History log of /llvm-project/llvm/unittests/Analysis/LazyCallGraphTest.cpp (Results 1 – 25 of 64)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: llvmorg-21-init, llvmorg-19.1.7, llvmorg-19.1.6, llvmorg-19.1.5, llvmorg-19.1.4, llvmorg-19.1.3, llvmorg-19.1.2, llvmorg-19.1.1, llvmorg-19.1.0
# 52b48a70 13-Sep-2024 JOE1994 <joseph942010@gmail.com>

[llvm][unittests] Strip unneeded use of raw_string_ostream::str() (NFC)

Avoid excess layer of indirection.


Revision tags: llvmorg-19.1.0-rc4, llvmorg-19.1.0-rc3
# 2b1122ea 08-Aug-2024 Jeremy Morse <jeremy.morse@sony.com>

[DebugInfo][RemoveDIs] Use iterator-insertion in unittests and fuzzer (#102015)

These are the final few places in LLVM that use instruction pointers to
insert instructions -- use iterators instead,

[DebugInfo][RemoveDIs] Use iterator-insertion in unittests and fuzzer (#102015)

These are the final few places in LLVM that use instruction pointers to
insert instructions -- use iterators instead, which is needed for
debug-info correctness in the future. Most of this is a gentle
scattering of getIterator calls or not deref-then-addrofing iterators.
libfuzzer does require a storage change to keep built instruction
positions in a container though. The unit-test changes are very
straightforwards.

This leaves us in a position where libfuzzer can't fuzz on either of
debug-info records, however I don't believe that fuzzing of debug-info
is in scope for the library.

show more ...


Revision tags: llvmorg-19.1.0-rc2, llvmorg-19.1.0-rc1, llvmorg-20-init, llvmorg-18.1.8
# 71497cc7 11-Jun-2024 Arthur Eubanks <aeubanks@google.com>

[CGSCC] Fix compile time blowup with large RefSCCs (#94815)

In some modules, e.g. Kotlin-generated IR, we end up with a huge RefSCC
and the call graph updates done as a result of the inliner take a

[CGSCC] Fix compile time blowup with large RefSCCs (#94815)

In some modules, e.g. Kotlin-generated IR, we end up with a huge RefSCC
and the call graph updates done as a result of the inliner take a long
time. This is due to RefSCC::removeInternalRefEdges() getting called
many times, each time removing one function from the RefSCC, but each
call to removeInternalRefEdges() is proportional to the size of the
RefSCC.

There are two places that call removeInternalRefEdges(), in
updateCGAndAnalysisManagerForPass() and
LazyCallGraph::removeDeadFunction().

1) Since LazyCallGraph can deal with spurious (edges that exist in the
graph but not in the IR) ref edges, we can simply not call
removeInternalRefEdges() in updateCGAndAnalysisManagerForPass().

2) LazyCallGraph::removeDeadFunction() still ends up taking the brunt of
compile time with the above change for the original reason. So instead
we batch all the dead function removals so we can call
removeInternalRefEdges() just once. This requires some changes to
callers of removeDeadFunction() to not actually erase the function from
the module, but defer it to when we batch delete dead functions at the
end of the CGSCC run, leaving the function body as "unreachable" in the
meantime. We still need to ensure that call edges are accurate. I had
also tried deleting dead functions after visiting a RefSCC, but deleting
them all at once at the end was simpler.

Many test changes are due to not performing unnecessary revisits of an
SCC (the CGSCC infrastructure deems ref edge refinements as unimportant
when it comes to revisiting SCCs, although that seems to not be
consistently true given these changes) because we don't remove some ref
edges. Specifically for devirt-invalidated.ll this seems to expose an
inlining order issue with the inliner. Probably unimportant for this
type of intentionally weird call graph.

Compile time:
https://llvm-compile-time-tracker.com/compare.php?from=6f2c61071c274a1b5e212e6ad4114641ec7c7fc3&to=b08c90d05e290dd065755ea776ceaf1420680224&stat=instructions:u

show more ...


Revision tags: llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2
# d3ec8c2a 11-Mar-2024 Hans Wennborg <hans@chromium.org>

Typo: ponit


Revision tags: llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5
# 7b9d73c2 07-Nov-2023 Paulo Matos <pmatos@igalia.com>

[NFC] Remove Type::getInt8PtrTy (#71029)

Replace this with PointerType::getUnqual().
Followup to the opaque pointer transition. Fixes an in-code TODO item.


Revision tags: llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2
# 62c7f035 07-Feb-2023 Archibald Elliott <archibald.elliott@arm.com>

[NFC][TargetParser] Remove llvm/ADT/Triple.h

I also ran `git clang-format` to get the headers in the right order for
the new location, which has changed the order of other headers in two
files.


Revision tags: llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7
# dc891846 13-Dec-2022 Vasileios Porpodas <vporpodas@google.com>

[NFC] Cleanup: Replace Function::getBasicBlockList().splice() with Function::splice()

This is part of a series of patches that aim at making Function::getBasicBlockList() private.

Differential Revi

[NFC] Cleanup: Replace Function::getBasicBlockList().splice() with Function::splice()

This is part of a series of patches that aim at making Function::getBasicBlockList() private.

Differential Revision: https://reviews.llvm.org/D139984

show more ...


Revision tags: llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, working, llvmorg-15.0.2, llvmorg-15.0.1
# a8f1da12 14-Sep-2022 Arthur Eubanks <aeubanks@google.com>

[LazyCallGraph] Handle spurious ref edges when deleting a dead function

Spurious ref edges are ref edges that still exist in the call graph even
though the corresponding IR reference no longer exist

[LazyCallGraph] Handle spurious ref edges when deleting a dead function

Spurious ref edges are ref edges that still exist in the call graph even
though the corresponding IR reference no longer exists. This can cause
issues when deleting a dead function which has a spurious ref edge
pointed at it because currently we expect the dead function's RefSCC to
be trivial.

In the case that the dead function's RefSCC is not trivial, remove all
ref edges from other nodes in the RefSCC to it.

Removing a ref edge can result in splitting RefSCCs. There's actually no
reason to revisit those RefSCCs because currently we only run passes on
SCCs, and we've already added all SCCs in the RefSCC to the worklist.
(as opposed to removing the ref edge in
updateCGAndAnalysisManagerForPass() which can modify the call graph of
SCCs we have not visited yet). We also don't expect that RefSCC
refinement will allow us to glean any more information for optimization
use. Also, doing so would drastically increase the complexity of
LazyCallGraph::removeDeadFunction(), requiring us to return a list of
invalidated RefSCCs and new RefSCCs to add to the worklist.

Fixes #56503

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D133907

show more ...


Revision tags: llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1, llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3, llvmorg-14.0.0-rc2, llvmorg-14.0.0-rc1, llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2, llvmorg-13.0.1-rc1
# 029f1a53 20-Oct-2021 Arthur Eubanks <aeubanks@google.com>

[LazyCallGraph] Skip blockaddresses

blockaddresses do not participate in the call graph since the only
instructions that use them must all return to someplace within the
current function. And passes

[LazyCallGraph] Skip blockaddresses

blockaddresses do not participate in the call graph since the only
instructions that use them must all return to someplace within the
current function. And passes cannot retrieve a function address from a
blockaddress.

This was suggested by efriedma in D58260.

Fixes PR50881.

Reviewed By: nickdesaulniers

Differential Revision: https://reviews.llvm.org/D112178

show more ...


Revision tags: llvmorg-13.0.0, llvmorg-13.0.0-rc4, llvmorg-13.0.0-rc3, llvmorg-13.0.0-rc2, llvmorg-13.0.0-rc1, llvmorg-14-init, llvmorg-12.0.1, llvmorg-12.0.1-rc4, llvmorg-12.0.1-rc3, llvmorg-12.0.1-rc2, llvmorg-12.0.1-rc1, llvmorg-12.0.0, llvmorg-12.0.0-rc5, llvmorg-12.0.0-rc4, llvmorg-12.0.0-rc3, llvmorg-12.0.0-rc2, llvmorg-11.1.0, llvmorg-11.1.0-rc3, llvmorg-12.0.0-rc1, llvmorg-13-init, llvmorg-11.1.0-rc2, llvmorg-11.1.0-rc1
# 7fea561e 26-Dec-2020 Arthur Eubanks <aeubanks@google.com>

[CGSCC][Coroutine][NewPM] Properly support function splitting/outlining

Previously when trying to support CoroSplit's function splitting, we
added in a hack that simply added the new function's node

[CGSCC][Coroutine][NewPM] Properly support function splitting/outlining

Previously when trying to support CoroSplit's function splitting, we
added in a hack that simply added the new function's node into the
original function's SCC (https://reviews.llvm.org/D87798). This is
incorrect since it might be in its own SCC.

Now, more similar to the previous design, we have callers explicitly
notify the LazyCallGraph that a function has been split out from another
one.

In order to properly support CoroSplit, there are two ways functions can
be split out.

One is the normal expected "outlining" of one function into a new one.
The new function may only contain references to other functions that the
original did. The original function must reference the new function. The
new function may reference the original function, which can result in
the new function being in the same SCC as the original function. The
weird case is when the original function indirectly references the new
function, but the new function directly calls the original function,
resulting in the new SCC being a parent of the original function's SCC.
This form of function splitting works with CoroSplit's Switch ABI.

The second way of splitting is more specific to CoroSplit. CoroSplit's
Retcon and Async ABIs split the original function into multiple
functions that all reference each other and are referenced by the
original function. In order to keep the LazyCallGraph in a valid state,
all new functions must be processed together, else some nodes won't be
populated. To keep things simple, this only supports the case where all
new edges are ref edges, and every new function references every other
new function. There can be a reference back from any new function to the
original function, putting all functions in the same RefSCC.

This also adds asserts that all nodes in a (Ref)SCC can reach all other
nodes to prevent future incorrect hacks.

The original hacks in https://reviews.llvm.org/D87798 are no longer
necessary since all new functions should have been registered before
calling updateCGAndAnalysisManagerForPass.

This fixes all coroutine tests when opt's -enable-new-pm is true by
default. This also fixes PR48190, which was likely due to the previous
hack breaking SCC invariants.

Reviewed By: rnk

Differential Revision: https://reviews.llvm.org/D93828

show more ...


Revision tags: llvmorg-11.0.1, llvmorg-11.0.1-rc2, llvmorg-11.0.1-rc1
# 491dd271 02-Nov-2020 Fangrui Song <i@maskray.me>

[LazyCallGraph] Build SCCs of the reference graph in order

```
// The legacy PM CGPassManager discovers SCCs this way:
for function in the source order
tarjanSCC(function)

// While the new PM CGS

[LazyCallGraph] Build SCCs of the reference graph in order

```
// The legacy PM CGPassManager discovers SCCs this way:
for function in the source order
tarjanSCC(function)

// While the new PM CGSCCPassManager does:
for function in the reversed source order [1]
discover a reference graph SCC
build call graph SCCs inside the reference graph SCC
```

In the common cases, reference graph ~= call graph, the new PM order is
undesired because for `a | b | c` (3 independent functions), the new PM will
process them in the reversed order: c, b, a. If `a <-> b <-> c`, we can see
that `-print-after-all` will report the sole SCC as `scc: (c, b, a)`.

This patch corrects the iteration order. The discovered SCC order will match
the legacy PM in the common cases.

For some tests (`Transforms/Inline/cgscc-*.ll` and
`unittests/Analysis/CGSCCPassManagerTest.cpp`), the behaviors are dependent on
the SCC discovery order and there are too many check lines for the particular
order. This patch simply reverses the function order to avoid changing too many
check lines.

Differential Revision: https://reviews.llvm.org/D90566

show more ...


Revision tags: llvmorg-11.0.0, llvmorg-11.0.0-rc6, llvmorg-11.0.0-rc5, llvmorg-11.0.0-rc4, llvmorg-11.0.0-rc3
# 6b1ce83a 16-Sep-2020 Arthur Eubanks <aeubanks@google.com>

[NewPM][CGSCC] Handle newly added functions in updateCGAndAnalysisManagerForPass

This seems to fit the CGSCC updates model better than calling
addNewFunctionInto{Ref,}SCC() on newly created/outlined

[NewPM][CGSCC] Handle newly added functions in updateCGAndAnalysisManagerForPass

This seems to fit the CGSCC updates model better than calling
addNewFunctionInto{Ref,}SCC() on newly created/outlined functions.
Now addNewFunctionInto{Ref,}SCC() are no longer necessary.

However, this doesn't work on newly outlined functions that aren't
referenced by the original function. e.g. if a() was outlined into b()
and c(), but c() is only referenced by b() and not by a(), this will
trigger an assert.

This also fixes an issue I was seeing with newly created functions not
having passes run on them.

Ran check-llvm with expensive checks.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D87798

show more ...


Revision tags: llvmorg-11.0.0-rc2, llvmorg-11.0.0-rc1, llvmorg-12-init, llvmorg-10.0.1, llvmorg-10.0.1-rc4, llvmorg-10.0.1-rc3, llvmorg-10.0.1-rc2
# 06fd973c 05-Jun-2020 Simon Pilgrim <llvm-dev@redking.me.uk>

TargetLibraryInfo.h - reduce Triple.h include to forward declaration. NFC.

Move implicit include dependencies down to source files.


Revision tags: llvmorg-10.0.1-rc1, llvmorg-10.0.0, llvmorg-10.0.0-rc6, llvmorg-10.0.0-rc5, llvmorg-10.0.0-rc4, llvmorg-10.0.0-rc3
# 0deef2e1 17-Feb-2020 Brian Gesiak <modocache@gmail.com>

Re-land "Add LazyCallGraph API to add function to RefSCC"

This re-commits https://reviews.llvm.org/D70927, which I reverted in
https://reviews.llvm.org/rG28213680b2a7d1fdeea16aa3f3a368879472c72a due

Re-land "Add LazyCallGraph API to add function to RefSCC"

This re-commits https://reviews.llvm.org/D70927, which I reverted in
https://reviews.llvm.org/rG28213680b2a7d1fdeea16aa3f3a368879472c72a due
to a buildbot error:
http://lab.llvm.org:8011/builders/clang-cmake-x86_64-avx2-linux/builds/13251

I no longer include a test case that appears to crash when built with the
buildbot's compiler, GCC 5.4.0.

show more ...


# 28213680 17-Feb-2020 Brian Gesiak <modocache@gmail.com>

Revert "Add LazyCallGraph API to add function to RefSCC"

This reverts commit https://reviews.llvm.org/rG449a13509190b1c57e5fcf5cd7e8f0f647f564b4,
due to buildbot failures such as
http://lab.llvm.org

Revert "Add LazyCallGraph API to add function to RefSCC"

This reverts commit https://reviews.llvm.org/rG449a13509190b1c57e5fcf5cd7e8f0f647f564b4,
due to buildbot failures such as
http://lab.llvm.org:8011/builders/clang-cmake-x86_64-avx2-linux/builds/13251.

show more ...


Revision tags: llvmorg-10.0.0-rc2
# 449a1350 04-Feb-2020 Brian Gesiak <modocache@gmail.com>

Add LazyCallGraph API to add function to RefSCC

Summary:
Depends on https://reviews.llvm.org/D70927.

`LazyCallGraph::addNewFunctionIntoSCC` allows users to insert a new
function node into a call gr

Add LazyCallGraph API to add function to RefSCC

Summary:
Depends on https://reviews.llvm.org/D70927.

`LazyCallGraph::addNewFunctionIntoSCC` allows users to insert a new
function node into a call graph, into a specific, existing SCC.

Extend this interface such that functions can be added even when they do
not belong in any existing SCC, but instead in a new SCC within an
existing RefSCC.

The ability to insert new functions as part of a RefSCC is necessary for
outlined functions that do not form a strongly connected cycle with the
function they are outlined from. An example of such a function would be the
coroutine funclets 'f.resume', etc., which are outlined from a coroutine 'f'.
Coroutine 'f' only references the funclets' addresses, it does not call
them directly.

Reviewers: jdoerfert, chandlerc, wenlei, hfinkel

Reviewed By: jdoerfert

Subscribers: hfinkel, JonChesterfield, mehdi_amini, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D72226

show more ...


# c057d1d3 09-Feb-2020 Johannes Doerfert <johannes@jdoerfert.de>

[FIX] Fix warning in LazyCallGraphTest caused by D70927


Revision tags: llvmorg-10.0.0-rc1, llvmorg-11-init, llvmorg-9.0.1, llvmorg-9.0.1-rc3, llvmorg-9.0.1-rc2
# 72277ecd 29-Nov-2019 Johannes Doerfert <johannes@jdoerfert.de>

Introduce a CallGraph updater helper class

The CallGraphUpdater is a helper that simplifies the process of updating
the call graph, both old and new style, while running an CGSCC pass.

The uses are

Introduce a CallGraph updater helper class

The CallGraphUpdater is a helper that simplifies the process of updating
the call graph, both old and new style, while running an CGSCC pass.

The uses are contained in different commits, e.g. D70767.

More functionality is added as we need it.

Reviewed By: modocache, hfinkel

Differential Revision: https://reviews.llvm.org/D70927

show more ...


# adcd0268 28-Jan-2020 Benjamin Kramer <benny.kra@googlemail.com>

Make llvm::StringRef to std::string conversions explicit.

This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.

This is mostly m

Make llvm::StringRef to std::string conversions explicit.

This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.

This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.

This doesn't actually modify StringRef yet, I'll do that in a follow-up.

show more ...


Revision tags: llvmorg-9.0.1-rc1, llvmorg-9.0.0, llvmorg-9.0.0-rc6, llvmorg-9.0.0-rc5, llvmorg-9.0.0-rc4
# 9c27b59c 07-Sep-2019 Teresa Johnson <tejohnson@google.com>

Change TargetLibraryInfo analysis passes to always require Function

Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use

Change TargetLibraryInfo analysis passes to always require Function

Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.

This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.

Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.

There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.

Reviewers: chandlerc, hfinkel

Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66428

llvm-svn: 371284

show more ...


Revision tags: llvmorg-9.0.0-rc3, llvmorg-9.0.0-rc2, llvmorg-9.0.0-rc1, llvmorg-10-init, llvmorg-8.0.1, llvmorg-8.0.1-rc4, llvmorg-8.0.1-rc3, llvmorg-8.0.1-rc2
# 639b29b1 20-May-2019 Nick Desaulniers <ndesaulniers@google.com>

[INLINER] allow inlining of blockaddresses if sole uses are callbrs

Summary:
It was supposed that Ref LazyCallGraph::Edge's were being inserted by
inlining, but that doesn't seem to be the case. In

[INLINER] allow inlining of blockaddresses if sole uses are callbrs

Summary:
It was supposed that Ref LazyCallGraph::Edge's were being inserted by
inlining, but that doesn't seem to be the case. Instead, it seems that
there was no test for a blockaddress Constant in an instruction that
referenced the function that contained the instruction. Ex:

```
define void @f() {
%1 = alloca i8*, align 8
2:
store i8* blockaddress(@f, %2), i8** %1, align 8
ret void
}
```

When iterating blockaddresses, do not add the function they refer to
back to the worklist if the blockaddress is referring to the contained
function (as opposed to an external function).

Because blockaddress has sligtly different semantics than GNU C's
address of labels, there are 3 cases that can occur with blockaddress,
where only 1 can happen in GNU C due to C's scoping rules:
* blockaddress is within the function it refers to (possible in GNU C).
* blockaddress is within a different function than the one it refers to
(not possible in GNU C).
* blockaddress is used in to declare a global (not possible in GNU C).

The second case is tested in:

```
$ ./llvm/build/unittests/Analysis/AnalysisTests \
--gtest_filter=LazyCallGraphTest.HandleBlockAddress
```

This patch adjusts the iteration of blockaddresses in
LazyCallGraph::visitReferences to not revisit the blockaddresses
function in the first case.

The Linux kernel contains code that's not semantically valid at -O0;
specifically code passed to asm goto. It requires that asm goto be
inline-able. This patch conservatively does not attempt to handle the
more general case of inlining blockaddresses that have non-callbr users
(pr/39560).

https://bugs.llvm.org/show_bug.cgi?id=39560
https://bugs.llvm.org/show_bug.cgi?id=40722
https://github.com/ClangBuiltLinux/linux/issues/6
https://reviews.llvm.org/rL212077

Reviewers: jyknight, eli.friedman, chandlerc

Reviewed By: chandlerc

Subscribers: george.burgess.iv, nathanchance, mgorny, craig.topper, mengxu.gatech, void, mehdi_amini, E5ten, chandlerc, efriedma, eraman, hiraditya, haicheng, pirama, llvm-commits, srhines

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D58260

llvm-svn: 361173

show more ...


Revision tags: llvmorg-8.0.1-rc1, llvmorg-8.0.0, llvmorg-8.0.0-rc5, llvmorg-8.0.0-rc4, llvmorg-8.0.0-rc3, llvmorg-7.1.0, llvmorg-7.1.0-rc1, llvmorg-8.0.0-rc2, llvmorg-8.0.0-rc1
# 2946cd70 19-Jan-2019 Chandler Carruth <chandlerc@gmail.com>

Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the ne

Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636

show more ...


Revision tags: llvmorg-7.0.1, llvmorg-7.0.1-rc3, llvmorg-7.0.1-rc2, llvmorg-7.0.1-rc1
# 0cac726a 27-Sep-2018 Fangrui Song <maskray@google.com>

llvm::sort(C.begin(), C.end(), ...) -> llvm::sort(C, ...)

Summary: The convenience wrapper in STLExtras is available since rL342102.

Reviewers: dblaikie, javed.absar, JDevlieghere, andreadb

Subscr

llvm::sort(C.begin(), C.end(), ...) -> llvm::sort(C, ...)

Summary: The convenience wrapper in STLExtras is available since rL342102.

Reviewers: dblaikie, javed.absar, JDevlieghere, andreadb

Subscribers: MatzeB, sanjoy, arsenm, dschuff, mehdi_amini, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, javed.absar, gbedwell, jrtc27, mgrang, atanasyan, steven_wu, george.burgess.iv, dexonsmith, kristina, jsji, llvm-commits

Differential Revision: https://reviews.llvm.org/D52573

llvm-svn: 343163

show more ...


Revision tags: llvmorg-7.0.0, llvmorg-7.0.0-rc3, llvmorg-7.0.0-rc2, llvmorg-7.0.0-rc1, llvmorg-6.0.1, llvmorg-6.0.1-rc3, llvmorg-6.0.1-rc2, llvmorg-6.0.1-rc1
# 13e70cb1 07-Apr-2018 Mandeep Singh Grang <mgrang@codeaurora.org>

[unittests] Change std::sort to llvm::sort in response to r327219

r327219 added wrappers to std::sort which randomly shuffle the container before
sorting. This will help in uncovering non-determini

[unittests] Change std::sort to llvm::sort in response to r327219

r327219 added wrappers to std::sort which randomly shuffle the container before
sorting. This will help in uncovering non-determinism caused due to undefined
sorting order of objects having the same key.

To make use of that infrastructure we need to invoke llvm::sort instead of
std::sort.

Note: This patch is one of a series of patches to replace *all* std::sort to
llvm::sort. Refer the comments section in D44363 for a list of all the
required patches.

llvm-svn: 329475

show more ...


Revision tags: llvmorg-5.0.2, llvmorg-5.0.2-rc2, llvmorg-5.0.2-rc1, llvmorg-6.0.0, llvmorg-6.0.0-rc3, llvmorg-6.0.0-rc2, llvmorg-6.0.0-rc1, llvmorg-5.0.1, llvmorg-5.0.1-rc3, llvmorg-5.0.1-rc2, llvmorg-5.0.1-rc1, llvmorg-5.0.0, llvmorg-5.0.0-rc5, llvmorg-5.0.0-rc4, llvmorg-5.0.0-rc3, llvmorg-5.0.0-rc2
# 23c2f44c 09-Aug-2017 Chandler Carruth <chandlerc@gmail.com>

[LCG] Switch one of the update methods for the LazyCallGraph to support
limited batch updates.

Specifically, allow removing multiple reference edges starting from
a common source node. There are a f

[LCG] Switch one of the update methods for the LazyCallGraph to support
limited batch updates.

Specifically, allow removing multiple reference edges starting from
a common source node. There are a few constraints that play into
supporting this form of batching:

1) The way updates occur during the CGSCC walk, about the most we can
functionally batch together are those with a common source node. This
also makes the batching simpler to implement, so it seems
a worthwhile restriction.
2) The far and away hottest function for large C++ files I measured
(generated code for protocol buffers) showed a huge amount of time
was spent removing ref edges specifically, so it seems worth focusing
there.
3) The algorithm for removing ref edges is very amenable to this
restricted batching. There are just both API and implementation
special casing for the non-batch case that gets in the way. Once
removed, supporting batches is nearly trivial.

This does modify the API in an interesting way -- now, we only preserve
the target RefSCC when the RefSCC structure is unchanged. In the face of
any splits, we create brand new RefSCC objects. However, all of the
users were OK with it that I could find. Only the unittest needed
interesting updates here.

How much does batching these updates help? I instrumented the compiler
when run over a very large generated source file for a protocol buffer
and found that the majority of updates are intrinsically updating one
function at a time. However, nearly 40% of the total ref edges removed
are removed as part of a batch of removals greater than one, so these
are the cases batching can help with.

When compiling the IR for this file with 'opt' and 'O3', this patch
reduces the total time by 8-9%.

Differential Revision: https://reviews.llvm.org/D36352

llvm-svn: 310450

show more ...


123