mapping. 660 if (Next != End && isSEHInstruction(*Next)) { 661 MI = std::next(Next); 662 while (MI != End && isSEHInstruction(*MI)) 663 ++MI; 664 continue; 665 } 666 insertSEH(MI, TII, MIFlags); 667 MI = Next; 668 } 669 } 670 671 static void emitRegPlusImmediate( 672 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 673 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 674 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 675 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 676 if (isARM) 677 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 678 Pred, PredReg, TII, MIFlags); 679 else 680 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 681 Pred, PredReg, TII, MIFlags); 682 } 683 684 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 685 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 686 const ARMBaseInstrInfo &TII, int NumBytes, 687 unsigned MIFlags = MachineInstr::NoFlags, 688 ARMCC::CondCodes Pred = ARMCC::AL, 689 unsigned PredReg = 0) { 690 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 691 MIFlags, Pred, PredReg); 692 } 693 694 static int sizeOfSPAdjustment(const MachineInstr &MI) { 695 int RegSize; 696 switch (MI.getOpcode()) { 697 case ARM::VSTMDDB_UPD: 698 RegSize = 8; 699 break; 700 case ARM::STMDB_UPD: 701 case ARM::t2STMDB_UPD: 702 RegSize = 4; 703 break; 704 case ARM::t2STR_PRE: 705 case ARM::STR_PRE_IMM: 706 return 4; 707 default: 708 llvm_unreachable("Unknown push or pop like instruction"); 709 } 710 711 int count = 0; 712 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 713 // pred) so the list starts at 4. 714 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 715 count += RegSize; 716 return count; 717 } 718 719 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 720 size_t StackSizeInBytes) { 721 const MachineFrameInfo &MFI = MF.getFrameInfo(); 722 const Function &F = MF.getFunction(); 723 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 724 725 StackProbeSize = 726 F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize); 727 return (StackSizeInBytes >= StackProbeSize) && 728 !F.hasFnAttribute("no-stack-arg-probe"); 729 } 730 731 namespace { 732 733 struct StackAdjustingInsts { 734 struct InstInfo { 735 MachineBasicBlock::iterator I; 736 unsigned SPAdjust; 737 bool BeforeFPSet; 738 739 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 740 void dump() { 741 dbgs() << " " << (BeforeFPSet ? "before-fp " : " ") 742 << "sp-adjust=" << SPAdjust; 743 I->dump(); 744 } 745 #endif 746 }; 747 748 SmallVector<InstInfo, 4> Insts; 749 750 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 751 bool BeforeFPSet = false) { 752 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 753 Insts.push_back(Info); 754 } 755 756 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 757 auto Info = 758 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 759 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 760 Info->SPAdjust += ExtraBytes; 761 } 762 763 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 764 const ARMBaseInstrInfo &TII, bool HasFP) { 765 MachineFunction &MF = *MBB.getParent(); 766 unsigned CFAOffset = 0; 767 for (auto &Info : Insts) { 768 if (HasFP && !Info.BeforeFPSet) 769 return; 770 771 CFAOffset += Info.SPAdjust; 772 unsigned CFIIndex = MF.addFrameInst( 773 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset)); 774 BuildMI(MBB, std::next(Info.I), dl, 775 TII.get(TargetOpcode::CFI_INSTRUCTION)) 776 .addCFIIndex(CFIIndex) 777 .setMIFlags(MachineInstr::FrameSetup); 778 } 779 } 780 781 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 782 void dump() { 783 dbgs() << "StackAdjustingInsts:\n"; 784 for (auto &Info : Insts) 785 Info.dump(); 786 } 787 #endif 788 }; 789 790 } // end anonymous namespace 791 792 /// Emit an instruction sequence that will align the address in 793 /// register Reg by zero-ing out the lower bits. For versions of the 794 /// architecture that support Neon, this must be done in a single 795 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 796 /// single instruction. That function only gets called when optimizing 797 /// spilling of D registers on a core with the Neon instruction set 798 /// present. 799 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 800 const TargetInstrInfo &TII, 801 MachineBasicBlock &MBB, 802 MachineBasicBlock::iterator MBBI, 803 const DebugLoc &DL, const unsigned Reg, 804 const Align Alignment, 805 const bool MustBeSingleInstruction) { 806 const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>(); 807 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 808 const unsigned AlignMask = Alignment.value() - 1U; 809 const unsigned NrBitsToZero = Log2(Alignment); 810 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 811 if (!AFI->isThumbFunction()) { 812 // if the BFC instruction is available, use that to zero the lower 813 // bits: 814 // bfc Reg, #0, log2(Alignment) 815 // otherwise use BIC, if the mask to zero the required number of bits 816 // can be encoded in the bic immediate field 817 // bic Reg, Reg, Alignment-1 818 // otherwise, emit 819 // lsr Reg, Reg, log2(Alignment) 820 // lsl Reg, Reg, log2(Alignment) 821 if (CanUseBFC) { 822 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 823 .addReg(Reg, RegState::Kill) 824 .addImm(~AlignMask) 825 .add(predOps(ARMCC::AL)); 826 } else if (AlignMask <= 255) { 827 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 828 .addReg(Reg, RegState::Kill) 829 .addImm(AlignMask) 830 .add(predOps(ARMCC::AL)) 831 .add(condCodeOp()); 832 } else { 833 assert(!MustBeSingleInstruction && 834 "Shouldn't call emitAligningInstructions demanding a single " 835 "instruction to be emitted for large stack alignment for a target " 836 "without BFC."); 837 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 838 .addReg(Reg, RegState::Kill) 839 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 840 .add(predOps(ARMCC::AL)) 841 .add(condCodeOp()); 842 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 843 .addReg(Reg, RegState::Kill) 844 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 845 .add(predOps(ARMCC::AL)) 846 .add(condCodeOp()); 847 } 848 } else { 849 // Since this is only reached for Thumb-2 targets, the BFC instruction 850 // should always be available. 851 assert(CanUseBFC); 852 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 853 .addReg(Reg, RegState::Kill) 854 .addImm(~AlignMask) 855 .add(predOps(ARMCC::AL)); 856 } 857 } 858 859 /// We need the offset of the frame pointer relative to other MachineFrameInfo 860 /// offsets which are encoded relative to SP at function begin. 861 /// See also emitPrologue() for how the FP is set up. 862 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 863 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 864 /// this to produce a conservative estimate that we check in an assert() later. 865 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI, 866 const MachineFunction &MF) { 867 ARMSubtarget::PushPopSplitVariation PushPopSplit = 868 STI.getPushPopSplitVariation(MF); 869 // For Thumb1, push.w isn't available, so the first push will always push 870 // r7 and lr onto the stack first. 871 if (AFI.isThumb1OnlyFunction()) 872 return -AFI.getArgRegsSaveSize() - (2 * 4); 873 // This is a conservative estimation: Assume the frame pointer being r7 and 874 // pc("r15") up to r8 getting spilled before (= 8 registers). 875 int MaxRegBytes = 8 * 4; 876 if (PushPopSplit == ARMSubtarget::SplitR11AAPCSSignRA) 877 // Here, r11 can be stored below all of r4-r15. 878 MaxRegBytes = 11 * 4; 879 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 880 // Here, r11 can be stored below all of r4-r15 plus d8-d15. 881 MaxRegBytes = 11 * 4 + 8 * 8; 882 } 883 int FPCXTSaveSize = 884 (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0; 885 return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes; 886 } 887 888 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 889 MachineBasicBlock &MBB) const { 890 MachineBasicBlock::iterator MBBI = MBB.begin(); 891 MachineFrameInfo &MFI = MF.getFrameInfo(); 892 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 893 MCContext &Context = MF.getContext(); 894 const TargetMachine &TM = MF.getTarget(); 895 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 896 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 897 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 898 assert(!AFI->isThumb1OnlyFunction() && 899 "This emitPrologue does not support Thumb1!"); 900 bool isARM = !AFI->isThumbFunction(); 901 Align Alignment = STI.getFrameLowering()->getStackAlign(); 902 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 903 unsigned NumBytes = MFI.getStackSize(); 904 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 905 int FPCXTSaveSize = 0; 906 bool NeedsWinCFI = needsWinCFI(MF); 907 ARMSubtarget::PushPopSplitVariation PushPopSplit = 908 STI.getPushPopSplitVariation(MF); 909 910 LLVM_DEBUG(dbgs() << "Emitting prologue for " << MF.getName() << "\n"); 911 912 // Debug location must be unknown since the first debug location is used 913 // to determine the end of the prologue. 914 DebugLoc dl; 915 916 Register FramePtr = RegInfo->getFrameRegister(MF); 917 918 // Determine the sizes of each callee-save spill areas and record which frame 919 // belongs to which callee-save spill areas. 920 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCS1Size = 0, GPRCS3Size = 0, 921 DPRCS2Size = 0; 922 int FramePtrSpillFI = 0; 923 int D8SpillFI = 0; 924 925 // All calls are tail calls in GHC calling conv, and functions have no 926 // prologue/epilogue. 927 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 928 return; 929 930 StackAdjustingInsts DefCFAOffsetCandidates; 931 bool HasFP = hasFP(MF); 932 933 if (!AFI->hasStackFrame() && 934 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 935 if (NumBytes != 0) { 936 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 937 MachineInstr::FrameSetup); 938 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true); 939 } 940 if (!NeedsWinCFI) 941 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 942 if (NeedsWinCFI && MBBI != MBB.begin()) { 943 insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup); 944 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd)) 945 .setMIFlag(MachineInstr::FrameSetup); 946 MF.setHasWinCFI(true); 947 } 948 return; 949 } 950 951 // Determine spill area sizes, and some important frame indices. 952 SpillArea FramePtrSpillArea = SpillArea::GPRCS1; 953 bool BeforeFPPush = true; 954 for (const CalleeSavedInfo &I : CSI) { 955 Register Reg = I.getReg(); 956 int FI = I.getFrameIdx(); 957 958 SpillArea Area = getSpillArea(Reg, PushPopSplit, 959 AFI->getNumAlignedDPRCS2Regs(), RegInfo); 960 961 if (Reg == FramePtr) { 962 FramePtrSpillFI = FI; 963 FramePtrSpillArea = Area; 964 } 965 if (Reg == ARM::D8) 966 D8SpillFI = FI; 967 968 switch (Area) { 969 case SpillArea::FPCXT: 970 FPCXTSaveSize += 4; 971 break; 972 case SpillArea::GPRCS1: 973 GPRCS1Size += 4; 974 break; 975 case SpillArea::GPRCS2: 976 GPRCS2Size += 4; 977 break; 978 case SpillArea::DPRCS1: 979 DPRCS1Size += 8; 980 break; 981 case SpillArea::GPRCS3: 982 GPRCS3Size += 4; 983 break; 984 case SpillArea::DPRCS2: 985 DPRCS2Size += 4; 986 break; 987 } 988 } 989 990 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push, 991 DPRCS1Push, GPRCS3Push; 992 993 // Move past the PAC computation. 994 if (AFI->shouldSignReturnAddress()) 995 LastPush = MBBI++; 996 997 // Move past FPCXT area. 998 if (FPCXTSaveSize > 0) { 999 LastPush = MBBI++; 1000 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, BeforeFPPush); 1001 } 1002 1003 // Allocate the vararg register save area. 1004 if (ArgRegsSaveSize) { 1005 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 1006 MachineInstr::FrameSetup); 1007 LastPush = std::prev(MBBI); 1008 DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, BeforeFPPush); 1009 } 1010 1011 // Move past area 1. 1012 if (GPRCS1Size > 0) { 1013 GPRCS1Push = LastPush = MBBI++; 1014 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, BeforeFPPush); 1015 if (FramePtrSpillArea == SpillArea::GPRCS1) 1016 BeforeFPPush = false; 1017 } 1018 1019 // Determine starting offsets of spill areas. These offsets are all positive 1020 // offsets from the bottom of the lowest-addressed callee-save area 1021 // (excluding DPRCS2, which is th the re-aligned stack region) to the bottom 1022 // of the spill area in question. 1023 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize; 1024 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size; 1025 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 1026 1027 Align DPRAlign = DPRCS1Size ? std::min(Align(8), Alignment) : Align(4); 1028 unsigned DPRGapSize = 1029 (ArgRegsSaveSize + FPCXTSaveSize + GPRCS1Size + GPRCS2Size) % 1030 DPRAlign.value(); 1031 1032 unsigned DPRCS1Offset = GPRCS2Offset - DPRGapSize - DPRCS1Size; 1033 1034 if (HasFP) { 1035 // Offset from the CFA to the saved frame pointer, will be negative. 1036 [[maybe_unused]] int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 1037 LLVM_DEBUG(dbgs() << "FramePtrSpillFI: " << FramePtrSpillFI 1038 << ", FPOffset: " << FPOffset << "\n"); 1039 assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset && 1040 "Max FP estimation is wrong"); 1041 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 1042 NumBytes); 1043 } 1044 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 1045 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 1046 AFI->setDPRCalleeSavedArea1Offset(DPRCS1Offset); 1047 1048 // Move past area 2. 1049 if (GPRCS2Size > 0) { 1050 assert(PushPopSplit != ARMSubtarget::SplitR11WindowsSEH); 1051 GPRCS2Push = LastPush = MBBI++; 1052 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size, BeforeFPPush); 1053 if (FramePtrSpillArea == SpillArea::GPRCS2) 1054 BeforeFPPush = false; 1055 } 1056 1057 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 1058 // .cfi_offset operations will reflect that. 1059 if (DPRGapSize) { 1060 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 1061 if (LastPush != MBB.end() && 1062 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 1063 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 1064 else { 1065 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 1066 MachineInstr::FrameSetup); 1067 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize, BeforeFPPush); 1068 } 1069 } 1070 1071 // Move past DPRCS1Size. 1072 if (DPRCS1Size > 0) { 1073 // Since vpush register list cannot have gaps, there may be multiple vpush 1074 // instructions in the prologue. 1075 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 1076 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI), 1077 BeforeFPPush); 1078 DPRCS1Push = LastPush = MBBI++; 1079 } 1080 } 1081 1082 // Move past the aligned DPRCS2 area. 1083 if (DPRCS2Size > 0) { 1084 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 1085 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 1086 // leaves the stack pointer pointing to the DPRCS2 area. 1087 // 1088 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 1089 NumBytes += MFI.getObjectOffset(D8SpillFI); 1090 } else 1091 NumBytes = DPRCS1Offset; 1092 1093 // Move GPRCS3, if using using SplitR11WindowsSEH. 1094 if (GPRCS3Size > 0) { 1095 assert(PushPopSplit == ARMSubtarget::SplitR11WindowsSEH); 1096 GPRCS3Push = LastPush = MBBI++; 1097 DefCFAOffsetCandidates.addInst(LastPush, GPRCS3Size, BeforeFPPush); 1098 if (FramePtrSpillArea == SpillArea::GPRCS3) 1099 BeforeFPPush = false; 1100 } 1101 1102 bool NeedsWinCFIStackAlloc = NeedsWinCFI; 1103 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH && HasFP) 1104 NeedsWinCFIStackAlloc = false; 1105 1106 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 1107 uint32_t NumWords = NumBytes >> 2; 1108 1109 if (NumWords < 65536) { 1110 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 1111 .addImm(NumWords) 1112 .setMIFlags(MachineInstr::FrameSetup) 1113 .add(predOps(ARMCC::AL)); 1114 } else { 1115 // Split into two instructions here, instead of using t2MOVi32imm, 1116 // to allow inserting accurate SEH instructions (including accurate 1117 // instruction size for each of them). 1118 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 1119 .addImm(NumWords & 0xffff) 1120 .setMIFlags(MachineInstr::FrameSetup) 1121 .add(predOps(ARMCC::AL)); 1122 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4) 1123 .addReg(ARM::R4) 1124 .addImm(NumWords >> 16) 1125 .setMIFlags(MachineInstr::FrameSetup) 1126 .add(predOps(ARMCC::AL)); 1127 } 1128 1129 switch (TM.getCodeModel()) { 1130 case CodeModel::Tiny: 1131 llvm_unreachable("Tiny code model not available on ARM."); 1132 case CodeModel::Small: 1133 case CodeModel::Medium: 1134 case CodeModel::Kernel: 1135 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 1136 .add(predOps(ARMCC::AL)) 1137 .addExternalSymbol("__chkstk") 1138 .addReg(ARM::R4, RegState::Implicit) 1139 .setMIFlags(MachineInstr::FrameSetup); 1140 break; 1141 case CodeModel::Large: 1142 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 1143 .addExternalSymbol("__chkstk") 1144 .setMIFlags(MachineInstr::FrameSetup); 1145 1146 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 1147 .add(predOps(ARMCC::AL)) 1148 .addReg(ARM::R12, RegState::Kill) 1149 .addReg(ARM::R4, RegState::Implicit) 1150 .setMIFlags(MachineInstr::FrameSetup); 1151 break; 1152 } 1153 1154 MachineInstrBuilder Instr, SEH; 1155 Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 1156 .addReg(ARM::SP, RegState::Kill) 1157 .addReg(ARM::R4, RegState::Kill) 1158 .setMIFlags(MachineInstr::FrameSetup) 1159 .add(predOps(ARMCC::AL)) 1160 .add(condCodeOp()); 1161 if (NeedsWinCFIStackAlloc) { 1162 SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc)) 1163 .addImm(NumBytes) 1164 .addImm(/*Wide=*/1) 1165 .setMIFlags(MachineInstr::FrameSetup); 1166 MBB.insertAfter(Instr, SEH); 1167 } 1168 NumBytes = 0; 1169 } 1170 1171 if (NumBytes) { 1172 // Adjust SP after all the callee-save spills. 1173 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 1174 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 1175 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 1176 else { 1177 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 1178 MachineInstr::FrameSetup); 1179 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 1180 } 1181 1182 if (HasFP && isARM) 1183 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 1184 // Note it's not safe to do this in Thumb2 mode because it would have 1185 // taken two instructions: 1186 // mov sp, r7 1187 // sub sp, #24 1188 // If an interrupt is taken between the two instructions, then sp is in 1189 // an inconsistent state (pointing to the middle of callee-saved area). 1190 // The interrupt handler can end up clobbering the registers. 1191 AFI->setShouldRestoreSPFromFP(true); 1192 } 1193 1194 // Set FP to point to the stack slot that contains the previous FP. 1195 // For iOS, FP is R7, which has now been stored in spill area 1. 1196 // Otherwise, if this is not iOS, all the callee-saved registers go 1197 // into spill area 1, including the FP in R11. In either case, it 1198 // is in area one and the adjustment needs to take place just after 1199 // that push. 1200 MachineBasicBlock::iterator AfterPush; 1201 if (HasFP) { 1202 MachineBasicBlock::iterator FPPushInst; 1203 // Offset from SP immediately after the push which saved the FP to the FP 1204 // save slot. 1205 int64_t FPOffsetAfterPush; 1206 switch (FramePtrSpillArea) { 1207 case SpillArea::GPRCS1: 1208 FPPushInst = GPRCS1Push; 1209 FPOffsetAfterPush = MFI.getObjectOffset(FramePtrSpillFI) + 1210 ArgRegsSaveSize + FPCXTSaveSize + 1211 sizeOfSPAdjustment(*FPPushInst); 1212 LLVM_DEBUG(dbgs() << "Frame pointer in GPRCS1, offset " 1213 << FPOffsetAfterPush << " after that push\n"); 1214 break; 1215 case SpillArea::GPRCS2: 1216 FPPushInst = GPRCS2Push; 1217 FPOffsetAfterPush = MFI.getObjectOffset(FramePtrSpillFI) + 1218 ArgRegsSaveSize + FPCXTSaveSize + GPRCS1Size + 1219 sizeOfSPAdjustment(*FPPushInst); 1220 LLVM_DEBUG(dbgs() << "Frame pointer in GPRCS2, offset " 1221 << FPOffsetAfterPush << " after that push\n"); 1222 break; 1223 case SpillArea::GPRCS3: 1224 FPPushInst = GPRCS3Push; 1225 FPOffsetAfterPush = MFI.getObjectOffset(FramePtrSpillFI) + 1226 ArgRegsSaveSize + FPCXTSaveSize + GPRCS1Size + 1227 GPRCS2Size + DPRCS1Size + DPRGapSize + 1228 sizeOfSPAdjustment(*FPPushInst); 1229 LLVM_DEBUG(dbgs() << "Frame pointer in GPRCS3, offset " 1230 << FPOffsetAfterPush << " after that push\n"); 1231 break; 1232 default: 1233 llvm_unreachable("frame pointer in unknown spill area"); 1234 break; 1235 } 1236 AfterPush = std::next(FPPushInst); 1237 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) 1238 assert(FPOffsetAfterPush == 0); 1239 1240 // Emit the MOV or ADD to set up the frame pointer register. 1241 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, 1242 FramePtr, ARM::SP, FPOffsetAfterPush, 1243 MachineInstr::FrameSetup); 1244 1245 if (!NeedsWinCFI) { 1246 // Emit DWARF info to find the CFA using the frame pointer from this 1247 // point onward. 1248 if (FPOffsetAfterPush != 0) { 1249 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 1250 nullptr, MRI->getDwarfRegNum(FramePtr, true), 1251 -MFI.getObjectOffset(FramePtrSpillFI))); 1252 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1253 .addCFIIndex(CFIIndex) 1254 .setMIFlags(MachineInstr::FrameSetup); 1255 } else { 1256 unsigned CFIIndex = 1257 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 1258 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 1259 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1260 .addCFIIndex(CFIIndex) 1261 .setMIFlags(MachineInstr::FrameSetup); 1262 } 1263 } 1264 } 1265 1266 // Emit a SEH opcode indicating the prologue end. The rest of the prologue 1267 // instructions below don't need to be replayed to unwind the stack. 1268 if (NeedsWinCFI && MBBI != MBB.begin()) { 1269 MachineBasicBlock::iterator End = MBBI; 1270 if (HasFP && PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) 1271 End = AfterPush; 1272 insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup); 1273 BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd)) 1274 .setMIFlag(MachineInstr::FrameSetup); 1275 MF.setHasWinCFI(true); 1276 } 1277 1278 // Now that the prologue's actual instructions are finalised, we can insert 1279 // the necessary DWARF cf instructions to describe the situation. Start by 1280 // recording where each register ended up: 1281 if (!NeedsWinCFI) { 1282 for (const auto &Entry : reverse(CSI)) { 1283 Register Reg = Entry.getReg(); 1284 int FI = Entry.getFrameIdx(); 1285 MachineBasicBlock::iterator CFIPos; 1286 switch (getSpillArea(Reg, PushPopSplit, AFI->getNumAlignedDPRCS2Regs(), 1287 RegInfo)) { 1288 case SpillArea::GPRCS1: 1289 CFIPos = std::next(GPRCS1Push); 1290 break; 1291 case SpillArea::GPRCS2: 1292 CFIPos = std::next(GPRCS2Push); 1293 break; 1294 case SpillArea::DPRCS1: 1295 CFIPos = std::next(DPRCS1Push); 1296 break; 1297 case SpillArea::GPRCS3: 1298 CFIPos = std::next(GPRCS3Push); 1299 break; 1300 case SpillArea::FPCXT: 1301 case SpillArea::DPRCS2: 1302 // FPCXT and DPRCS2 are not represented in the DWARF info. 1303 break; 1304 } 1305 1306 if (CFIPos.isValid()) { 1307 int CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1308 nullptr, 1309 MRI->getDwarfRegNum(Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, 1310 true), 1311 MFI.getObjectOffset(FI))); 1312 BuildMI(MBB, CFIPos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1313 .addCFIIndex(CFIIndex) 1314 .setMIFlags(MachineInstr::FrameSetup); 1315 } 1316 } 1317 } 1318 1319 // Now we can emit descriptions of where the canonical frame address was 1320 // throughout the process. If we have a frame pointer, it takes over the job 1321 // half-way through, so only the first few .cfi_def_cfa_offset instructions 1322 // actually get emitted. 1323 if (!NeedsWinCFI) { 1324 LLVM_DEBUG(DefCFAOffsetCandidates.dump()); 1325 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 1326 } 1327 1328 if (STI.isTargetELF() && hasFP(MF)) 1329 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 1330 AFI->getFramePtrSpillOffset()); 1331 1332 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize); 1333 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 1334 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 1335 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 1336 AFI->setDPRCalleeSavedArea1Size(DPRCS1Size); 1337 AFI->setGPRCalleeSavedArea3Size(GPRCS3Size); 1338 1339 // If we need dynamic stack realignment, do it here. Be paranoid and make 1340 // sure if we also have VLAs, we have a base pointer for frame access. 1341 // If aligned NEON registers were spilled, the stack has already been 1342 // realigned. 1343 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) { 1344 Align MaxAlign = MFI.getMaxAlign(); 1345 assert(!AFI->isThumb1OnlyFunction()); 1346 if (!AFI->isThumbFunction()) { 1347 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 1348 false); 1349 } else { 1350 // We cannot use sp as source/dest register here, thus we're using r4 to 1351 // perform the calculations. We're emitting the following sequence: 1352 // mov r4, sp 1353 // -- use emitAligningInstructions to produce best sequence to zero 1354 // -- out lower bits in r4 1355 // mov sp, r4 1356 // FIXME: It will be better just to find spare register here. 1357 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 1358 .addReg(ARM::SP, RegState::Kill) 1359 .add(predOps(ARMCC::AL)); 1360 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 1361 false); 1362 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1363 .addReg(ARM::R4, RegState::Kill) 1364 .add(predOps(ARMCC::AL)); 1365 } 1366 1367 AFI->setShouldRestoreSPFromFP(true); 1368 } 1369 1370 // If we need a base pointer, set it up here. It's whatever the value 1371 // of the stack pointer is at this point. Any variable size objects 1372 // will be allocated after this, so we can still use the base pointer 1373 // to reference locals. 1374 // FIXME: Clarify FrameSetup flags here. 1375 if (RegInfo->hasBasePointer(MF)) { 1376 if (isARM) 1377 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 1378 .addReg(ARM::SP) 1379 .add(predOps(ARMCC::AL)) 1380 .add(condCodeOp()); 1381 else 1382 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 1383 .addReg(ARM::SP) 1384 .add(predOps(ARMCC::AL)); 1385 } 1386 1387 // If the frame has variable sized objects then the epilogue must restore 1388 // the sp from fp. We can assume there's an FP here since hasFP already 1389 // checks for hasVarSizedObjects. 1390 if (MFI.hasVarSizedObjects()) 1391 AFI->setShouldRestoreSPFromFP(true); 1392 } 1393 1394 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 1395 MachineBasicBlock &MBB) const { 1396 MachineFrameInfo &MFI = MF.getFrameInfo(); 1397 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1398 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1399 const ARMBaseInstrInfo &TII = 1400 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1401 assert(!AFI->isThumb1OnlyFunction() && 1402 "This emitEpilogue does not support Thumb1!"); 1403 bool isARM = !AFI->isThumbFunction(); 1404 ARMSubtarget::PushPopSplitVariation PushPopSplit = 1405 STI.getPushPopSplitVariation(MF); 1406 1407 LLVM_DEBUG(dbgs() << "Emitting epilogue for " << MF.getName() << "\n"); 1408 1409 // Amount of stack space we reserved next to incoming args for either 1410 // varargs registers or stack arguments in tail calls made by this function. 1411 unsigned ReservedArgStack = AFI->getArgRegsSaveSize(); 1412 1413 // How much of the stack used by incoming arguments this function is expected 1414 // to restore in this particular epilogue. 1415 int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB); 1416 int NumBytes = (int)MFI.getStackSize(); 1417 Register FramePtr = RegInfo->getFrameRegister(MF); 1418 1419 // All calls are tail calls in GHC calling conv, and functions have no 1420 // prologue/epilogue. 1421 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1422 return; 1423 1424 // First put ourselves on the first (from top) terminator instructions. 1425 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1426 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1427 1428 MachineBasicBlock::iterator RangeStart; 1429 if (!AFI->hasStackFrame()) { 1430 if (MF.hasWinCFI()) { 1431 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1432 .setMIFlag(MachineInstr::FrameDestroy); 1433 RangeStart = initMBBRange(MBB, MBBI); 1434 } 1435 1436 if (NumBytes + IncomingArgStackToRestore != 0) 1437 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1438 NumBytes + IncomingArgStackToRestore, 1439 MachineInstr::FrameDestroy); 1440 } else { 1441 // Unwind MBBI to point to first LDR / VLDRD. 1442 if (MBBI != MBB.begin()) { 1443 do { 1444 --MBBI; 1445 } while (MBBI != MBB.begin() && 1446 MBBI->getFlag(MachineInstr::FrameDestroy)); 1447 if (!MBBI->getFlag(MachineInstr::FrameDestroy)) 1448 ++MBBI; 1449 } 1450 1451 if (MF.hasWinCFI()) { 1452 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1453 .setMIFlag(MachineInstr::FrameDestroy); 1454 RangeStart = initMBBRange(MBB, MBBI); 1455 } 1456 1457 // Move SP to start of FP callee save spill area. 1458 NumBytes -= 1459 (ReservedArgStack + AFI->getFPCXTSaveAreaSize() + 1460 AFI->getGPRCalleeSavedArea1Size() + AFI->getGPRCalleeSavedArea2Size() + 1461 AFI->getDPRCalleeSavedGapSize() + AFI->getDPRCalleeSavedArea1Size() + 1462 AFI->getGPRCalleeSavedArea3Size()); 1463 1464 // Reset SP based on frame pointer only if the stack frame extends beyond 1465 // frame pointer stack slot or target is ELF and the function has FP. 1466 if (AFI->shouldRestoreSPFromFP()) { 1467 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 1468 if (NumBytes) { 1469 if (isARM) 1470 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 1471 ARMCC::AL, 0, TII, 1472 MachineInstr::FrameDestroy); 1473 else { 1474 // It's not possible to restore SP from FP in a single instruction. 1475 // For iOS, this looks like: 1476 // mov sp, r7 1477 // sub sp, #24 1478 // This is bad, if an interrupt is taken after the mov, sp is in an 1479 // inconsistent state. 1480 // Use the first callee-saved register as a scratch register. 1481 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 1482 "No scratch register to restore SP from FP!"); 1483 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 1484 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); 1485 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1486 .addReg(ARM::R4) 1487 .add(predOps(ARMCC::AL)) 1488 .setMIFlag(MachineInstr::FrameDestroy); 1489 } 1490 } else { 1491 // Thumb2 or ARM. 1492 if (isARM) 1493 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 1494 .addReg(FramePtr) 1495 .add(predOps(ARMCC::AL)) 1496 .add(condCodeOp()) 1497 .setMIFlag(MachineInstr::FrameDestroy); 1498 else 1499 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1500 .addReg(FramePtr) 1501 .add(predOps(ARMCC::AL)) 1502 .setMIFlag(MachineInstr::FrameDestroy); 1503 } 1504 } else if (NumBytes && 1505 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 1506 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes, 1507 MachineInstr::FrameDestroy); 1508 1509 // Increment past our save areas. 1510 if (AFI->getGPRCalleeSavedArea3Size()) { 1511 assert(PushPopSplit == ARMSubtarget::SplitR11WindowsSEH); 1512 (void)PushPopSplit; 1513 MBBI++; 1514 } 1515 1516 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedArea1Size()) { 1517 MBBI++; 1518 // Since vpop register list cannot have gaps, there may be multiple vpop 1519 // instructions in the epilogue. 1520 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 1521 MBBI++; 1522 } 1523 if (AFI->getDPRCalleeSavedGapSize()) { 1524 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 1525 "unexpected DPR alignment gap"); 1526 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(), 1527 MachineInstr::FrameDestroy); 1528 } 1529 1530 if (AFI->getGPRCalleeSavedArea2Size()) { 1531 assert(PushPopSplit != ARMSubtarget::SplitR11WindowsSEH); 1532 (void)PushPopSplit; 1533 MBBI++; 1534 } 1535 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 1536 1537 if (ReservedArgStack || IncomingArgStackToRestore) { 1538 assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 && 1539 "attempting to restore negative stack amount"); 1540 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1541 ReservedArgStack + IncomingArgStackToRestore, 1542 MachineInstr::FrameDestroy); 1543 } 1544 1545 // Validate PAC, It should have been already popped into R12. For CMSE entry 1546 // function, the validation instruction is emitted during expansion of the 1547 // tBXNS_RET, since the validation must use the value of SP at function 1548 // entry, before saving, resp. after restoring, FPCXTNS. 1549 if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction()) 1550 BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT)); 1551 } 1552 1553 if (MF.hasWinCFI()) { 1554 insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy); 1555 BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd)) 1556 .setMIFlag(MachineInstr::FrameDestroy); 1557 } 1558 } 1559 1560 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1561 /// debug info. It's the same as what we use for resolving the code-gen 1562 /// references for now. FIXME: This can go wrong when references are 1563 /// SP-relative and simple call frames aren't used. 1564 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, 1565 int FI, 1566 Register &FrameReg) const { 1567 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0)); 1568 } 1569 1570 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 1571 int FI, Register &FrameReg, 1572 int SPAdj) const { 1573 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1574 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1575 MF.getSubtarget().getRegisterInfo()); 1576 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1577 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 1578 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 1579 bool isFixed = MFI.isFixedObjectIndex(FI); 1580 1581 FrameReg = ARM::SP; 1582 Offset += SPAdj; 1583 1584 // SP can move around if there are allocas. We may also lose track of SP 1585 // when emergency spilling inside a non-reserved call frame setup. 1586 bool hasMovingSP = !hasReservedCallFrame(MF); 1587 1588 // When dynamically realigning the stack, use the frame pointer for 1589 // parameters, and the stack/base pointer for locals. 1590 if (RegInfo->hasStackRealignment(MF)) { 1591 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 1592 if (isFixed) { 1593 FrameReg = RegInfo->getFrameRegister(MF); 1594 Offset = FPOffset; 1595 } else if (hasMovingSP) { 1596 assert(RegInfo->hasBasePointer(MF) && 1597 "VLAs and dynamic stack alignment, but missing base pointer!"); 1598 FrameReg = RegInfo->getBaseRegister(); 1599 Offset -= SPAdj; 1600 } 1601 return Offset; 1602 } 1603 1604 // If there is a frame pointer, use it when we can. 1605 if (hasFP(MF) && AFI->hasStackFrame()) { 1606 // Use frame pointer to reference fixed objects. Use it for locals if 1607 // there are VLAs (and thus the SP isn't reliable as a base). 1608 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 1609 FrameReg = RegInfo->getFrameRegister(MF); 1610 return FPOffset; 1611 } else if (hasMovingSP) { 1612 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 1613 if (AFI->isThumb2Function()) { 1614 // Try to use the frame pointer if we can, else use the base pointer 1615 // since it's available. This is handy for the emergency spill slot, in 1616 // particular. 1617 if (FPOffset >= -255 && FPOffset < 0) { 1618 FrameReg = RegInfo->getFrameRegister(MF); 1619 return FPOffset; 1620 } 1621 } 1622 } else if (AFI->isThumbFunction()) { 1623 // Prefer SP to base pointer, if the offset is suitably aligned and in 1624 // range as the effective range of the immediate offset is bigger when 1625 // basing off SP. 1626 // Use add <rd>, sp, #<imm8> 1627 // ldr <rd>, [sp, #<imm8>] 1628 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 1629 return Offset; 1630 // In Thumb2 mode, the negative offset is very limited. Try to avoid 1631 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 1632 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 1633 FrameReg = RegInfo->getFrameRegister(MF); 1634 return FPOffset; 1635 } 1636 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 1637 // Otherwise, use SP or FP, whichever is closer to the stack slot. 1638 FrameReg = RegInfo->getFrameRegister(MF); 1639 return FPOffset; 1640 } 1641 } 1642 // Use the base pointer if we have one. 1643 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? 1644 // That can happen if we forced a base pointer for a large call frame. 1645 if (RegInfo->hasBasePointer(MF)) { 1646 FrameReg = RegInfo->getBaseRegister(); 1647 Offset -= SPAdj; 1648 } 1649 return Offset; 1650 } 1651 1652 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 1653 MachineBasicBlock::iterator MI, 1654 ArrayRef<CalleeSavedInfo> CSI, 1655 unsigned StmOpc, unsigned StrOpc, 1656 bool NoGap, 1657 function_ref<bool(unsigned)> Func) const { 1658 MachineFunction &MF = *MBB.getParent(); 1659 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1660 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1661 1662 DebugLoc DL; 1663 1664 using RegAndKill = std::pair<unsigned, bool>; 1665 1666 SmallVector<RegAndKill, 4> Regs; 1667 unsigned i = CSI.size(); 1668 while (i != 0) { 1669 unsigned LastReg = 0; 1670 for (; i != 0; --i) { 1671 Register Reg = CSI[i-1].getReg(); 1672 if (!Func(Reg)) 1673 continue; 1674 1675 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1676 bool isLiveIn = MRI.isLiveIn(Reg); 1677 if (!isLiveIn && !MRI.isReserved(Reg)) 1678 MBB.addLiveIn(Reg); 1679 // If NoGap is true, push consecutive registers and then leave the rest 1680 // for other instructions. e.g. 1681 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 1682 if (NoGap && LastReg && LastReg != Reg-1) 1683 break; 1684 LastReg = Reg; 1685 // Do not set a kill flag on values that are also marked as live-in. This 1686 // happens with the @llvm-returnaddress intrinsic and with arguments 1687 // passed in callee saved registers. 1688 // Omitting the kill flags is conservatively correct even if the live-in 1689 // is not used after all. 1690 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1691 } 1692 1693 if (Regs.empty()) 1694 continue; 1695 1696 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1697 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1698 }); 1699 1700 if (Regs.size() > 1 || StrOpc== 0) { 1701 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1702 .addReg(ARM::SP) 1703 .setMIFlags(MachineInstr::FrameSetup) 1704 .add(predOps(ARMCC::AL)); 1705 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1706 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1707 } else if (Regs.size() == 1) { 1708 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1709 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1710 .addReg(ARM::SP) 1711 .setMIFlags(MachineInstr::FrameSetup) 1712 .addImm(-4) 1713 .add(predOps(ARMCC::AL)); 1714 } 1715 Regs.clear(); 1716 1717 // Put any subsequent vpush instructions before this one: they will refer to 1718 // higher register numbers so need to be pushed first in order to preserve 1719 // monotonicity. 1720 if (MI != MBB.begin()) 1721 --MI; 1722 } 1723 } 1724 1725 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1726 MachineBasicBlock::iterator MI, 1727 MutableArrayRef<CalleeSavedInfo> CSI, 1728 unsigned LdmOpc, unsigned LdrOpc, 1729 bool isVarArg, bool NoGap, 1730 function_ref<bool(unsigned)> Func) const { 1731 MachineFunction &MF = *MBB.getParent(); 1732 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1733 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1734 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1735 bool hasPAC = AFI->shouldSignReturnAddress(); 1736 DebugLoc DL; 1737 bool isTailCall = false; 1738 bool isInterrupt = false; 1739 bool isTrap = false; 1740 bool isCmseEntry = false; 1741 ARMSubtarget::PushPopSplitVariation PushPopSplit = 1742 STI.getPushPopSplitVariation(MF); 1743 if (MBB.end() != MI) { 1744 DL = MI->getDebugLoc(); 1745 unsigned RetOpcode = MI->getOpcode(); 1746 isTailCall = 1747 (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri || 1748 RetOpcode == ARM::TCRETURNrinotr12); 1749 isInterrupt = 1750 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1751 isTrap = 1752 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1753 RetOpcode == ARM::tTRAP; 1754 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET); 1755 } 1756 1757 SmallVector<unsigned, 4> Regs; 1758 unsigned i = CSI.size(); 1759 while (i != 0) { 1760 unsigned LastReg = 0; 1761 bool DeleteRet = false; 1762 for (; i != 0; --i) { 1763 CalleeSavedInfo &Info = CSI[i-1]; 1764 Register Reg = Info.getReg(); 1765 if (!Func(Reg)) 1766 continue; 1767 1768 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1769 !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 && 1770 STI.hasV5TOps() && MBB.succ_empty() && !hasPAC && 1771 (PushPopSplit != ARMSubtarget::SplitR11WindowsSEH && 1772 PushPopSplit != ARMSubtarget::SplitR11AAPCSSignRA)) { 1773 Reg = ARM::PC; 1774 // Fold the return instruction into the LDM. 1775 DeleteRet = true; 1776 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1777 } 1778 1779 // If NoGap is true, pop consecutive registers and then leave the rest 1780 // for other instructions. e.g. 1781 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1782 if (NoGap && LastReg && LastReg != Reg-1) 1783 break; 1784 1785 LastReg = Reg; 1786 Regs.push_back(Reg); 1787 } 1788 1789 if (Regs.empty()) 1790 continue; 1791 1792 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1793 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1794 }); 1795 1796 if (Regs.size() > 1 || LdrOpc == 0) { 1797 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1798 .addReg(ARM::SP) 1799 .add(predOps(ARMCC::AL)) 1800 .setMIFlags(MachineInstr::FrameDestroy); 1801 for (unsigned Reg : Regs) 1802 MIB.addReg(Reg, getDefRegState(true)); 1803 if (DeleteRet) { 1804 if (MI != MBB.end()) { 1805 MIB.copyImplicitOps(*MI); 1806 MI->eraseFromParent(); 1807 } 1808 } 1809 MI = MIB; 1810 } else if (Regs.size() == 1) { 1811 // If we adjusted the reg to PC from LR above, switch it back here. We 1812 // only do that for LDM. 1813 if (Regs[0] == ARM::PC) 1814 Regs[0] = ARM::LR; 1815 MachineInstrBuilder MIB = 1816 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1817 .addReg(ARM::SP, RegState::Define) 1818 .addReg(ARM::SP) 1819 .setMIFlags(MachineInstr::FrameDestroy); 1820 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1821 // that refactoring is complete (eventually). 1822 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1823 MIB.addReg(0); 1824 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1825 } else 1826 MIB.addImm(4); 1827 MIB.add(predOps(ARMCC::AL)); 1828 } 1829 Regs.clear(); 1830 1831 // Put any subsequent vpop instructions after this one: they will refer to 1832 // higher register numbers so need to be popped afterwards. 1833 if (MI != MBB.end()) 1834 ++MI; 1835 } 1836 } 1837 1838 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1839 /// starting from d8. Also insert stack realignment code and leave the stack 1840 /// pointer pointing to the d8 spill slot. 1841 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1842 MachineBasicBlock::iterator MI, 1843 unsigned NumAlignedDPRCS2Regs, 1844 ArrayRef<CalleeSavedInfo> CSI, 1845 const TargetRegisterInfo *TRI) { 1846 MachineFunction &MF = *MBB.getParent(); 1847 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1848 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1849 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1850 MachineFrameInfo &MFI = MF.getFrameInfo(); 1851 1852 // Mark the D-register spill slots as properly aligned. Since MFI computes 1853 // stack slot layout backwards, this can actually mean that the d-reg stack 1854 // slot offsets can be wrong. The offset for d8 will always be correct. 1855 for (const CalleeSavedInfo &I : CSI) { 1856 unsigned DNum = I.getReg() - ARM::D8; 1857 if (DNum > NumAlignedDPRCS2Regs - 1) 1858 continue; 1859 int FI = I.getFrameIdx(); 1860 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1861 // registers will be 8-byte aligned. 1862 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16)); 1863 1864 // The stack slot for D8 needs to be maximally aligned because this is 1865 // actually the point where we align the stack pointer. MachineFrameInfo 1866 // computes all offsets relative to the incoming stack pointer which is a 1867 // bit weird when realigning the stack. Any extra padding for this 1868 // over-alignment is not realized because the code inserted below adjusts 1869 // the stack pointer by numregs * 8 before aligning the stack pointer. 1870 if (DNum == 0) 1871 MFI.setObjectAlignment(FI, MFI.getMaxAlign()); 1872 } 1873 1874 // Move the stack pointer to the d8 spill slot, and align it at the same 1875 // time. Leave the stack slot address in the scratch register r4. 1876 // 1877 // sub r4, sp, #numregs * 8 1878 // bic r4, r4, #align - 1 1879 // mov sp, r4 1880 // 1881 bool isThumb = AFI->isThumbFunction(); 1882 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1883 AFI->setShouldRestoreSPFromFP(true); 1884 1885 // sub r4, sp, #numregs * 8 1886 // The immediate is <= 64, so it doesn't need any special encoding. 1887 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1888 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1889 .addReg(ARM::SP) 1890 .addImm(8 * NumAlignedDPRCS2Regs) 1891 .add(predOps(ARMCC::AL)) 1892 .add(condCodeOp()); 1893 1894 Align MaxAlign = MF.getFrameInfo().getMaxAlign(); 1895 // We must set parameter MustBeSingleInstruction to true, since 1896 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1897 // stack alignment. Luckily, this can always be done since all ARM 1898 // architecture versions that support Neon also support the BFC 1899 // instruction. 1900 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1901 1902 // mov sp, r4 1903 // The stack pointer must be adjusted before spilling anything, otherwise 1904 // the stack slots could be clobbered by an interrupt handler. 1905 // Leave r4 live, it is used below. 1906 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1907 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1908 .addReg(ARM::R4) 1909 .add(predOps(ARMCC::AL)); 1910 if (!isThumb) 1911 MIB.add(condCodeOp()); 1912 1913 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1914 // r4 holds the stack slot address. 1915 unsigned NextReg = ARM::D8; 1916 1917 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1918 // The writeback is only needed when emitting two vst1.64 instructions. 1919 if (NumAlignedDPRCS2Regs >= 6) { 1920 MCRegister SupReg = 1921 TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QQPRRegClass); 1922 MBB.addLiveIn(SupReg); 1923 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1924 .addReg(ARM::R4, RegState::Kill) 1925 .addImm(16) 1926 .addReg(NextReg) 1927 .addReg(SupReg, RegState::ImplicitKill) 1928 .add(predOps(ARMCC::AL)); 1929 NextReg += 4; 1930 NumAlignedDPRCS2Regs -= 4; 1931 } 1932 1933 // We won't modify r4 beyond this point. It currently points to the next 1934 // register to be spilled. 1935 unsigned R4BaseReg = NextReg; 1936 1937 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1938 if (NumAlignedDPRCS2Regs >= 4) { 1939 MCRegister SupReg = 1940 TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QQPRRegClass); 1941 MBB.addLiveIn(SupReg); 1942 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1943 .addReg(ARM::R4) 1944 .addImm(16) 1945 .addReg(NextReg) 1946 .addReg(SupReg, RegState::ImplicitKill) 1947 .add(predOps(ARMCC::AL)); 1948 NextReg += 4; 1949 NumAlignedDPRCS2Regs -= 4; 1950 } 1951 1952 // 16-byte aligned vst1.64 with 2 d-regs. 1953 if (NumAlignedDPRCS2Regs >= 2) { 1954 MCRegister SupReg = 1955 TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QPRRegClass); 1956 MBB.addLiveIn(SupReg); 1957 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1958 .addReg(ARM::R4) 1959 .addImm(16) 1960 .addReg(SupReg) 1961 .add(predOps(ARMCC::AL)); 1962 NextReg += 2; 1963 NumAlignedDPRCS2Regs -= 2; 1964 } 1965 1966 // Finally, use a vanilla vstr.64 for the odd last register. 1967 if (NumAlignedDPRCS2Regs) { 1968 MBB.addLiveIn(NextReg); 1969 // vstr.64 uses addrmode5 which has an offset scale of 4. 1970 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1971 .addReg(NextReg) 1972 .addReg(ARM::R4) 1973 .addImm((NextReg - R4BaseReg) * 2) 1974 .add(predOps(ARMCC::AL)); 1975 } 1976 1977 // The last spill instruction inserted should kill the scratch register r4. 1978 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1979 } 1980 1981 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1982 /// iterator to the following instruction. 1983 static MachineBasicBlock::iterator 1984 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1985 unsigned NumAlignedDPRCS2Regs) { 1986 // sub r4, sp, #numregs * 8 1987 // bic r4, r4, #align - 1 1988 // mov sp, r4 1989 ++MI; ++MI; ++MI; 1990 assert(MI->mayStore() && "Expecting spill instruction"); 1991 1992 // These switches all fall through. 1993 switch(NumAlignedDPRCS2Regs) { 1994 case 7: 1995 ++MI; 1996 assert(MI->mayStore() && "Expecting spill instruction"); 1997 [[fallthrough]]; 1998 default: 1999 ++MI; 2000 assert(MI->mayStore() && "Expecting spill instruction"); 2001 [[fallthrough]]; 2002 case 1: 2003 case 2: 2004 case 4: 2005 assert(MI->killsRegister(ARM::R4, /*TRI=*/nullptr) && "Missed kill flag"); 2006 ++MI; 2007 } 2008 return MI; 2009 } 2010 2011 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 2012 /// starting from d8. These instructions are assumed to execute while the 2013 /// stack is still aligned, unlike the code inserted by emitPopInst. 2014 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 2015 MachineBasicBlock::iterator MI, 2016 unsigned NumAlignedDPRCS2Regs, 2017 ArrayRef<CalleeSavedInfo> CSI, 2018 const TargetRegisterInfo *TRI) { 2019 MachineFunction &MF = *MBB.getParent(); 2020 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2021 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 2022 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2023 2024 // Find the frame index assigned to d8. 2025 int D8SpillFI = 0; 2026 for (const CalleeSavedInfo &I : CSI) 2027 if (I.getReg() == ARM::D8) { 2028 D8SpillFI = I.getFrameIdx(); 2029 break; 2030 } 2031 2032 // Materialize the address of the d8 spill slot into the scratch register r4. 2033 // This can be fairly complicated if the stack frame is large, so just use 2034 // the normal frame index elimination mechanism to do it. This code runs as 2035 // the initial part of the epilog where the stack and base pointers haven't 2036 // been changed yet. 2037 bool isThumb = AFI->isThumbFunction(); 2038 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 2039 2040 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 2041 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 2042 .addFrameIndex(D8SpillFI) 2043 .addImm(0) 2044 .add(predOps(ARMCC::AL)) 2045 .add(condCodeOp()); 2046 2047 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 2048 unsigned NextReg = ARM::D8; 2049 2050 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 2051 if (NumAlignedDPRCS2Regs >= 6) { 2052 MCRegister SupReg = 2053 TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QQPRRegClass); 2054 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 2055 .addReg(ARM::R4, RegState::Define) 2056 .addReg(ARM::R4, RegState::Kill) 2057 .addImm(16) 2058 .addReg(SupReg, RegState::ImplicitDefine) 2059 .add(predOps(ARMCC::AL)); 2060 NextReg += 4; 2061 NumAlignedDPRCS2Regs -= 4; 2062 } 2063 2064 // We won't modify r4 beyond this point. It currently points to the next 2065 // register to be spilled. 2066 unsigned R4BaseReg = NextReg; 2067 2068 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 2069 if (NumAlignedDPRCS2Regs >= 4) { 2070 MCRegister SupReg = 2071 TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QQPRRegClass); 2072 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 2073 .addReg(ARM::R4) 2074 .addImm(16) 2075 .addReg(SupReg, RegState::ImplicitDefine) 2076 .add(predOps(ARMCC::AL)); 2077 NextReg += 4; 2078 NumAlignedDPRCS2Regs -= 4; 2079 } 2080 2081 // 16-byte aligned vld1.64 with 2 d-regs. 2082 if (NumAlignedDPRCS2Regs >= 2) { 2083 MCRegister SupReg = 2084 TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QPRRegClass); 2085 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 2086 .addReg(ARM::R4) 2087 .addImm(16) 2088 .add(predOps(ARMCC::AL)); 2089 NextReg += 2; 2090 NumAlignedDPRCS2Regs -= 2; 2091 } 2092 2093 // Finally, use a vanilla vldr.64 for the remaining odd register. 2094 if (NumAlignedDPRCS2Regs) 2095 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 2096 .addReg(ARM::R4) 2097 .addImm(2 * (NextReg - R4BaseReg)) 2098 .add(predOps(ARMCC::AL)); 2099 2100 // Last store kills r4. 2101 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 2102 } 2103 2104 bool ARMFrameLowering::spillCalleeSavedRegisters( 2105 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2106 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2107 if (CSI.empty()) 2108 return false; 2109 2110 MachineFunction &MF = *MBB.getParent(); 2111 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2112 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2113 STI.getPushPopSplitVariation(MF); 2114 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 2115 2116 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 2117 unsigned PushOneOpc = AFI->isThumbFunction() ? 2118 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 2119 unsigned FltOpc = ARM::VSTMDDB_UPD; 2120 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 2121 // Compute PAC in R12. 2122 if (AFI->shouldSignReturnAddress()) { 2123 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC)) 2124 .setMIFlags(MachineInstr::FrameSetup); 2125 } 2126 // Save the non-secure floating point context. 2127 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) { 2128 return C.getReg() == ARM::FPCXTNS; 2129 })) { 2130 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre), 2131 ARM::SP) 2132 .addReg(ARM::SP) 2133 .addImm(-4) 2134 .add(predOps(ARMCC::AL)); 2135 } 2136 2137 auto CheckRegArea = [PushPopSplit, NumAlignedDPRCS2Regs, 2138 RegInfo](unsigned Reg, SpillArea TestArea) { 2139 return getSpillArea(Reg, PushPopSplit, NumAlignedDPRCS2Regs, RegInfo) == 2140 TestArea; 2141 }; 2142 auto IsGPRCS1 = [&CheckRegArea](unsigned Reg) { 2143 return CheckRegArea(Reg, SpillArea::GPRCS1); 2144 }; 2145 auto IsGPRCS2 = [&CheckRegArea](unsigned Reg) { 2146 return CheckRegArea(Reg, SpillArea::GPRCS2); 2147 }; 2148 auto IsDPRCS1 = [&CheckRegArea](unsigned Reg) { 2149 return CheckRegArea(Reg, SpillArea::DPRCS1); 2150 }; 2151 auto IsGPRCS3 = [&CheckRegArea](unsigned Reg) { 2152 return CheckRegArea(Reg, SpillArea::GPRCS3); 2153 }; 2154 2155 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS1); 2156 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS2); 2157 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, IsDPRCS1); 2158 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS3); 2159 2160 // The code above does not insert spill code for the aligned DPRCS2 registers. 2161 // The stack realignment code will be inserted between the push instructions 2162 // and these spills. 2163 if (NumAlignedDPRCS2Regs) 2164 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2165 2166 return true; 2167 } 2168 2169 bool ARMFrameLowering::restoreCalleeSavedRegisters( 2170 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2171 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2172 if (CSI.empty()) 2173 return false; 2174 2175 MachineFunction &MF = *MBB.getParent(); 2176 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2177 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 2178 2179 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 2180 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 2181 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2182 STI.getPushPopSplitVariation(MF); 2183 2184 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 2185 // registers. Do that here instead. 2186 if (NumAlignedDPRCS2Regs) 2187 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2188 2189 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 2190 unsigned LdrOpc = 2191 AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 2192 unsigned FltOpc = ARM::VLDMDIA_UPD; 2193 2194 auto CheckRegArea = [PushPopSplit, NumAlignedDPRCS2Regs, 2195 RegInfo](unsigned Reg, SpillArea TestArea) { 2196 return getSpillArea(Reg, PushPopSplit, NumAlignedDPRCS2Regs, RegInfo) == 2197 TestArea; 2198 }; 2199 auto IsGPRCS1 = [&CheckRegArea](unsigned Reg) { 2200 return CheckRegArea(Reg, SpillArea::GPRCS1); 2201 }; 2202 auto IsGPRCS2 = [&CheckRegArea](unsigned Reg) { 2203 return CheckRegArea(Reg, SpillArea::GPRCS2); 2204 }; 2205 auto IsDPRCS1 = [&CheckRegArea](unsigned Reg) { 2206 return CheckRegArea(Reg, SpillArea::DPRCS1); 2207 }; 2208 auto IsGPRCS3 = [&CheckRegArea](unsigned Reg) { 2209 return CheckRegArea(Reg, SpillArea::GPRCS3); 2210 }; 2211 2212 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS3); 2213 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, IsDPRCS1); 2214 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS2); 2215 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS1); 2216 2217 return true; 2218 } 2219 2220 // FIXME: Make generic? 2221 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, 2222 const ARMBaseInstrInfo &TII) { 2223 unsigned FnSize = 0; 2224 for (auto &MBB : MF) { 2225 for (auto &MI : MBB) 2226 FnSize += TII.getInstSizeInBytes(MI); 2227 } 2228 if (MF.getJumpTableInfo()) 2229 for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) 2230 FnSize += Table.MBBs.size() * 4; 2231 FnSize += MF.getConstantPool()->getConstants().size() * 4; 2232 return FnSize; 2233 } 2234 2235 /// estimateRSStackSizeLimit - Look at each instruction that references stack 2236 /// frames and return the stack size limit beyond which some of these 2237 /// instructions will require a scratch register during their expansion later. 2238 // FIXME: Move to TII? 2239 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 2240 const TargetFrameLowering *TFI, 2241 bool &HasNonSPFrameIndex) { 2242 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2243 const ARMBaseInstrInfo &TII = 2244 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2245 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2246 unsigned Limit = (1 << 12) - 1; 2247 for (auto &MBB : MF) { 2248 for (auto &MI : MBB) { 2249 if (MI.isDebugInstr()) 2250 continue; 2251 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2252 if (!MI.getOperand(i).isFI()) 2253 continue; 2254 2255 // When using ADDri to get the address of a stack object, 255 is the 2256 // largest offset guaranteed to fit in the immediate offset. 2257 if (MI.getOpcode() == ARM::ADDri) { 2258 Limit = std::min(Limit, (1U << 8) - 1); 2259 break; 2260 } 2261 // t2ADDri will not require an extra register, it can reuse the 2262 // destination. 2263 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) 2264 break; 2265 2266 const MCInstrDesc &MCID = MI.getDesc(); 2267 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); 2268 if (RegClass && !RegClass->contains(ARM::SP)) 2269 HasNonSPFrameIndex = true; 2270 2271 // Otherwise check the addressing mode. 2272 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 2273 case ARMII::AddrMode_i12: 2274 case ARMII::AddrMode2: 2275 // Default 12 bit limit. 2276 break; 2277 case ARMII::AddrMode3: 2278 case ARMII::AddrModeT2_i8neg: 2279 Limit = std::min(Limit, (1U << 8) - 1); 2280 break; 2281 case ARMII::AddrMode5FP16: 2282 Limit = std::min(Limit, ((1U << 8) - 1) * 2); 2283 break; 2284 case ARMII::AddrMode5: 2285 case ARMII::AddrModeT2_i8s4: 2286 case ARMII::AddrModeT2_ldrex: 2287 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 2288 break; 2289 case ARMII::AddrModeT2_i12: 2290 // i12 supports only positive offset so these will be converted to 2291 // i8 opcodes. See llvm::rewriteT2FrameIndex. 2292 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 2293 Limit = std::min(Limit, (1U << 8) - 1); 2294 break; 2295 case ARMII::AddrMode4: 2296 case ARMII::AddrMode6: 2297 // Addressing modes 4 & 6 (load/store) instructions can't encode an 2298 // immediate offset for stack references. 2299 return 0; 2300 case ARMII::AddrModeT2_i7: 2301 Limit = std::min(Limit, ((1U << 7) - 1) * 1); 2302 break; 2303 case ARMII::AddrModeT2_i7s2: 2304 Limit = std::min(Limit, ((1U << 7) - 1) * 2); 2305 break; 2306 case ARMII::AddrModeT2_i7s4: 2307 Limit = std::min(Limit, ((1U << 7) - 1) * 4); 2308 break; 2309 default: 2310 llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); 2311 } 2312 break; // At most one FI per instruction 2313 } 2314 } 2315 } 2316 2317 return Limit; 2318 } 2319 2320 // In functions that realign the stack, it can be an advantage to spill the 2321 // callee-saved vector registers after realigning the stack. The vst1 and vld1 2322 // instructions take alignment hints that can improve performance. 2323 static void 2324 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 2325 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 2326 if (!SpillAlignedNEONRegs) 2327 return; 2328 2329 // Naked functions don't spill callee-saved registers. 2330 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 2331 return; 2332 2333 // We are planning to use NEON instructions vst1 / vld1. 2334 if (!MF.getSubtarget<ARMSubtarget>().hasNEON()) 2335 return; 2336 2337 // Don't bother if the default stack alignment is sufficiently high. 2338 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8)) 2339 return; 2340 2341 // Aligned spills require stack realignment. 2342 if (!static_cast<const ARMBaseRegisterInfo *>( 2343 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 2344 return; 2345 2346 // We always spill contiguous d-registers starting from d8. Count how many 2347 // needs spilling. The register allocator will almost always use the 2348 // callee-saved registers in order, but it can happen that there are holes in 2349 // the range. Registers above the hole will be spilled to the standard DPRCS 2350 // area. 2351 unsigned NumSpills = 0; 2352 for (; NumSpills < 8; ++NumSpills) 2353 if (!SavedRegs.test(ARM::D8 + NumSpills)) 2354 break; 2355 2356 // Don't do this for just one d-register. It's not worth it. 2357 if (NumSpills < 2) 2358 return; 2359 2360 // Spill the first NumSpills D-registers after realigning the stack. 2361 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 2362 2363 // A scratch register is required for the vst1 / vld1 instructions. 2364 SavedRegs.set(ARM::R4); 2365 } 2366 2367 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2368 // For CMSE entry functions, we want to save the FPCXT_NS immediately 2369 // upon function entry (resp. restore it immmediately before return) 2370 if (STI.hasV8_1MMainlineOps() && 2371 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) 2372 return false; 2373 2374 // We are disabling shrinkwrapping for now when PAC is enabled, as 2375 // shrinkwrapping can cause clobbering of r12 when the PAC code is 2376 // generated. A follow-up patch will fix this in a more performant manner. 2377 if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress( 2378 true /* SpillsLR */)) 2379 return false; 2380 2381 return true; 2382 } 2383 2384 bool ARMFrameLowering::requiresAAPCSFrameRecord( 2385 const MachineFunction &MF) const { 2386 const auto &Subtarget = MF.getSubtarget<ARMSubtarget>(); 2387 return Subtarget.createAAPCSFrameChain() && hasFP(MF); 2388 } 2389 2390 // Thumb1 may require a spill when storing to a frame index through FP (or any 2391 // access with execute-only), for cases where FP is a high register (R11). This 2392 // scans the function for cases where this may happen. 2393 static bool canSpillOnFrameIndexAccess(const MachineFunction &MF, 2394 const TargetFrameLowering &TFI) { 2395 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2396 if (!AFI->isThumb1OnlyFunction()) 2397 return false; 2398 2399 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 2400 for (const auto &MBB : MF) 2401 for (const auto &MI : MBB) 2402 if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi || 2403 STI.genExecuteOnly()) 2404 for (const auto &Op : MI.operands()) 2405 if (Op.isFI()) { 2406 Register Reg; 2407 TFI.getFrameIndexReference(MF, Op.getIndex(), Reg); 2408 if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP) 2409 return true; 2410 } 2411 return false; 2412 } 2413 2414 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 2415 BitVector &SavedRegs, 2416 RegScavenger *RS) const { 2417 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2418 // This tells PEI to spill the FP as if it is any other callee-save register 2419 // to take advantage the eliminateFrameIndex machinery. This also ensures it 2420 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 2421 // to combine multiple loads / stores. 2422 bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF)) && 2423 !MF.getTarget().Options.DisableFramePointerElim(MF); 2424 bool CS1Spilled = false; 2425 bool LRSpilled = false; 2426 unsigned NumGPRSpills = 0; 2427 unsigned NumFPRSpills = 0; 2428 SmallVector<unsigned, 4> UnspilledCS1GPRs; 2429 SmallVector<unsigned, 4> UnspilledCS2GPRs; 2430 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 2431 MF.getSubtarget().getRegisterInfo()); 2432 const ARMBaseInstrInfo &TII = 2433 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2434 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2435 MachineFrameInfo &MFI = MF.getFrameInfo(); 2436 MachineRegisterInfo &MRI = MF.getRegInfo(); 2437 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2438 (void)TRI; // Silence unused warning in non-assert builds. 2439 Register FramePtr = RegInfo->getFrameRegister(MF); 2440 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2441 STI.getPushPopSplitVariation(MF); 2442 2443 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 2444 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 2445 // since it's not always possible to restore sp from fp in a single 2446 // instruction. 2447 // FIXME: It will be better just to find spare register here. 2448 if (AFI->isThumb2Function() && 2449 (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))) 2450 SavedRegs.set(ARM::R4); 2451 2452 // If a stack probe will be emitted, spill R4 and LR, since they are 2453 // clobbered by the stack probe call. 2454 // This estimate should be a safe, conservative estimate. The actual 2455 // stack probe is enabled based on the size of the local objects; 2456 // this estimate also includes the varargs store size. 2457 if (STI.isTargetWindows() && 2458 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 2459 SavedRegs.set(ARM::R4); 2460 SavedRegs.set(ARM::LR); 2461 } 2462 2463 if (AFI->isThumb1OnlyFunction()) { 2464 // Spill LR if Thumb1 function uses variable length argument lists. 2465 if (AFI->getArgRegsSaveSize() > 0) 2466 SavedRegs.set(ARM::LR); 2467 2468 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 2469 // requires stack alignment. We don't know for sure what the stack size 2470 // will be, but for this, an estimate is good enough. If there anything 2471 // changes it, it'll be a spill, which implies we've used all the registers 2472 // and so R4 is already used, so not marking it here will be OK. 2473 // FIXME: It will be better just to find spare register here. 2474 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) || 2475 MFI.estimateStackSize(MF) > 508) 2476 SavedRegs.set(ARM::R4); 2477 } 2478 2479 // See if we can spill vector registers to aligned stack. 2480 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 2481 2482 // Spill the BasePtr if it's used. 2483 if (RegInfo->hasBasePointer(MF)) 2484 SavedRegs.set(RegInfo->getBaseRegister()); 2485 2486 // On v8.1-M.Main CMSE entry functions save/restore FPCXT. 2487 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction()) 2488 CanEliminateFrame = false; 2489 2490 // When return address signing is enabled R12 is treated as callee-saved. 2491 if (AFI->shouldSignReturnAddress()) 2492 CanEliminateFrame = false; 2493 2494 // Don't spill FP if the frame can be eliminated. This is determined 2495 // by scanning the callee-save registers to see if any is modified. 2496 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2497 for (unsigned i = 0; CSRegs[i]; ++i) { 2498 unsigned Reg = CSRegs[i]; 2499 bool Spilled = false; 2500 if (SavedRegs.test(Reg)) { 2501 Spilled = true; 2502 CanEliminateFrame = false; 2503 } 2504 2505 if (!ARM::GPRRegClass.contains(Reg)) { 2506 if (Spilled) { 2507 if (ARM::SPRRegClass.contains(Reg)) 2508 NumFPRSpills++; 2509 else if (ARM::DPRRegClass.contains(Reg)) 2510 NumFPRSpills += 2; 2511 else if (ARM::QPRRegClass.contains(Reg)) 2512 NumFPRSpills += 4; 2513 } 2514 continue; 2515 } 2516 2517 if (Spilled) { 2518 NumGPRSpills++; 2519 2520 if (PushPopSplit != ARMSubtarget::SplitR7) { 2521 if (Reg == ARM::LR) 2522 LRSpilled = true; 2523 CS1Spilled = true; 2524 continue; 2525 } 2526 2527 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 2528 switch (Reg) { 2529 case ARM::LR: 2530 LRSpilled = true; 2531 [[fallthrough]]; 2532 case ARM::R0: case ARM::R1: 2533 case ARM::R2: case ARM::R3: 2534 case ARM::R4: case ARM::R5: 2535 case ARM::R6: case ARM::R7: 2536 CS1Spilled = true; 2537 break; 2538 default: 2539 break; 2540 } 2541 } else { 2542 if (PushPopSplit != ARMSubtarget::SplitR7) { 2543 UnspilledCS1GPRs.push_back(Reg); 2544 continue; 2545 } 2546 2547 switch (Reg) { 2548 case ARM::R0: case ARM::R1: 2549 case ARM::R2: case ARM::R3: 2550 case ARM::R4: case ARM::R5: 2551 case ARM::R6: case ARM::R7: 2552 case ARM::LR: 2553 UnspilledCS1GPRs.push_back(Reg); 2554 break; 2555 default: 2556 UnspilledCS2GPRs.push_back(Reg); 2557 break; 2558 } 2559 } 2560 } 2561 2562 bool ForceLRSpill = false; 2563 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 2564 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); 2565 // Force LR to be spilled if the Thumb function size is > 2048. This enables 2566 // use of BL to implement far jump. 2567 if (FnSize >= (1 << 11)) { 2568 CanEliminateFrame = false; 2569 ForceLRSpill = true; 2570 } 2571 } 2572 2573 // If any of the stack slot references may be out of range of an immediate 2574 // offset, make sure a register (or a spill slot) is available for the 2575 // register scavenger. Note that if we're indexing off the frame pointer, the 2576 // effective stack size is 4 bytes larger since the FP points to the stack 2577 // slot of the previous FP. Also, if we have variable sized objects in the 2578 // function, stack slot references will often be negative, and some of 2579 // our instructions are positive-offset only, so conservatively consider 2580 // that case to want a spill slot (or register) as well. Similarly, if 2581 // the function adjusts the stack pointer during execution and the 2582 // adjustments aren't already part of our stack size estimate, our offset 2583 // calculations may be off, so be conservative. 2584 // FIXME: We could add logic to be more precise about negative offsets 2585 // and which instructions will need a scratch register for them. Is it 2586 // worth the effort and added fragility? 2587 unsigned EstimatedStackSize = 2588 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 2589 2590 // Determine biggest (positive) SP offset in MachineFrameInfo. 2591 int MaxFixedOffset = 0; 2592 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 2593 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 2594 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 2595 } 2596 2597 bool HasFP = hasFP(MF); 2598 if (HasFP) { 2599 if (AFI->hasStackFrame()) 2600 EstimatedStackSize += 4; 2601 } else { 2602 // If FP is not used, SP will be used to access arguments, so count the 2603 // size of arguments into the estimation. 2604 EstimatedStackSize += MaxFixedOffset; 2605 } 2606 EstimatedStackSize += 16; // For possible paddings. 2607 2608 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; 2609 bool HasNonSPFrameIndex = false; 2610 if (AFI->isThumb1OnlyFunction()) { 2611 // For Thumb1, don't bother to iterate over the function. The only 2612 // instruction that requires an emergency spill slot is a store to a 2613 // frame index. 2614 // 2615 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned 2616 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has 2617 // a 5-bit unsigned immediate. 2618 // 2619 // We could try to check if the function actually contains a tSTRspi 2620 // that might need the spill slot, but it's not really important. 2621 // Functions with VLAs or extremely large call frames are rare, and 2622 // if a function is allocating more than 1KB of stack, an extra 4-byte 2623 // slot probably isn't relevant. 2624 // 2625 // A special case is the scenario where r11 is used as FP, where accesses 2626 // to a frame index will require its value to be moved into a low reg. 2627 // This is handled later on, once we are able to determine if we have any 2628 // fp-relative accesses. 2629 if (RegInfo->hasBasePointer(MF)) 2630 EstimatedRSStackSizeLimit = (1U << 5) * 4; 2631 else 2632 EstimatedRSStackSizeLimit = (1U << 8) * 4; 2633 EstimatedRSFixedSizeLimit = (1U << 5) * 4; 2634 } else { 2635 EstimatedRSStackSizeLimit = 2636 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); 2637 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; 2638 } 2639 // Final estimate of whether sp or bp-relative accesses might require 2640 // scavenging. 2641 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; 2642 2643 // If the stack pointer moves and we don't have a base pointer, the 2644 // estimate logic doesn't work. The actual offsets might be larger when 2645 // we're constructing a call frame, or we might need to use negative 2646 // offsets from fp. 2647 bool HasMovingSP = MFI.hasVarSizedObjects() || 2648 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 2649 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; 2650 2651 // If we have a frame pointer, we assume arguments will be accessed 2652 // relative to the frame pointer. Check whether fp-relative accesses to 2653 // arguments require scavenging. 2654 // 2655 // We could do slightly better on Thumb1; in some cases, an sp-relative 2656 // offset would be legal even though an fp-relative offset is not. 2657 int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF); 2658 bool HasLargeArgumentList = 2659 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; 2660 2661 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || 2662 HasLargeArgumentList || HasNonSPFrameIndex; 2663 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit 2664 << "; EstimatedStack: " << EstimatedStackSize 2665 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset 2666 << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); 2667 if (BigFrameOffsets || 2668 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 2669 AFI->setHasStackFrame(true); 2670 2671 if (HasFP) { 2672 SavedRegs.set(FramePtr); 2673 // If the frame pointer is required by the ABI, also spill LR so that we 2674 // emit a complete frame record. 2675 if ((requiresAAPCSFrameRecord(MF) || 2676 MF.getTarget().Options.DisableFramePointerElim(MF)) && 2677 !LRSpilled) { 2678 SavedRegs.set(ARM::LR); 2679 LRSpilled = true; 2680 NumGPRSpills++; 2681 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 2682 if (LRPos != UnspilledCS1GPRs.end()) 2683 UnspilledCS1GPRs.erase(LRPos); 2684 } 2685 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 2686 if (FPPos != UnspilledCS1GPRs.end()) 2687 UnspilledCS1GPRs.erase(FPPos); 2688 NumGPRSpills++; 2689 if (FramePtr == ARM::R7) 2690 CS1Spilled = true; 2691 } 2692 2693 // This is the number of extra spills inserted for callee-save GPRs which 2694 // would not otherwise be used by the function. When greater than zero it 2695 // guaranteees that it is possible to scavenge a register to hold the 2696 // address of a stack slot. On Thumb1, the register must be a valid operand 2697 // to tSTRi, i.e. r4-r7. For other subtargets, this is any GPR, i.e. r4-r11 2698 // or lr. 2699 // 2700 // If we don't insert a spill, we instead allocate an emergency spill 2701 // slot, which can be used by scavenging to spill an arbitrary register. 2702 // 2703 // We currently don't try to figure out whether any specific instruction 2704 // requires scavening an additional register. 2705 unsigned NumExtraCSSpill = 0; 2706 2707 if (AFI->isThumb1OnlyFunction()) { 2708 // For Thumb1-only targets, we need some low registers when we save and 2709 // restore the high registers (which aren't allocatable, but could be 2710 // used by inline assembly) because the push/pop instructions can not 2711 // access high registers. If necessary, we might need to push more low 2712 // registers to ensure that there is at least one free that can be used 2713 // for the saving & restoring, and preferably we should ensure that as 2714 // many as are needed are available so that fewer push/pop instructions 2715 // are required. 2716 2717 // Low registers which are not currently pushed, but could be (r4-r7). 2718 SmallVector<unsigned, 4> AvailableRegs; 2719 2720 // Unused argument registers (r0-r3) can be clobbered in the prologue for 2721 // free. 2722 int EntryRegDeficit = 0; 2723 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 2724 if (!MF.getRegInfo().isLiveIn(Reg)) { 2725 --EntryRegDeficit; 2726 LLVM_DEBUG(dbgs() 2727 << printReg(Reg, TRI) 2728 << " is unused argument register, EntryRegDeficit = " 2729 << EntryRegDeficit << "\n"); 2730 } 2731 } 2732 2733 // Unused return registers can be clobbered in the epilogue for free. 2734 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 2735 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 2736 << " return regs used, ExitRegDeficit = " 2737 << ExitRegDeficit << "\n"); 2738 2739 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 2740 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 2741 2742 // r4-r6 can be used in the prologue if they are pushed by the first push 2743 // instruction. 2744 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 2745 if (SavedRegs.test(Reg)) { 2746 --RegDeficit; 2747 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2748 << " is saved low register, RegDeficit = " 2749 << RegDeficit << "\n"); 2750 } else { 2751 AvailableRegs.push_back(Reg); 2752 LLVM_DEBUG( 2753 dbgs() 2754 << printReg(Reg, TRI) 2755 << " is non-saved low register, adding to AvailableRegs\n"); 2756 } 2757 } 2758 2759 // r7 can be used if it is not being used as the frame pointer. 2760 if (!HasFP || FramePtr != ARM::R7) { 2761 if (SavedRegs.test(ARM::R7)) { 2762 --RegDeficit; 2763 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 2764 << RegDeficit << "\n"); 2765 } else { 2766 AvailableRegs.push_back(ARM::R7); 2767 LLVM_DEBUG( 2768 dbgs() 2769 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 2770 } 2771 } 2772 2773 // Each of r8-r11 needs to be copied to a low register, then pushed. 2774 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 2775 if (SavedRegs.test(Reg)) { 2776 ++RegDeficit; 2777 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2778 << " is saved high register, RegDeficit = " 2779 << RegDeficit << "\n"); 2780 } 2781 } 2782 2783 // LR can only be used by PUSH, not POP, and can't be used at all if the 2784 // llvm.returnaddress intrinsic is used. This is only worth doing if we 2785 // are more limited at function entry than exit. 2786 if ((EntryRegDeficit > ExitRegDeficit) && 2787 !(MF.getRegInfo().isLiveIn(ARM::LR) && 2788 MF.getFrameInfo().isReturnAddressTaken())) { 2789 if (SavedRegs.test(ARM::LR)) { 2790 --RegDeficit; 2791 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 2792 << RegDeficit << "\n"); 2793 } else { 2794 AvailableRegs.push_back(ARM::LR); 2795 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 2796 } 2797 } 2798 2799 // If there are more high registers that need pushing than low registers 2800 // available, push some more low registers so that we can use fewer push 2801 // instructions. This might not reduce RegDeficit all the way to zero, 2802 // because we can only guarantee that r4-r6 are available, but r8-r11 may 2803 // need saving. 2804 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 2805 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 2806 unsigned Reg = AvailableRegs.pop_back_val(); 2807 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2808 << " to make up reg deficit\n"); 2809 SavedRegs.set(Reg); 2810 NumGPRSpills++; 2811 CS1Spilled = true; 2812 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 2813 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) 2814 NumExtraCSSpill++; 2815 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 2816 if (Reg == ARM::LR) 2817 LRSpilled = true; 2818 } 2819 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 2820 << "\n"); 2821 } 2822 2823 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 2824 // restore LR in that case. 2825 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 2826 2827 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 2828 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 2829 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 2830 SavedRegs.set(ARM::LR); 2831 NumGPRSpills++; 2832 SmallVectorImpl<unsigned>::iterator LRPos; 2833 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 2834 if (LRPos != UnspilledCS1GPRs.end()) 2835 UnspilledCS1GPRs.erase(LRPos); 2836 2837 ForceLRSpill = false; 2838 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && 2839 !AFI->isThumb1OnlyFunction()) 2840 NumExtraCSSpill++; 2841 } 2842 2843 // If stack and double are 8-byte aligned and we are spilling an odd number 2844 // of GPRs, spill one extra callee save GPR so we won't have to pad between 2845 // the integer and double callee save areas. 2846 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 2847 const Align TargetAlign = getStackAlign(); 2848 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) { 2849 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 2850 for (unsigned Reg : UnspilledCS1GPRs) { 2851 // Don't spill high register if the function is thumb. In the case of 2852 // Windows on ARM, accept R11 (frame pointer) 2853 if (!AFI->isThumbFunction() || 2854 (STI.isTargetWindows() && Reg == ARM::R11) || 2855 isARMLowRegister(Reg) || 2856 (Reg == ARM::LR && !ExpensiveLRRestore)) { 2857 SavedRegs.set(Reg); 2858 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2859 << " to make up alignment\n"); 2860 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && 2861 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) 2862 NumExtraCSSpill++; 2863 break; 2864 } 2865 } 2866 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 2867 unsigned Reg = UnspilledCS2GPRs.front(); 2868 SavedRegs.set(Reg); 2869 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2870 << " to make up alignment\n"); 2871 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 2872 NumExtraCSSpill++; 2873 } 2874 } 2875 2876 // Estimate if we might need to scavenge registers at some point in order 2877 // to materialize a stack offset. If so, either spill one additional 2878 // callee-saved register or reserve a special spill slot to facilitate 2879 // register scavenging. Thumb1 needs a spill slot for stack pointer 2880 // adjustments and for frame index accesses when FP is high register, 2881 // even when the frame itself is small. 2882 unsigned RegsNeeded = 0; 2883 if (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this)) { 2884 RegsNeeded++; 2885 // With thumb1 execute-only we may need an additional register for saving 2886 // and restoring the CPSR. 2887 if (AFI->isThumb1OnlyFunction() && STI.genExecuteOnly() && !STI.useMovt()) 2888 RegsNeeded++; 2889 } 2890 2891 if (RegsNeeded > NumExtraCSSpill) { 2892 // If any non-reserved CS register isn't spilled, just spill one or two 2893 // extra. That should take care of it! 2894 unsigned NumExtras = TargetAlign.value() / 4; 2895 SmallVector<unsigned, 2> Extras; 2896 while (NumExtras && !UnspilledCS1GPRs.empty()) { 2897 unsigned Reg = UnspilledCS1GPRs.pop_back_val(); 2898 if (!MRI.isReserved(Reg) && 2899 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { 2900 Extras.push_back(Reg); 2901 NumExtras--; 2902 } 2903 } 2904 // For non-Thumb1 functions, also check for hi-reg CS registers 2905 if (!AFI->isThumb1OnlyFunction()) { 2906 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2907 unsigned Reg = UnspilledCS2GPRs.pop_back_val(); 2908 if (!MRI.isReserved(Reg)) { 2909 Extras.push_back(Reg); 2910 NumExtras--; 2911 } 2912 } 2913 } 2914 if (NumExtras == 0) { 2915 for (unsigned Reg : Extras) { 2916 SavedRegs.set(Reg); 2917 if (!MRI.isPhysRegUsed(Reg)) 2918 NumExtraCSSpill++; 2919 } 2920 } 2921 while ((RegsNeeded > NumExtraCSSpill) && RS) { 2922 // Reserve a slot closest to SP or frame pointer. 2923 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); 2924 const TargetRegisterClass &RC = ARM::GPRRegClass; 2925 unsigned Size = TRI->getSpillSize(RC); 2926 Align Alignment = TRI->getSpillAlign(RC); 2927 RS->addScavengingFrameIndex( 2928 MFI.CreateSpillStackObject(Size, Alignment)); 2929 --RegsNeeded; 2930 } 2931 } 2932 } 2933 2934 if (ForceLRSpill) 2935 SavedRegs.set(ARM::LR); 2936 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); 2937 } 2938 2939 void ARMFrameLowering::updateLRRestored(MachineFunction &MF) { 2940 MachineFrameInfo &MFI = MF.getFrameInfo(); 2941 if (!MFI.isCalleeSavedInfoValid()) 2942 return; 2943 2944 // Check if all terminators do not implicitly use LR. Then we can 'restore' LR 2945 // into PC so it is not live out of the return block: Clear the Restored bit 2946 // in that case. 2947 for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) { 2948 if (Info.getReg() != ARM::LR) 2949 continue; 2950 if (all_of(MF, [](const MachineBasicBlock &MBB) { 2951 return all_of(MBB.terminators(), [](const MachineInstr &Term) { 2952 return !Term.isReturn() || Term.getOpcode() == ARM::LDMIA_RET || 2953 Term.getOpcode() == ARM::t2LDMIA_RET || 2954 Term.getOpcode() == ARM::tPOP_RET; 2955 }); 2956 })) { 2957 Info.setRestored(false); 2958 break; 2959 } 2960 } 2961 } 2962 2963 void ARMFrameLowering::processFunctionBeforeFrameFinalized( 2964 MachineFunction &MF, RegScavenger *RS) const { 2965 TargetFrameLowering::processFunctionBeforeFrameFinalized(MF, RS); 2966 updateLRRestored(MF); 2967 } 2968 2969 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, 2970 BitVector &SavedRegs) const { 2971 TargetFrameLowering::getCalleeSaves(MF, SavedRegs); 2972 2973 // If we have the "returned" parameter attribute which guarantees that we 2974 // return the value which was passed in r0 unmodified (e.g. C++ 'structors), 2975 // record that fact for IPRA. 2976 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2977 if (AFI->getPreservesR0()) 2978 SavedRegs.set(ARM::R0); 2979 } 2980 2981 bool ARMFrameLowering::assignCalleeSavedSpillSlots( 2982 MachineFunction &MF, const TargetRegisterInfo *TRI, 2983 std::vector<CalleeSavedInfo> &CSI) const { 2984 // For CMSE entry functions, handle floating-point context as if it was a 2985 // callee-saved register. 2986 if (STI.hasV8_1MMainlineOps() && 2987 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) { 2988 CSI.emplace_back(ARM::FPCXTNS); 2989 CSI.back().setRestored(false); 2990 } 2991 2992 // For functions, which sign their return address, upon function entry, the 2993 // return address PAC is computed in R12. Treat R12 as a callee-saved register 2994 // in this case. 2995 const auto &AFI = *MF.getInfo<ARMFunctionInfo>(); 2996 if (AFI.shouldSignReturnAddress()) { 2997 // The order of register must match the order we push them, because the 2998 // PEI assigns frame indices in that order. That order depends on the 2999 // PushPopSplitVariation, there are only two cases which we use with return 3000 // address signing: 3001 switch (STI.getPushPopSplitVariation(MF)) { 3002 case ARMSubtarget::SplitR7: 3003 // LR, R7, R6, R5, R4, <R12>, R11, R10, R9, R8, D15-D8 3004 CSI.insert(find_if(CSI, 3005 [=](const auto &CS) { 3006 Register Reg = CS.getReg(); 3007 return Reg == ARM::R10 || Reg == ARM::R11 || 3008 Reg == ARM::R8 || Reg == ARM::R9 || 3009 ARM::DPRRegClass.contains(Reg); 3010 }), 3011 CalleeSavedInfo(ARM::R12)); 3012 break; 3013 case ARMSubtarget::SplitR11AAPCSSignRA: 3014 // With SplitR11AAPCSSignRA, R12 will always be the highest-addressed CSR 3015 // on the stack. 3016 CSI.insert(CSI.begin(), CalleeSavedInfo(ARM::R12)); 3017 break; 3018 case ARMSubtarget::NoSplit: 3019 assert(!MF.getTarget().Options.DisableFramePointerElim(MF) && 3020 "ABI-required frame pointers need a CSR split when signing return " 3021 "address."); 3022 CSI.insert(find_if(CSI, 3023 [=](const auto &CS) { 3024 Register Reg = CS.getReg(); 3025 return Reg != ARM::LR; 3026 }), 3027 CalleeSavedInfo(ARM::R12)); 3028 break; 3029 default: 3030 llvm_unreachable("Unexpected CSR split with return address signing"); 3031 } 3032 } 3033 3034 return false; 3035 } 3036 3037 const TargetFrameLowering::SpillSlot * 3038 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const { 3039 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}}; 3040 NumEntries = std::size(FixedSpillOffsets); 3041 return FixedSpillOffsets; 3042 } 3043 3044 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 3045 MachineFunction &MF, MachineBasicBlock &MBB, 3046 MachineBasicBlock::iterator I) const { 3047 const ARMBaseInstrInfo &TII = 3048 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 3049 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 3050 bool isARM = !AFI->isThumbFunction(); 3051 DebugLoc dl = I->getDebugLoc(); 3052 unsigned Opc = I->getOpcode(); 3053 bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode(); 3054 unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 3055 3056 assert(!AFI->isThumb1OnlyFunction() && 3057 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 3058 3059 int PIdx = I->findFirstPredOperandIdx(); 3060 ARMCC::CondCodes Pred = (PIdx == -1) 3061 ? ARMCC::AL 3062 : (ARMCC::CondCodes)I->getOperand(PIdx).getImm(); 3063 unsigned PredReg = TII.getFramePred(*I); 3064 3065 if (!hasReservedCallFrame(MF)) { 3066 // Bail early if the callee is expected to do the adjustment. 3067 if (IsDestroy && CalleePopAmount != -1U) 3068 return MBB.erase(I); 3069 3070 // If we have alloca, convert as follows: 3071 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 3072 // ADJCALLSTACKUP -> add, sp, sp, amount 3073 unsigned Amount = TII.getFrameSize(*I); 3074 if (Amount != 0) { 3075 // We need to keep the stack aligned properly. To do this, we round the 3076 // amount of space needed for the outgoing arguments up to the next 3077 // alignment boundary. 3078 Amount = alignSPAdjust(Amount); 3079 3080 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 3081 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 3082 Pred, PredReg); 3083 } else { 3084 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 3085 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 3086 Pred, PredReg); 3087 } 3088 } 3089 } else if (CalleePopAmount != -1U) { 3090 // If the calling convention demands that the callee pops arguments from the 3091 // stack, we want to add it back if we have a reserved call frame. 3092 emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount, 3093 MachineInstr::NoFlags, Pred, PredReg); 3094 } 3095 return MBB.erase(I); 3096 } 3097 3098 /// Get the minimum constant for ARM that is greater than or equal to the 3099 /// argument. In ARM, constants can have any value that can be produced by 3100 /// rotating an 8-bit value to the right by an even number of bits within a 3101 /// 32-bit word. 3102 static uint32_t alignToARMConstant(uint32_t Value) { 3103 unsigned Shifted = 0; 3104 3105 if (Value == 0) 3106 return 0; 3107 3108 while (!(Value & 0xC0000000)) { 3109 Value = Value << 2; 3110 Shifted += 2; 3111 } 3112 3113 bool Carry = (Value & 0x00FFFFFF); 3114 Value = ((Value & 0xFF000000) >> 24) + Carry; 3115 3116 if (Value & 0x0000100) 3117 Value = Value & 0x000001FC; 3118 3119 if (Shifted > 24) 3120 Value = Value >> (Shifted - 24); 3121 else 3122 Value = Value << (24 - Shifted); 3123 3124 return Value; 3125 } 3126 3127 // The stack limit in the TCB is set to this many bytes above the actual 3128 // stack limit. 3129 static const uint64_t kSplitStackAvailable = 256; 3130 3131 // Adjust the function prologue to enable split stacks. This currently only 3132 // supports android and linux. 3133 // 3134 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 3135 // must be well defined in order to allow for consistent implementations of the 3136 // __morestack helper function. The ABI is also not a normal ABI in that it 3137 // doesn't follow the normal calling conventions because this allows the 3138 // prologue of each function to be optimized further. 3139 // 3140 // Currently, the ABI looks like (when calling __morestack) 3141 // 3142 // * r4 holds the minimum stack size requested for this function call 3143 // * r5 holds the stack size of the arguments to the function 3144 // * the beginning of the function is 3 instructions after the call to 3145 // __morestack 3146 // 3147 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 3148 // place the arguments on to the new stack, and the 3-instruction knowledge to 3149 // jump directly to the body of the function when working on the new stack. 3150 // 3151 // An old (and possibly no longer compatible) implementation of __morestack for 3152 // ARM can be found at [1]. 3153 // 3154 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 3155 void ARMFrameLowering::adjustForSegmentedStacks( 3156 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3157 unsigned Opcode; 3158 unsigned CFIIndex; 3159 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 3160 bool Thumb = ST->isThumb(); 3161 bool Thumb2 = ST->isThumb2(); 3162 3163 // Sadly, this currently doesn't support varargs, platforms other than 3164 // android/linux. Note that thumb1/thumb2 are support for android/linux. 3165 if (MF.getFunction().isVarArg()) 3166 report_fatal_error("Segmented stacks do not support vararg functions."); 3167 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 3168 report_fatal_error("Segmented stacks not supported on this platform."); 3169 3170 MachineFrameInfo &MFI = MF.getFrameInfo(); 3171 MCContext &Context = MF.getContext(); 3172 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 3173 const ARMBaseInstrInfo &TII = 3174 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 3175 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 3176 DebugLoc DL; 3177 3178 if (!MFI.needsSplitStackProlog()) 3179 return; 3180 3181 uint64_t StackSize = MFI.getStackSize(); 3182 3183 // Use R4 and R5 as scratch registers. 3184 // We save R4 and R5 before use and restore them before leaving the function. 3185 unsigned ScratchReg0 = ARM::R4; 3186 unsigned ScratchReg1 = ARM::R5; 3187 unsigned MovOp = ST->useMovt() ? ARM::t2MOVi32imm : ARM::tMOVi32imm; 3188 uint64_t AlignedStackSize; 3189 3190 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 3191 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 3192 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 3193 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 3194 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 3195 3196 // Grab everything that reaches PrologueMBB to update there liveness as well. 3197 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 3198 SmallVector<MachineBasicBlock *, 2> WalkList; 3199 WalkList.push_back(&PrologueMBB); 3200 3201 do { 3202 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 3203 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 3204 if (BeforePrologueRegion.insert(PredBB).second) 3205 WalkList.push_back(PredBB); 3206 } 3207 } while (!WalkList.empty()); 3208 3209 // The order in that list is important. 3210 // The blocks will all be inserted before PrologueMBB using that order. 3211 // Therefore the block that should appear first in the CFG should appear 3212 // first in the list. 3213 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 3214 PostStackMBB}; 3215 3216 for (MachineBasicBlock *B : AddedBlocks) 3217 BeforePrologueRegion.insert(B); 3218 3219 for (const auto &LI : PrologueMBB.liveins()) { 3220 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 3221 PredBB->addLiveIn(LI); 3222 } 3223 3224 // Remove the newly added blocks from the list, since we know 3225 // we do not have to do the following updates for them. 3226 for (MachineBasicBlock *B : AddedBlocks) { 3227 BeforePrologueRegion.erase(B); 3228 MF.insert(PrologueMBB.getIterator(), B); 3229 } 3230 3231 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 3232 // Make sure the LiveIns are still sorted and unique. 3233 MBB->sortUniqueLiveIns(); 3234 // Replace the edges to PrologueMBB by edges to the sequences 3235 // we are about to add, but only update for immediate predecessors. 3236 if (MBB->isSuccessor(&PrologueMBB)) 3237 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 3238 } 3239 3240 // The required stack size that is aligned to ARM constant criterion. 3241 AlignedStackSize = alignToARMConstant(StackSize); 3242 3243 // When the frame size is less than 256 we just compare the stack 3244 // boundary directly to the value of the stack pointer, per gcc. 3245 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 3246 3247 // We will use two of the callee save registers as scratch registers so we 3248 // need to save those registers onto the stack. 3249 // We will use SR0 to hold stack limit and SR1 to hold the stack size 3250 // requested and arguments for __morestack(). 3251 // SR0: Scratch Register #0 3252 // SR1: Scratch Register #1 3253 // push {SR0, SR1} 3254 if (Thumb) { 3255 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 3256 .add(predOps(ARMCC::AL)) 3257 .addReg(ScratchReg0) 3258 .addReg(ScratchReg1); 3259 } else { 3260 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 3261 .addReg(ARM::SP, RegState::Define) 3262 .addReg(ARM::SP) 3263 .add(predOps(ARMCC::AL)) 3264 .addReg(ScratchReg0) 3265 .addReg(ScratchReg1); 3266 } 3267 3268 // Emit the relevant DWARF information about the change in stack pointer as 3269 // well as where to find both r4 and r5 (the callee-save registers) 3270 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3271 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8)); 3272 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3273 .addCFIIndex(CFIIndex); 3274 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3275 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 3276 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3277 .addCFIIndex(CFIIndex); 3278 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3279 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 3280 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3281 .addCFIIndex(CFIIndex); 3282 } 3283 3284 // mov SR1, sp 3285 if (Thumb) { 3286 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 3287 .addReg(ARM::SP) 3288 .add(predOps(ARMCC::AL)); 3289 } else if (CompareStackPointer) { 3290 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 3291 .addReg(ARM::SP) 3292 .add(predOps(ARMCC::AL)) 3293 .add(condCodeOp()); 3294 } 3295 3296 // sub SR1, sp, #StackSize 3297 if (!CompareStackPointer && Thumb) { 3298 if (AlignedStackSize < 256) { 3299 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 3300 .add(condCodeOp()) 3301 .addReg(ScratchReg1) 3302 .addImm(AlignedStackSize) 3303 .add(predOps(ARMCC::AL)); 3304 } else { 3305 if (Thumb2 || ST->genExecuteOnly()) { 3306 BuildMI(McrMBB, DL, TII.get(MovOp), ScratchReg0) 3307 .addImm(AlignedStackSize); 3308 } else { 3309 auto MBBI = McrMBB->end(); 3310 auto RegInfo = STI.getRegisterInfo(); 3311 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3312 AlignedStackSize); 3313 } 3314 BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1) 3315 .add(condCodeOp()) 3316 .addReg(ScratchReg1) 3317 .addReg(ScratchReg0) 3318 .add(predOps(ARMCC::AL)); 3319 } 3320 } else if (!CompareStackPointer) { 3321 if (AlignedStackSize < 256) { 3322 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 3323 .addReg(ARM::SP) 3324 .addImm(AlignedStackSize) 3325 .add(predOps(ARMCC::AL)) 3326 .add(condCodeOp()); 3327 } else { 3328 auto MBBI = McrMBB->end(); 3329 auto RegInfo = STI.getRegisterInfo(); 3330 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3331 AlignedStackSize); 3332 BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1) 3333 .addReg(ARM::SP) 3334 .addReg(ScratchReg0) 3335 .add(predOps(ARMCC::AL)) 3336 .add(condCodeOp()); 3337 } 3338 } 3339 3340 if (Thumb && ST->isThumb1Only()) { 3341 if (ST->genExecuteOnly()) { 3342 BuildMI(GetMBB, DL, TII.get(MovOp), ScratchReg0) 3343 .addExternalSymbol("__STACK_LIMIT"); 3344 } else { 3345 unsigned PCLabelId = ARMFI->createPICLabelUId(); 3346 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 3347 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 3348 MachineConstantPool *MCP = MF.getConstantPool(); 3349 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4)); 3350 3351 // ldr SR0, [pc, offset(STACK_LIMIT)] 3352 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 3353 .addConstantPoolIndex(CPI) 3354 .add(predOps(ARMCC::AL)); 3355 } 3356 3357 // ldr SR0, [SR0] 3358 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 3359 .addReg(ScratchReg0) 3360 .addImm(0) 3361 .add(predOps(ARMCC::AL)); 3362 } else { 3363 // Get TLS base address from the coprocessor 3364 // mrc p15, #0, SR0, c13, c0, #3 3365 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), 3366 ScratchReg0) 3367 .addImm(15) 3368 .addImm(0) 3369 .addImm(13) 3370 .addImm(0) 3371 .addImm(3) 3372 .add(predOps(ARMCC::AL)); 3373 3374 // Use the last tls slot on android and a private field of the TCP on linux. 3375 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 3376 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 3377 3378 // Get the stack limit from the right offset 3379 // ldr SR0, [sr0, #4 * TlsOffset] 3380 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), 3381 ScratchReg0) 3382 .addReg(ScratchReg0) 3383 .addImm(4 * TlsOffset) 3384 .add(predOps(ARMCC::AL)); 3385 } 3386 3387 // Compare stack limit with stack size requested. 3388 // cmp SR0, SR1 3389 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 3390 BuildMI(GetMBB, DL, TII.get(Opcode)) 3391 .addReg(ScratchReg0) 3392 .addReg(ScratchReg1) 3393 .add(predOps(ARMCC::AL)); 3394 3395 // This jump is taken if StackLimit <= SP - stack required. 3396 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 3397 BuildMI(GetMBB, DL, TII.get(Opcode)) 3398 .addMBB(PostStackMBB) 3399 .addImm(ARMCC::LS) 3400 .addReg(ARM::CPSR); 3401 3402 // Calling __morestack(StackSize, Size of stack arguments). 3403 // __morestack knows that the stack size requested is in SR0(r4) 3404 // and amount size of stack arguments is in SR1(r5). 3405 3406 // Pass first argument for the __morestack by Scratch Register #0. 3407 // The amount size of stack required 3408 if (Thumb) { 3409 if (AlignedStackSize < 256) { 3410 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 3411 .add(condCodeOp()) 3412 .addImm(AlignedStackSize) 3413 .add(predOps(ARMCC::AL)); 3414 } else { 3415 if (Thumb2 || ST->genExecuteOnly()) { 3416 BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg0) 3417 .addImm(AlignedStackSize); 3418 } else { 3419 auto MBBI = AllocMBB->end(); 3420 auto RegInfo = STI.getRegisterInfo(); 3421 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3422 AlignedStackSize); 3423 } 3424 } 3425 } else { 3426 if (AlignedStackSize < 256) { 3427 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 3428 .addImm(AlignedStackSize) 3429 .add(predOps(ARMCC::AL)) 3430 .add(condCodeOp()); 3431 } else { 3432 auto MBBI = AllocMBB->end(); 3433 auto RegInfo = STI.getRegisterInfo(); 3434 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3435 AlignedStackSize); 3436 } 3437 } 3438 3439 // Pass second argument for the __morestack by Scratch Register #1. 3440 // The amount size of stack consumed to save function arguments. 3441 if (Thumb) { 3442 if (ARMFI->getArgumentStackSize() < 256) { 3443 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 3444 .add(condCodeOp()) 3445 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3446 .add(predOps(ARMCC::AL)); 3447 } else { 3448 if (Thumb2 || ST->genExecuteOnly()) { 3449 BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg1) 3450 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())); 3451 } else { 3452 auto MBBI = AllocMBB->end(); 3453 auto RegInfo = STI.getRegisterInfo(); 3454 RegInfo->emitLoadConstPool( 3455 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3456 alignToARMConstant(ARMFI->getArgumentStackSize())); 3457 } 3458 } 3459 } else { 3460 if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) { 3461 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 3462 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3463 .add(predOps(ARMCC::AL)) 3464 .add(condCodeOp()); 3465 } else { 3466 auto MBBI = AllocMBB->end(); 3467 auto RegInfo = STI.getRegisterInfo(); 3468 RegInfo->emitLoadConstPool( 3469 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3470 alignToARMConstant(ARMFI->getArgumentStackSize())); 3471 } 3472 } 3473 3474 // push {lr} - Save return address of this function. 3475 if (Thumb) { 3476 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 3477 .add(predOps(ARMCC::AL)) 3478 .addReg(ARM::LR); 3479 } else { 3480 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 3481 .addReg(ARM::SP, RegState::Define) 3482 .addReg(ARM::SP) 3483 .add(predOps(ARMCC::AL)) 3484 .addReg(ARM::LR); 3485 } 3486 3487 // Emit the DWARF info about the change in stack as well as where to find the 3488 // previous link register 3489 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3490 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12)); 3491 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3492 .addCFIIndex(CFIIndex); 3493 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3494 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 3495 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3496 .addCFIIndex(CFIIndex); 3497 } 3498 3499 // Call __morestack(). 3500 if (Thumb) { 3501 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 3502 .add(predOps(ARMCC::AL)) 3503 .addExternalSymbol("__morestack"); 3504 } else { 3505 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 3506 .addExternalSymbol("__morestack"); 3507 } 3508 3509 // pop {lr} - Restore return address of this original function. 3510 if (Thumb) { 3511 if (ST->isThumb1Only()) { 3512 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3513 .add(predOps(ARMCC::AL)) 3514 .addReg(ScratchReg0); 3515 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 3516 .addReg(ScratchReg0) 3517 .add(predOps(ARMCC::AL)); 3518 } else { 3519 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 3520 .addReg(ARM::LR, RegState::Define) 3521 .addReg(ARM::SP, RegState::Define) 3522 .addReg(ARM::SP) 3523 .addImm(4) 3524 .add(predOps(ARMCC::AL)); 3525 } 3526 } else { 3527 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3528 .addReg(ARM::SP, RegState::Define) 3529 .addReg(ARM::SP) 3530 .add(predOps(ARMCC::AL)) 3531 .addReg(ARM::LR); 3532 } 3533 3534 // Restore SR0 and SR1 in case of __morestack() was called. 3535 // __morestack() will skip PostStackMBB block so we need to restore 3536 // scratch registers from here. 3537 // pop {SR0, SR1} 3538 if (Thumb) { 3539 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3540 .add(predOps(ARMCC::AL)) 3541 .addReg(ScratchReg0) 3542 .addReg(ScratchReg1); 3543 } else { 3544 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3545 .addReg(ARM::SP, RegState::Define) 3546 .addReg(ARM::SP) 3547 .add(predOps(ARMCC::AL)) 3548 .addReg(ScratchReg0) 3549 .addReg(ScratchReg1); 3550 } 3551 3552 // Update the CFA offset now that we've popped 3553 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3554 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3555 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3556 .addCFIIndex(CFIIndex); 3557 } 3558 3559 // Return from this function. 3560 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 3561 3562 // Restore SR0 and SR1 in case of __morestack() was not called. 3563 // pop {SR0, SR1} 3564 if (Thumb) { 3565 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 3566 .add(predOps(ARMCC::AL)) 3567 .addReg(ScratchReg0) 3568 .addReg(ScratchReg1); 3569 } else { 3570 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 3571 .addReg(ARM::SP, RegState::Define) 3572 .addReg(ARM::SP) 3573 .add(predOps(ARMCC::AL)) 3574 .addReg(ScratchReg0) 3575 .addReg(ScratchReg1); 3576 } 3577 3578 // Update the CFA offset now that we've popped 3579 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3580 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3581 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3582 .addCFIIndex(CFIIndex); 3583 3584 // Tell debuggers that r4 and r5 are now the same as they were in the 3585 // previous function, that they're the "Same Value". 3586 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3587 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 3588 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3589 .addCFIIndex(CFIIndex); 3590 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3591 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 3592 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3593 .addCFIIndex(CFIIndex); 3594 } 3595 3596 // Organizing MBB lists 3597 PostStackMBB->addSuccessor(&PrologueMBB); 3598 3599 AllocMBB->addSuccessor(PostStackMBB); 3600 3601 GetMBB->addSuccessor(PostStackMBB); 3602 GetMBB->addSuccessor(AllocMBB); 3603 3604 McrMBB->addSuccessor(GetMBB); 3605 3606 PrevStackMBB->addSuccessor(McrMBB); 3607 3608 #ifdef EXPENSIVE_CHECKS 3609 MF.verify(); 3610 #endif 3611 } 3612