Revision tags: llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7, llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, working, llvmorg-15.0.2 |
|
#
abc362a1 |
| 29-Sep-2022 |
Jakub Kuderski <kubak@google.com> |
[mlir][arith] Change dialect name from Arithmetic to Arith
Suggested by @lattner in https://discourse.llvm.org/t/rfc-define-precise-arith-semantics/65507/22.
Tested with: `ninja check-mlir check-ml
[mlir][arith] Change dialect name from Arithmetic to Arith
Suggested by @lattner in https://discourse.llvm.org/t/rfc-define-precise-arith-semantics/65507/22.
Tested with: `ninja check-mlir check-mlir-integration check-mlir-mlir-spirv-cpu-runner check-mlir-mlir-vulkan-runner check-mlir-examples`
and `bazel build --config=generic_clang @llvm-project//mlir:all`.
Reviewed By: lattner, Mogball, rriddle, jpienaar, mehdi_amini
Differential Revision: https://reviews.llvm.org/D134762
show more ...
|
Revision tags: llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1, llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3, llvmorg-14.0.0-rc2, llvmorg-14.0.0-rc1, llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2 |
|
#
1fc096af |
| 02-Jan-2022 |
Mehdi Amini <joker.eph@gmail.com> |
Apply clang-tidy fixes for performance-unnecessary-value-param to MLIR (NFC)
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D116250
|
#
be0a7e9f |
| 07-Dec-2021 |
Mehdi Amini <joker.eph@gmail.com> |
Adjust "end namespace" comment in MLIR to match new agree'd coding style
See D115115 and this mailing list discussion: https://lists.llvm.org/pipermail/llvm-dev/2021-December/154199.html
Differenti
Adjust "end namespace" comment in MLIR to match new agree'd coding style
See D115115 and this mailing list discussion: https://lists.llvm.org/pipermail/llvm-dev/2021-December/154199.html
Differential Revision: https://reviews.llvm.org/D115309
show more ...
|
#
810b2849 |
| 01-Dec-2021 |
Stanislav Funiak <stano@cerebras.net> |
Fixed a memory leak in the PDLToPDLInterp RootOrderingTest.
RootOrderingTest is a low-level unit test that creates values and uses them as vertices in a directed graph. These vertices were created u
Fixed a memory leak in the PDLToPDLInterp RootOrderingTest.
RootOrderingTest is a low-level unit test that creates values and uses them as vertices in a directed graph. These vertices were created using `builder.create`, but never freed, due to my insufficient understanding of the MLIR infrastructure.
Reviewed By: mehdi_amini, bondhugula, rriddle
Differential Revision: https://reviews.llvm.org/D114745
show more ...
|
#
6df7cc7f |
| 26-Nov-2021 |
Stanislav Funiak <stano@cerebras.net> |
Implementation of the root ordering algorithm
This is commit 3 of 4 for the multi-root matching in PDL, discussed in https://llvm.discourse.group/t/rfc-multi-root-pdl-patterns-for-kernel-matching/41
Implementation of the root ordering algorithm
This is commit 3 of 4 for the multi-root matching in PDL, discussed in https://llvm.discourse.group/t/rfc-multi-root-pdl-patterns-for-kernel-matching/4148 (topic flagged for review).
We form a graph over the specified roots, provided in `pdl.rewrite`, where two roots are connected by a directed edge if the target root can be connected (via a chain of operations) in the underlying pattern to the source root. We place a restriction that the path connecting the two candidate roots must only contain the nodes in the subgraphs underneath these two roots. The cost of an edge is the smallest number of upward traversals (edges) required to go from the source to the target root, and the connector is a `Value` in the intersection of the two subtrees rooted at the source and target root that results in that smallest number of such upward traversals. Optimal root ordering is then formulated as the problem of finding a spanning arborescence (i.e., a directed spanning tree) of minimal weight.
In order to determine the spanning arborescence (directed spanning tree) of minimum weight, we use the [Edmonds' algorithm](https://en.wikipedia.org/wiki/Edmonds%27_algorithm). The worst-case computational complexity of this algorithm is O(_N_^3) for a single root, where _N_ is the number of specified roots. The `pdl`-to-`pdl_interp` lowering calls this algorithm as a subroutine _N_ times (once for each candidate root), so the overall complexity of root ordering is O(_N_^4). If needed, this complexity could be reduced to O(_N_^3) with a more efficient algorithm. However, note that the underlying implementation is very efficient, and _N_ in our instances tends to be very small (<10). Therefore, we believe that the proposed (asymptotically suboptimal) implementation will suffice for now.
Testing: a unit test of the algorithm
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D108549
show more ...
|