xref: /dpdk/lib/lpm/rte_lpm6.c (revision e1a06e391ba74f9c4d46a6ecef6d8ee084f4229e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 #include <string.h>
5 #include <stdalign.h>
6 #include <stdint.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <sys/queue.h>
10 
11 #include <rte_log.h>
12 #include <rte_common.h>
13 #include <rte_malloc.h>
14 #include <rte_memcpy.h>
15 #include <rte_eal_memconfig.h>
16 #include <rte_string_fns.h>
17 #include <rte_errno.h>
18 #include <rte_hash.h>
19 #include <assert.h>
20 #include <rte_jhash.h>
21 #include <rte_tailq.h>
22 
23 #include "rte_lpm6.h"
24 #include "lpm_log.h"
25 
26 #define RTE_LPM6_TBL24_NUM_ENTRIES        (1 << 24)
27 #define RTE_LPM6_TBL8_GROUP_NUM_ENTRIES         256
28 #define RTE_LPM6_TBL8_MAX_NUM_GROUPS      (1 << 21)
29 
30 #define RTE_LPM6_VALID_EXT_ENTRY_BITMASK 0xA0000000
31 #define RTE_LPM6_LOOKUP_SUCCESS          0x20000000
32 #define RTE_LPM6_TBL8_BITMASK            0x001FFFFF
33 
34 #define ADD_FIRST_BYTE                            3
35 #define LOOKUP_FIRST_BYTE                         4
36 #define BYTE_SIZE                                 8
37 #define BYTES2_SIZE                              16
38 
39 #define RULE_HASH_TABLE_EXTRA_SPACE              64
40 #define TBL24_IND                        UINT32_MAX
41 
42 #define lpm6_tbl8_gindex next_hop
43 
44 /** Flags for setting an entry as valid/invalid. */
45 enum valid_flag {
46 	INVALID = 0,
47 	VALID
48 };
49 
50 TAILQ_HEAD(rte_lpm6_list, rte_tailq_entry);
51 
52 static struct rte_tailq_elem rte_lpm6_tailq = {
53 	.name = "RTE_LPM6",
54 };
55 EAL_REGISTER_TAILQ(rte_lpm6_tailq)
56 
57 /** Tbl entry structure. It is the same for both tbl24 and tbl8 */
58 struct rte_lpm6_tbl_entry {
59 	uint32_t next_hop:	21;  /**< Next hop / next table to be checked. */
60 	uint32_t depth	:8;      /**< Rule depth. */
61 
62 	/* Flags. */
63 	uint32_t valid     :1;   /**< Validation flag. */
64 	uint32_t valid_group :1; /**< Group validation flag. */
65 	uint32_t ext_entry :1;   /**< External entry. */
66 };
67 
68 /** Rules tbl entry structure. */
69 struct rte_lpm6_rule {
70 	struct rte_ipv6_addr ip; /**< Rule IP address. */
71 	uint32_t next_hop; /**< Rule next hop. */
72 	uint8_t depth; /**< Rule depth. */
73 };
74 
75 /** Rules tbl entry key. */
76 struct rte_lpm6_rule_key {
77 	struct rte_ipv6_addr ip; /**< Rule IP address. */
78 	uint32_t depth; /**< Rule depth. */
79 };
80 
81 /* Header of tbl8 */
82 struct rte_lpm_tbl8_hdr {
83 	uint32_t owner_tbl_ind; /**< owner table: TBL24_IND if owner is tbl24,
84 				  *  otherwise index of tbl8
85 				  */
86 	uint32_t owner_entry_ind; /**< index of the owner table entry where
87 				    *  pointer to the tbl8 is stored
88 				    */
89 	uint32_t ref_cnt; /**< table reference counter */
90 };
91 
92 /** LPM6 structure. */
93 struct rte_lpm6 {
94 	/* LPM metadata. */
95 	char name[RTE_LPM6_NAMESIZE];    /**< Name of the lpm. */
96 	uint32_t max_rules;              /**< Max number of rules. */
97 	uint32_t used_rules;             /**< Used rules so far. */
98 	uint32_t number_tbl8s;           /**< Number of tbl8s to allocate. */
99 
100 	/* LPM Tables. */
101 	struct rte_hash *rules_tbl; /**< LPM rules. */
102 	alignas(RTE_CACHE_LINE_SIZE) struct rte_lpm6_tbl_entry tbl24[RTE_LPM6_TBL24_NUM_ENTRIES];
103 			/**< LPM tbl24 table. */
104 
105 	uint32_t *tbl8_pool; /**< pool of indexes of free tbl8s */
106 	uint32_t tbl8_pool_pos; /**< current position in the tbl8 pool */
107 
108 	struct rte_lpm_tbl8_hdr *tbl8_hdrs; /* array of tbl8 headers */
109 
110 	alignas(RTE_CACHE_LINE_SIZE) struct rte_lpm6_tbl_entry tbl8[];
111 			/**< LPM tbl8 table. */
112 };
113 
114 /*
115  * LPM6 rule hash function
116  *
117  * It's used as a hash function for the rte_hash
118  *	containing rules
119  */
120 static inline uint32_t
121 rule_hash(const void *data, __rte_unused uint32_t data_len,
122 		  uint32_t init_val)
123 {
124 	return rte_jhash(data, sizeof(struct rte_lpm6_rule_key), init_val);
125 }
126 
127 /*
128  * Init pool of free tbl8 indexes
129  */
130 static void
131 tbl8_pool_init(struct rte_lpm6 *lpm)
132 {
133 	uint32_t i;
134 
135 	/* put entire range of indexes to the tbl8 pool */
136 	for (i = 0; i < lpm->number_tbl8s; i++)
137 		lpm->tbl8_pool[i] = i;
138 
139 	lpm->tbl8_pool_pos = 0;
140 }
141 
142 /*
143  * Get an index of a free tbl8 from the pool
144  */
145 static inline uint32_t
146 tbl8_get(struct rte_lpm6 *lpm, uint32_t *tbl8_ind)
147 {
148 	if (lpm->tbl8_pool_pos == lpm->number_tbl8s)
149 		/* no more free tbl8 */
150 		return -ENOSPC;
151 
152 	/* next index */
153 	*tbl8_ind = lpm->tbl8_pool[lpm->tbl8_pool_pos++];
154 	return 0;
155 }
156 
157 /*
158  * Put an index of a free tbl8 back to the pool
159  */
160 static inline uint32_t
161 tbl8_put(struct rte_lpm6 *lpm, uint32_t tbl8_ind)
162 {
163 	if (lpm->tbl8_pool_pos == 0)
164 		/* pool is full */
165 		return -ENOSPC;
166 
167 	lpm->tbl8_pool[--lpm->tbl8_pool_pos] = tbl8_ind;
168 	return 0;
169 }
170 
171 /*
172  * Returns number of tbl8s available in the pool
173  */
174 static inline uint32_t
175 tbl8_available(struct rte_lpm6 *lpm)
176 {
177 	return lpm->number_tbl8s - lpm->tbl8_pool_pos;
178 }
179 
180 /*
181  * Init a rule key.
182  *	  note that ip must be already masked
183  */
184 static inline void
185 rule_key_init(struct rte_lpm6_rule_key *key, const struct rte_ipv6_addr *ip, uint8_t depth)
186 {
187 	key->ip = *ip;
188 	key->depth = depth;
189 }
190 
191 /*
192  * Rebuild the entire LPM tree by reinserting all rules
193  */
194 static void
195 rebuild_lpm(struct rte_lpm6 *lpm)
196 {
197 	uint64_t next_hop;
198 	struct rte_lpm6_rule_key *rule_key;
199 	uint32_t iter = 0;
200 
201 	while (rte_hash_iterate(lpm->rules_tbl, (void *) &rule_key,
202 			(void **) &next_hop, &iter) >= 0)
203 		rte_lpm6_add(lpm, &rule_key->ip, rule_key->depth,
204 			(uint32_t) next_hop);
205 }
206 
207 /*
208  * Allocates memory for LPM object
209  */
210 struct rte_lpm6 *
211 rte_lpm6_create(const char *name, int socket_id,
212 		const struct rte_lpm6_config *config)
213 {
214 	char mem_name[RTE_LPM6_NAMESIZE];
215 	struct rte_lpm6 *lpm = NULL;
216 	struct rte_tailq_entry *te;
217 	uint64_t mem_size;
218 	struct rte_lpm6_list *lpm_list;
219 	struct rte_hash *rules_tbl = NULL;
220 	uint32_t *tbl8_pool = NULL;
221 	struct rte_lpm_tbl8_hdr *tbl8_hdrs = NULL;
222 
223 	lpm_list = RTE_TAILQ_CAST(rte_lpm6_tailq.head, rte_lpm6_list);
224 
225 	RTE_BUILD_BUG_ON(sizeof(struct rte_lpm6_tbl_entry) != sizeof(uint32_t));
226 	RTE_BUILD_BUG_ON(sizeof(struct rte_lpm6_rule_key) %
227 		sizeof(uint32_t) != 0);
228 
229 	/* Check user arguments. */
230 	if ((name == NULL) || (socket_id < -1) || (config == NULL) ||
231 			(config->max_rules == 0) ||
232 			config->number_tbl8s > RTE_LPM6_TBL8_MAX_NUM_GROUPS) {
233 		rte_errno = EINVAL;
234 		return NULL;
235 	}
236 
237 	/* create rules hash table */
238 	snprintf(mem_name, sizeof(mem_name), "LRH_%s", name);
239 	struct rte_hash_parameters rule_hash_tbl_params = {
240 		.entries = config->max_rules * 1.2 +
241 			RULE_HASH_TABLE_EXTRA_SPACE,
242 		.key_len = sizeof(struct rte_lpm6_rule_key),
243 		.hash_func = rule_hash,
244 		.hash_func_init_val = 0,
245 		.name = mem_name,
246 		.reserved = 0,
247 		.socket_id = socket_id,
248 		.extra_flag = 0
249 	};
250 
251 	rules_tbl = rte_hash_create(&rule_hash_tbl_params);
252 	if (rules_tbl == NULL) {
253 		LPM_LOG(ERR, "LPM rules hash table allocation failed: %s (%d)",
254 				  rte_strerror(rte_errno), rte_errno);
255 		goto fail_wo_unlock;
256 	}
257 
258 	/* allocate tbl8 indexes pool */
259 	tbl8_pool = rte_malloc(NULL,
260 			sizeof(uint32_t) * config->number_tbl8s,
261 			RTE_CACHE_LINE_SIZE);
262 	if (tbl8_pool == NULL) {
263 		LPM_LOG(ERR, "LPM tbl8 pool allocation failed: %s (%d)",
264 				  rte_strerror(rte_errno), rte_errno);
265 		rte_errno = ENOMEM;
266 		goto fail_wo_unlock;
267 	}
268 
269 	/* allocate tbl8 headers */
270 	tbl8_hdrs = rte_malloc(NULL,
271 			sizeof(struct rte_lpm_tbl8_hdr) * config->number_tbl8s,
272 			RTE_CACHE_LINE_SIZE);
273 	if (tbl8_hdrs == NULL) {
274 		LPM_LOG(ERR, "LPM tbl8 headers allocation failed: %s (%d)",
275 				  rte_strerror(rte_errno), rte_errno);
276 		rte_errno = ENOMEM;
277 		goto fail_wo_unlock;
278 	}
279 
280 	snprintf(mem_name, sizeof(mem_name), "LPM_%s", name);
281 
282 	/* Determine the amount of memory to allocate. */
283 	mem_size = sizeof(*lpm) + (sizeof(lpm->tbl8[0]) *
284 			RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * config->number_tbl8s);
285 
286 	rte_mcfg_tailq_write_lock();
287 
288 	/* Guarantee there's no existing */
289 	TAILQ_FOREACH(te, lpm_list, next) {
290 		lpm = (struct rte_lpm6 *) te->data;
291 		if (strncmp(name, lpm->name, RTE_LPM6_NAMESIZE) == 0)
292 			break;
293 	}
294 	lpm = NULL;
295 	if (te != NULL) {
296 		rte_errno = EEXIST;
297 		goto fail;
298 	}
299 
300 	/* allocate tailq entry */
301 	te = rte_zmalloc("LPM6_TAILQ_ENTRY", sizeof(*te), 0);
302 	if (te == NULL) {
303 		LPM_LOG(ERR, "Failed to allocate tailq entry!");
304 		rte_errno = ENOMEM;
305 		goto fail;
306 	}
307 
308 	/* Allocate memory to store the LPM data structures. */
309 	lpm = rte_zmalloc_socket(mem_name, (size_t)mem_size,
310 			RTE_CACHE_LINE_SIZE, socket_id);
311 
312 	if (lpm == NULL) {
313 		LPM_LOG(ERR, "LPM memory allocation failed");
314 		rte_free(te);
315 		rte_errno = ENOMEM;
316 		goto fail;
317 	}
318 
319 	/* Save user arguments. */
320 	lpm->max_rules = config->max_rules;
321 	lpm->number_tbl8s = config->number_tbl8s;
322 	strlcpy(lpm->name, name, sizeof(lpm->name));
323 	lpm->rules_tbl = rules_tbl;
324 	lpm->tbl8_pool = tbl8_pool;
325 	lpm->tbl8_hdrs = tbl8_hdrs;
326 
327 	/* init the stack */
328 	tbl8_pool_init(lpm);
329 
330 	te->data = (void *) lpm;
331 
332 	TAILQ_INSERT_TAIL(lpm_list, te, next);
333 	rte_mcfg_tailq_write_unlock();
334 	return lpm;
335 
336 fail:
337 	rte_mcfg_tailq_write_unlock();
338 
339 fail_wo_unlock:
340 	rte_free(tbl8_hdrs);
341 	rte_free(tbl8_pool);
342 	rte_hash_free(rules_tbl);
343 
344 	return NULL;
345 }
346 
347 /*
348  * Find an existing lpm table and return a pointer to it.
349  */
350 struct rte_lpm6 *
351 rte_lpm6_find_existing(const char *name)
352 {
353 	struct rte_lpm6 *l = NULL;
354 	struct rte_tailq_entry *te;
355 	struct rte_lpm6_list *lpm_list;
356 
357 	lpm_list = RTE_TAILQ_CAST(rte_lpm6_tailq.head, rte_lpm6_list);
358 
359 	rte_mcfg_tailq_read_lock();
360 	TAILQ_FOREACH(te, lpm_list, next) {
361 		l = (struct rte_lpm6 *) te->data;
362 		if (strncmp(name, l->name, RTE_LPM6_NAMESIZE) == 0)
363 			break;
364 	}
365 	rte_mcfg_tailq_read_unlock();
366 
367 	if (te == NULL) {
368 		rte_errno = ENOENT;
369 		return NULL;
370 	}
371 
372 	return l;
373 }
374 
375 /*
376  * Deallocates memory for given LPM table.
377  */
378 void
379 rte_lpm6_free(struct rte_lpm6 *lpm)
380 {
381 	struct rte_lpm6_list *lpm_list;
382 	struct rte_tailq_entry *te;
383 
384 	/* Check user arguments. */
385 	if (lpm == NULL)
386 		return;
387 
388 	lpm_list = RTE_TAILQ_CAST(rte_lpm6_tailq.head, rte_lpm6_list);
389 
390 	rte_mcfg_tailq_write_lock();
391 
392 	/* find our tailq entry */
393 	TAILQ_FOREACH(te, lpm_list, next) {
394 		if (te->data == (void *) lpm)
395 			break;
396 	}
397 
398 	if (te != NULL)
399 		TAILQ_REMOVE(lpm_list, te, next);
400 
401 	rte_mcfg_tailq_write_unlock();
402 
403 	rte_free(lpm->tbl8_hdrs);
404 	rte_free(lpm->tbl8_pool);
405 	rte_hash_free(lpm->rules_tbl);
406 	rte_free(lpm);
407 	rte_free(te);
408 }
409 
410 /* Find a rule */
411 static inline int
412 rule_find_with_key(struct rte_lpm6 *lpm,
413 		  const struct rte_lpm6_rule_key *rule_key,
414 		  uint32_t *next_hop)
415 {
416 	uint64_t hash_val;
417 	int ret;
418 
419 	/* lookup for a rule */
420 	ret = rte_hash_lookup_data(lpm->rules_tbl, (const void *) rule_key,
421 		(void **) &hash_val);
422 	if (ret >= 0) {
423 		*next_hop = (uint32_t) hash_val;
424 		return 1;
425 	}
426 
427 	return 0;
428 }
429 
430 /* Find a rule */
431 static int
432 rule_find(struct rte_lpm6 *lpm, struct rte_ipv6_addr *ip, uint8_t depth,
433 		  uint32_t *next_hop)
434 {
435 	struct rte_lpm6_rule_key rule_key;
436 
437 	/* init a rule key */
438 	rule_key_init(&rule_key, ip, depth);
439 
440 	return rule_find_with_key(lpm, &rule_key, next_hop);
441 }
442 
443 /*
444  * Checks if a rule already exists in the rules table and updates
445  * the nexthop if so. Otherwise it adds a new rule if enough space is available.
446  *
447  * Returns:
448  *    0 - next hop of existed rule is updated
449  *    1 - new rule successfully added
450  *   <0 - error
451  */
452 static inline int
453 rule_add(struct rte_lpm6 *lpm, struct rte_ipv6_addr *ip, uint8_t depth, uint32_t next_hop)
454 {
455 	int ret, rule_exist;
456 	struct rte_lpm6_rule_key rule_key;
457 	uint32_t unused;
458 
459 	/* init a rule key */
460 	rule_key_init(&rule_key, ip, depth);
461 
462 	/* Scan through rule list to see if rule already exists. */
463 	rule_exist = rule_find_with_key(lpm, &rule_key, &unused);
464 
465 	/*
466 	 * If rule does not exist check if there is space to add a new rule to
467 	 * this rule group. If there is no space return error.
468 	 */
469 	if (!rule_exist && lpm->used_rules == lpm->max_rules)
470 		return -ENOSPC;
471 
472 	/* add the rule or update rules next hop */
473 	ret = rte_hash_add_key_data(lpm->rules_tbl, &rule_key,
474 		(void *)(uintptr_t) next_hop);
475 	if (ret < 0)
476 		return ret;
477 
478 	/* Increment the used rules counter for this rule group. */
479 	if (!rule_exist) {
480 		lpm->used_rules++;
481 		return 1;
482 	}
483 
484 	return 0;
485 }
486 
487 /*
488  * Function that expands a rule across the data structure when a less-generic
489  * one has been added before. It assures that every possible combination of bits
490  * in the IP address returns a match.
491  */
492 static void
493 expand_rule(struct rte_lpm6 *lpm, uint32_t tbl8_gindex, uint8_t old_depth,
494 		uint8_t new_depth, uint32_t next_hop, uint8_t valid)
495 {
496 	uint32_t tbl8_group_end, tbl8_gindex_next, j;
497 
498 	tbl8_group_end = tbl8_gindex + RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
499 
500 	struct rte_lpm6_tbl_entry new_tbl8_entry = {
501 		.valid = valid,
502 		.valid_group = valid,
503 		.depth = new_depth,
504 		.next_hop = next_hop,
505 		.ext_entry = 0,
506 	};
507 
508 	for (j = tbl8_gindex; j < tbl8_group_end; j++) {
509 		if (!lpm->tbl8[j].valid || (lpm->tbl8[j].ext_entry == 0
510 				&& lpm->tbl8[j].depth <= old_depth)) {
511 
512 			lpm->tbl8[j] = new_tbl8_entry;
513 
514 		} else if (lpm->tbl8[j].ext_entry == 1) {
515 
516 			tbl8_gindex_next = lpm->tbl8[j].lpm6_tbl8_gindex
517 					* RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
518 			expand_rule(lpm, tbl8_gindex_next, old_depth, new_depth,
519 					next_hop, valid);
520 		}
521 	}
522 }
523 
524 /*
525  * Init a tbl8 header
526  */
527 static inline void
528 init_tbl8_header(struct rte_lpm6 *lpm, uint32_t tbl_ind,
529 		uint32_t owner_tbl_ind, uint32_t owner_entry_ind)
530 {
531 	struct rte_lpm_tbl8_hdr *tbl_hdr = &lpm->tbl8_hdrs[tbl_ind];
532 	tbl_hdr->owner_tbl_ind = owner_tbl_ind;
533 	tbl_hdr->owner_entry_ind = owner_entry_ind;
534 	tbl_hdr->ref_cnt = 0;
535 }
536 
537 /*
538  * Calculate index to the table based on the number and position
539  * of the bytes being inspected in this step.
540  */
541 static uint32_t
542 get_bitshift(const struct rte_ipv6_addr *ip, uint8_t first_byte, uint8_t bytes)
543 {
544 	uint32_t entry_ind, i;
545 	int8_t bitshift;
546 
547 	entry_ind = 0;
548 	for (i = first_byte; i < (uint32_t)(first_byte + bytes); i++) {
549 		bitshift = (int8_t)((bytes - i)*BYTE_SIZE);
550 
551 		if (bitshift < 0)
552 			bitshift = 0;
553 		entry_ind = entry_ind | ip->a[i-1] << bitshift;
554 	}
555 
556 	return entry_ind;
557 }
558 
559 /*
560  * Simulate adding a new route to the LPM counting number
561  * of new tables that will be needed
562  *
563  * It returns 0 on success, or 1 if
564  * the process needs to be continued by calling the function again.
565  */
566 static inline int
567 simulate_add_step(struct rte_lpm6 *lpm, struct rte_lpm6_tbl_entry *tbl,
568 		struct rte_lpm6_tbl_entry **next_tbl, const struct rte_ipv6_addr *ip,
569 		uint8_t bytes, uint8_t first_byte, uint8_t depth,
570 		uint32_t *need_tbl_nb)
571 {
572 	uint32_t entry_ind;
573 	uint8_t bits_covered;
574 	uint32_t next_tbl_ind;
575 
576 	/*
577 	 * Calculate index to the table based on the number and position
578 	 * of the bytes being inspected in this step.
579 	 */
580 	entry_ind = get_bitshift(ip, first_byte, bytes);
581 
582 	/* Number of bits covered in this step */
583 	bits_covered = (uint8_t)((bytes+first_byte-1)*BYTE_SIZE);
584 
585 	if (depth <= bits_covered) {
586 		*need_tbl_nb = 0;
587 		return 0;
588 	}
589 
590 	if (tbl[entry_ind].valid == 0 || tbl[entry_ind].ext_entry == 0) {
591 		/* from this point on a new table is needed on each level
592 		 * that is not covered yet
593 		 */
594 		depth -= bits_covered;
595 		uint32_t cnt = depth >> 3; /* depth / BYTE_SIZE */
596 		if (depth & 7) /* 0b00000111 */
597 			/* if depth % 8 > 0 then one more table is needed
598 			 * for those last bits
599 			 */
600 			cnt++;
601 
602 		*need_tbl_nb = cnt;
603 		return 0;
604 	}
605 
606 	next_tbl_ind = tbl[entry_ind].lpm6_tbl8_gindex;
607 	*next_tbl = &(lpm->tbl8[next_tbl_ind *
608 		RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]);
609 	*need_tbl_nb = 0;
610 	return 1;
611 }
612 
613 /*
614  * Partially adds a new route to the data structure (tbl24+tbl8s).
615  * It returns 0 on success, a negative number on failure, or 1 if
616  * the process needs to be continued by calling the function again.
617  */
618 static inline int
619 add_step(struct rte_lpm6 *lpm, struct rte_lpm6_tbl_entry *tbl,
620 		uint32_t tbl_ind, struct rte_lpm6_tbl_entry **next_tbl,
621 		uint32_t *next_tbl_ind, struct rte_ipv6_addr *ip, uint8_t bytes,
622 		uint8_t first_byte, uint8_t depth, uint32_t next_hop,
623 		uint8_t is_new_rule)
624 {
625 	uint32_t entry_ind, tbl_range, tbl8_group_start, tbl8_group_end, i;
626 	uint32_t tbl8_gindex;
627 	uint8_t bits_covered;
628 	int ret;
629 
630 	/*
631 	 * Calculate index to the table based on the number and position
632 	 * of the bytes being inspected in this step.
633 	 */
634 	entry_ind = get_bitshift(ip, first_byte, bytes);
635 
636 	/* Number of bits covered in this step */
637 	bits_covered = (uint8_t)((bytes+first_byte-1)*BYTE_SIZE);
638 
639 	/*
640 	 * If depth if smaller than this number (ie this is the last step)
641 	 * expand the rule across the relevant positions in the table.
642 	 */
643 	if (depth <= bits_covered) {
644 		tbl_range = 1 << (bits_covered - depth);
645 
646 		for (i = entry_ind; i < (entry_ind + tbl_range); i++) {
647 			if (!tbl[i].valid || (tbl[i].ext_entry == 0 &&
648 					tbl[i].depth <= depth)) {
649 
650 				struct rte_lpm6_tbl_entry new_tbl_entry = {
651 					.next_hop = next_hop,
652 					.depth = depth,
653 					.valid = VALID,
654 					.valid_group = VALID,
655 					.ext_entry = 0,
656 				};
657 
658 				tbl[i] = new_tbl_entry;
659 
660 			} else if (tbl[i].ext_entry == 1) {
661 
662 				/*
663 				 * If tbl entry is valid and extended calculate the index
664 				 * into next tbl8 and expand the rule across the data structure.
665 				 */
666 				tbl8_gindex = tbl[i].lpm6_tbl8_gindex *
667 						RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
668 				expand_rule(lpm, tbl8_gindex, depth, depth,
669 						next_hop, VALID);
670 			}
671 		}
672 
673 		/* update tbl8 rule reference counter */
674 		if (tbl_ind != TBL24_IND && is_new_rule)
675 			lpm->tbl8_hdrs[tbl_ind].ref_cnt++;
676 
677 		return 0;
678 	}
679 	/*
680 	 * If this is not the last step just fill one position
681 	 * and calculate the index to the next table.
682 	 */
683 	else {
684 		/* If it's invalid a new tbl8 is needed */
685 		if (!tbl[entry_ind].valid) {
686 			/* get a new table */
687 			ret = tbl8_get(lpm, &tbl8_gindex);
688 			if (ret != 0)
689 				return -ENOSPC;
690 
691 			/* invalidate all new tbl8 entries */
692 			tbl8_group_start = tbl8_gindex *
693 					RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
694 			memset(&lpm->tbl8[tbl8_group_start], 0,
695 					RTE_LPM6_TBL8_GROUP_NUM_ENTRIES *
696 					sizeof(struct rte_lpm6_tbl_entry));
697 
698 			/* init the new table's header:
699 			 *   save the reference to the owner table
700 			 */
701 			init_tbl8_header(lpm, tbl8_gindex, tbl_ind, entry_ind);
702 
703 			/* reference to a new tbl8 */
704 			struct rte_lpm6_tbl_entry new_tbl_entry = {
705 				.lpm6_tbl8_gindex = tbl8_gindex,
706 				.depth = 0,
707 				.valid = VALID,
708 				.valid_group = VALID,
709 				.ext_entry = 1,
710 			};
711 
712 			tbl[entry_ind] = new_tbl_entry;
713 
714 			/* update the current table's reference counter */
715 			if (tbl_ind != TBL24_IND)
716 				lpm->tbl8_hdrs[tbl_ind].ref_cnt++;
717 		}
718 		/*
719 		 * If it's valid but not extended the rule that was stored
720 		 * here needs to be moved to the next table.
721 		 */
722 		else if (tbl[entry_ind].ext_entry == 0) {
723 			/* get a new tbl8 index */
724 			ret = tbl8_get(lpm, &tbl8_gindex);
725 			if (ret != 0)
726 				return -ENOSPC;
727 
728 			tbl8_group_start = tbl8_gindex *
729 					RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
730 			tbl8_group_end = tbl8_group_start +
731 					RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
732 
733 			struct rte_lpm6_tbl_entry tbl_entry = {
734 				.next_hop = tbl[entry_ind].next_hop,
735 				.depth = tbl[entry_ind].depth,
736 				.valid = VALID,
737 				.valid_group = VALID,
738 				.ext_entry = 0
739 			};
740 
741 			/* Populate new tbl8 with tbl value. */
742 			for (i = tbl8_group_start; i < tbl8_group_end; i++)
743 				lpm->tbl8[i] = tbl_entry;
744 
745 			/* init the new table's header:
746 			 *   save the reference to the owner table
747 			 */
748 			init_tbl8_header(lpm, tbl8_gindex, tbl_ind, entry_ind);
749 
750 			/*
751 			 * Update tbl entry to point to new tbl8 entry. Note: The
752 			 * ext_flag and tbl8_index need to be updated simultaneously,
753 			 * so assign whole structure in one go.
754 			 */
755 			struct rte_lpm6_tbl_entry new_tbl_entry = {
756 				.lpm6_tbl8_gindex = tbl8_gindex,
757 				.depth = 0,
758 				.valid = VALID,
759 				.valid_group = VALID,
760 				.ext_entry = 1,
761 			};
762 
763 			tbl[entry_ind] = new_tbl_entry;
764 
765 			/* update the current table's reference counter */
766 			if (tbl_ind != TBL24_IND)
767 				lpm->tbl8_hdrs[tbl_ind].ref_cnt++;
768 		}
769 
770 		*next_tbl_ind = tbl[entry_ind].lpm6_tbl8_gindex;
771 		*next_tbl = &(lpm->tbl8[*next_tbl_ind *
772 				  RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]);
773 	}
774 
775 	return 1;
776 }
777 
778 /*
779  * Simulate adding a route to LPM
780  *
781  *	Returns:
782  *    0 on success
783  *    -ENOSPC not enough tbl8 left
784  */
785 static int
786 simulate_add(struct rte_lpm6 *lpm, const struct rte_ipv6_addr *masked_ip, uint8_t depth)
787 {
788 	struct rte_lpm6_tbl_entry *tbl;
789 	struct rte_lpm6_tbl_entry *tbl_next = NULL;
790 	int ret, i;
791 
792 	/* number of new tables needed for a step */
793 	uint32_t need_tbl_nb;
794 	/* total number of new tables needed */
795 	uint32_t total_need_tbl_nb;
796 
797 	/* Inspect the first three bytes through tbl24 on the first step. */
798 	ret = simulate_add_step(lpm, lpm->tbl24, &tbl_next, masked_ip,
799 		ADD_FIRST_BYTE, 1, depth, &need_tbl_nb);
800 	total_need_tbl_nb = need_tbl_nb;
801 	/*
802 	 * Inspect one by one the rest of the bytes until
803 	 * the process is completed.
804 	 */
805 	for (i = ADD_FIRST_BYTE; i < RTE_IPV6_ADDR_SIZE && ret == 1; i++) {
806 		tbl = tbl_next;
807 		ret = simulate_add_step(lpm, tbl, &tbl_next, masked_ip, 1,
808 			(uint8_t)(i + 1), depth, &need_tbl_nb);
809 		total_need_tbl_nb += need_tbl_nb;
810 	}
811 
812 	if (tbl8_available(lpm) < total_need_tbl_nb)
813 		/* not enough tbl8 to add a rule */
814 		return -ENOSPC;
815 
816 	return 0;
817 }
818 
819 /*
820  * Add a route
821  */
822 int
823 rte_lpm6_add(struct rte_lpm6 *lpm, const struct rte_ipv6_addr *ip, uint8_t depth,
824 	     uint32_t next_hop)
825 {
826 	struct rte_lpm6_tbl_entry *tbl;
827 	struct rte_lpm6_tbl_entry *tbl_next = NULL;
828 	/* init to avoid compiler warning */
829 	uint32_t tbl_next_num = 123456;
830 	int status;
831 	struct rte_ipv6_addr masked_ip;
832 	int i;
833 
834 	/* Check user arguments. */
835 	if ((lpm == NULL) || (depth < 1) || (depth > RTE_IPV6_MAX_DEPTH))
836 		return -EINVAL;
837 
838 	/* Copy the IP and mask it to avoid modifying user's input data. */
839 	masked_ip = *ip;
840 	rte_ipv6_addr_mask(&masked_ip, depth);
841 
842 	/* Simulate adding a new route */
843 	int ret = simulate_add(lpm, &masked_ip, depth);
844 	if (ret < 0)
845 		return ret;
846 
847 	/* Add the rule to the rule table. */
848 	int is_new_rule = rule_add(lpm, &masked_ip, depth, next_hop);
849 	/* If there is no space available for new rule return error. */
850 	if (is_new_rule < 0)
851 		return is_new_rule;
852 
853 	/* Inspect the first three bytes through tbl24 on the first step. */
854 	tbl = lpm->tbl24;
855 	status = add_step(lpm, tbl, TBL24_IND, &tbl_next, &tbl_next_num,
856 		&masked_ip, ADD_FIRST_BYTE, 1, depth, next_hop,
857 		is_new_rule);
858 	assert(status >= 0);
859 
860 	/*
861 	 * Inspect one by one the rest of the bytes until
862 	 * the process is completed.
863 	 */
864 	for (i = ADD_FIRST_BYTE; i < RTE_IPV6_ADDR_SIZE && status == 1; i++) {
865 		tbl = tbl_next;
866 		status = add_step(lpm, tbl, tbl_next_num, &tbl_next,
867 			&tbl_next_num, &masked_ip, 1, (uint8_t)(i + 1),
868 			depth, next_hop, is_new_rule);
869 		assert(status >= 0);
870 	}
871 
872 	return status;
873 }
874 
875 /*
876  * Takes a pointer to a table entry and inspect one level.
877  * The function returns 0 on lookup success, ENOENT if no match was found
878  * or 1 if the process needs to be continued by calling the function again.
879  */
880 static inline int
881 lookup_step(const struct rte_lpm6 *lpm, const struct rte_lpm6_tbl_entry *tbl,
882 		const struct rte_lpm6_tbl_entry **tbl_next, const struct rte_ipv6_addr *ip,
883 		uint8_t first_byte, uint32_t *next_hop)
884 {
885 	uint32_t tbl8_index, tbl_entry;
886 
887 	/* Take the integer value from the pointer. */
888 	tbl_entry = *(const uint32_t *)tbl;
889 
890 	/* If it is valid and extended we calculate the new pointer to return. */
891 	if ((tbl_entry & RTE_LPM6_VALID_EXT_ENTRY_BITMASK) ==
892 			RTE_LPM6_VALID_EXT_ENTRY_BITMASK) {
893 
894 		tbl8_index = ip->a[first_byte-1] +
895 				((tbl_entry & RTE_LPM6_TBL8_BITMASK) *
896 				RTE_LPM6_TBL8_GROUP_NUM_ENTRIES);
897 
898 		*tbl_next = &lpm->tbl8[tbl8_index];
899 
900 		return 1;
901 	} else {
902 		/* If not extended then we can have a match. */
903 		*next_hop = ((uint32_t)tbl_entry & RTE_LPM6_TBL8_BITMASK);
904 		return (tbl_entry & RTE_LPM6_LOOKUP_SUCCESS) ? 0 : -ENOENT;
905 	}
906 }
907 
908 /*
909  * Looks up an IP
910  */
911 int
912 rte_lpm6_lookup(const struct rte_lpm6 *lpm, const struct rte_ipv6_addr *ip,
913 		uint32_t *next_hop)
914 {
915 	const struct rte_lpm6_tbl_entry *tbl;
916 	const struct rte_lpm6_tbl_entry *tbl_next = NULL;
917 	int status;
918 	uint8_t first_byte;
919 	uint32_t tbl24_index;
920 
921 	/* DEBUG: Check user input arguments. */
922 	if ((lpm == NULL) || (ip == NULL) || (next_hop == NULL))
923 		return -EINVAL;
924 
925 	first_byte = LOOKUP_FIRST_BYTE;
926 	tbl24_index = (ip->a[0] << BYTES2_SIZE) | (ip->a[1] << BYTE_SIZE) | ip->a[2];
927 
928 	/* Calculate pointer to the first entry to be inspected */
929 	tbl = &lpm->tbl24[tbl24_index];
930 
931 	do {
932 		/* Continue inspecting following levels until success or failure */
933 		status = lookup_step(lpm, tbl, &tbl_next, ip, first_byte++, next_hop);
934 		tbl = tbl_next;
935 	} while (status == 1);
936 
937 	return status;
938 }
939 
940 /*
941  * Looks up a group of IP addresses
942  */
943 int
944 rte_lpm6_lookup_bulk_func(const struct rte_lpm6 *lpm,
945 		struct rte_ipv6_addr *ips,
946 		int32_t *next_hops, unsigned int n)
947 {
948 	unsigned int i;
949 	const struct rte_lpm6_tbl_entry *tbl;
950 	const struct rte_lpm6_tbl_entry *tbl_next = NULL;
951 	uint32_t tbl24_index, next_hop;
952 	uint8_t first_byte;
953 	int status;
954 
955 	/* DEBUG: Check user input arguments. */
956 	if ((lpm == NULL) || (ips == NULL) || (next_hops == NULL))
957 		return -EINVAL;
958 
959 	for (i = 0; i < n; i++) {
960 		first_byte = LOOKUP_FIRST_BYTE;
961 		tbl24_index = (ips[i].a[0] << BYTES2_SIZE) |
962 				(ips[i].a[1] << BYTE_SIZE) | ips[i].a[2];
963 
964 		/* Calculate pointer to the first entry to be inspected */
965 		tbl = &lpm->tbl24[tbl24_index];
966 
967 		do {
968 			/* Continue inspecting following levels
969 			 * until success or failure
970 			 */
971 			status = lookup_step(lpm, tbl, &tbl_next, &ips[i],
972 					first_byte++, &next_hop);
973 			tbl = tbl_next;
974 		} while (status == 1);
975 
976 		if (status < 0)
977 			next_hops[i] = -1;
978 		else
979 			next_hops[i] = (int32_t)next_hop;
980 	}
981 
982 	return 0;
983 }
984 
985 /*
986  * Look for a rule in the high-level rules table
987  */
988 int
989 rte_lpm6_is_rule_present(struct rte_lpm6 *lpm, const struct rte_ipv6_addr *ip, uint8_t depth,
990 			 uint32_t *next_hop)
991 {
992 	struct rte_ipv6_addr masked_ip;
993 
994 	/* Check user arguments. */
995 	if ((lpm == NULL) || next_hop == NULL || ip == NULL ||
996 			(depth < 1) || (depth > RTE_IPV6_MAX_DEPTH))
997 		return -EINVAL;
998 
999 	/* Copy the IP and mask it to avoid modifying user's input data. */
1000 	masked_ip = *ip;
1001 	rte_ipv6_addr_mask(&masked_ip, depth);
1002 
1003 	return rule_find(lpm, &masked_ip, depth, next_hop);
1004 }
1005 
1006 /*
1007  * Delete a rule from the rule table.
1008  * NOTE: Valid range for depth parameter is 1 .. 128 inclusive.
1009  * return
1010  *	  0 on success
1011  *   <0 on failure
1012  */
1013 static inline int
1014 rule_delete(struct rte_lpm6 *lpm, struct rte_ipv6_addr *ip, uint8_t depth)
1015 {
1016 	int ret;
1017 	struct rte_lpm6_rule_key rule_key;
1018 
1019 	/* init rule key */
1020 	rule_key_init(&rule_key, ip, depth);
1021 
1022 	/* delete the rule */
1023 	ret = rte_hash_del_key(lpm->rules_tbl, (void *) &rule_key);
1024 	if (ret >= 0)
1025 		lpm->used_rules--;
1026 
1027 	return ret;
1028 }
1029 
1030 /*
1031  * Deletes a group of rules
1032  *
1033  * Note that the function rebuilds the lpm table,
1034  * rather than doing incremental updates like
1035  * the regular delete function
1036  */
1037 int
1038 rte_lpm6_delete_bulk_func(struct rte_lpm6 *lpm,
1039 		struct rte_ipv6_addr *ips, uint8_t *depths,
1040 		unsigned n)
1041 {
1042 	struct rte_ipv6_addr masked_ip;
1043 	unsigned i;
1044 
1045 	/* Check input arguments. */
1046 	if ((lpm == NULL) || (ips == NULL) || (depths == NULL))
1047 		return -EINVAL;
1048 
1049 	for (i = 0; i < n; i++) {
1050 		masked_ip = ips[i];
1051 		rte_ipv6_addr_mask(&masked_ip, depths[i]);
1052 		rule_delete(lpm, &masked_ip, depths[i]);
1053 	}
1054 
1055 	/*
1056 	 * Set all the table entries to 0 (ie delete every rule
1057 	 * from the data structure.
1058 	 */
1059 	memset(lpm->tbl24, 0, sizeof(lpm->tbl24));
1060 	memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0])
1061 			* RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s);
1062 	tbl8_pool_init(lpm);
1063 
1064 	/*
1065 	 * Add every rule again (except for the ones that were removed from
1066 	 * the rules table).
1067 	 */
1068 	rebuild_lpm(lpm);
1069 
1070 	return 0;
1071 }
1072 
1073 /*
1074  * Delete all rules from the LPM table.
1075  */
1076 void
1077 rte_lpm6_delete_all(struct rte_lpm6 *lpm)
1078 {
1079 	/* Zero used rules counter. */
1080 	lpm->used_rules = 0;
1081 
1082 	/* Zero tbl24. */
1083 	memset(lpm->tbl24, 0, sizeof(lpm->tbl24));
1084 
1085 	/* Zero tbl8. */
1086 	memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0]) *
1087 			RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s);
1088 
1089 	/* init pool of free tbl8 indexes */
1090 	tbl8_pool_init(lpm);
1091 
1092 	/* Delete all rules form the rules table. */
1093 	rte_hash_reset(lpm->rules_tbl);
1094 }
1095 
1096 /*
1097  * Convert a depth to a one byte long mask
1098  *   Example: 4 will be converted to 0xF0
1099  */
1100 static uint8_t __rte_pure
1101 depth_to_mask_1b(uint8_t depth)
1102 {
1103 	/* To calculate a mask start with a 1 on the left hand side and right
1104 	 * shift while populating the left hand side with 1's
1105 	 */
1106 	return (signed char)0x80 >> (depth - 1);
1107 }
1108 
1109 /*
1110  * Find a less specific rule
1111  */
1112 static int
1113 rule_find_less_specific(struct rte_lpm6 *lpm, struct rte_ipv6_addr *ip, uint8_t depth,
1114 	struct rte_lpm6_rule *rule)
1115 {
1116 	int ret;
1117 	uint32_t next_hop;
1118 	uint8_t mask;
1119 	struct rte_lpm6_rule_key rule_key;
1120 
1121 	if (depth == 1)
1122 		return 0;
1123 
1124 	rule_key_init(&rule_key, ip, depth);
1125 
1126 	while (depth > 1) {
1127 		depth--;
1128 
1129 		/* each iteration zero one more bit of the key */
1130 		mask = depth & 7; /* depth % BYTE_SIZE */
1131 		if (mask > 0)
1132 			mask = depth_to_mask_1b(mask);
1133 
1134 		rule_key.depth = depth;
1135 		rule_key.ip.a[depth >> 3] &= mask;
1136 
1137 		ret = rule_find_with_key(lpm, &rule_key, &next_hop);
1138 		if (ret) {
1139 			rule->depth = depth;
1140 			rule->ip = rule_key.ip;
1141 			rule->next_hop = next_hop;
1142 			return 1;
1143 		}
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 /*
1150  * Find range of tbl8 cells occupied by a rule
1151  */
1152 static void
1153 rule_find_range(struct rte_lpm6 *lpm, const struct rte_ipv6_addr *ip, uint8_t depth,
1154 		  struct rte_lpm6_tbl_entry **from,
1155 		  struct rte_lpm6_tbl_entry **to,
1156 		  uint32_t *out_tbl_ind)
1157 {
1158 	uint32_t ind;
1159 	uint32_t first_3bytes = (uint32_t)ip->a[0] << 16 |
1160 			ip->a[1] << 8 | ip->a[2];
1161 
1162 	if (depth <= 24) {
1163 		/* rule is within the top level */
1164 		ind = first_3bytes;
1165 		*from = &lpm->tbl24[ind];
1166 		ind += (1 << (24 - depth)) - 1;
1167 		*to = &lpm->tbl24[ind];
1168 		*out_tbl_ind = TBL24_IND;
1169 	} else {
1170 		/* top level entry */
1171 		struct rte_lpm6_tbl_entry *tbl = &lpm->tbl24[first_3bytes];
1172 		assert(tbl->ext_entry == 1);
1173 		/* first tbl8 */
1174 		uint32_t tbl_ind = tbl->lpm6_tbl8_gindex;
1175 		tbl = &lpm->tbl8[tbl_ind *
1176 				RTE_LPM6_TBL8_GROUP_NUM_ENTRIES];
1177 		/* current ip byte, the top level is already behind */
1178 		uint8_t byte = 3;
1179 		/* minus top level */
1180 		depth -= 24;
1181 
1182 		/* iterate through levels (tbl8s)
1183 		 * until we reach the last one
1184 		 */
1185 		while (depth > 8) {
1186 			tbl += ip->a[byte];
1187 			assert(tbl->ext_entry == 1);
1188 			/* go to the next level/tbl8 */
1189 			tbl_ind = tbl->lpm6_tbl8_gindex;
1190 			tbl = &lpm->tbl8[tbl_ind *
1191 					RTE_LPM6_TBL8_GROUP_NUM_ENTRIES];
1192 			byte += 1;
1193 			depth -= 8;
1194 		}
1195 
1196 		/* last level/tbl8 */
1197 		ind = ip->a[byte] & depth_to_mask_1b(depth);
1198 		*from = &tbl[ind];
1199 		ind += (1 << (8 - depth)) - 1;
1200 		*to = &tbl[ind];
1201 		*out_tbl_ind = tbl_ind;
1202 	}
1203 }
1204 
1205 /*
1206  * Remove a table from the LPM tree
1207  */
1208 static void
1209 remove_tbl(struct rte_lpm6 *lpm, struct rte_lpm_tbl8_hdr *tbl_hdr,
1210 		  uint32_t tbl_ind, struct rte_lpm6_rule *lsp_rule)
1211 {
1212 	struct rte_lpm6_tbl_entry *owner_entry;
1213 
1214 	if (tbl_hdr->owner_tbl_ind == TBL24_IND)
1215 		owner_entry = &lpm->tbl24[tbl_hdr->owner_entry_ind];
1216 	else {
1217 		uint32_t owner_tbl_ind = tbl_hdr->owner_tbl_ind;
1218 		owner_entry = &lpm->tbl8[
1219 			owner_tbl_ind * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES +
1220 			tbl_hdr->owner_entry_ind];
1221 
1222 		struct rte_lpm_tbl8_hdr *owner_tbl_hdr =
1223 			&lpm->tbl8_hdrs[owner_tbl_ind];
1224 		if (--owner_tbl_hdr->ref_cnt == 0)
1225 			remove_tbl(lpm, owner_tbl_hdr, owner_tbl_ind, lsp_rule);
1226 	}
1227 
1228 	assert(owner_entry->ext_entry == 1);
1229 
1230 	/* unlink the table */
1231 	if (lsp_rule != NULL) {
1232 		struct rte_lpm6_tbl_entry new_tbl_entry = {
1233 			.next_hop = lsp_rule->next_hop,
1234 			.depth = lsp_rule->depth,
1235 			.valid = VALID,
1236 			.valid_group = VALID,
1237 			.ext_entry = 0
1238 		};
1239 
1240 		*owner_entry = new_tbl_entry;
1241 	} else {
1242 		struct rte_lpm6_tbl_entry new_tbl_entry = {
1243 			.next_hop = 0,
1244 			.depth = 0,
1245 			.valid = INVALID,
1246 			.valid_group = INVALID,
1247 			.ext_entry = 0
1248 		};
1249 
1250 		*owner_entry = new_tbl_entry;
1251 	}
1252 
1253 	/* return the table to the pool */
1254 	tbl8_put(lpm, tbl_ind);
1255 }
1256 
1257 /*
1258  * Deletes a rule
1259  */
1260 int
1261 rte_lpm6_delete(struct rte_lpm6 *lpm, const struct rte_ipv6_addr *ip, uint8_t depth)
1262 {
1263 	struct rte_ipv6_addr masked_ip;
1264 	struct rte_lpm6_rule lsp_rule_obj;
1265 	struct rte_lpm6_rule *lsp_rule;
1266 	int ret;
1267 	uint32_t tbl_ind;
1268 	struct rte_lpm6_tbl_entry *from, *to;
1269 
1270 	/* Check input arguments. */
1271 	if ((lpm == NULL) || (depth < 1) || (depth > RTE_IPV6_MAX_DEPTH))
1272 		return -EINVAL;
1273 
1274 	/* Copy the IP and mask it to avoid modifying user's input data. */
1275 	masked_ip = *ip;
1276 	rte_ipv6_addr_mask(&masked_ip, depth);
1277 
1278 	/* Delete the rule from the rule table. */
1279 	ret = rule_delete(lpm, &masked_ip, depth);
1280 	if (ret < 0)
1281 		return -ENOENT;
1282 
1283 	/* find rule cells */
1284 	rule_find_range(lpm, &masked_ip, depth, &from, &to, &tbl_ind);
1285 
1286 	/* find a less specific rule (a rule with smaller depth)
1287 	 * note: masked_ip will be modified, don't use it anymore
1288 	 */
1289 	ret = rule_find_less_specific(lpm, &masked_ip, depth,
1290 			&lsp_rule_obj);
1291 	lsp_rule = ret ? &lsp_rule_obj : NULL;
1292 
1293 	/* decrement the table rule counter,
1294 	 * note that tbl24 doesn't have a header
1295 	 */
1296 	if (tbl_ind != TBL24_IND) {
1297 		struct rte_lpm_tbl8_hdr *tbl_hdr = &lpm->tbl8_hdrs[tbl_ind];
1298 		if (--tbl_hdr->ref_cnt == 0) {
1299 			/* remove the table */
1300 			remove_tbl(lpm, tbl_hdr, tbl_ind, lsp_rule);
1301 			return 0;
1302 		}
1303 	}
1304 
1305 	/* iterate rule cells */
1306 	for (; from <= to; from++)
1307 		if (from->ext_entry == 1) {
1308 			/* reference to a more specific space
1309 			 * of the prefix/rule. Entries in a more
1310 			 * specific space that are not used by
1311 			 * a more specific prefix must be occupied
1312 			 * by the prefix
1313 			 */
1314 			if (lsp_rule != NULL)
1315 				expand_rule(lpm,
1316 					from->lpm6_tbl8_gindex *
1317 					RTE_LPM6_TBL8_GROUP_NUM_ENTRIES,
1318 					depth, lsp_rule->depth,
1319 					lsp_rule->next_hop, VALID);
1320 			else
1321 				/* since the prefix has no less specific prefix,
1322 				 * its more specific space must be invalidated
1323 				 */
1324 				expand_rule(lpm,
1325 					from->lpm6_tbl8_gindex *
1326 					RTE_LPM6_TBL8_GROUP_NUM_ENTRIES,
1327 					depth, 0, 0, INVALID);
1328 		} else if (from->depth == depth) {
1329 			/* entry is not a reference and belongs to the prefix */
1330 			if (lsp_rule != NULL) {
1331 				struct rte_lpm6_tbl_entry new_tbl_entry = {
1332 					.next_hop = lsp_rule->next_hop,
1333 					.depth = lsp_rule->depth,
1334 					.valid = VALID,
1335 					.valid_group = VALID,
1336 					.ext_entry = 0
1337 				};
1338 
1339 				*from = new_tbl_entry;
1340 			} else {
1341 				struct rte_lpm6_tbl_entry new_tbl_entry = {
1342 					.next_hop = 0,
1343 					.depth = 0,
1344 					.valid = INVALID,
1345 					.valid_group = INVALID,
1346 					.ext_entry = 0
1347 				};
1348 
1349 				*from = new_tbl_entry;
1350 			}
1351 		}
1352 
1353 	return 0;
1354 }
1355