xref: /llvm-project/llvm/lib/CodeGen/PeepholeOptimizer.cpp (revision 15c2d4baf17292b4966d335846b30c50063f0265)
1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Perform peephole optimizations on the machine code:
10 //
11 // - Optimize Extensions
12 //
13 //     Optimization of sign / zero extension instructions. It may be extended to
14 //     handle other instructions with similar properties.
15 //
16 //     On some targets, some instructions, e.g. X86 sign / zero extension, may
17 //     leave the source value in the lower part of the result. This optimization
18 //     will replace some uses of the pre-extension value with uses of the
19 //     sub-register of the results.
20 //
21 // - Optimize Comparisons
22 //
23 //     Optimization of comparison instructions. For instance, in this code:
24 //
25 //       sub r1, 1
26 //       cmp r1, 0
27 //       bz  L1
28 //
29 //     If the "sub" instruction all ready sets (or could be modified to set) the
30 //     same flag that the "cmp" instruction sets and that "bz" uses, then we can
31 //     eliminate the "cmp" instruction.
32 //
33 //     Another instance, in this code:
34 //
35 //       sub r1, r3 | sub r1, imm
36 //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
37 //       bge L1
38 //
39 //     If the branch instruction can use flag from "sub", then we can replace
40 //     "sub" with "subs" and eliminate the "cmp" instruction.
41 //
42 // - Optimize Loads:
43 //
44 //     Loads that can be folded into a later instruction. A load is foldable
45 //     if it loads to virtual registers and the virtual register defined has
46 //     a single use.
47 //
48 // - Optimize Copies and Bitcast (more generally, target specific copies):
49 //
50 //     Rewrite copies and bitcasts to avoid cross register bank copies
51 //     when possible.
52 //     E.g., Consider the following example, where capital and lower
53 //     letters denote different register file:
54 //     b = copy A <-- cross-bank copy
55 //     C = copy b <-- cross-bank copy
56 //   =>
57 //     b = copy A <-- cross-bank copy
58 //     C = copy A <-- same-bank copy
59 //
60 //     E.g., for bitcast:
61 //     b = bitcast A <-- cross-bank copy
62 //     C = bitcast b <-- cross-bank copy
63 //   =>
64 //     b = bitcast A <-- cross-bank copy
65 //     C = copy A    <-- same-bank copy
66 //===----------------------------------------------------------------------===//
67 
68 #include "llvm/CodeGen/PeepholeOptimizer.h"
69 #include "llvm/ADT/DenseMap.h"
70 #include "llvm/ADT/SmallPtrSet.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/SmallVector.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/CodeGen/MachineBasicBlock.h"
75 #include "llvm/CodeGen/MachineDominators.h"
76 #include "llvm/CodeGen/MachineFunction.h"
77 #include "llvm/CodeGen/MachineFunctionPass.h"
78 #include "llvm/CodeGen/MachineInstr.h"
79 #include "llvm/CodeGen/MachineInstrBuilder.h"
80 #include "llvm/CodeGen/MachineLoopInfo.h"
81 #include "llvm/CodeGen/MachineOperand.h"
82 #include "llvm/CodeGen/MachinePassManager.h"
83 #include "llvm/CodeGen/MachineRegisterInfo.h"
84 #include "llvm/CodeGen/TargetInstrInfo.h"
85 #include "llvm/CodeGen/TargetOpcodes.h"
86 #include "llvm/CodeGen/TargetRegisterInfo.h"
87 #include "llvm/CodeGen/TargetSubtargetInfo.h"
88 #include "llvm/InitializePasses.h"
89 #include "llvm/MC/LaneBitmask.h"
90 #include "llvm/MC/MCInstrDesc.h"
91 #include "llvm/Pass.h"
92 #include "llvm/Support/CommandLine.h"
93 #include "llvm/Support/Debug.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include <cassert>
96 #include <cstdint>
97 #include <memory>
98 #include <utility>
99 
100 using namespace llvm;
101 using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
102 using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
103 
104 #define DEBUG_TYPE "peephole-opt"
105 
106 // Optimize Extensions
107 static cl::opt<bool> Aggressive("aggressive-ext-opt", cl::Hidden,
108                                 cl::desc("Aggressive extension optimization"));
109 
110 static cl::opt<bool>
111     DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
112                     cl::desc("Disable the peephole optimizer"));
113 
114 /// Specifiy whether or not the value tracking looks through
115 /// complex instructions. When this is true, the value tracker
116 /// bails on everything that is not a copy or a bitcast.
117 static cl::opt<bool>
118     DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
119                       cl::desc("Disable advanced copy optimization"));
120 
121 static cl::opt<bool> DisableNAPhysCopyOpt(
122     "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
123     cl::desc("Disable non-allocatable physical register copy optimization"));
124 
125 // Limit the number of PHI instructions to process
126 // in PeepholeOptimizer::getNextSource.
127 static cl::opt<unsigned>
128     RewritePHILimit("rewrite-phi-limit", cl::Hidden, cl::init(10),
129                     cl::desc("Limit the length of PHI chains to lookup"));
130 
131 // Limit the length of recurrence chain when evaluating the benefit of
132 // commuting operands.
133 static cl::opt<unsigned> MaxRecurrenceChain(
134     "recurrence-chain-limit", cl::Hidden, cl::init(3),
135     cl::desc("Maximum length of recurrence chain when evaluating the benefit "
136              "of commuting operands"));
137 
138 STATISTIC(NumReuse, "Number of extension results reused");
139 STATISTIC(NumCmps, "Number of compares eliminated");
140 STATISTIC(NumImmFold, "Number of move immediate folded");
141 STATISTIC(NumLoadFold, "Number of loads folded");
142 STATISTIC(NumSelects, "Number of selects optimized");
143 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
144 STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
145 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
146 
147 namespace {
148 
149 class ValueTrackerResult;
150 class RecurrenceInstr;
151 
152 /// Interface to query instructions amenable to copy rewriting.
153 class Rewriter {
154 protected:
155   MachineInstr &CopyLike;
156   unsigned CurrentSrcIdx = 0; ///< The index of the source being rewritten.
157 public:
158   Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
159   virtual ~Rewriter() = default;
160 
161   /// Get the next rewritable source (SrcReg, SrcSubReg) and
162   /// the related value that it affects (DstReg, DstSubReg).
163   /// A source is considered rewritable if its register class and the
164   /// register class of the related DstReg may not be register
165   /// coalescer friendly. In other words, given a copy-like instruction
166   /// not all the arguments may be returned at rewritable source, since
167   /// some arguments are none to be register coalescer friendly.
168   ///
169   /// Each call of this method moves the current source to the next
170   /// rewritable source.
171   /// For instance, let CopyLike be the instruction to rewrite.
172   /// CopyLike has one definition and one source:
173   /// dst.dstSubIdx = CopyLike src.srcSubIdx.
174   ///
175   /// The first call will give the first rewritable source, i.e.,
176   /// the only source this instruction has:
177   /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
178   /// This source defines the whole definition, i.e.,
179   /// (DstReg, DstSubReg) = (dst, dstSubIdx).
180   ///
181   /// The second and subsequent calls will return false, as there is only one
182   /// rewritable source.
183   ///
184   /// \return True if a rewritable source has been found, false otherwise.
185   /// The output arguments are valid if and only if true is returned.
186   virtual bool getNextRewritableSource(RegSubRegPair &Src,
187                                        RegSubRegPair &Dst) = 0;
188 
189   /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
190   /// \return True if the rewriting was possible, false otherwise.
191   virtual bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) = 0;
192 };
193 
194 /// Rewriter for COPY instructions.
195 class CopyRewriter : public Rewriter {
196 public:
197   CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
198     assert(MI.isCopy() && "Expected copy instruction");
199   }
200   virtual ~CopyRewriter() = default;
201 
202   bool getNextRewritableSource(RegSubRegPair &Src,
203                                RegSubRegPair &Dst) override {
204     // CurrentSrcIdx > 0 means this function has already been called.
205     if (CurrentSrcIdx > 0)
206       return false;
207     // This is the first call to getNextRewritableSource.
208     // Move the CurrentSrcIdx to remember that we made that call.
209     CurrentSrcIdx = 1;
210     // The rewritable source is the argument.
211     const MachineOperand &MOSrc = CopyLike.getOperand(1);
212     Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
213     // What we track are the alternative sources of the definition.
214     const MachineOperand &MODef = CopyLike.getOperand(0);
215     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
216     return true;
217   }
218 
219   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
220     if (CurrentSrcIdx != 1)
221       return false;
222     MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
223     MOSrc.setReg(NewReg);
224     MOSrc.setSubReg(NewSubReg);
225     return true;
226   }
227 };
228 
229 /// Helper class to rewrite uncoalescable copy like instructions
230 /// into new COPY (coalescable friendly) instructions.
231 class UncoalescableRewriter : public Rewriter {
232   unsigned NumDefs; ///< Number of defs in the bitcast.
233 
234 public:
235   UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
236     NumDefs = MI.getDesc().getNumDefs();
237   }
238 
239   /// \see See Rewriter::getNextRewritableSource()
240   /// All such sources need to be considered rewritable in order to
241   /// rewrite a uncoalescable copy-like instruction. This method return
242   /// each definition that must be checked if rewritable.
243   bool getNextRewritableSource(RegSubRegPair &Src,
244                                RegSubRegPair &Dst) override {
245     // Find the next non-dead definition and continue from there.
246     if (CurrentSrcIdx == NumDefs)
247       return false;
248 
249     while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
250       ++CurrentSrcIdx;
251       if (CurrentSrcIdx == NumDefs)
252         return false;
253     }
254 
255     // What we track are the alternative sources of the definition.
256     Src = RegSubRegPair(0, 0);
257     const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
258     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
259 
260     CurrentSrcIdx++;
261     return true;
262   }
263 
264   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
265     return false;
266   }
267 };
268 
269 /// Specialized rewriter for INSERT_SUBREG instruction.
270 class InsertSubregRewriter : public Rewriter {
271 public:
272   InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
273     assert(MI.isInsertSubreg() && "Invalid instruction");
274   }
275 
276   /// \see See Rewriter::getNextRewritableSource()
277   /// Here CopyLike has the following form:
278   /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
279   /// Src1 has the same register class has dst, hence, there is
280   /// nothing to rewrite.
281   /// Src2.src2SubIdx, may not be register coalescer friendly.
282   /// Therefore, the first call to this method returns:
283   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
284   /// (DstReg, DstSubReg) = (dst, subIdx).
285   ///
286   /// Subsequence calls will return false.
287   bool getNextRewritableSource(RegSubRegPair &Src,
288                                RegSubRegPair &Dst) override {
289     // If we already get the only source we can rewrite, return false.
290     if (CurrentSrcIdx == 2)
291       return false;
292     // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
293     CurrentSrcIdx = 2;
294     const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
295     Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
296     const MachineOperand &MODef = CopyLike.getOperand(0);
297 
298     // We want to track something that is compatible with the
299     // partial definition.
300     if (MODef.getSubReg())
301       // Bail if we have to compose sub-register indices.
302       return false;
303     Dst = RegSubRegPair(MODef.getReg(),
304                         (unsigned)CopyLike.getOperand(3).getImm());
305     return true;
306   }
307 
308   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
309     if (CurrentSrcIdx != 2)
310       return false;
311     // We are rewriting the inserted reg.
312     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
313     MO.setReg(NewReg);
314     MO.setSubReg(NewSubReg);
315     return true;
316   }
317 };
318 
319 /// Specialized rewriter for EXTRACT_SUBREG instruction.
320 class ExtractSubregRewriter : public Rewriter {
321   const TargetInstrInfo &TII;
322 
323 public:
324   ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
325       : Rewriter(MI), TII(TII) {
326     assert(MI.isExtractSubreg() && "Invalid instruction");
327   }
328 
329   /// \see Rewriter::getNextRewritableSource()
330   /// Here CopyLike has the following form:
331   /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
332   /// There is only one rewritable source: Src.subIdx,
333   /// which defines dst.dstSubIdx.
334   bool getNextRewritableSource(RegSubRegPair &Src,
335                                RegSubRegPair &Dst) override {
336     // If we already get the only source we can rewrite, return false.
337     if (CurrentSrcIdx == 1)
338       return false;
339     // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
340     CurrentSrcIdx = 1;
341     const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
342     // If we have to compose sub-register indices, bail out.
343     if (MOExtractedReg.getSubReg())
344       return false;
345 
346     Src =
347         RegSubRegPair(MOExtractedReg.getReg(), CopyLike.getOperand(2).getImm());
348 
349     // We want to track something that is compatible with the definition.
350     const MachineOperand &MODef = CopyLike.getOperand(0);
351     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
352     return true;
353   }
354 
355   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
356     // The only source we can rewrite is the input register.
357     if (CurrentSrcIdx != 1)
358       return false;
359 
360     CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
361 
362     // If we find a source that does not require to extract something,
363     // rewrite the operation with a copy.
364     if (!NewSubReg) {
365       // Move the current index to an invalid position.
366       // We do not want another call to this method to be able
367       // to do any change.
368       CurrentSrcIdx = -1;
369       // Rewrite the operation as a COPY.
370       // Get rid of the sub-register index.
371       CopyLike.removeOperand(2);
372       // Morph the operation into a COPY.
373       CopyLike.setDesc(TII.get(TargetOpcode::COPY));
374       return true;
375     }
376     CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
377     return true;
378   }
379 };
380 
381 /// Specialized rewriter for REG_SEQUENCE instruction.
382 class RegSequenceRewriter : public Rewriter {
383 public:
384   RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
385     assert(MI.isRegSequence() && "Invalid instruction");
386   }
387 
388   /// \see Rewriter::getNextRewritableSource()
389   /// Here CopyLike has the following form:
390   /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
391   /// Each call will return a different source, walking all the available
392   /// source.
393   ///
394   /// The first call returns:
395   /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
396   /// (DstReg, DstSubReg) = (dst, subIdx1).
397   ///
398   /// The second call returns:
399   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
400   /// (DstReg, DstSubReg) = (dst, subIdx2).
401   ///
402   /// And so on, until all the sources have been traversed, then
403   /// it returns false.
404   bool getNextRewritableSource(RegSubRegPair &Src,
405                                RegSubRegPair &Dst) override {
406     // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
407 
408     // If this is the first call, move to the first argument.
409     if (CurrentSrcIdx == 0) {
410       CurrentSrcIdx = 1;
411     } else {
412       // Otherwise, move to the next argument and check that it is valid.
413       CurrentSrcIdx += 2;
414       if (CurrentSrcIdx >= CopyLike.getNumOperands())
415         return false;
416     }
417     const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
418     Src.Reg = MOInsertedReg.getReg();
419     // If we have to compose sub-register indices, bail out.
420     if ((Src.SubReg = MOInsertedReg.getSubReg()))
421       return false;
422 
423     // We want to track something that is compatible with the related
424     // partial definition.
425     Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
426 
427     const MachineOperand &MODef = CopyLike.getOperand(0);
428     Dst.Reg = MODef.getReg();
429     assert(MODef.getSubReg() == 0 && "cannot have subregister def in SSA");
430     return true;
431   }
432 
433   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
434     // We cannot rewrite out of bound operands.
435     // Moreover, rewritable sources are at odd positions.
436     if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
437       return false;
438 
439     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
440     MO.setReg(NewReg);
441     MO.setSubReg(NewSubReg);
442     return true;
443   }
444 };
445 
446 class PeepholeOptimizer : private MachineFunction::Delegate {
447   const TargetInstrInfo *TII = nullptr;
448   const TargetRegisterInfo *TRI = nullptr;
449   MachineRegisterInfo *MRI = nullptr;
450   MachineDominatorTree *DT = nullptr; // Machine dominator tree
451   MachineLoopInfo *MLI = nullptr;
452 
453 public:
454   PeepholeOptimizer(MachineDominatorTree *DT, MachineLoopInfo *MLI)
455       : DT(DT), MLI(MLI) {}
456 
457   bool run(MachineFunction &MF);
458   /// Track Def -> Use info used for rewriting copies.
459   using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
460 
461   /// Sequence of instructions that formulate recurrence cycle.
462   using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
463 
464 private:
465   bool optimizeCmpInstr(MachineInstr &MI);
466   bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
467                         SmallPtrSetImpl<MachineInstr *> &LocalMIs);
468   bool optimizeSelect(MachineInstr &MI,
469                       SmallPtrSetImpl<MachineInstr *> &LocalMIs);
470   bool optimizeCondBranch(MachineInstr &MI);
471 
472   bool optimizeCoalescableCopyImpl(Rewriter &&CpyRewriter);
473   bool optimizeCoalescableCopy(MachineInstr &MI);
474   bool optimizeUncoalescableCopy(MachineInstr &MI,
475                                  SmallPtrSetImpl<MachineInstr *> &LocalMIs);
476   bool optimizeRecurrence(MachineInstr &PHI);
477   bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
478   bool isMoveImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
479                        DenseMap<Register, MachineInstr *> &ImmDefMIs);
480   bool foldImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
481                      DenseMap<Register, MachineInstr *> &ImmDefMIs,
482                      bool &Deleted);
483 
484   /// Finds recurrence cycles, but only ones that formulated around
485   /// a def operand and a use operand that are tied. If there is a use
486   /// operand commutable with the tied use operand, find recurrence cycle
487   /// along that operand as well.
488   bool findTargetRecurrence(Register Reg,
489                             const SmallSet<Register, 2> &TargetReg,
490                             RecurrenceCycle &RC);
491 
492   /// If copy instruction \p MI is a virtual register copy or a copy of a
493   /// constant physical register to a virtual register, track it in the
494   /// set CopySrcMIs. If this virtual register was previously seen as a
495   /// copy, replace the uses of this copy with the previously seen copy's
496   /// destination register.
497   bool foldRedundantCopy(MachineInstr &MI);
498 
499   /// Is the register \p Reg a non-allocatable physical register?
500   bool isNAPhysCopy(Register Reg);
501 
502   /// If copy instruction \p MI is a non-allocatable virtual<->physical
503   /// register copy, track it in the \p NAPhysToVirtMIs map. If this
504   /// non-allocatable physical register was previously copied to a virtual
505   /// registered and hasn't been clobbered, the virt->phys copy can be
506   /// deleted.
507   bool
508   foldRedundantNAPhysCopy(MachineInstr &MI,
509                           DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs);
510 
511   bool isLoadFoldable(MachineInstr &MI,
512                       SmallSet<Register, 16> &FoldAsLoadDefCandidates);
513 
514   /// Check whether \p MI is understood by the register coalescer
515   /// but may require some rewriting.
516   bool isCoalescableCopy(const MachineInstr &MI) {
517     // SubregToRegs are not interesting, because they are already register
518     // coalescer friendly.
519     return MI.isCopy() ||
520            (!DisableAdvCopyOpt && (MI.isRegSequence() || MI.isInsertSubreg() ||
521                                    MI.isExtractSubreg()));
522   }
523 
524   /// Check whether \p MI is a copy like instruction that is
525   /// not recognized by the register coalescer.
526   bool isUncoalescableCopy(const MachineInstr &MI) {
527     return MI.isBitcast() || (!DisableAdvCopyOpt && (MI.isRegSequenceLike() ||
528                                                      MI.isInsertSubregLike() ||
529                                                      MI.isExtractSubregLike()));
530   }
531 
532   MachineInstr &rewriteSource(MachineInstr &CopyLike, RegSubRegPair Def,
533                               RewriteMapTy &RewriteMap);
534 
535   // Set of copies to virtual registers keyed by source register.  Never
536   // holds any physreg which requires def tracking.
537   DenseMap<RegSubRegPair, MachineInstr *> CopySrcMIs;
538 
539   // MachineFunction::Delegate implementation. Used to maintain CopySrcMIs.
540   void MF_HandleInsertion(MachineInstr &MI) override { return; }
541 
542   bool getCopySrc(MachineInstr &MI, RegSubRegPair &SrcPair) {
543     if (!MI.isCopy())
544       return false;
545 
546     Register SrcReg = MI.getOperand(1).getReg();
547     unsigned SrcSubReg = MI.getOperand(1).getSubReg();
548     if (!SrcReg.isVirtual() && !MRI->isConstantPhysReg(SrcReg))
549       return false;
550 
551     SrcPair = RegSubRegPair(SrcReg, SrcSubReg);
552     return true;
553   }
554 
555   // If a COPY instruction is to be deleted or changed, we should also remove
556   // it from CopySrcMIs.
557   void deleteChangedCopy(MachineInstr &MI) {
558     RegSubRegPair SrcPair;
559     if (!getCopySrc(MI, SrcPair))
560       return;
561 
562     auto It = CopySrcMIs.find(SrcPair);
563     if (It != CopySrcMIs.end() && It->second == &MI)
564       CopySrcMIs.erase(It);
565   }
566 
567   void MF_HandleRemoval(MachineInstr &MI) override { deleteChangedCopy(MI); }
568 
569   void MF_HandleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID) override {
570     deleteChangedCopy(MI);
571   }
572 };
573 
574 class PeepholeOptimizerLegacy : public MachineFunctionPass {
575 public:
576   static char ID; // Pass identification
577 
578   PeepholeOptimizerLegacy() : MachineFunctionPass(ID) {
579     initializePeepholeOptimizerLegacyPass(*PassRegistry::getPassRegistry());
580   }
581 
582   bool runOnMachineFunction(MachineFunction &MF) override;
583 
584   void getAnalysisUsage(AnalysisUsage &AU) const override {
585     AU.setPreservesCFG();
586     MachineFunctionPass::getAnalysisUsage(AU);
587     AU.addRequired<MachineLoopInfoWrapperPass>();
588     AU.addPreserved<MachineLoopInfoWrapperPass>();
589     if (Aggressive) {
590       AU.addRequired<MachineDominatorTreeWrapperPass>();
591       AU.addPreserved<MachineDominatorTreeWrapperPass>();
592     }
593   }
594 
595   MachineFunctionProperties getRequiredProperties() const override {
596     return MachineFunctionProperties().set(
597         MachineFunctionProperties::Property::IsSSA);
598   }
599 };
600 
601 /// Helper class to hold instructions that are inside recurrence cycles.
602 /// The recurrence cycle is formulated around 1) a def operand and its
603 /// tied use operand, or 2) a def operand and a use operand that is commutable
604 /// with another use operand which is tied to the def operand. In the latter
605 /// case, index of the tied use operand and the commutable use operand are
606 /// maintained with CommutePair.
607 class RecurrenceInstr {
608 public:
609   using IndexPair = std::pair<unsigned, unsigned>;
610 
611   RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
612   RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
613       : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
614 
615   MachineInstr *getMI() const { return MI; }
616   std::optional<IndexPair> getCommutePair() const { return CommutePair; }
617 
618 private:
619   MachineInstr *MI;
620   std::optional<IndexPair> CommutePair;
621 };
622 
623 /// Helper class to hold a reply for ValueTracker queries.
624 /// Contains the returned sources for a given search and the instructions
625 /// where the sources were tracked from.
626 class ValueTrackerResult {
627 private:
628   /// Track all sources found by one ValueTracker query.
629   SmallVector<RegSubRegPair, 2> RegSrcs;
630 
631   /// Instruction using the sources in 'RegSrcs'.
632   const MachineInstr *Inst = nullptr;
633 
634 public:
635   ValueTrackerResult() = default;
636 
637   ValueTrackerResult(Register Reg, unsigned SubReg) { addSource(Reg, SubReg); }
638 
639   bool isValid() const { return getNumSources() > 0; }
640 
641   void setInst(const MachineInstr *I) { Inst = I; }
642   const MachineInstr *getInst() const { return Inst; }
643 
644   void clear() {
645     RegSrcs.clear();
646     Inst = nullptr;
647   }
648 
649   void addSource(Register SrcReg, unsigned SrcSubReg) {
650     RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
651   }
652 
653   void setSource(int Idx, Register SrcReg, unsigned SrcSubReg) {
654     assert(Idx < getNumSources() && "Reg pair source out of index");
655     RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
656   }
657 
658   int getNumSources() const { return RegSrcs.size(); }
659 
660   RegSubRegPair getSrc(int Idx) const { return RegSrcs[Idx]; }
661 
662   Register getSrcReg(int Idx) const {
663     assert(Idx < getNumSources() && "Reg source out of index");
664     return RegSrcs[Idx].Reg;
665   }
666 
667   unsigned getSrcSubReg(int Idx) const {
668     assert(Idx < getNumSources() && "SubReg source out of index");
669     return RegSrcs[Idx].SubReg;
670   }
671 
672   bool operator==(const ValueTrackerResult &Other) const {
673     if (Other.getInst() != getInst())
674       return false;
675 
676     if (Other.getNumSources() != getNumSources())
677       return false;
678 
679     for (int i = 0, e = Other.getNumSources(); i != e; ++i)
680       if (Other.getSrcReg(i) != getSrcReg(i) ||
681           Other.getSrcSubReg(i) != getSrcSubReg(i))
682         return false;
683     return true;
684   }
685 };
686 
687 /// Helper class to track the possible sources of a value defined by
688 /// a (chain of) copy related instructions.
689 /// Given a definition (instruction and definition index), this class
690 /// follows the use-def chain to find successive suitable sources.
691 /// The given source can be used to rewrite the definition into
692 /// def = COPY src.
693 ///
694 /// For instance, let us consider the following snippet:
695 /// v0 =
696 /// v2 = INSERT_SUBREG v1, v0, sub0
697 /// def = COPY v2.sub0
698 ///
699 /// Using a ValueTracker for def = COPY v2.sub0 will give the following
700 /// suitable sources:
701 /// v2.sub0 and v0.
702 /// Then, def can be rewritten into def = COPY v0.
703 class ValueTracker {
704 private:
705   /// The current point into the use-def chain.
706   const MachineInstr *Def = nullptr;
707 
708   /// The index of the definition in Def.
709   unsigned DefIdx = 0;
710 
711   /// The sub register index of the definition.
712   unsigned DefSubReg;
713 
714   /// The register where the value can be found.
715   Register Reg;
716 
717   /// MachineRegisterInfo used to perform tracking.
718   const MachineRegisterInfo &MRI;
719 
720   /// Optional TargetInstrInfo used to perform some complex tracking.
721   const TargetInstrInfo *TII;
722 
723   /// Dispatcher to the right underlying implementation of getNextSource.
724   ValueTrackerResult getNextSourceImpl();
725 
726   /// Specialized version of getNextSource for Copy instructions.
727   ValueTrackerResult getNextSourceFromCopy();
728 
729   /// Specialized version of getNextSource for Bitcast instructions.
730   ValueTrackerResult getNextSourceFromBitcast();
731 
732   /// Specialized version of getNextSource for RegSequence instructions.
733   ValueTrackerResult getNextSourceFromRegSequence();
734 
735   /// Specialized version of getNextSource for InsertSubreg instructions.
736   ValueTrackerResult getNextSourceFromInsertSubreg();
737 
738   /// Specialized version of getNextSource for ExtractSubreg instructions.
739   ValueTrackerResult getNextSourceFromExtractSubreg();
740 
741   /// Specialized version of getNextSource for SubregToReg instructions.
742   ValueTrackerResult getNextSourceFromSubregToReg();
743 
744   /// Specialized version of getNextSource for PHI instructions.
745   ValueTrackerResult getNextSourceFromPHI();
746 
747 public:
748   /// Create a ValueTracker instance for the value defined by \p Reg.
749   /// \p DefSubReg represents the sub register index the value tracker will
750   /// track. It does not need to match the sub register index used in the
751   /// definition of \p Reg.
752   /// If \p Reg is a physical register, a value tracker constructed with
753   /// this constructor will not find any alternative source.
754   /// Indeed, when \p Reg is a physical register that constructor does not
755   /// know which definition of \p Reg it should track.
756   /// Use the next constructor to track a physical register.
757   ValueTracker(Register Reg, unsigned DefSubReg, const MachineRegisterInfo &MRI,
758                const TargetInstrInfo *TII = nullptr)
759       : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
760     if (!Reg.isPhysical()) {
761       Def = MRI.getVRegDef(Reg);
762       DefIdx = MRI.def_begin(Reg).getOperandNo();
763     }
764   }
765 
766   /// Following the use-def chain, get the next available source
767   /// for the tracked value.
768   /// \return A ValueTrackerResult containing a set of registers
769   /// and sub registers with tracked values. A ValueTrackerResult with
770   /// an empty set of registers means no source was found.
771   ValueTrackerResult getNextSource();
772 };
773 
774 } // end anonymous namespace
775 
776 char PeepholeOptimizerLegacy::ID = 0;
777 
778 char &llvm::PeepholeOptimizerLegacyID = PeepholeOptimizerLegacy::ID;
779 
780 INITIALIZE_PASS_BEGIN(PeepholeOptimizerLegacy, DEBUG_TYPE,
781                       "Peephole Optimizations", false, false)
782 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
783 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
784 INITIALIZE_PASS_END(PeepholeOptimizerLegacy, DEBUG_TYPE,
785                     "Peephole Optimizations", false, false)
786 
787 /// If instruction is a copy-like instruction, i.e. it reads a single register
788 /// and writes a single register and it does not modify the source, and if the
789 /// source value is preserved as a sub-register of the result, then replace all
790 /// reachable uses of the source with the subreg of the result.
791 ///
792 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
793 /// the code. Since this code does not currently share EXTRACTs, just ignore all
794 /// debug uses.
795 bool PeepholeOptimizer::optimizeExtInstr(
796     MachineInstr &MI, MachineBasicBlock &MBB,
797     SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
798   Register SrcReg, DstReg;
799   unsigned SubIdx;
800   if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
801     return false;
802 
803   if (DstReg.isPhysical() || SrcReg.isPhysical())
804     return false;
805 
806   if (MRI->hasOneNonDBGUse(SrcReg))
807     // No other uses.
808     return false;
809 
810   // Ensure DstReg can get a register class that actually supports
811   // sub-registers. Don't change the class until we commit.
812   const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
813   DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
814   if (!DstRC)
815     return false;
816 
817   // The ext instr may be operating on a sub-register of SrcReg as well.
818   // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
819   // register.
820   // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
821   // SrcReg:SubIdx should be replaced.
822   bool UseSrcSubIdx =
823       TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
824 
825   // The source has other uses. See if we can replace the other uses with use of
826   // the result of the extension.
827   SmallPtrSet<MachineBasicBlock *, 4> ReachedBBs;
828   for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
829     ReachedBBs.insert(UI.getParent());
830 
831   // Uses that are in the same BB of uses of the result of the instruction.
832   SmallVector<MachineOperand *, 8> Uses;
833 
834   // Uses that the result of the instruction can reach.
835   SmallVector<MachineOperand *, 8> ExtendedUses;
836 
837   bool ExtendLife = true;
838   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
839     MachineInstr *UseMI = UseMO.getParent();
840     if (UseMI == &MI)
841       continue;
842 
843     if (UseMI->isPHI()) {
844       ExtendLife = false;
845       continue;
846     }
847 
848     // Only accept uses of SrcReg:SubIdx.
849     if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
850       continue;
851 
852     // It's an error to translate this:
853     //
854     //    %reg1025 = <sext> %reg1024
855     //     ...
856     //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
857     //
858     // into this:
859     //
860     //    %reg1025 = <sext> %reg1024
861     //     ...
862     //    %reg1027 = COPY %reg1025:4
863     //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
864     //
865     // The problem here is that SUBREG_TO_REG is there to assert that an
866     // implicit zext occurs. It doesn't insert a zext instruction. If we allow
867     // the COPY here, it will give us the value after the <sext>, not the
868     // original value of %reg1024 before <sext>.
869     if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
870       continue;
871 
872     MachineBasicBlock *UseMBB = UseMI->getParent();
873     if (UseMBB == &MBB) {
874       // Local uses that come after the extension.
875       if (!LocalMIs.count(UseMI))
876         Uses.push_back(&UseMO);
877     } else if (ReachedBBs.count(UseMBB)) {
878       // Non-local uses where the result of the extension is used. Always
879       // replace these unless it's a PHI.
880       Uses.push_back(&UseMO);
881     } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
882       // We may want to extend the live range of the extension result in order
883       // to replace these uses.
884       ExtendedUses.push_back(&UseMO);
885     } else {
886       // Both will be live out of the def MBB anyway. Don't extend live range of
887       // the extension result.
888       ExtendLife = false;
889       break;
890     }
891   }
892 
893   if (ExtendLife && !ExtendedUses.empty())
894     // Extend the liveness of the extension result.
895     Uses.append(ExtendedUses.begin(), ExtendedUses.end());
896 
897   // Now replace all uses.
898   bool Changed = false;
899   if (!Uses.empty()) {
900     SmallPtrSet<MachineBasicBlock *, 4> PHIBBs;
901 
902     // Look for PHI uses of the extended result, we don't want to extend the
903     // liveness of a PHI input. It breaks all kinds of assumptions down
904     // stream. A PHI use is expected to be the kill of its source values.
905     for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
906       if (UI.isPHI())
907         PHIBBs.insert(UI.getParent());
908 
909     const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
910     for (MachineOperand *UseMO : Uses) {
911       MachineInstr *UseMI = UseMO->getParent();
912       MachineBasicBlock *UseMBB = UseMI->getParent();
913       if (PHIBBs.count(UseMBB))
914         continue;
915 
916       // About to add uses of DstReg, clear DstReg's kill flags.
917       if (!Changed) {
918         MRI->clearKillFlags(DstReg);
919         MRI->constrainRegClass(DstReg, DstRC);
920       }
921 
922       // SubReg defs are illegal in machine SSA phase,
923       // we should not generate SubReg defs.
924       //
925       // For example, for the instructions:
926       //
927       // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
928       // %3:gprc_and_gprc_nor0 = COPY %0.sub_32:g8rc
929       //
930       // We should generate:
931       //
932       // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
933       // %6:gprc_and_gprc_nor0 = COPY %1.sub_32:g8rc_and_g8rc_nox0
934       // %3:gprc_and_gprc_nor0 = COPY %6:gprc_and_gprc_nor0
935       //
936       if (UseSrcSubIdx)
937         RC = MRI->getRegClass(UseMI->getOperand(0).getReg());
938 
939       Register NewVR = MRI->createVirtualRegister(RC);
940       BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
941               TII->get(TargetOpcode::COPY), NewVR)
942           .addReg(DstReg, 0, SubIdx);
943       if (UseSrcSubIdx)
944         UseMO->setSubReg(0);
945 
946       UseMO->setReg(NewVR);
947       ++NumReuse;
948       Changed = true;
949     }
950   }
951 
952   return Changed;
953 }
954 
955 /// If the instruction is a compare and the previous instruction it's comparing
956 /// against already sets (or could be modified to set) the same flag as the
957 /// compare, then we can remove the comparison and use the flag from the
958 /// previous instruction.
959 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
960   // If this instruction is a comparison against zero and isn't comparing a
961   // physical register, we can try to optimize it.
962   Register SrcReg, SrcReg2;
963   int64_t CmpMask, CmpValue;
964   if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
965       SrcReg.isPhysical() || SrcReg2.isPhysical())
966     return false;
967 
968   // Attempt to optimize the comparison instruction.
969   LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI);
970   if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
971     LLVM_DEBUG(dbgs() << "  -> Successfully optimized compare!\n");
972     ++NumCmps;
973     return true;
974   }
975 
976   return false;
977 }
978 
979 /// Optimize a select instruction.
980 bool PeepholeOptimizer::optimizeSelect(
981     MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
982   unsigned TrueOp = 0;
983   unsigned FalseOp = 0;
984   bool Optimizable = false;
985   SmallVector<MachineOperand, 4> Cond;
986   if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
987     return false;
988   if (!Optimizable)
989     return false;
990   if (!TII->optimizeSelect(MI, LocalMIs))
991     return false;
992   LLVM_DEBUG(dbgs() << "Deleting select: " << MI);
993   MI.eraseFromParent();
994   ++NumSelects;
995   return true;
996 }
997 
998 /// Check if a simpler conditional branch can be generated.
999 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
1000   return TII->optimizeCondBranch(MI);
1001 }
1002 
1003 /// Try to find the next source that share the same register file
1004 /// for the value defined by \p Reg and \p SubReg.
1005 /// When true is returned, the \p RewriteMap can be used by the client to
1006 /// retrieve all Def -> Use along the way up to the next source. Any found
1007 /// Use that is not itself a key for another entry, is the next source to
1008 /// use. During the search for the next source, multiple sources can be found
1009 /// given multiple incoming sources of a PHI instruction. In this case, we
1010 /// look in each PHI source for the next source; all found next sources must
1011 /// share the same register file as \p Reg and \p SubReg. The client should
1012 /// then be capable to rewrite all intermediate PHIs to get the next source.
1013 /// \return False if no alternative sources are available. True otherwise.
1014 bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
1015                                        RewriteMapTy &RewriteMap) {
1016   // Do not try to find a new source for a physical register.
1017   // So far we do not have any motivating example for doing that.
1018   // Thus, instead of maintaining untested code, we will revisit that if
1019   // that changes at some point.
1020   Register Reg = RegSubReg.Reg;
1021   if (Reg.isPhysical())
1022     return false;
1023   const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
1024 
1025   SmallVector<RegSubRegPair, 4> SrcToLook;
1026   RegSubRegPair CurSrcPair = RegSubReg;
1027   SrcToLook.push_back(CurSrcPair);
1028 
1029   unsigned PHICount = 0;
1030   do {
1031     CurSrcPair = SrcToLook.pop_back_val();
1032     // As explained above, do not handle physical registers
1033     if (CurSrcPair.Reg.isPhysical())
1034       return false;
1035 
1036     ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
1037 
1038     // Follow the chain of copies until we find a more suitable source, a phi
1039     // or have to abort.
1040     while (true) {
1041       ValueTrackerResult Res = ValTracker.getNextSource();
1042       // Abort at the end of a chain (without finding a suitable source).
1043       if (!Res.isValid())
1044         return false;
1045 
1046       // Insert the Def -> Use entry for the recently found source.
1047       ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
1048       if (CurSrcRes.isValid()) {
1049         assert(CurSrcRes == Res && "ValueTrackerResult found must match");
1050         // An existent entry with multiple sources is a PHI cycle we must avoid.
1051         // Otherwise it's an entry with a valid next source we already found.
1052         if (CurSrcRes.getNumSources() > 1) {
1053           LLVM_DEBUG(dbgs()
1054                      << "findNextSource: found PHI cycle, aborting...\n");
1055           return false;
1056         }
1057         break;
1058       }
1059       RewriteMap.insert(std::make_pair(CurSrcPair, Res));
1060 
1061       // ValueTrackerResult usually have one source unless it's the result from
1062       // a PHI instruction. Add the found PHI edges to be looked up further.
1063       unsigned NumSrcs = Res.getNumSources();
1064       if (NumSrcs > 1) {
1065         PHICount++;
1066         if (PHICount >= RewritePHILimit) {
1067           LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
1068           return false;
1069         }
1070 
1071         for (unsigned i = 0; i < NumSrcs; ++i)
1072           SrcToLook.push_back(Res.getSrc(i));
1073         break;
1074       }
1075 
1076       CurSrcPair = Res.getSrc(0);
1077       // Do not extend the live-ranges of physical registers as they add
1078       // constraints to the register allocator. Moreover, if we want to extend
1079       // the live-range of a physical register, unlike SSA virtual register,
1080       // we will have to check that they aren't redefine before the related use.
1081       if (CurSrcPair.Reg.isPhysical())
1082         return false;
1083 
1084       // Keep following the chain if the value isn't any better yet.
1085       const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
1086       if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
1087                                      CurSrcPair.SubReg))
1088         continue;
1089 
1090       // We currently cannot deal with subreg operands on PHI instructions
1091       // (see insertPHI()).
1092       if (PHICount > 0 && CurSrcPair.SubReg != 0)
1093         continue;
1094 
1095       // We found a suitable source, and are done with this chain.
1096       break;
1097     }
1098   } while (!SrcToLook.empty());
1099 
1100   // If we did not find a more suitable source, there is nothing to optimize.
1101   return CurSrcPair.Reg != Reg;
1102 }
1103 
1104 /// Insert a PHI instruction with incoming edges \p SrcRegs that are
1105 /// guaranteed to have the same register class. This is necessary whenever we
1106 /// successfully traverse a PHI instruction and find suitable sources coming
1107 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
1108 /// suitable to be used in a new COPY instruction.
1109 static MachineInstr &insertPHI(MachineRegisterInfo &MRI,
1110                                const TargetInstrInfo &TII,
1111                                const SmallVectorImpl<RegSubRegPair> &SrcRegs,
1112                                MachineInstr &OrigPHI) {
1113   assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
1114 
1115   const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
1116   // NewRC is only correct if no subregisters are involved. findNextSource()
1117   // should have rejected those cases already.
1118   assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
1119   Register NewVR = MRI.createVirtualRegister(NewRC);
1120   MachineBasicBlock *MBB = OrigPHI.getParent();
1121   MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
1122                                     TII.get(TargetOpcode::PHI), NewVR);
1123 
1124   unsigned MBBOpIdx = 2;
1125   for (const RegSubRegPair &RegPair : SrcRegs) {
1126     MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
1127     MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
1128     // Since we're extended the lifetime of RegPair.Reg, clear the
1129     // kill flags to account for that and make RegPair.Reg reaches
1130     // the new PHI.
1131     MRI.clearKillFlags(RegPair.Reg);
1132     MBBOpIdx += 2;
1133   }
1134 
1135   return *MIB;
1136 }
1137 
1138 /// Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find
1139 /// the new source to use for rewrite. If \p HandleMultipleSources is true and
1140 /// multiple sources for a given \p Def are found along the way, we found a
1141 /// PHI instructions that needs to be rewritten.
1142 /// TODO: HandleMultipleSources should be removed once we test PHI handling
1143 /// with coalescable copies.
1144 static RegSubRegPair
1145 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
1146              RegSubRegPair Def,
1147              const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1148              bool HandleMultipleSources = true) {
1149   RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1150   while (true) {
1151     ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1152     // If there are no entries on the map, LookupSrc is the new source.
1153     if (!Res.isValid())
1154       return LookupSrc;
1155 
1156     // There's only one source for this definition, keep searching...
1157     unsigned NumSrcs = Res.getNumSources();
1158     if (NumSrcs == 1) {
1159       LookupSrc.Reg = Res.getSrcReg(0);
1160       LookupSrc.SubReg = Res.getSrcSubReg(0);
1161       continue;
1162     }
1163 
1164     // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1165     if (!HandleMultipleSources)
1166       break;
1167 
1168     // Multiple sources, recurse into each source to find a new source
1169     // for it. Then, rewrite the PHI accordingly to its new edges.
1170     SmallVector<RegSubRegPair, 4> NewPHISrcs;
1171     for (unsigned i = 0; i < NumSrcs; ++i) {
1172       RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1173       NewPHISrcs.push_back(
1174           getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1175     }
1176 
1177     // Build the new PHI node and return its def register as the new source.
1178     MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1179     MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1180     LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1181     LLVM_DEBUG(dbgs() << "   Replacing: " << OrigPHI);
1182     LLVM_DEBUG(dbgs() << "        With: " << NewPHI);
1183     const MachineOperand &MODef = NewPHI.getOperand(0);
1184     return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1185   }
1186 
1187   return RegSubRegPair(0, 0);
1188 }
1189 
1190 bool PeepholeOptimizer::optimizeCoalescableCopyImpl(Rewriter &&CpyRewriter) {
1191   bool Changed = false;
1192   // Get the right rewriter for the current copy.
1193   // Rewrite each rewritable source.
1194   RegSubRegPair Src;
1195   RegSubRegPair TrackPair;
1196   while (CpyRewriter.getNextRewritableSource(Src, TrackPair)) {
1197     // Keep track of PHI nodes and its incoming edges when looking for sources.
1198     RewriteMapTy RewriteMap;
1199     // Try to find a more suitable source. If we failed to do so, or get the
1200     // actual source, move to the next source.
1201     if (!findNextSource(TrackPair, RewriteMap))
1202       continue;
1203 
1204     // Get the new source to rewrite. TODO: Only enable handling of multiple
1205     // sources (PHIs) once we have a motivating example and testcases for it.
1206     RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1207                                         /*HandleMultipleSources=*/false);
1208     if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
1209       continue;
1210 
1211     // Rewrite source.
1212     if (CpyRewriter.RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1213       // We may have extended the live-range of NewSrc, account for that.
1214       MRI->clearKillFlags(NewSrc.Reg);
1215       Changed = true;
1216     }
1217   }
1218 
1219   // TODO: We could have a clean-up method to tidy the instruction.
1220   // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1221   // => v0 = COPY v1
1222   // Currently we haven't seen motivating example for that and we
1223   // want to avoid untested code.
1224   NumRewrittenCopies += Changed;
1225   return Changed;
1226 }
1227 
1228 /// Optimize generic copy instructions to avoid cross register bank copy.
1229 /// The optimization looks through a chain of copies and tries to find a source
1230 /// that has a compatible register class.
1231 /// Two register classes are considered to be compatible if they share the same
1232 /// register bank.
1233 /// New copies issued by this optimization are register allocator
1234 /// friendly. This optimization does not remove any copy as it may
1235 /// overconstrain the register allocator, but replaces some operands
1236 /// when possible.
1237 /// \pre isCoalescableCopy(*MI) is true.
1238 /// \return True, when \p MI has been rewritten. False otherwise.
1239 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1240   assert(isCoalescableCopy(MI) && "Invalid argument");
1241   assert(MI.getDesc().getNumDefs() == 1 &&
1242          "Coalescer can understand multiple defs?!");
1243   const MachineOperand &MODef = MI.getOperand(0);
1244   // Do not rewrite physical definitions.
1245   if (MODef.getReg().isPhysical())
1246     return false;
1247 
1248   switch (MI.getOpcode()) {
1249   case TargetOpcode::COPY:
1250     return optimizeCoalescableCopyImpl(CopyRewriter(MI));
1251   case TargetOpcode::INSERT_SUBREG:
1252     return optimizeCoalescableCopyImpl(InsertSubregRewriter(MI));
1253   case TargetOpcode::EXTRACT_SUBREG:
1254     return optimizeCoalescableCopyImpl(ExtractSubregRewriter(MI, *TII));
1255   case TargetOpcode::REG_SEQUENCE:
1256     return optimizeCoalescableCopyImpl(RegSequenceRewriter(MI));
1257   default:
1258     // Handle uncoalescable copy-like instructions.
1259     if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1260         MI.isExtractSubregLike())
1261       return optimizeCoalescableCopyImpl(UncoalescableRewriter(MI));
1262     return false;
1263   }
1264 }
1265 
1266 /// Rewrite the source found through \p Def, by using the \p RewriteMap
1267 /// and create a new COPY instruction. More info about RewriteMap in
1268 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1269 /// Uncoalescable copies, since they are copy like instructions that aren't
1270 /// recognized by the register allocator.
1271 MachineInstr &PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1272                                                RegSubRegPair Def,
1273                                                RewriteMapTy &RewriteMap) {
1274   assert(!Def.Reg.isPhysical() && "We do not rewrite physical registers");
1275 
1276   // Find the new source to use in the COPY rewrite.
1277   RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1278 
1279   // Insert the COPY.
1280   const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1281   Register NewVReg = MRI->createVirtualRegister(DefRC);
1282 
1283   MachineInstr *NewCopy =
1284       BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1285               TII->get(TargetOpcode::COPY), NewVReg)
1286           .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1287 
1288   if (Def.SubReg) {
1289     NewCopy->getOperand(0).setSubReg(Def.SubReg);
1290     NewCopy->getOperand(0).setIsUndef();
1291   }
1292 
1293   LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1294   LLVM_DEBUG(dbgs() << "   Replacing: " << CopyLike);
1295   LLVM_DEBUG(dbgs() << "        With: " << *NewCopy);
1296   MRI->replaceRegWith(Def.Reg, NewVReg);
1297   MRI->clearKillFlags(NewVReg);
1298 
1299   // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1300   // account for that.
1301   MRI->clearKillFlags(NewSrc.Reg);
1302 
1303   return *NewCopy;
1304 }
1305 
1306 /// Optimize copy-like instructions to create
1307 /// register coalescer friendly instruction.
1308 /// The optimization tries to kill-off the \p MI by looking
1309 /// through a chain of copies to find a source that has a compatible
1310 /// register class.
1311 /// If such a source is found, it replace \p MI by a generic COPY
1312 /// operation.
1313 /// \pre isUncoalescableCopy(*MI) is true.
1314 /// \return True, when \p MI has been optimized. In that case, \p MI has
1315 /// been removed from its parent.
1316 /// All COPY instructions created, are inserted in \p LocalMIs.
1317 bool PeepholeOptimizer::optimizeUncoalescableCopy(
1318     MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1319   assert(isUncoalescableCopy(MI) && "Invalid argument");
1320   UncoalescableRewriter CpyRewriter(MI);
1321 
1322   // Rewrite each rewritable source by generating new COPYs. This works
1323   // differently from optimizeCoalescableCopy since it first makes sure that all
1324   // definitions can be rewritten.
1325   RewriteMapTy RewriteMap;
1326   RegSubRegPair Src;
1327   RegSubRegPair Def;
1328   SmallVector<RegSubRegPair, 4> RewritePairs;
1329   while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1330     // If a physical register is here, this is probably for a good reason.
1331     // Do not rewrite that.
1332     if (Def.Reg.isPhysical())
1333       return false;
1334 
1335     // If we do not know how to rewrite this definition, there is no point
1336     // in trying to kill this instruction.
1337     if (!findNextSource(Def, RewriteMap))
1338       return false;
1339 
1340     RewritePairs.push_back(Def);
1341   }
1342 
1343   // The change is possible for all defs, do it.
1344   for (const RegSubRegPair &Def : RewritePairs) {
1345     // Rewrite the "copy" in a way the register coalescer understands.
1346     MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1347     LocalMIs.insert(&NewCopy);
1348   }
1349 
1350   // MI is now dead.
1351   LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI);
1352   MI.eraseFromParent();
1353   ++NumUncoalescableCopies;
1354   return true;
1355 }
1356 
1357 /// Check whether MI is a candidate for folding into a later instruction.
1358 /// We only fold loads to virtual registers and the virtual register defined
1359 /// has a single user.
1360 bool PeepholeOptimizer::isLoadFoldable(
1361     MachineInstr &MI, SmallSet<Register, 16> &FoldAsLoadDefCandidates) {
1362   if (!MI.canFoldAsLoad() || !MI.mayLoad())
1363     return false;
1364   const MCInstrDesc &MCID = MI.getDesc();
1365   if (MCID.getNumDefs() != 1)
1366     return false;
1367 
1368   Register Reg = MI.getOperand(0).getReg();
1369   // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting
1370   // loads. It should be checked when processing uses of the load, since
1371   // uses can be removed during peephole.
1372   if (Reg.isVirtual() && !MI.getOperand(0).getSubReg() &&
1373       MRI->hasOneNonDBGUser(Reg)) {
1374     FoldAsLoadDefCandidates.insert(Reg);
1375     return true;
1376   }
1377   return false;
1378 }
1379 
1380 bool PeepholeOptimizer::isMoveImmediate(
1381     MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1382     DenseMap<Register, MachineInstr *> &ImmDefMIs) {
1383   const MCInstrDesc &MCID = MI.getDesc();
1384   if (MCID.getNumDefs() != 1 || !MI.getOperand(0).isReg())
1385     return false;
1386   Register Reg = MI.getOperand(0).getReg();
1387   if (!Reg.isVirtual())
1388     return false;
1389 
1390   int64_t ImmVal;
1391   if (!MI.isMoveImmediate() && !TII->getConstValDefinedInReg(MI, Reg, ImmVal))
1392     return false;
1393 
1394   ImmDefMIs.insert(std::make_pair(Reg, &MI));
1395   ImmDefRegs.insert(Reg);
1396   return true;
1397 }
1398 
1399 /// Try folding register operands that are defined by move immediate
1400 /// instructions, i.e. a trivial constant folding optimization, if
1401 /// and only if the def and use are in the same BB.
1402 bool PeepholeOptimizer::foldImmediate(
1403     MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1404     DenseMap<Register, MachineInstr *> &ImmDefMIs, bool &Deleted) {
1405   Deleted = false;
1406   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1407     MachineOperand &MO = MI.getOperand(i);
1408     if (!MO.isReg() || MO.isDef())
1409       continue;
1410     Register Reg = MO.getReg();
1411     if (!Reg.isVirtual())
1412       continue;
1413     if (ImmDefRegs.count(Reg) == 0)
1414       continue;
1415     DenseMap<Register, MachineInstr *>::iterator II = ImmDefMIs.find(Reg);
1416     assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1417     if (TII->foldImmediate(MI, *II->second, Reg, MRI)) {
1418       ++NumImmFold;
1419       // foldImmediate can delete ImmDefMI if MI was its only user. If ImmDefMI
1420       // is not deleted, and we happened to get a same MI, we can delete MI and
1421       // replace its users.
1422       if (MRI->getVRegDef(Reg) &&
1423           MI.isIdenticalTo(*II->second, MachineInstr::IgnoreVRegDefs)) {
1424         Register DstReg = MI.getOperand(0).getReg();
1425         if (DstReg.isVirtual() &&
1426             MRI->getRegClass(DstReg) == MRI->getRegClass(Reg)) {
1427           MRI->replaceRegWith(DstReg, Reg);
1428           MI.eraseFromParent();
1429           Deleted = true;
1430         }
1431       }
1432       return true;
1433     }
1434   }
1435   return false;
1436 }
1437 
1438 // FIXME: This is very simple and misses some cases which should be handled when
1439 // motivating examples are found.
1440 //
1441 // The copy rewriting logic should look at uses as well as defs and be able to
1442 // eliminate copies across blocks.
1443 //
1444 // Later copies that are subregister extracts will also not be eliminated since
1445 // only the first copy is considered.
1446 //
1447 // e.g.
1448 // %1 = COPY %0
1449 // %2 = COPY %0:sub1
1450 //
1451 // Should replace %2 uses with %1:sub1
1452 bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI) {
1453   assert(MI.isCopy() && "expected a COPY machine instruction");
1454 
1455   RegSubRegPair SrcPair;
1456   if (!getCopySrc(MI, SrcPair))
1457     return false;
1458 
1459   Register DstReg = MI.getOperand(0).getReg();
1460   if (!DstReg.isVirtual())
1461     return false;
1462 
1463   if (CopySrcMIs.insert(std::make_pair(SrcPair, &MI)).second) {
1464     // First copy of this reg seen.
1465     return false;
1466   }
1467 
1468   MachineInstr *PrevCopy = CopySrcMIs.find(SrcPair)->second;
1469 
1470   assert(SrcPair.SubReg == PrevCopy->getOperand(1).getSubReg() &&
1471          "Unexpected mismatching subreg!");
1472 
1473   Register PrevDstReg = PrevCopy->getOperand(0).getReg();
1474 
1475   // Only replace if the copy register class is the same.
1476   //
1477   // TODO: If we have multiple copies to different register classes, we may want
1478   // to track multiple copies of the same source register.
1479   if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1480     return false;
1481 
1482   MRI->replaceRegWith(DstReg, PrevDstReg);
1483 
1484   // Lifetime of the previous copy has been extended.
1485   MRI->clearKillFlags(PrevDstReg);
1486   return true;
1487 }
1488 
1489 bool PeepholeOptimizer::isNAPhysCopy(Register Reg) {
1490   return Reg.isPhysical() && !MRI->isAllocatable(Reg);
1491 }
1492 
1493 bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1494     MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs) {
1495   assert(MI.isCopy() && "expected a COPY machine instruction");
1496 
1497   if (DisableNAPhysCopyOpt)
1498     return false;
1499 
1500   Register DstReg = MI.getOperand(0).getReg();
1501   Register SrcReg = MI.getOperand(1).getReg();
1502   if (isNAPhysCopy(SrcReg) && DstReg.isVirtual()) {
1503     // %vreg = COPY $physreg
1504     // Avoid using a datastructure which can track multiple live non-allocatable
1505     // phys->virt copies since LLVM doesn't seem to do this.
1506     NAPhysToVirtMIs.insert({SrcReg, &MI});
1507     return false;
1508   }
1509 
1510   if (!(SrcReg.isVirtual() && isNAPhysCopy(DstReg)))
1511     return false;
1512 
1513   // $physreg = COPY %vreg
1514   auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1515   if (PrevCopy == NAPhysToVirtMIs.end()) {
1516     // We can't remove the copy: there was an intervening clobber of the
1517     // non-allocatable physical register after the copy to virtual.
1518     LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1519                       << MI);
1520     return false;
1521   }
1522 
1523   Register PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1524   if (PrevDstReg == SrcReg) {
1525     // Remove the virt->phys copy: we saw the virtual register definition, and
1526     // the non-allocatable physical register's state hasn't changed since then.
1527     LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
1528     ++NumNAPhysCopies;
1529     return true;
1530   }
1531 
1532   // Potential missed optimization opportunity: we saw a different virtual
1533   // register get a copy of the non-allocatable physical register, and we only
1534   // track one such copy. Avoid getting confused by this new non-allocatable
1535   // physical register definition, and remove it from the tracked copies.
1536   LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
1537   NAPhysToVirtMIs.erase(PrevCopy);
1538   return false;
1539 }
1540 
1541 /// \bried Returns true if \p MO is a virtual register operand.
1542 static bool isVirtualRegisterOperand(MachineOperand &MO) {
1543   return MO.isReg() && MO.getReg().isVirtual();
1544 }
1545 
1546 bool PeepholeOptimizer::findTargetRecurrence(
1547     Register Reg, const SmallSet<Register, 2> &TargetRegs,
1548     RecurrenceCycle &RC) {
1549   // Recurrence found if Reg is in TargetRegs.
1550   if (TargetRegs.count(Reg))
1551     return true;
1552 
1553   // TODO: Curerntly, we only allow the last instruction of the recurrence
1554   // cycle (the instruction that feeds the PHI instruction) to have more than
1555   // one uses to guarantee that commuting operands does not tie registers
1556   // with overlapping live range. Once we have actual live range info of
1557   // each register, this constraint can be relaxed.
1558   if (!MRI->hasOneNonDBGUse(Reg))
1559     return false;
1560 
1561   // Give up if the reccurrence chain length is longer than the limit.
1562   if (RC.size() >= MaxRecurrenceChain)
1563     return false;
1564 
1565   MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1566   unsigned Idx = MI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr);
1567 
1568   // Only interested in recurrences whose instructions have only one def, which
1569   // is a virtual register.
1570   if (MI.getDesc().getNumDefs() != 1)
1571     return false;
1572 
1573   MachineOperand &DefOp = MI.getOperand(0);
1574   if (!isVirtualRegisterOperand(DefOp))
1575     return false;
1576 
1577   // Check if def operand of MI is tied to any use operand. We are only
1578   // interested in the case that all the instructions in the recurrence chain
1579   // have there def operand tied with one of the use operand.
1580   unsigned TiedUseIdx;
1581   if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1582     return false;
1583 
1584   if (Idx == TiedUseIdx) {
1585     RC.push_back(RecurrenceInstr(&MI));
1586     return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1587   } else {
1588     // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1589     unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1590     if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1591       RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1592       return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1593     }
1594   }
1595 
1596   return false;
1597 }
1598 
1599 /// Phi instructions will eventually be lowered to copy instructions.
1600 /// If phi is in a loop header, a recurrence may formulated around the source
1601 /// and destination of the phi. For such case commuting operands of the
1602 /// instructions in the recurrence may enable coalescing of the copy instruction
1603 /// generated from the phi. For example, if there is a recurrence of
1604 ///
1605 /// LoopHeader:
1606 ///   %1 = phi(%0, %100)
1607 /// LoopLatch:
1608 ///   %0<def, tied1> = ADD %2<def, tied0>, %1
1609 ///
1610 /// , the fact that %0 and %2 are in the same tied operands set makes
1611 /// the coalescing of copy instruction generated from the phi in
1612 /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1613 /// %2 have overlapping live range. This introduces additional move
1614 /// instruction to the final assembly. However, if we commute %2 and
1615 /// %1 of ADD instruction, the redundant move instruction can be
1616 /// avoided.
1617 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1618   SmallSet<Register, 2> TargetRegs;
1619   for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1620     MachineOperand &MO = PHI.getOperand(Idx);
1621     assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1622     TargetRegs.insert(MO.getReg());
1623   }
1624 
1625   bool Changed = false;
1626   RecurrenceCycle RC;
1627   if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1628     // Commutes operands of instructions in RC if necessary so that the copy to
1629     // be generated from PHI can be coalesced.
1630     LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1631     for (auto &RI : RC) {
1632       LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1633       auto CP = RI.getCommutePair();
1634       if (CP) {
1635         Changed = true;
1636         TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1637                                 (*CP).second);
1638         LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1639       }
1640     }
1641   }
1642 
1643   return Changed;
1644 }
1645 
1646 PreservedAnalyses
1647 PeepholeOptimizerPass::run(MachineFunction &MF,
1648                            MachineFunctionAnalysisManager &MFAM) {
1649   MFPropsModifier _(*this, MF);
1650   auto *DT =
1651       Aggressive ? &MFAM.getResult<MachineDominatorTreeAnalysis>(MF) : nullptr;
1652   auto *MLI = &MFAM.getResult<MachineLoopAnalysis>(MF);
1653   PeepholeOptimizer Impl(DT, MLI);
1654   bool Changed = Impl.run(MF);
1655   if (!Changed)
1656     return PreservedAnalyses::all();
1657 
1658   auto PA = getMachineFunctionPassPreservedAnalyses();
1659   PA.preserve<MachineDominatorTreeAnalysis>();
1660   PA.preserve<MachineLoopAnalysis>();
1661   PA.preserveSet<CFGAnalyses>();
1662   return PA;
1663 }
1664 
1665 bool PeepholeOptimizerLegacy::runOnMachineFunction(MachineFunction &MF) {
1666   if (skipFunction(MF.getFunction()))
1667     return false;
1668   auto *DT = Aggressive
1669                  ? &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree()
1670                  : nullptr;
1671   auto *MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
1672   PeepholeOptimizer Impl(DT, MLI);
1673   return Impl.run(MF);
1674 }
1675 
1676 bool PeepholeOptimizer::run(MachineFunction &MF) {
1677 
1678   LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1679   LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1680 
1681   if (DisablePeephole)
1682     return false;
1683 
1684   TII = MF.getSubtarget().getInstrInfo();
1685   TRI = MF.getSubtarget().getRegisterInfo();
1686   MRI = &MF.getRegInfo();
1687   MF.setDelegate(this);
1688 
1689   bool Changed = false;
1690 
1691   for (MachineBasicBlock &MBB : MF) {
1692     bool SeenMoveImm = false;
1693 
1694     // During this forward scan, at some point it needs to answer the question
1695     // "given a pointer to an MI in the current BB, is it located before or
1696     // after the current instruction".
1697     // To perform this, the following set keeps track of the MIs already seen
1698     // during the scan, if a MI is not in the set, it is assumed to be located
1699     // after. Newly created MIs have to be inserted in the set as well.
1700     SmallPtrSet<MachineInstr *, 16> LocalMIs;
1701     SmallSet<Register, 4> ImmDefRegs;
1702     DenseMap<Register, MachineInstr *> ImmDefMIs;
1703     SmallSet<Register, 16> FoldAsLoadDefCandidates;
1704 
1705     // Track when a non-allocatable physical register is copied to a virtual
1706     // register so that useless moves can be removed.
1707     //
1708     // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg`
1709     // without any intervening re-definition of $physreg.
1710     DenseMap<Register, MachineInstr *> NAPhysToVirtMIs;
1711 
1712     CopySrcMIs.clear();
1713 
1714     bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1715 
1716     for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1717          MII != MIE;) {
1718       MachineInstr *MI = &*MII;
1719       // We may be erasing MI below, increment MII now.
1720       ++MII;
1721       LocalMIs.insert(MI);
1722 
1723       // Skip debug instructions. They should not affect this peephole
1724       // optimization.
1725       if (MI->isDebugInstr())
1726         continue;
1727 
1728       if (MI->isPosition())
1729         continue;
1730 
1731       if (IsLoopHeader && MI->isPHI()) {
1732         if (optimizeRecurrence(*MI)) {
1733           Changed = true;
1734           continue;
1735         }
1736       }
1737 
1738       if (!MI->isCopy()) {
1739         for (const MachineOperand &MO : MI->operands()) {
1740           // Visit all operands: definitions can be implicit or explicit.
1741           if (MO.isReg()) {
1742             Register Reg = MO.getReg();
1743             if (MO.isDef() && isNAPhysCopy(Reg)) {
1744               const auto &Def = NAPhysToVirtMIs.find(Reg);
1745               if (Def != NAPhysToVirtMIs.end()) {
1746                 // A new definition of the non-allocatable physical register
1747                 // invalidates previous copies.
1748                 LLVM_DEBUG(dbgs()
1749                            << "NAPhysCopy: invalidating because of " << *MI);
1750                 NAPhysToVirtMIs.erase(Def);
1751               }
1752             }
1753           } else if (MO.isRegMask()) {
1754             const uint32_t *RegMask = MO.getRegMask();
1755             for (auto &RegMI : NAPhysToVirtMIs) {
1756               Register Def = RegMI.first;
1757               if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1758                 LLVM_DEBUG(dbgs()
1759                            << "NAPhysCopy: invalidating because of " << *MI);
1760                 NAPhysToVirtMIs.erase(Def);
1761               }
1762             }
1763           }
1764         }
1765       }
1766 
1767       if (MI->isImplicitDef() || MI->isKill())
1768         continue;
1769 
1770       if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1771         // Blow away all non-allocatable physical registers knowledge since we
1772         // don't know what's correct anymore.
1773         //
1774         // FIXME: handle explicit asm clobbers.
1775         LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1776                           << *MI);
1777         NAPhysToVirtMIs.clear();
1778       }
1779 
1780       if ((isUncoalescableCopy(*MI) &&
1781            optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1782           (MI->isCompare() && optimizeCmpInstr(*MI)) ||
1783           (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
1784         // MI is deleted.
1785         LocalMIs.erase(MI);
1786         Changed = true;
1787         continue;
1788       }
1789 
1790       if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1791         Changed = true;
1792         continue;
1793       }
1794 
1795       if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1796         // MI is just rewritten.
1797         Changed = true;
1798         continue;
1799       }
1800 
1801       if (MI->isCopy() && (foldRedundantCopy(*MI) ||
1802                            foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1803         LocalMIs.erase(MI);
1804         LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n");
1805         MI->eraseFromParent();
1806         Changed = true;
1807         continue;
1808       }
1809 
1810       if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
1811         SeenMoveImm = true;
1812       } else {
1813         Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
1814         // optimizeExtInstr might have created new instructions after MI
1815         // and before the already incremented MII. Adjust MII so that the
1816         // next iteration sees the new instructions.
1817         MII = MI;
1818         ++MII;
1819         if (SeenMoveImm) {
1820           bool Deleted;
1821           Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs, Deleted);
1822           if (Deleted) {
1823             LocalMIs.erase(MI);
1824             continue;
1825           }
1826         }
1827       }
1828 
1829       // Check whether MI is a load candidate for folding into a later
1830       // instruction. If MI is not a candidate, check whether we can fold an
1831       // earlier load into MI.
1832       if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1833           !FoldAsLoadDefCandidates.empty()) {
1834 
1835         // We visit each operand even after successfully folding a previous
1836         // one.  This allows us to fold multiple loads into a single
1837         // instruction.  We do assume that optimizeLoadInstr doesn't insert
1838         // foldable uses earlier in the argument list.  Since we don't restart
1839         // iteration, we'd miss such cases.
1840         const MCInstrDesc &MIDesc = MI->getDesc();
1841         for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands(); ++i) {
1842           const MachineOperand &MOp = MI->getOperand(i);
1843           if (!MOp.isReg())
1844             continue;
1845           Register FoldAsLoadDefReg = MOp.getReg();
1846           if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1847             // We need to fold load after optimizeCmpInstr, since
1848             // optimizeCmpInstr can enable folding by converting SUB to CMP.
1849             // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1850             // we need it for markUsesInDebugValueAsUndef().
1851             Register FoldedReg = FoldAsLoadDefReg;
1852             MachineInstr *DefMI = nullptr;
1853             if (MachineInstr *FoldMI =
1854                     TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1855               // Update LocalMIs since we replaced MI with FoldMI and deleted
1856               // DefMI.
1857               LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
1858               LLVM_DEBUG(dbgs() << "     With: " << *FoldMI);
1859               LocalMIs.erase(MI);
1860               LocalMIs.erase(DefMI);
1861               LocalMIs.insert(FoldMI);
1862               // Update the call info.
1863               if (MI->shouldUpdateAdditionalCallInfo())
1864                 MI->getMF()->moveAdditionalCallInfo(MI, FoldMI);
1865               MI->eraseFromParent();
1866               DefMI->eraseFromParent();
1867               MRI->markUsesInDebugValueAsUndef(FoldedReg);
1868               FoldAsLoadDefCandidates.erase(FoldedReg);
1869               ++NumLoadFold;
1870 
1871               // MI is replaced with FoldMI so we can continue trying to fold
1872               Changed = true;
1873               MI = FoldMI;
1874             }
1875           }
1876         }
1877       }
1878 
1879       // If we run into an instruction we can't fold across, discard
1880       // the load candidates.  Note: We might be able to fold *into* this
1881       // instruction, so this needs to be after the folding logic.
1882       if (MI->isLoadFoldBarrier()) {
1883         LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
1884         FoldAsLoadDefCandidates.clear();
1885       }
1886     }
1887   }
1888 
1889   MF.resetDelegate(this);
1890   return Changed;
1891 }
1892 
1893 ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1894   assert(Def->isCopy() && "Invalid definition");
1895   // Copy instruction are supposed to be: Def = Src.
1896   // If someone breaks this assumption, bad things will happen everywhere.
1897   // There may be implicit uses preventing the copy to be moved across
1898   // some target specific register definitions
1899   assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 &&
1900          "Invalid number of operands");
1901   assert(!Def->hasImplicitDef() && "Only implicit uses are allowed");
1902 
1903   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1904     // If we look for a different subreg, it means we want a subreg of src.
1905     // Bails as we do not support composing subregs yet.
1906     return ValueTrackerResult();
1907   // Otherwise, we want the whole source.
1908   const MachineOperand &Src = Def->getOperand(1);
1909   if (Src.isUndef())
1910     return ValueTrackerResult();
1911   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1912 }
1913 
1914 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1915   assert(Def->isBitcast() && "Invalid definition");
1916 
1917   // Bail if there are effects that a plain copy will not expose.
1918   if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects())
1919     return ValueTrackerResult();
1920 
1921   // Bitcasts with more than one def are not supported.
1922   if (Def->getDesc().getNumDefs() != 1)
1923     return ValueTrackerResult();
1924   const MachineOperand DefOp = Def->getOperand(DefIdx);
1925   if (DefOp.getSubReg() != DefSubReg)
1926     // If we look for a different subreg, it means we want a subreg of the src.
1927     // Bails as we do not support composing subregs yet.
1928     return ValueTrackerResult();
1929 
1930   unsigned SrcIdx = Def->getNumOperands();
1931   for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1932        ++OpIdx) {
1933     const MachineOperand &MO = Def->getOperand(OpIdx);
1934     if (!MO.isReg() || !MO.getReg())
1935       continue;
1936     // Ignore dead implicit defs.
1937     if (MO.isImplicit() && MO.isDead())
1938       continue;
1939     assert(!MO.isDef() && "We should have skipped all the definitions by now");
1940     if (SrcIdx != EndOpIdx)
1941       // Multiple sources?
1942       return ValueTrackerResult();
1943     SrcIdx = OpIdx;
1944   }
1945 
1946   // In some rare case, Def has no input, SrcIdx is out of bound,
1947   // getOperand(SrcIdx) will fail below.
1948   if (SrcIdx >= Def->getNumOperands())
1949     return ValueTrackerResult();
1950 
1951   // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1952   // will break the assumed guarantees for the upper bits.
1953   for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1954     if (UseMI.isSubregToReg())
1955       return ValueTrackerResult();
1956   }
1957 
1958   const MachineOperand &Src = Def->getOperand(SrcIdx);
1959   if (Src.isUndef())
1960     return ValueTrackerResult();
1961   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1962 }
1963 
1964 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1965   assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1966          "Invalid definition");
1967 
1968   if (Def->getOperand(DefIdx).getSubReg())
1969     // If we are composing subregs, bail out.
1970     // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1971     // This should almost never happen as the SSA property is tracked at
1972     // the register level (as opposed to the subreg level).
1973     // I.e.,
1974     // Def.sub0 =
1975     // Def.sub1 =
1976     // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1977     // Def. Thus, it must not be generated.
1978     // However, some code could theoretically generates a single
1979     // Def.sub0 (i.e, not defining the other subregs) and we would
1980     // have this case.
1981     // If we can ascertain (or force) that this never happens, we could
1982     // turn that into an assertion.
1983     return ValueTrackerResult();
1984 
1985   SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1986   if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1987     return ValueTrackerResult();
1988 
1989   // We are looking at:
1990   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1991   // Check if one of the operand defines the subreg we are interested in.
1992   for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1993     if (RegSeqInput.SubIdx == DefSubReg)
1994       return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1995   }
1996 
1997   // If the subreg we are tracking is super-defined by another subreg,
1998   // we could follow this value. However, this would require to compose
1999   // the subreg and we do not do that for now.
2000   return ValueTrackerResult();
2001 }
2002 
2003 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
2004   assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
2005          "Invalid definition");
2006 
2007   if (Def->getOperand(DefIdx).getSubReg())
2008     // If we are composing subreg, bail out.
2009     // Same remark as getNextSourceFromRegSequence.
2010     // I.e., this may be turned into an assert.
2011     return ValueTrackerResult();
2012 
2013   RegSubRegPair BaseReg;
2014   RegSubRegPairAndIdx InsertedReg;
2015   if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
2016     return ValueTrackerResult();
2017 
2018   // We are looking at:
2019   // Def = INSERT_SUBREG v0, v1, sub1
2020   // There are two cases:
2021   // 1. DefSubReg == sub1, get v1.
2022   // 2. DefSubReg != sub1, the value may be available through v0.
2023 
2024   // #1 Check if the inserted register matches the required sub index.
2025   if (InsertedReg.SubIdx == DefSubReg) {
2026     return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
2027   }
2028   // #2 Otherwise, if the sub register we are looking for is not partial
2029   // defined by the inserted element, we can look through the main
2030   // register (v0).
2031   const MachineOperand &MODef = Def->getOperand(DefIdx);
2032   // If the result register (Def) and the base register (v0) do not
2033   // have the same register class or if we have to compose
2034   // subregisters, bail out.
2035   if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
2036       BaseReg.SubReg)
2037     return ValueTrackerResult();
2038 
2039   // Get the TRI and check if the inserted sub-register overlaps with the
2040   // sub-register we are tracking.
2041   const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
2042   if ((TRI->getSubRegIndexLaneMask(DefSubReg) &
2043        TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx))
2044           .any())
2045     return ValueTrackerResult();
2046   // At this point, the value is available in v0 via the same subreg
2047   // we used for Def.
2048   return ValueTrackerResult(BaseReg.Reg, DefSubReg);
2049 }
2050 
2051 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
2052   assert((Def->isExtractSubreg() || Def->isExtractSubregLike()) &&
2053          "Invalid definition");
2054   // We are looking at:
2055   // Def = EXTRACT_SUBREG v0, sub0
2056 
2057   // Bail if we have to compose sub registers.
2058   // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
2059   if (DefSubReg)
2060     return ValueTrackerResult();
2061 
2062   RegSubRegPairAndIdx ExtractSubregInputReg;
2063   if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
2064     return ValueTrackerResult();
2065 
2066   // Bail if we have to compose sub registers.
2067   // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
2068   if (ExtractSubregInputReg.SubReg)
2069     return ValueTrackerResult();
2070   // Otherwise, the value is available in the v0.sub0.
2071   return ValueTrackerResult(ExtractSubregInputReg.Reg,
2072                             ExtractSubregInputReg.SubIdx);
2073 }
2074 
2075 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2076   assert(Def->isSubregToReg() && "Invalid definition");
2077   // We are looking at:
2078   // Def = SUBREG_TO_REG Imm, v0, sub0
2079 
2080   // Bail if we have to compose sub registers.
2081   // If DefSubReg != sub0, we would have to check that all the bits
2082   // we track are included in sub0 and if yes, we would have to
2083   // determine the right subreg in v0.
2084   if (DefSubReg != Def->getOperand(3).getImm())
2085     return ValueTrackerResult();
2086   // Bail if we have to compose sub registers.
2087   // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2088   if (Def->getOperand(2).getSubReg())
2089     return ValueTrackerResult();
2090 
2091   return ValueTrackerResult(Def->getOperand(2).getReg(),
2092                             Def->getOperand(3).getImm());
2093 }
2094 
2095 /// Explore each PHI incoming operand and return its sources.
2096 ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2097   assert(Def->isPHI() && "Invalid definition");
2098   ValueTrackerResult Res;
2099 
2100   // If we look for a different subreg, bail as we do not support composing
2101   // subregs yet.
2102   if (Def->getOperand(0).getSubReg() != DefSubReg)
2103     return ValueTrackerResult();
2104 
2105   // Return all register sources for PHI instructions.
2106   for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2107     const MachineOperand &MO = Def->getOperand(i);
2108     assert(MO.isReg() && "Invalid PHI instruction");
2109     // We have no code to deal with undef operands. They shouldn't happen in
2110     // normal programs anyway.
2111     if (MO.isUndef())
2112       return ValueTrackerResult();
2113     Res.addSource(MO.getReg(), MO.getSubReg());
2114   }
2115 
2116   return Res;
2117 }
2118 
2119 ValueTrackerResult ValueTracker::getNextSourceImpl() {
2120   assert(Def && "This method needs a valid definition");
2121 
2122   assert(((Def->getOperand(DefIdx).isDef() &&
2123            (DefIdx < Def->getDesc().getNumDefs() ||
2124             Def->getDesc().isVariadic())) ||
2125           Def->getOperand(DefIdx).isImplicit()) &&
2126          "Invalid DefIdx");
2127   if (Def->isCopy())
2128     return getNextSourceFromCopy();
2129   if (Def->isBitcast())
2130     return getNextSourceFromBitcast();
2131   // All the remaining cases involve "complex" instructions.
2132   // Bail if we did not ask for the advanced tracking.
2133   if (DisableAdvCopyOpt)
2134     return ValueTrackerResult();
2135   if (Def->isRegSequence() || Def->isRegSequenceLike())
2136     return getNextSourceFromRegSequence();
2137   if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2138     return getNextSourceFromInsertSubreg();
2139   if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2140     return getNextSourceFromExtractSubreg();
2141   if (Def->isSubregToReg())
2142     return getNextSourceFromSubregToReg();
2143   if (Def->isPHI())
2144     return getNextSourceFromPHI();
2145   return ValueTrackerResult();
2146 }
2147 
2148 ValueTrackerResult ValueTracker::getNextSource() {
2149   // If we reach a point where we cannot move up in the use-def chain,
2150   // there is nothing we can get.
2151   if (!Def)
2152     return ValueTrackerResult();
2153 
2154   ValueTrackerResult Res = getNextSourceImpl();
2155   if (Res.isValid()) {
2156     // Update definition, definition index, and subregister for the
2157     // next call of getNextSource.
2158     // Update the current register.
2159     bool OneRegSrc = Res.getNumSources() == 1;
2160     if (OneRegSrc)
2161       Reg = Res.getSrcReg(0);
2162     // Update the result before moving up in the use-def chain
2163     // with the instruction containing the last found sources.
2164     Res.setInst(Def);
2165 
2166     // If we can still move up in the use-def chain, move to the next
2167     // definition.
2168     if (!Reg.isPhysical() && OneRegSrc) {
2169       MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2170       if (DI != MRI.def_end()) {
2171         Def = DI->getParent();
2172         DefIdx = DI.getOperandNo();
2173         DefSubReg = Res.getSrcSubReg(0);
2174       } else {
2175         Def = nullptr;
2176       }
2177       return Res;
2178     }
2179   }
2180   // If we end up here, this means we will not be able to find another source
2181   // for the next iteration. Make sure any new call to getNextSource bails out
2182   // early by cutting the use-def chain.
2183   Def = nullptr;
2184   return Res;
2185 }
2186