History log of /llvm-project/llvm/test/Transforms/SLPVectorizer/X86/gep.ll (Results 1 – 20 of 20)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: llvmorg-21-init, llvmorg-19.1.7, llvmorg-19.1.6, llvmorg-19.1.5, llvmorg-19.1.4
# 38fffa63 06-Nov-2024 Paul Walker <paul.walker@arm.com>

[LLVM][IR] Use splat syntax when printing Constant[Data]Vector. (#112548)


Revision tags: llvmorg-19.1.3, llvmorg-19.1.2, llvmorg-19.1.1, llvmorg-19.1.0, llvmorg-19.1.0-rc4, llvmorg-19.1.0-rc3, llvmorg-19.1.0-rc2, llvmorg-19.1.0-rc1, llvmorg-20-init, llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7
# 580210a0 23-Dec-2022 Nikita Popov <npopov@redhat.com>

[SLP] Convert some tests to opaque pointers (NFC)


Revision tags: llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3
# 3be72f40 12-Oct-2022 Bjorn Pettersson <bjorn.a.pettersson@ericsson.com>

[test][SLPVectorizer] Use -passes syntax in RUN lines. NFC


# f3a928e2 07-Oct-2022 Arthur Eubanks <aeubanks@google.com>

[opt] Don't translate legacy -analysis flag to require<analysis>

Tests relying on this should explicitly use -passes='require<analysis>,foo'.


Revision tags: working, llvmorg-15.0.2, llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1
# 7d6e8f2a 29-Mar-2022 Philip Reames <listmail@philipreames.com>

[slp] Delete dead scalar instructions feeding vectorized instructions

If we vectorize a e.g. store, we leave around a bunch of getelementptrs for the individual scalar stores which we removed. We ca

[slp] Delete dead scalar instructions feeding vectorized instructions

If we vectorize a e.g. store, we leave around a bunch of getelementptrs for the individual scalar stores which we removed. We can go ahead and delete them as well.

This is purely for test output quality and readability. It should have no effect in any sane pipeline.

Differential Revision: https://reviews.llvm.org/D122493

show more ...


# 48cc9287 18-Mar-2022 Philip Reames <listmail@philipreames.com>

Reapply "[SLP] Schedule only sub-graph of vectorizable instructions"" (try 3)

The original commit exposed several missing dependencies (e.g. latent bugs in SLP scheduling). Most of these were fixed

Reapply "[SLP] Schedule only sub-graph of vectorizable instructions"" (try 3)

The original commit exposed several missing dependencies (e.g. latent bugs in SLP scheduling). Most of these were fixed over the weekend and have had several days to bake. The last was fixed this morning after being noticed in manual review of test changes yesterday. See the review thread for links to each change.

Original commit message follows:

SLP currently schedules all instructions within a scheduling window which stretches from the first instruction potentially vectorized to the last. This window can include a very large number of unrelated instructions which are not being considered for vectorization. This change switches the code to only schedule the sub-graph consisting of the instructions being vectorized and their transitive users.

This has the effect of greatly reducing the amount of work performed in large basic blocks, and thus greatly improves compile time on degenerate examples. To understand the effects, I added some statistics (not planned for upstream contribution). Here's an illustration from my motivating example:

Before this patch:

704357 SLP - Number of calcDeps actions
699021 SLP - Number of schedule calls
5598 SLP - Number of ReSchedule actions
59 SLP - Number of ReScheduleOnFail actions
10084 SLP - Number of schedule resets
8523 SLP - Number of vector instructions generated

After this patch:

102895 SLP - Number of calcDeps actions
161916 SLP - Number of schedule calls
5637 SLP - Number of ReSchedule actions
55 SLP - Number of ReScheduleOnFail actions
10083 SLP - Number of schedule resets
8403 SLP - Number of vector instructions generated

I do want to highlight that there is a small difference in number of generated vector instructions. This example is hitting the bailout due to maximum window size, and the change in scheduling is slightly perturbing when and how we hit it. This can be seen in the RescheduleOnFail counter change. Given that, I think we can safely ignore.

The downside of this change can be seen in the large test diff. We group all vectorizable instructions together at the bottom of the scheduling region. This means that vector instructions can move quite far from their original point in code. While maybe undesirable, I don't see this as being a major problem as this pass is not intended to be a general scheduling pass.

For context, it's worth noting that the pre-scheduling that SLP does while building the vector tree is exactly the sub-graph scheduling implemented by this patch.

Differential Revision: https://reviews.llvm.org/D118538

show more ...


Revision tags: llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3
# deae979a 03-Mar-2022 Philip Reames <listmail@philipreames.com>

Revert "Reapply "[SLP] Schedule only sub-graph of vectorizable instructions"""

This reverts commit 738042711bc08cde9135873200b1d088e6cf11c3. A second, apparently separate, issue has been reported on

Revert "Reapply "[SLP] Schedule only sub-graph of vectorizable instructions"""

This reverts commit 738042711bc08cde9135873200b1d088e6cf11c3. A second, apparently separate, issue has been reported on the original review.

show more ...


# 73804271 02-Mar-2022 Philip Reames <listmail@philipreames.com>

Reapply "[SLP] Schedule only sub-graph of vectorizable instructions""

Root issue which triggered the revert was fixed in 689bab. No changes in the reapplied patch.

Original commit message follows:

Reapply "[SLP] Schedule only sub-graph of vectorizable instructions""

Root issue which triggered the revert was fixed in 689bab. No changes in the reapplied patch.

Original commit message follows:

SLP currently schedules all instructions within a scheduling window which stretches from the first instr
uction potentially vectorized to the last. This window can include a very large number of unrelated instruct
ions which are not being considered for vectorization. This change switches the code to only schedule the su
b-graph consisting of the instructions being vectorized and their transitive users.

This has the effect of greatly reducing the amount of work performed in large basic blocks, and thus greatly improves compile time on degenerate examples. To understand the effects, I added some statistics (not planned for upstream contribution). Here's an illustration from my motivating example:

Before this patch:

704357 SLP - Number of calcDeps actions
699021 SLP - Number of schedule calls
5598 SLP - Number of ReSchedule actions
59 SLP - Number of ReScheduleOnFail actions
10084 SLP - Number of schedule resets
8523 SLP - Number of vector instructions generated

After this patch:

102895 SLP - Number of calcDeps actions
161916 SLP - Number of schedule calls
5637 SLP - Number of ReSchedule actions
55 SLP - Number of ReScheduleOnFail actions
10083 SLP - Number of schedule resets
8403 SLP - Number of vector instructions generated

I do want to highlight that there is a small difference in number of generated vector instructions. This example is hitting the bailout due to maximum window size, and the change in scheduling is slightly perturbing when and how we hit it. This can be seen in the RescheduleOnFail counter change. Given that, I think we can safely ignore.

The downside of this change can be seen in the large test diff. We group all vectorizable instructions together at the bottom of the scheduling region. This means that vector instructions can move quite far from their original point in code. While maybe undesirable, I don't see this as being a major problem as this pass is not intended to be a general scheduling pass.

For context, it's worth noting that the pre-scheduling that SLP does while building the vector tree is exactly the sub-graph scheduling implemented by this patch.

Differential Revision: https://reviews.llvm.org/D118538

show more ...


Revision tags: llvmorg-14.0.0-rc2
# 9c6250ee 01-Mar-2022 Arthur Eubanks <aeubanks@google.com>

Revert "[SLP] Schedule only sub-graph of vectorizable instructions"

This reverts commit 0539a26d91a1b7c74022fa9cf33bd7faca87544d.

Causes a miscompile, see comments on D118538.

Required updating bo

Revert "[SLP] Schedule only sub-graph of vectorizable instructions"

This reverts commit 0539a26d91a1b7c74022fa9cf33bd7faca87544d.

Causes a miscompile, see comments on D118538.

Required updating bottom-to-top-reorder.ll.

show more ...


# 0539a26d 22-Feb-2022 Philip Reames <listmail@philipreames.com>

[SLP] Schedule only sub-graph of vectorizable instructions

SLP currently schedules all instructions within a scheduling window which stretches from the first instruction potentially vectorized to th

[SLP] Schedule only sub-graph of vectorizable instructions

SLP currently schedules all instructions within a scheduling window which stretches from the first instruction potentially vectorized to the last. This window can include a very large number of unrelated instructions which are not being considered for vectorization. This change switches the code to only schedule the sub-graph consisting of the instructions being vectorized and their transitive users.

This has the effect of greatly reducing the amount of work performed in large basic blocks, and thus greatly improves compile time on degenerate examples. To understand the effects, I added some statistics (not planned for upstream contribution). Here's an illustration from my motivating example:

Before this patch:

704357 SLP - Number of calcDeps actions
699021 SLP - Number of schedule calls
5598 SLP - Number of ReSchedule actions
59 SLP - Number of ReScheduleOnFail actions
10084 SLP - Number of schedule resets
8523 SLP - Number of vector instructions generated

After this patch:

102895 SLP - Number of calcDeps actions
161916 SLP - Number of schedule calls
5637 SLP - Number of ReSchedule actions
55 SLP - Number of ReScheduleOnFail actions
10083 SLP - Number of schedule resets
8403 SLP - Number of vector instructions generated

I do want to highlight that there is a small difference in number of generated vector instructions. This example is hitting the bailout due to maximum window size, and the change in scheduling is slightly perturbing when and how we hit it. This can be seen in the RescheduleOnFail counter change. Given that, I think we can safely ignore.

The downside of this change can be seen in the large test diff. We group all vectorizable instructions together at the bottom of the scheduling region. This means that vector instructions can move quite far from their original point in code. While maybe undesirable, I don't see this as being a major problem as this pass is not intended to be a general scheduling pass.

For context, it's worth noting that the pre-scheduling that SLP does while building the vector tree is exactly the sub-graph scheduling implemented by this patch.

Differential Revision: https://reviews.llvm.org/D118538

show more ...


Revision tags: llvmorg-14.0.0-rc1, llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2, llvmorg-13.0.1-rc1, llvmorg-13.0.0, llvmorg-13.0.0-rc4, llvmorg-13.0.0-rc3, llvmorg-13.0.0-rc2, llvmorg-13.0.0-rc1, llvmorg-14-init, llvmorg-12.0.1, llvmorg-12.0.1-rc4, llvmorg-12.0.1-rc3, llvmorg-12.0.1-rc2, llvmorg-12.0.1-rc1, llvmorg-12.0.0, llvmorg-12.0.0-rc5, llvmorg-12.0.0-rc4, llvmorg-12.0.0-rc3, llvmorg-12.0.0-rc2, llvmorg-11.1.0, llvmorg-11.1.0-rc3, llvmorg-12.0.0-rc1, llvmorg-13-init, llvmorg-11.1.0-rc2, llvmorg-11.1.0-rc1, llvmorg-11.0.1, llvmorg-11.0.1-rc2, llvmorg-11.0.1-rc1, llvmorg-11.0.0, llvmorg-11.0.0-rc6, llvmorg-11.0.0-rc5, llvmorg-11.0.0-rc4, llvmorg-11.0.0-rc3, llvmorg-11.0.0-rc2, llvmorg-11.0.0-rc1, llvmorg-12-init, llvmorg-10.0.1, llvmorg-10.0.1-rc4, llvmorg-10.0.1-rc3
# 691c086d 26-Jun-2020 Arthur Eubanks <aeubanks@google.com>

[NewPM][BasicAA] basicaa -> basic-aa in Transforms/SLPVectorizer

Following https://reviews.llvm.org/D82607.

Reviewed By: ychen

Differential Revision: https://reviews.llvm.org/D82681


Revision tags: llvmorg-10.0.1-rc2, llvmorg-10.0.1-rc1, llvmorg-10.0.0, llvmorg-10.0.0-rc6, llvmorg-10.0.0-rc5, llvmorg-10.0.0-rc4, llvmorg-10.0.0-rc3, llvmorg-10.0.0-rc2, llvmorg-10.0.0-rc1, llvmorg-11-init, llvmorg-9.0.1, llvmorg-9.0.1-rc3, llvmorg-9.0.1-rc2, llvmorg-9.0.1-rc1, llvmorg-9.0.0, llvmorg-9.0.0-rc6, llvmorg-9.0.0-rc5, llvmorg-9.0.0-rc4, llvmorg-9.0.0-rc3, llvmorg-9.0.0-rc2, llvmorg-9.0.0-rc1, llvmorg-10-init, llvmorg-8.0.1, llvmorg-8.0.1-rc4, llvmorg-8.0.1-rc3, llvmorg-8.0.1-rc2, llvmorg-8.0.1-rc1
# cee313d2 17-Apr-2019 Eric Christopher <echristo@gmail.com>

Revert "Temporarily Revert "Add basic loop fusion pass.""

The reversion apparently deleted the test/Transforms directory.

Will be re-reverting again.

llvm-svn: 358552


Revision tags: llvmorg-8.0.0, llvmorg-8.0.0-rc5, llvmorg-8.0.0-rc4, llvmorg-8.0.0-rc3, llvmorg-7.1.0, llvmorg-7.1.0-rc1, llvmorg-8.0.0-rc2, llvmorg-8.0.0-rc1
# ce2c8b33 11-Jan-2019 Alexey Bataev <a.bataev@hotmail.com>

[SLP]Update test checks for the SPL vectorizer, NFC.

llvm-svn: 350967


Revision tags: llvmorg-7.0.1, llvmorg-7.0.1-rc3, llvmorg-7.0.1-rc2, llvmorg-7.0.1-rc1, llvmorg-7.0.0, llvmorg-7.0.0-rc3, llvmorg-7.0.0-rc2, llvmorg-7.0.0-rc1, llvmorg-6.0.1, llvmorg-6.0.1-rc3, llvmorg-6.0.1-rc2, llvmorg-6.0.1-rc1, llvmorg-5.0.2, llvmorg-5.0.2-rc2, llvmorg-5.0.2-rc1, llvmorg-6.0.0, llvmorg-6.0.0-rc3, llvmorg-6.0.0-rc2, llvmorg-6.0.0-rc1, llvmorg-5.0.1, llvmorg-5.0.1-rc3, llvmorg-5.0.1-rc2, llvmorg-5.0.1-rc1, llvmorg-5.0.0, llvmorg-5.0.0-rc5, llvmorg-5.0.0-rc4, llvmorg-5.0.0-rc3, llvmorg-5.0.0-rc2, llvmorg-5.0.0-rc1, llvmorg-4.0.1, llvmorg-4.0.1-rc3, llvmorg-4.0.1-rc2, llvmorg-4.0.1-rc1, llvmorg-4.0.0, llvmorg-4.0.0-rc4, llvmorg-4.0.0-rc3, llvmorg-4.0.0-rc2, llvmorg-4.0.0-rc1, llvmorg-3.9.1, llvmorg-3.9.1-rc3, llvmorg-3.9.1-rc2, llvmorg-3.9.1-rc1, llvmorg-3.9.0, llvmorg-3.9.0-rc3, llvmorg-3.9.0-rc2, llvmorg-3.9.0-rc1
# e0a9e660 15-Jun-2016 Sean Silva <chisophugis@gmail.com>

[PM] Port SLPVectorizer to the new PM

This uses the "runImpl" approach to share code with the old PM.

Porting to the new PM meant abandoning the anonymous namespace enclosing
most of SLPVectorizer.

[PM] Port SLPVectorizer to the new PM

This uses the "runImpl" approach to share code with the old PM.

Porting to the new PM meant abandoning the anonymous namespace enclosing
most of SLPVectorizer.cpp which is a bit of a bummer (but not a big deal
compared to having to pull the pass class into a header which the new PM
requires since it calls the constructor directly).

llvm-svn: 272766

show more ...


Revision tags: llvmorg-3.8.1, llvmorg-3.8.1-rc1, llvmorg-3.8.0, llvmorg-3.8.0-rc3, llvmorg-3.8.0-rc2, llvmorg-3.8.0-rc1, llvmorg-3.7.1, llvmorg-3.7.1-rc2, llvmorg-3.7.1-rc1, llvmorg-3.7.0, llvmorg-3.7.0-rc4, llvmorg-3.7.0-rc3, studio-1.4, llvmorg-3.7.0-rc2, llvmorg-3.7.0-rc1
# 13194461 08-Jul-2015 Sanjay Patel <spatel@rotateright.com>

[SLPVectorizer] Try different vectorization factors for store chains
...and set max vector register size based on target

This patch is based on discussion on the llvmdev mailing list:
http://lists.

[SLPVectorizer] Try different vectorization factors for store chains
...and set max vector register size based on target

This patch is based on discussion on the llvmdev mailing list:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-July/087405.html

and also solves:
https://llvm.org/bugs/show_bug.cgi?id=17170

Several FIXME/TODO items are noted in comments as potential improvements.

Differential Revision: http://reviews.llvm.org/D10950

llvm-svn: 241760

show more ...


Revision tags: llvmorg-3.6.2, llvmorg-3.6.2-rc1, llvmorg-3.6.1, llvmorg-3.6.1-rc1, llvmorg-3.5.2, llvmorg-3.5.2-rc1
# a79ac14f 27-Feb-2015 David Blaikie <dblaikie@gmail.com>

[opaque pointer type] Add textual IR support for explicit type parameter to load instruction

Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test

[opaque pointer type] Add textual IR support for explicit type parameter to load instruction

Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794

show more ...


# 79e6c749 27-Feb-2015 David Blaikie <dblaikie@gmail.com>

[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction

One of several parallel first steps to remove the target type of pointers,
replacing them with a

[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction

One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.

* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line

for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)

apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786

show more ...


Revision tags: llvmorg-3.6.0, llvmorg-3.6.0-rc4, llvmorg-3.6.0-rc3, llvmorg-3.6.0-rc2, llvmorg-3.6.0-rc1, llvmorg-3.5.1, llvmorg-3.5.1-rc2, llvmorg-3.5.1-rc1, llvmorg-3.5.0, llvmorg-3.5.0-rc4
# 5dc466b8 27-Aug-2014 Michael Zolotukhin <mzolotukhin@apple.com>

[SLP] Re-enable vectorization of GEP expressions (re-apply r210342 with a fix).

llvm-svn: 216549


Revision tags: llvmorg-3.5.0-rc3, llvmorg-3.5.0-rc2, llvmorg-3.5.0-rc1
# 07ee4788 06-Jun-2014 Michael Zolotukhin <mzolotukhin@apple.com>

Fix typo in a test from r210342.

llvm-svn: 210343


# 1c51612d 06-Jun-2014 Michael Zolotukhin <mzolotukhin@apple.com>

[SLP] Enable vectorization of GEP expressions.

The use cases look like the following:
x->a = y->a + 10
x->b = y->b + 12

llvm-svn: 210342