#
92233062 |
| 23-Aug-2023 |
max <maksim.levental@gmail.com> |
[mlir][python bindings] generate all the enums
This PR implements python enum bindings for *all* the enums - this includes `I*Attrs` (including positional/bit) and `Dialect/EnumAttr`.
There are a f
[mlir][python bindings] generate all the enums
This PR implements python enum bindings for *all* the enums - this includes `I*Attrs` (including positional/bit) and `Dialect/EnumAttr`.
There are a few parts to this:
1. CMake: a small addition to `declare_mlir_dialect_python_bindings` and `declare_mlir_dialect_extension_python_bindings` to generate the enum, a boolean arg `GEN_ENUM_BINDINGS` to make it opt-in (even though it works for basically all of the dialects), and an optional `GEN_ENUM_BINDINGS_TD_FILE` for handling corner cases. 2. EnumPythonBindingGen.cpp: there are two weedy aspects here that took investigation: 1. If an enum attribute is not a `Dialect/EnumAttr` then the `EnumAttrInfo` record is canonical, as far as both the cases of the enum **and the `AttrDefName`**. On the otherhand, if an enum is a `Dialect/EnumAttr` then the `EnumAttr` record has the correct `AttrDefName` ("load bearing", i.e., populates `ods.ir.AttributeBuilder('<NAME>')`) but its `enum` field contains the cases, which is an instance of `EnumAttrInfo`. The solution is to generate an one enum class for both `Dialect/EnumAttr` and "independent" `EnumAttrInfo` but to make that class interopable with two builder registrations that both do the right thing (see next sub-bullet). 2. Because we don't have a good connection to cpp `EnumAttr`, i.e., only the `enum class` getters are exposed (like `DimensionAttr::get(Dimension value)`), we have to resort to parsing e.g., `Attribute.parse(f'#gpu<dim {x}>')`. This means that the set of supported `assemblyFormat`s (for the enum) is fixed at compile of MLIR (currently 2, the only 2 I saw). There might be some things that could be done here but they would require quite a bit more C API work to support generically (e.g., casting ints to enum cases and binding all the getters or going generically through the `symbolize*` methods, like `symbolizeDimension(uint32_t)` or `symbolizeDimension(StringRef)`).
A few small changes:
1. In addition, since this patch registers default builders for attributes where people might've had their own builders already written, I added a `replace` param to `AttributeBuilder.insert` (`False` by default). 2. `makePythonEnumCaseName` can't handle all the different ways in which people write their enum cases, e.g., `llvm.CConv.Intel_OCL_BI`, which gets turned into `INTEL_O_C_L_B_I` (because `llvm::convertToSnakeFromCamelCase` doesn't look for runs of caps). So I dropped it. On the otherhand regularization does need to done because some enums have `None` as a case (and others might have other python keywords). 3. I turned on `llvm` dialect generation here in order to test `nvvm.WGMMAScaleIn`, which is an enum with [[ https://github.com/llvm/llvm-project/blob/d7e26b56207cbd8995296c5bb7c11ce676b649da/mlir/include/mlir/IR/EnumAttr.td#L22-L25 | no explicit discriminator ]] for the `neg` case.
Note, dialects that didn't get a `GEN_ENUM_BINDINGS` don't have any enums to generate.
Let me know if I should add more tests (the three trivial ones I added exercise both the supported `assemblyFormat`s and `replace=True`).
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D157934
show more ...
|
#
0575ab2d |
| 02-Aug-2023 |
Ingo Müller <ingomueller@google.com> |
[mlir][tensor][transform][python] Add mix-in class.
This patch adds a mix-in class for the only transform op of the tensor dialect that can benefit from one: the MakeLoopIndependentOp. It adds an ov
[mlir][tensor][transform][python] Add mix-in class.
This patch adds a mix-in class for the only transform op of the tensor dialect that can benefit from one: the MakeLoopIndependentOp. It adds an overload that makes providing the return type optional.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D156918
show more ...
|