Revision tags: llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4 |
|
#
ebe09e2a |
| 10-Mar-2023 |
Rong Xu <xur@google.com> |
[FSAFDO] Improve FS discriminator encoding
This change improves FS discriminators in the following ways: (1) use call-stack debug information in the the to generate discriminators: the same (src/lin
[FSAFDO] Improve FS discriminator encoding
This change improves FS discriminators in the following ways: (1) use call-stack debug information in the the to generate discriminators: the same (src/line) DILs can now have same discriminator value if they come from different call-stacks. This effectively increases the usable discriminator values for each round of FS discriminator pass. (2) don't generate the FS discriminator for meta instructions (i.e. instructions not emitted). This reduces the number discriminators conflicts (for the case we run out of discriminator bits for that pass). (3) use less expensive hashing of xxHash64.
These improvements should bring better performance for FSAFDO and they should be used by default. But this change creates incompatible FS discriminators. For the iterative profile users, they might see a performance drop in the first release with this change (due to the fact that the profiles have the old discriminators and the compiler uses the new discriminator). We have measured that this is not more than 1.5% on several benchmarks. Note the degradation should be gone in the second release and one should expect a performance gain over the binary without this change.
One possible solution to the iterative profile issue would be separating discriminators for profile-use and the ones emitted to the binary. This would require a mechanism to allow two sets of discriminators to be maintained and then phasing out the first approach. This is too much churn in the compiler and the performance implications do not seem to be worth the effort.
Instead, we put the changes under an option so iterative profile users can do a gradual rollout of this change. We will make the option default value to true in a later patch and eventually purge this option from the code base.
Differential Revision: https://reviews.llvm.org/D145171
show more ...
|
Revision tags: llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7, llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, working, llvmorg-15.0.2, llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1 |
|
#
989f1c72 |
| 15-Mar-2022 |
serge-sans-paille <sguelton@redhat.com> |
Cleanup codegen includes
This is a (fixed) recommit of https://reviews.llvm.org/D121169
after: 1061034926 before: 1063332844
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-in
Cleanup codegen includes
This is a (fixed) recommit of https://reviews.llvm.org/D121169
after: 1061034926 before: 1063332844
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup Differential Revision: https://reviews.llvm.org/D121681
show more ...
|
Revision tags: llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3 |
|
#
a278250b |
| 10-Mar-2022 |
Nico Weber <thakis@chromium.org> |
Revert "Cleanup codegen includes"
This reverts commit 7f230feeeac8a67b335f52bd2e900a05c6098f20. Breaks CodeGenCUDA/link-device-bitcode.cu in check-clang, and many LLVM tests, see comments on https:/
Revert "Cleanup codegen includes"
This reverts commit 7f230feeeac8a67b335f52bd2e900a05c6098f20. Breaks CodeGenCUDA/link-device-bitcode.cu in check-clang, and many LLVM tests, see comments on https://reviews.llvm.org/D121169
show more ...
|
#
7f230fee |
| 07-Mar-2022 |
serge-sans-paille <sguelton@redhat.com> |
Cleanup codegen includes
after: 1061034926 before: 1063332844
Differential Revision: https://reviews.llvm.org/D121169
|
Revision tags: llvmorg-14.0.0-rc2, llvmorg-14.0.0-rc1, llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2, llvmorg-13.0.1-rc1, llvmorg-13.0.0, llvmorg-13.0.0-rc4 |
|
#
d9b511d8 |
| 22-Sep-2021 |
Hongtao Yu <hoy@fb.com> |
[CSSPGO] Set PseudoProbeInserter as a default pass.
Currenlty PseudoProbeInserter is a pass conditioned on a target switch. It works well with a single clang invocation. It doesn't work so well when
[CSSPGO] Set PseudoProbeInserter as a default pass.
Currenlty PseudoProbeInserter is a pass conditioned on a target switch. It works well with a single clang invocation. It doesn't work so well when the backend is called separately (i.e, through the linker or llc), where user has always to pass -pseudo-probe-for-profiling explictly. I'm making the pass a default pass that requires no command line arg to trigger, but will be actually run depending on whether the CU comes with `llvm.pseudo_probe_desc` metadata.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D110209
show more ...
|
Revision tags: llvmorg-13.0.0-rc3, llvmorg-13.0.0-rc2, llvmorg-13.0.0-rc1, llvmorg-14-init, llvmorg-12.0.1, llvmorg-12.0.1-rc4, llvmorg-12.0.1-rc3 |
|
#
bd524955 |
| 17-Jun-2021 |
Hongtao Yu <hoy@fb.com> |
[CSSPGO] Undoing the concept of dangling pseudo probe
As a follow-up to https://reviews.llvm.org/D104129, I'm cleaning up the danling probe related code in both the compiler and llvm-profgen.
I'm s
[CSSPGO] Undoing the concept of dangling pseudo probe
As a follow-up to https://reviews.llvm.org/D104129, I'm cleaning up the danling probe related code in both the compiler and llvm-profgen.
I'm seeing a 5% size win for the pseudo_probe section for SPEC2017 and 10% for Ciner. Certain benchmark such as 602.gcc has a 20% size win. No obvious difference seen on build time for SPEC2017 and Cinder.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D104477
show more ...
|
Revision tags: llvmorg-12.0.1-rc2, llvmorg-12.0.1-rc1, llvmorg-12.0.0, llvmorg-12.0.0-rc5, llvmorg-12.0.0-rc4, llvmorg-12.0.0-rc3 |
|
#
c75da238 |
| 25-Feb-2021 |
Hongtao Yu <hoy@fb.com> |
[CSSPGO] Deduplicating dangling pseudo probes.
Same dangling probes are redundant since they all have the same semantic that is to rely on the counts inference tool to get reasonable count for the s
[CSSPGO] Deduplicating dangling pseudo probes.
Same dangling probes are redundant since they all have the same semantic that is to rely on the counts inference tool to get reasonable count for the same original block. Therefore, there's no need to keep multiple copies of them. I've seen jump threading created tons of redundant dangling probes that slowed down the compiler dramatically. Other optimization passes can also result in redundant probes though without an observed impact so far.
This change removes block-wise redundant dangling probes specifically introduced by jump threading. To support removing redundant dangling probes caused by all other passes, a final function-wise deduplication is also added.
An 18% size win of the .pseudo_probe section was seen for SPEC2017. No performance difference was observed.
Differential Revision: https://reviews.llvm.org/D97482
show more ...
|
#
ad2a59f5 |
| 25-Feb-2021 |
Hongtao Yu <hoy@fb.com> |
[CSSPGO] Introducing dangling pseudo probes.
Dangling probes are the probes associated to an empty block. This usually happens when all real instructions are optimized away from the block. There is
[CSSPGO] Introducing dangling pseudo probes.
Dangling probes are the probes associated to an empty block. This usually happens when all real instructions are optimized away from the block. There is a problem with dangling probes during the offline counts processing. The way the sample profiler works is that samples collected on the first physical instruction following a probe will be counted towards the probe. This logically equals to treating the instruction next to a probe as if it is from the same block of the probe. In the dangling probe case, the real instruction following a dangling probe actually starts a new block, and samples collected on the new block may cause issues when counted towards the empty block.
To mitigate this issue, we first try to move around a dangling probe inside its owning block. If there are still native instructions preceding the probe in the same block, we can then use them as a place holder to collect samples for the probe. A pass is added to walk each block backwards looking for probes not followed by any real instruction and moving them before the first real instruction. This is done right before the object emission.
If we are unlucky to find such in-block preceding instructions for a probe, the solution we are taking is to tag such probe as dangling so that the samples reported for them will not be trusted by the compiler. We leave it up to the counts inference algorithm to get such probes a reasonable count. The number `UINT64_MAX` is used to mark sample count as collected for a dangling probe.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D95962
show more ...
|
Revision tags: llvmorg-12.0.0-rc2, llvmorg-11.1.0, llvmorg-11.1.0-rc3, llvmorg-12.0.0-rc1, llvmorg-13-init, llvmorg-11.1.0-rc2, llvmorg-11.1.0-rc1, llvmorg-11.0.1, llvmorg-11.0.1-rc2 |
|
#
24d4291c |
| 02-Dec-2020 |
Hongtao Yu <hoy@fb.com> |
[CSSPGO] Pseudo probes for function calls.
An indirect call site needs to be probed for its potential call targets. With CSSPGO a direct call also needs a probe so that a calling context can be repr
[CSSPGO] Pseudo probes for function calls.
An indirect call site needs to be probed for its potential call targets. With CSSPGO a direct call also needs a probe so that a calling context can be represented by a stack of callsite probes. Unlike pseudo probes for basic blocks that are in form of standalone intrinsic call instructions, pseudo probes for callsites have to be attached to the call instruction, thus a separate instruction would not work.
One possible way of attaching a probe to a call instruction is to use a special metadata that carries information about the probe. The special metadata will have to make its way through the optimization pipeline down to object emission. This requires additional efforts to maintain the metadata in various places. Given that the `!dbg` metadata is a first-class metadata and has all essential support in place , leveraging the `!dbg` metadata as a channel to encode pseudo probe information is probably the easiest solution.
With the requirement of not inflating `!dbg` metadata that is allocated for almost every instruction, we found that the 32-bit DWARF discriminator field which mainly serves AutoFDO can be reused for pseudo probes. DWARF discriminators distinguish identical source locations between instructions and with pseudo probes such support is not required. In this change we are using the discriminator field to encode the ID and type of a callsite probe and the encoded value will be unpacked and consumed right before object emission. When a callsite is inlined, the callsite discriminator field will go with the inlined instructions. The `!dbg` metadata of an inlined instruction is in form of a scope stack. The top of the stack is the instruction's original `!dbg` metadata and the bottom of the stack is for the original callsite of the top-level inliner. Except for the top of the stack, all other elements of the stack actually refer to the nested inlined callsites whose discriminator field (which actually represents a calliste probe) can be used together to represent the inline context of an inlined PseudoProbeInst or CallInst.
To avoid collision with the baseline AutoFDO in various places that handles dwarf discriminators where a check against the `-pseudo-probe-for-profiling` switch is not available, a special encoding scheme is used to tell apart a pseudo probe discriminator from a regular discriminator. For the regular discriminator, if all lowest 3 bits are non-zero, it means the discriminator is basically empty and all higher 29 bits can be reversed for pseudo probe use.
Callsite pseudo probes are inserted in `SampleProfileProbePass` and a target-independent MIR pass `PseudoProbeInserter` is added to unpack the probe ID/type from `!dbg`.
Note that with this work the switch -debug-info-for-profiling will not work with -pseudo-probe-for-profiling anymore. They cannot be used at the same time.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D91756
show more ...
|