History log of /llvm-project/llvm/test/CodeGen/X86/tail-dup-repeat.ll (Results 1 – 22 of 22)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: llvmorg-21-init, llvmorg-19.1.7, llvmorg-19.1.6, llvmorg-19.1.5, llvmorg-19.1.4, llvmorg-19.1.3, llvmorg-19.1.2
# e6bf48d1 02-Oct-2024 Jeremy Morse <jeremy.morse@sony.com>

[X86] Don't request 0x90 nop filling in p2align directives (#110134)

As of rev ea222be0d, LLVMs assembler will actually try to honour the
"fill value" part of p2align directives. X86 printed these

[X86] Don't request 0x90 nop filling in p2align directives (#110134)

As of rev ea222be0d, LLVMs assembler will actually try to honour the
"fill value" part of p2align directives. X86 printed these as 0x90, which
isn't actually what it wanted: we want multi-byte nops for .text
padding. Compiling via a textual assembly file produces single-byte
nop padding since ea222be0d but the built-in assembler will produce
multi-byte nops. This divergent behaviour is undesirable.

To fix: don't set the byte padding field for x86, which allows the
assembler to pick multi-byte nops. Test that we get the same multi-byte
padding when compiled via textual assembly or directly to object file.
Added same-align-bytes-with-llasm-llobj.ll to that effect, updated
numerous other tests to not contain check-lines for the explicit padding.

show more ...


Revision tags: llvmorg-19.1.1, llvmorg-19.1.0, llvmorg-19.1.0-rc4, llvmorg-19.1.0-rc3, llvmorg-19.1.0-rc2, llvmorg-19.1.0-rc1, llvmorg-20-init, llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7, llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, working, llvmorg-15.0.2, llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6
# 2f448bf5 22-Jun-2022 Nikita Popov <npopov@redhat.com>

[X86] Migrate tests to use opaque pointers (NFC)

Test updates were performed using:
https://gist.github.com/nikic/98357b71fd67756b0f064c9517b62a34

These are only the test updates where the test pas

[X86] Migrate tests to use opaque pointers (NFC)

Test updates were performed using:
https://gist.github.com/nikic/98357b71fd67756b0f064c9517b62a34

These are only the test updates where the test passed without
further modification (which is almost all of them, as the backend
is largely pointer-type agnostic).

show more ...


Revision tags: llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1, llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3, llvmorg-14.0.0-rc2, llvmorg-14.0.0-rc1, llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2, llvmorg-13.0.1-rc1, llvmorg-13.0.0, llvmorg-13.0.0-rc4, llvmorg-13.0.0-rc3, llvmorg-13.0.0-rc2, llvmorg-13.0.0-rc1, llvmorg-14-init, llvmorg-12.0.1, llvmorg-12.0.1-rc4, llvmorg-12.0.1-rc3, llvmorg-12.0.1-rc2, llvmorg-12.0.1-rc1, llvmorg-12.0.0, llvmorg-12.0.0-rc5, llvmorg-12.0.0-rc4, llvmorg-12.0.0-rc3, llvmorg-12.0.0-rc2, llvmorg-11.1.0, llvmorg-11.1.0-rc3, llvmorg-12.0.0-rc1, llvmorg-13-init, llvmorg-11.1.0-rc2, llvmorg-11.1.0-rc1, llvmorg-11.0.1, llvmorg-11.0.1-rc2, llvmorg-11.0.1-rc1, llvmorg-11.0.0, llvmorg-11.0.0-rc6, llvmorg-11.0.0-rc5, llvmorg-11.0.0-rc4, llvmorg-11.0.0-rc3, llvmorg-11.0.0-rc2, llvmorg-11.0.0-rc1, llvmorg-12-init, llvmorg-10.0.1, llvmorg-10.0.1-rc4, llvmorg-10.0.1-rc3, llvmorg-10.0.1-rc2, llvmorg-10.0.1-rc1, llvmorg-10.0.0, llvmorg-10.0.0-rc6, llvmorg-10.0.0-rc5, llvmorg-10.0.0-rc4, llvmorg-10.0.0-rc3
# 2f215cf3 20-Feb-2020 Djordje Todorovic <djordje.todorovic@rt-rk.com>

Revert "Reland "[DebugInfo] Enable the debug entry values feature by default""

This reverts commit rGfaff707db82d.
A failure found on an ARM 2-stage buildbot.
The investigation is needed.


# faff707d 19-Feb-2020 Djordje Todorovic <djordje.todorovic@rt-rk.com>

Reland "[DebugInfo] Enable the debug entry values feature by default"

Differential Revision: https://reviews.llvm.org/D73534


# 2bf44d11 18-Feb-2020 Djordje Todorovic <djordje.todorovic@rt-rk.com>

Revert "Reland "[DebugInfo] Enable the debug entry values feature by default""

This reverts commit rGa82d3e8a6e67.


# a82d3e8a 18-Feb-2020 Djordje Todorovic <djordje.todorovic@rt-rk.com>

Reland "[DebugInfo] Enable the debug entry values feature by default"

This patch enables the debug entry values feature.

- Remove the (CC1) experimental -femit-debug-entry-values option
- Enabl

Reland "[DebugInfo] Enable the debug entry values feature by default"

This patch enables the debug entry values feature.

- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet

Differential Revision: https://reviews.llvm.org/D73534

show more ...


# a5ac8ca3 18-Feb-2020 Djordje Todorovic <djordje.todorovic@rt-rk.com>

[CSInfo][TailDuplicator] Delete the call site info when removing dead MBBs

This is needed for the debug entry values feature.

Differential Revision: https://reviews.llvm.org/D74702


Revision tags: llvmorg-10.0.0-rc2, llvmorg-10.0.0-rc1, llvmorg-11-init, llvmorg-9.0.1, llvmorg-9.0.1-rc3, llvmorg-9.0.1-rc2
# 72942459 05-Dec-2019 Guozhi Wei <carrot@google.com>

[MBP] Avoid tail duplication if it can't bring benefit

Current tail duplication integrated in bb layout is designed to increase the fallthrough from a BB's predecessor to its successor, but we have

[MBP] Avoid tail duplication if it can't bring benefit

Current tail duplication integrated in bb layout is designed to increase the fallthrough from a BB's predecessor to its successor, but we have observed cases that duplication doesn't increase fallthrough, or it brings too much size overhead.

To overcome these two issues in function canTailDuplicateUnplacedPreds I add two checks:

make sure there is at least one duplication in current work set.
the number of duplication should not exceed the number of successors.

The modification in hasBetterLayoutPredecessor fixes a bug that potential predecessor must be at the bottom of a chain.

Differential Revision: https://reviews.llvm.org/D64376

show more ...


Revision tags: llvmorg-9.0.1-rc1, llvmorg-9.0.0, llvmorg-9.0.0-rc6, llvmorg-9.0.0-rc5, llvmorg-9.0.0-rc4, llvmorg-9.0.0-rc3
# f9f81289 29-Aug-2019 Jordan Rupprecht <rupprecht@google.com>

Revert [MBP] Disable aggressive loop rotate in plain mode

This reverts r369664 (git commit 51f48295cbe8fa3a44db263b528dd9f7bae7bf9a)

It causes many benchmark regressions, internally and in llvm's b

Revert [MBP] Disable aggressive loop rotate in plain mode

This reverts r369664 (git commit 51f48295cbe8fa3a44db263b528dd9f7bae7bf9a)

It causes many benchmark regressions, internally and in llvm's benchmark suite.

llvm-svn: 370398

show more ...


# 51f48295 22-Aug-2019 Guozhi Wei <carrot@google.com>

[MBP] Disable aggressive loop rotate in plain mode

Patch https://reviews.llvm.org/D43256 introduced more aggressive loop layout optimization which depends on profile information. If profile informat

[MBP] Disable aggressive loop rotate in plain mode

Patch https://reviews.llvm.org/D43256 introduced more aggressive loop layout optimization which depends on profile information. If profile information is not available, the statically estimated profile information(generated by BranchProbabilityInfo.cpp) is used. If user program doesn't behave as BranchProbabilityInfo.cpp expected, the layout may be worse.

To be conservative this patch restores the original layout algorithm in plain mode. But user can still try the aggressive layout optimization with -force-precise-rotation-cost=true.

Differential Revision: https://reviews.llvm.org/D65673

llvm-svn: 369664

show more ...


Revision tags: llvmorg-9.0.0-rc2
# a45f301f 12-Aug-2019 Hans Wennborg <hans@hanshq.net>

Revert r368339 "[MBP] Disable aggressive loop rotate in plain mode"

It caused assertions to fire when building Chromium:

lib/CodeGen/LiveDebugValues.cpp:331: bool
{anonymous}::LiveDebugValues::

Revert r368339 "[MBP] Disable aggressive loop rotate in plain mode"

It caused assertions to fire when building Chromium:

lib/CodeGen/LiveDebugValues.cpp:331: bool
{anonymous}::LiveDebugValues::OpenRangesSet::empty() const: Assertion
`Vars.empty() == VarLocs.empty() && "open ranges are inconsistent"' failed.

See https://crbug.com/992871#c3 for how to reproduce.

> Patch https://reviews.llvm.org/D43256 introduced more aggressive loop layout optimization which depends on profile information. If profile information is not available, the statically estimated profile information(generated by BranchProbabilityInfo.cpp) is used. If user program doesn't behave as BranchProbabilityInfo.cpp expected, the layout may be worse.
>
> To be conservative this patch restores the original layout algorithm in plain mode. But user can still try the aggressive layout optimization with -force-precise-rotation-cost=true.
>
> Differential Revision: https://reviews.llvm.org/D65673

llvm-svn: 368579

show more ...


# 80347c3a 08-Aug-2019 Guozhi Wei <carrot@google.com>

[MBP] Disable aggressive loop rotate in plain mode

Patch https://reviews.llvm.org/D43256 introduced more aggressive loop layout optimization which depends on profile information. If profile informat

[MBP] Disable aggressive loop rotate in plain mode

Patch https://reviews.llvm.org/D43256 introduced more aggressive loop layout optimization which depends on profile information. If profile information is not available, the statically estimated profile information(generated by BranchProbabilityInfo.cpp) is used. If user program doesn't behave as BranchProbabilityInfo.cpp expected, the layout may be worse.

To be conservative this patch restores the original layout algorithm in plain mode. But user can still try the aggressive layout optimization with -force-precise-rotation-cost=true.

Differential Revision: https://reviews.llvm.org/D65673

llvm-svn: 368339

show more ...


Revision tags: llvmorg-9.0.0-rc1, llvmorg-10-init, llvmorg-8.0.1, llvmorg-8.0.1-rc4, llvmorg-8.0.1-rc3
# d2210af3 14-Jun-2019 Guozhi Wei <carrot@google.com>

[MBP] Move a latch block with conditional exit and multi predecessors to top of loop

Current findBestLoopTop can find and move one kind of block to top, a latch block has one successor. Another comm

[MBP] Move a latch block with conditional exit and multi predecessors to top of loop

Current findBestLoopTop can find and move one kind of block to top, a latch block has one successor. Another common case is:

* a latch block
* it has two successors, one is loop header, another is exit
* it has more than one predecessors

If it is below one of its predecessors P, only P can fall through to it, all other predecessors need a jump to it, and another conditional jump to loop header. If it is moved before loop header, all its predecessors jump to it, then fall through to loop header. So all its predecessors except P can reduce one taken branch.

Differential Revision: https://reviews.llvm.org/D43256

llvm-svn: 363471

show more ...


Revision tags: llvmorg-8.0.1-rc2, llvmorg-8.0.1-rc1
# 4465a765 24-Mar-2019 Simon Pilgrim <llvm-dev@redking.me.uk>

[X86] Remove icmp undef from reduced tests

Pre-commit for D59363 (Add icmp UNDEF handling to SelectionDAG::FoldSetCC)

Approved by @spatel (Sanjay Patel)

llvm-svn: 356859


Revision tags: llvmorg-8.0.0
# 8f1b8250 13-Mar-2019 Simon Pilgrim <llvm-dev@redking.me.uk>

[X86] Regenerate tail call tests

llvm-svn: 356083


Revision tags: llvmorg-8.0.0-rc5, llvmorg-8.0.0-rc4, llvmorg-8.0.0-rc3, llvmorg-7.1.0, llvmorg-7.1.0-rc1, llvmorg-8.0.0-rc2, llvmorg-8.0.0-rc1, llvmorg-7.0.1, llvmorg-7.0.1-rc3, llvmorg-7.0.1-rc2, llvmorg-7.0.1-rc1, llvmorg-7.0.0, llvmorg-7.0.0-rc3, llvmorg-7.0.0-rc2, llvmorg-7.0.0-rc1, llvmorg-6.0.1, llvmorg-6.0.1-rc3, llvmorg-6.0.1-rc2, llvmorg-6.0.1-rc1, llvmorg-5.0.2, llvmorg-5.0.2-rc2, llvmorg-5.0.2-rc1, llvmorg-6.0.0, llvmorg-6.0.0-rc3, llvmorg-6.0.0-rc2, llvmorg-6.0.0-rc1, llvmorg-5.0.1, llvmorg-5.0.1-rc3, llvmorg-5.0.1-rc2, llvmorg-5.0.1-rc1, llvmorg-5.0.0, llvmorg-5.0.0-rc5, llvmorg-5.0.0-rc4, llvmorg-5.0.0-rc3
# c0541dfa 17-Aug-2017 Richard Smith <richard-llvm@metafoo.co.uk>

Increase tail dup threshold for -O3 from 3 to 4.

We see a modest performance improvement from this slightly higher tail dup threshold.

Differential Revision: https://reviews.llvm.org/D36775

llvm-s

Increase tail dup threshold for -O3 from 3 to 4.

We see a modest performance improvement from this slightly higher tail dup threshold.

Differential Revision: https://reviews.llvm.org/D36775

llvm-svn: 311139

show more ...


Revision tags: llvmorg-5.0.0-rc2, llvmorg-5.0.0-rc1, llvmorg-4.0.1, llvmorg-4.0.1-rc3, llvmorg-4.0.1-rc2, llvmorg-4.0.1-rc1, llvmorg-4.0.0, llvmorg-4.0.0-rc4, llvmorg-4.0.0-rc3
# 7fbec9bd 15-Feb-2017 Kyle Butt <kyle+llvm@iteratee.net>

Codegen: Make chains from trellis-shaped CFGs

Lay out trellis-shaped CFGs optimally.
A trellis of the shape below:

A B
|\ /|
| \ / |
| X |
| / \ |
|/ \|
C D

would be la

Codegen: Make chains from trellis-shaped CFGs

Lay out trellis-shaped CFGs optimally.
A trellis of the shape below:

A B
|\ /|
| \ / |
| X |
| / \ |
|/ \|
C D

would be laid out A; B->C ; D by the current layout algorithm. Now we identify
trellises and lay them out either A->C; B->D or A->D; B->C. This scales with an
increasing number of predecessors. A trellis is a a group of 2 or more
predecessor blocks that all have the same successors.

because of this we can tail duplicate to extend existing trellises.

As an example consider the following CFG:

B D F H
/ \ / \ / \ / \
A---C---E---G---Ret

Where A,C,E,G are all small (Currently 2 instructions).

The CFG preserving layout is then A,B,C,D,E,F,G,H,Ret.

The current code will copy C into B, E into D and G into F and yield the layout
A,C,B(C),E,D(E),F(G),G,H,ret

define void @straight_test(i32 %tag) {
entry:
br label %test1
test1: ; A
%tagbit1 = and i32 %tag, 1
%tagbit1eq0 = icmp eq i32 %tagbit1, 0
br i1 %tagbit1eq0, label %test2, label %optional1
optional1: ; B
call void @a()
br label %test2
test2: ; C
%tagbit2 = and i32 %tag, 2
%tagbit2eq0 = icmp eq i32 %tagbit2, 0
br i1 %tagbit2eq0, label %test3, label %optional2
optional2: ; D
call void @b()
br label %test3
test3: ; E
%tagbit3 = and i32 %tag, 4
%tagbit3eq0 = icmp eq i32 %tagbit3, 0
br i1 %tagbit3eq0, label %test4, label %optional3
optional3: ; F
call void @c()
br label %test4
test4: ; G
%tagbit4 = and i32 %tag, 8
%tagbit4eq0 = icmp eq i32 %tagbit4, 0
br i1 %tagbit4eq0, label %exit, label %optional4
optional4: ; H
call void @d()
br label %exit
exit:
ret void
}

here is the layout after D27742:
straight_test: # @straight_test
; ... Prologue elided
; BB#0: # %entry ; A (merged with test1)
; ... More prologue elided
mr 30, 3
andi. 3, 30, 1
bc 12, 1, .LBB0_2
; BB#1: # %test2 ; C
rlwinm. 3, 30, 0, 30, 30
beq 0, .LBB0_3
b .LBB0_4
.LBB0_2: # %optional1 ; B (copy of C)
bl a
nop
rlwinm. 3, 30, 0, 30, 30
bne 0, .LBB0_4
.LBB0_3: # %test3 ; E
rlwinm. 3, 30, 0, 29, 29
beq 0, .LBB0_5
b .LBB0_6
.LBB0_4: # %optional2 ; D (copy of E)
bl b
nop
rlwinm. 3, 30, 0, 29, 29
bne 0, .LBB0_6
.LBB0_5: # %test4 ; G
rlwinm. 3, 30, 0, 28, 28
beq 0, .LBB0_8
b .LBB0_7
.LBB0_6: # %optional3 ; F (copy of G)
bl c
nop
rlwinm. 3, 30, 0, 28, 28
beq 0, .LBB0_8
.LBB0_7: # %optional4 ; H
bl d
nop
.LBB0_8: # %exit ; Ret
ld 30, 96(1) # 8-byte Folded Reload
addi 1, 1, 112
ld 0, 16(1)
mtlr 0
blr

The tail-duplication has produced some benefit, but it has also produced a
trellis which is not laid out optimally. With this patch, we improve the layouts
of such trellises, and decrease the cost calculation for tail-duplication
accordingly.

This patch produces the layout A,C,E,G,B,D,F,H,Ret. This layout does have
back edges, which is a negative, but it has a bigger compensating
positive, which is that it handles the case where there are long strings
of skipped blocks much better than the original layout. Both layouts
handle runs of executed blocks equally well. Branch prediction also
improves if there is any correlation between subsequent optional blocks.

Here is the resulting concrete layout:

straight_test: # @straight_test
; BB#0: # %entry ; A (merged with test1)
mr 30, 3
andi. 3, 30, 1
bc 12, 1, .LBB0_4
; BB#1: # %test2 ; C
rlwinm. 3, 30, 0, 30, 30
bne 0, .LBB0_5
.LBB0_2: # %test3 ; E
rlwinm. 3, 30, 0, 29, 29
bne 0, .LBB0_6
.LBB0_3: # %test4 ; G
rlwinm. 3, 30, 0, 28, 28
bne 0, .LBB0_7
b .LBB0_8
.LBB0_4: # %optional1 ; B (Copy of C)
bl a
nop
rlwinm. 3, 30, 0, 30, 30
beq 0, .LBB0_2
.LBB0_5: # %optional2 ; D (Copy of E)
bl b
nop
rlwinm. 3, 30, 0, 29, 29
beq 0, .LBB0_3
.LBB0_6: # %optional3 ; F (Copy of G)
bl c
nop
rlwinm. 3, 30, 0, 28, 28
beq 0, .LBB0_8
.LBB0_7: # %optional4 ; H
bl d
nop
.LBB0_8: # %exit

Differential Revision: https://reviews.llvm.org/D28522

llvm-svn: 295223

show more ...


Revision tags: llvmorg-4.0.0-rc2, llvmorg-4.0.0-rc1, llvmorg-3.9.1, llvmorg-3.9.1-rc3, llvmorg-3.9.1-rc2, llvmorg-3.9.1-rc1
# 0846e56e 11-Oct-2016 Kyle Butt <kyle+llvm@iteratee.net>

Codegen: Tail-duplicate during placement.

The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise whe

Codegen: Tail-duplicate during placement.

The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.

In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.

This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.

Issue from previous rollback fixed, and a new test was added for that
case as well. Issue was worklist/scheduling/taildup issue in layout.

Issue from 2nd rollback fixed, with 2 additional tests. Issue was
tail merging/loop info/tail-duplication causing issue with loops that share
a header block.

Issue with early tail-duplication of blocks that branch to a fallthrough
predecessor fixed with test case: tail-dup-branch-to-fallthrough.ll

Differential revision: https://reviews.llvm.org/D18226

llvm-svn: 283934

show more ...


# ae068a32 11-Oct-2016 Kyle Butt <kyle+llvm@iteratee.net>

Codegen: Tail-duplicate during placement.

The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise whe

Codegen: Tail-duplicate during placement.

The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.

In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.

This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.

Issue from previous rollback fixed, and a new test was added for that
case as well. Issue was worklist/scheduling/taildup issue in layout.

Issue from 2nd rollback fixed, with 2 additional tests. Issue was
tail merging/loop info/tail-duplication causing issue with loops that share
a header block.

Issue with early tail-duplication of blocks that branch to a fallthrough
predecessor fixed with test case: tail-dup-branch-to-fallthrough.ll

Differential revision: https://reviews.llvm.org/D18226

llvm-svn: 283842

show more ...


# 37e676d8 07-Oct-2016 Kyle Butt <kyle+llvm@iteratee.net>

Codegen: Tail-duplicate during placement.

The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise whe

Codegen: Tail-duplicate during placement.

The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.

In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.

This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.

Issue from previous rollback fixed, and a new test was added for that
case as well. Issue was worklist/scheduling/taildup issue in layout.

Issue from 2nd rollback fixed, with 2 additional tests. Issue was
tail merging/loop info/tail-duplication causing issue with loops that share
a header block.

Differential revision: https://reviews.llvm.org/D18226

llvm-svn: 283619

show more ...


# adabac2d 04-Oct-2016 Kyle Butt <kyle+llvm@iteratee.net>

Codegen: Tail-duplicate during placement.

The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise whe

Codegen: Tail-duplicate during placement.

The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.

In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.

This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.

Issue from previous rollback fixed, and a new test was added for that
case as well.

Differential revision: https://reviews.llvm.org/D18226

llvm-svn: 283274

show more ...


# 396bfdd7 04-Oct-2016 Kyle Butt <kyle+llvm@iteratee.net>

Codegen: Tail-duplicate during placement.

The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise whe

Codegen: Tail-duplicate during placement.

The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.

In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.

This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.

llvm-svn: 283164

show more ...