History log of /llvm-project/llvm/include/llvm/Transforms/Utils/CodeLayout.h (Results 1 – 9 of 9)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: llvmorg-21-init, llvmorg-19.1.7, llvmorg-19.1.6, llvmorg-19.1.5, llvmorg-19.1.4, llvmorg-19.1.3, llvmorg-19.1.2, llvmorg-19.1.1
# fbec1c2a 26-Sep-2024 Ellis Hoag <ellis.sparky.hoag@gmail.com>

[NFC][CodeLayout] Remove unused parameter (#110145)

The `NodeCounts` parameter of `calcExtTspScore()` is unused, so remove
it.
Use `SmallVector` since arrays are expected to be small since they
r

[NFC][CodeLayout] Remove unused parameter (#110145)

The `NodeCounts` parameter of `calcExtTspScore()` is unused, so remove
it.
Use `SmallVector` since arrays are expected to be small since they
represent MBBs.

show more ...


Revision tags: llvmorg-19.1.0, llvmorg-19.1.0-rc4, llvmorg-19.1.0-rc3, llvmorg-19.1.0-rc2, llvmorg-19.1.0-rc1, llvmorg-20-init, llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5
# d4360e42 11-Nov-2023 Kazu Hirata <kazu@google.com>

[llvm] Stop including llvm/ADT/DenseMap.h (NFC)

Ientified with clangd.


Revision tags: llvmorg-17.0.4
# a2441837 22-Oct-2023 Fangrui Song <i@maskray.me>

[CodeLayout] cache-directed sort: limit max chain size (#69039)

When linking an executable with a slightly larger executable,
ld.lld --call-graph-profile-sort=cdsort can be very slow (see #68638).

[CodeLayout] cache-directed sort: limit max chain size (#69039)

When linking an executable with a slightly larger executable,
ld.lld --call-graph-profile-sort=cdsort can be very slow (see #68638).
```
4.6% 20.7Mi .text.hot
3.5% 15.9Mi .text
3.4% 15.2Mi .text.unknown
```

Add cl option `cdsort-max-chain-size`, which is similar to
`ext-tsp-max-chain-size`, and set it to 128, to improve performance.

In `ld.lld @response.txt --threads=4 --call-graph-profile-sort=cdsort
--time-trace"
builds, the "Total Sort sections" time is measured as follows:

* -mllvm -cdsort-max-chain-size=64: 1.321813
* -mllvm -cdsort-max-chain-size=128: 2.030425
* -mllvm -cdsort-max-chain-size=256: 2.927684
* -mllvm -cdsort-max-chain-size=512: 5.493106
* unlimited: 9 minutes

The rest part takes 6.8s.

show more ...


Revision tags: llvmorg-17.0.3, llvmorg-17.0.2
# 6b8d04c2 21-Sep-2023 Fangrui Song <i@maskray.me>

[CodeLayout] Refactor std::vector uses, namespace, and EdgeCountT. NFC

* Place types and functions in the llvm::codelayout namespace
* Change EdgeCountT from pair<pair<uint64_t, uint64_t>, uint64_t>

[CodeLayout] Refactor std::vector uses, namespace, and EdgeCountT. NFC

* Place types and functions in the llvm::codelayout namespace
* Change EdgeCountT from pair<pair<uint64_t, uint64_t>, uint64_t> to a struct and utilize structured bindings.
It is not conventional to use the "T" suffix for structure types.
* Remove a redundant copy in ChainT::merge.
* Change {ExtTSPImpl,CDSortImpl}::run to use return value instead of an output parameter
* Rename applyCDSLayout to computeCacheDirectedLayout: (a) avoid rare
abbreviation "CDS" (cache-directed sort) (b) "compute" is more conventional
for the specific use case
* Change the parameter types from std::vector to ArrayRef so that
SmallVector arguments can be used.
* Similarly, rename applyExtTspLayout to computeExtTspLayout.

Reviewed By: Amir

Differential Revision: https://reviews.llvm.org/D159526

show more ...


Revision tags: llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init
# bc59faa8 13-Jun-2023 spupyrev <spupyrev@fb.com>

A new code layout algorithm for function reordering [2/3]

We are bringing a new algorithm for function layout (reordering) based on the
call graph (extracted from a profile data). The algorithm is a

A new code layout algorithm for function reordering [2/3]

We are bringing a new algorithm for function layout (reordering) based on the
call graph (extracted from a profile data). The algorithm is an improvement of
top of a known heuristic, C^3. It tries to co-locate hot and frequently executed
together functions in the resulting ordering. Unlike C^3, it explores a larger
search space and have an objective closely tied to the performance of
instruction and i-TLB caches. Hence, the name CDS = Cache-Directed Sort.
The algorithm can be used at the linking or post-linking (e.g., BOLT) stage.

The algorithm shares some similarities with C^3 and an approach for basic block
reordering (ext-tsp). It works with chains (ordered lists)
of functions. Initially all chains are isolated functions. On every iteration,
we pick a pair of chains whose merging yields the biggest increase in the
objective, which is a weighted combination of frequency-based and distance-based
locality. That is, we try to co-locate hot functions together (so they can share
the cache lines) and functions frequently executed together. The merging process
stops when there is only one chain left, or when merging does not improve the
objective. In the latter case, the remaining chains are sorted by density in the
decreasing order.

**Complexity**
We regularly apply the algorithm for large data-center binaries containing 10K+
(hot) functions, and the algorithm takes only a few seconds. For some extreme
cases with 100K-1M nodes, the runtime is within minutes.

**Perf-impact**
We extensively tested the implementation extensively on a benchmark of isolated
binaries and prod services. The impact is measurable for "larger" binaries that
are front-end bound: the cpu time improvement (on top of C^3) is in the range
of [0% .. 1%], which is a result of a reduced i-TLB miss rate (by up to 20%) and
i-cache miss rate (up to 5%).

Reviewed By: rahmanl

Differential Revision: https://reviews.llvm.org/D152834

show more ...


Revision tags: llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7, llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, working, llvmorg-15.0.2, llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init
# 8d5b694d 15-Jul-2022 spupyrev <spupyrev@fb.com>

extending code layout alg

The diff modifies ext-tsp code layout algorithm in the following ways:
(i) fixes merging of cold block chains (this is a port of D129397);
(ii) adjusts the cost model utili

extending code layout alg

The diff modifies ext-tsp code layout algorithm in the following ways:
(i) fixes merging of cold block chains (this is a port of D129397);
(ii) adjusts the cost model utilized for optimization;
(iii) adjusts some APIs so that the implementation can be used in BOLT; this is
a prerequisite for D129895.

The only non-trivial change is (ii). Here we introduce different weights for
conditional and unconditional branches in the cost model. Based on the new model
it is slightly more important to increase the number of "fall-through
unconditional" jumps, which makes sense, as placing two blocks with an
unconditional jump next to each other reduces the number of jump instructions in
the generated code. Experimentally, this makes a mild impact on the performance;
I've seen up to 0.2%-0.3% perf win on some benchmarks.

Reviewed By: hoy

Differential Revision: https://reviews.llvm.org/D129893

show more ...


Revision tags: llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1, llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3, llvmorg-14.0.0-rc2, llvmorg-14.0.0-rc1, llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2
# f85c91f1 01-Jan-2022 Kazu Hirata <kazu@google.com>

[Transforms] Remove unused forward declarations (NFC)


Revision tags: llvmorg-13.0.1-rc1
# f573f686 08-Nov-2021 spupyrev <spupyrev@fb.com>

ext-tsp basic block layout

A new basic block ordering improving existing MachineBlockPlacement.

The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
optimizing jump locality

ext-tsp basic block layout

A new basic block ordering improving existing MachineBlockPlacement.

The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
optimizing jump locality and thus processor I-cache utilization. This is
achieved via increasing the number of fall-through jumps and co-locating
frequently executed nodes together. The name follows the underlying
optimization problem, Extended-TSP, which is a generalization of classical
(maximum) Traveling Salesmen Problem.

The algorithm is a greedy heuristic that works with chains (ordered lists)
of basic blocks. Initially all chains are isolated basic blocks. On every
iteration, we pick a pair of chains whose merging yields the biggest increase
in the ExtTSP value, which models how i-cache "friendly" a specific chain is.
A pair of chains giving the maximum gain is merged into a new chain. The
procedure stops when there is only one chain left, or when merging does not
increase ExtTSP. In the latter case, the remaining chains are sorted by
density in decreasing order.

An important aspect is the way two chains are merged. Unlike earlier
algorithms (e.g., based on the approach of Pettis-Hansen), two
chains, X and Y, are first split into three, X1, X2, and Y. Then we
consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
This improves the quality of the final result (the search space is larger)
while keeping the implementation sufficiently fast.

Differential Revision: https://reviews.llvm.org/D113424

show more ...


# c68f71eb 08-Nov-2021 spupyrev <spupyrev@fb.com>

ext-tsp basic block layout

A new basic block ordering improving existing MachineBlockPlacement.

The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
optimizing jump locality

ext-tsp basic block layout

A new basic block ordering improving existing MachineBlockPlacement.

The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
optimizing jump locality and thus processor I-cache utilization. This is
achieved via increasing the number of fall-through jumps and co-locating
frequently executed nodes together. The name follows the underlying
optimization problem, Extended-TSP, which is a generalization of classical
(maximum) Traveling Salesmen Problem.

The algorithm is a greedy heuristic that works with chains (ordered lists)
of basic blocks. Initially all chains are isolated basic blocks. On every
iteration, we pick a pair of chains whose merging yields the biggest increase
in the ExtTSP value, which models how i-cache "friendly" a specific chain is.
A pair of chains giving the maximum gain is merged into a new chain. The
procedure stops when there is only one chain left, or when merging does not
increase ExtTSP. In the latter case, the remaining chains are sorted by
density in decreasing order.

An important aspect is the way two chains are merged. Unlike earlier
algorithms (e.g., based on the approach of Pettis-Hansen), two
chains, X and Y, are first split into three, X1, X2, and Y. Then we
consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
This improves the quality of the final result (the search space is larger)
while keeping the implementation sufficiently fast.

Differential Revision: https://reviews.llvm.org/D113424

show more ...