1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2014-2018 Chelsio Communications.
3 * All rights reserved.
4 */
5
6 #include <sys/queue.h>
7 #include <sys/stat.h>
8 #include <stdio.h>
9 #include <errno.h>
10 #include <stdint.h>
11 #include <string.h>
12 #include <unistd.h>
13 #include <stdarg.h>
14 #include <inttypes.h>
15 #include <fcntl.h>
16 #include <netinet/in.h>
17
18 #include <rte_byteorder.h>
19 #include <rte_common.h>
20 #include <rte_cycles.h>
21 #include <rte_interrupts.h>
22 #include <rte_log.h>
23 #include <rte_debug.h>
24 #include <rte_pci.h>
25 #include <rte_branch_prediction.h>
26 #include <rte_memory.h>
27 #include <rte_tailq.h>
28 #include <rte_eal.h>
29 #include <rte_alarm.h>
30 #include <rte_ether.h>
31 #include <ethdev_driver.h>
32 #include <ethdev_pci.h>
33 #include <rte_random.h>
34 #include <dev_driver.h>
35 #include <rte_kvargs.h>
36
37 #include "base/common.h"
38 #include "base/t4_regs.h"
39 #include "base/t4_msg.h"
40 #include "cxgbe.h"
41 #include "cxgbe_pfvf.h"
42 #include "clip_tbl.h"
43 #include "l2t.h"
44 #include "smt.h"
45 #include "mps_tcam.h"
46
47 static const u16 cxgbe_filter_mode_features[] = {
48 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
49 F_PROTOCOL | F_PORT),
50 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
51 F_PROTOCOL | F_FCOE),
52 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
53 F_PORT),
54 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
55 F_FCOE),
56 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PORT |
57 F_FCOE),
58 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_TOS |
59 F_PORT | F_FCOE),
60 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN |
61 F_FCOE),
62 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID |
63 F_FCOE),
64 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN |
65 F_FCOE),
66 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID |
67 F_FCOE),
68 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VLAN | F_PORT |
69 F_FCOE),
70 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VNIC_ID | F_PORT |
71 F_FCOE),
72 (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_PROTOCOL | F_TOS |
73 F_PORT | F_FCOE),
74 (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT),
75 (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_FCOE),
76 (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT),
77 (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_FCOE),
78 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT),
79 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
80 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
81 F_PORT),
82 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
83 F_FCOE),
84 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VLAN | F_PORT |
85 F_FCOE),
86 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VNIC_ID | F_PORT |
87 F_FCOE),
88 (F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VLAN | F_PORT | F_FCOE),
89 (F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
90 (F_FRAGMENTATION | F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_FCOE),
91 (F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
92 F_FCOE),
93 (F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
94 (F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT | F_FCOE),
95 (F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT |
96 F_FCOE),
97 (F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VLAN | F_PORT | F_FCOE),
98 (F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
99 (F_FRAGMENTATION | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
100 (F_FRAGMENTATION | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
101 (F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
102 (F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VNIC_ID | F_FCOE),
103 (F_FRAGMENTATION | F_VLAN | F_VNIC_ID | F_PORT | F_FCOE),
104 (F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
105 F_FCOE),
106 (F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
107 (F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT),
108 (F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT),
109 (F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN | F_PORT),
110 (F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT),
111 (F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
112 (F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
113 (F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT | F_FCOE),
114 (F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
115 (F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_PORT),
116 };
117
118 /**
119 * Allocate a chunk of memory. The allocated memory is cleared.
120 */
t4_alloc_mem(size_t size)121 void *t4_alloc_mem(size_t size)
122 {
123 return rte_zmalloc(NULL, size, 0);
124 }
125
126 /**
127 * Free memory allocated through t4_alloc_mem().
128 */
t4_free_mem(void * addr)129 void t4_free_mem(void *addr)
130 {
131 rte_free(addr);
132 }
133
134 /*
135 * Response queue handler for the FW event queue.
136 */
fwevtq_handler(struct sge_rspq * q,const __be64 * rsp,__rte_unused const struct pkt_gl * gl)137 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
138 __rte_unused const struct pkt_gl *gl)
139 {
140 u8 opcode = ((const struct rss_header *)rsp)->opcode;
141
142 rsp++; /* skip RSS header */
143
144 /*
145 * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
146 */
147 if (unlikely(opcode == CPL_FW4_MSG &&
148 ((const struct cpl_fw4_msg *)rsp)->type ==
149 FW_TYPE_RSSCPL)) {
150 rsp++;
151 opcode = ((const struct rss_header *)rsp)->opcode;
152 rsp++;
153 if (opcode != CPL_SGE_EGR_UPDATE) {
154 dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
155 opcode);
156 goto out;
157 }
158 }
159
160 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
161 /* do nothing */
162 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
163 const struct cpl_fw6_msg *msg = (const void *)rsp;
164
165 t4_handle_fw_rpl(q->adapter, msg->data);
166 } else if (opcode == CPL_ABORT_RPL_RSS) {
167 const struct cpl_abort_rpl_rss *p = (const void *)rsp;
168
169 cxgbe_hash_del_filter_rpl(q->adapter, p);
170 } else if (opcode == CPL_SET_TCB_RPL) {
171 const struct cpl_set_tcb_rpl *p = (const void *)rsp;
172
173 cxgbe_filter_rpl(q->adapter, p);
174 } else if (opcode == CPL_ACT_OPEN_RPL) {
175 const struct cpl_act_open_rpl *p = (const void *)rsp;
176
177 cxgbe_hash_filter_rpl(q->adapter, p);
178 } else if (opcode == CPL_L2T_WRITE_RPL) {
179 const struct cpl_l2t_write_rpl *p = (const void *)rsp;
180
181 cxgbe_do_l2t_write_rpl(q->adapter, p);
182 } else if (opcode == CPL_SMT_WRITE_RPL) {
183 const struct cpl_smt_write_rpl *p = (const void *)rsp;
184
185 cxgbe_do_smt_write_rpl(q->adapter, p);
186 } else {
187 dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
188 opcode);
189 }
190 out:
191 return 0;
192 }
193
194 /**
195 * Setup sge control queues to pass control information.
196 */
cxgbe_setup_sge_ctrl_txq(struct adapter * adapter)197 int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
198 {
199 struct sge *s = &adapter->sge;
200 int err = 0, i = 0;
201
202 for_each_port(adapter, i) {
203 struct port_info *pi = adap2pinfo(adapter, i);
204 char name[RTE_ETH_NAME_MAX_LEN];
205 struct sge_ctrl_txq *q = &s->ctrlq[i];
206
207 q->q.size = 1024;
208 err = t4_sge_alloc_ctrl_txq(adapter, q,
209 adapter->eth_dev, i,
210 s->fw_evtq.cntxt_id,
211 rte_socket_id());
212 if (err) {
213 dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
214 err);
215 goto out;
216 }
217 snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
218 pi->eth_dev->device->driver->name,
219 pi->eth_dev->data->port_id);
220 q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
221 RTE_CACHE_LINE_SIZE,
222 RTE_MBUF_PRIV_ALIGN,
223 RTE_MBUF_DEFAULT_BUF_SIZE,
224 SOCKET_ID_ANY);
225 if (!q->mb_pool) {
226 err = -rte_errno;
227 dev_err(adapter,
228 "Can't create ctrl pool for port %d. Err: %d\n",
229 pi->eth_dev->data->port_id, err);
230 goto out;
231 }
232 }
233 return 0;
234 out:
235 t4_free_sge_resources(adapter);
236 return err;
237 }
238
239 /**
240 * cxgbe_poll_for_completion: Poll rxq for completion
241 * @q: rxq to poll
242 * @ms: milliseconds to delay
243 * @cnt: number of times to poll
244 * @c: completion to check for 'done' status
245 *
246 * Polls the rxq for reples until completion is done or the count
247 * expires.
248 */
cxgbe_poll_for_completion(struct sge_rspq * q,unsigned int ms,unsigned int cnt,struct t4_completion * c)249 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
250 unsigned int cnt, struct t4_completion *c)
251 {
252 unsigned int i;
253 unsigned int work_done, budget = 32;
254
255 if (!c)
256 return -EINVAL;
257
258 for (i = 0; i < cnt; i++) {
259 cxgbe_poll(q, NULL, budget, &work_done);
260 t4_os_lock(&c->lock);
261 if (c->done) {
262 t4_os_unlock(&c->lock);
263 return 0;
264 }
265 t4_os_unlock(&c->lock);
266 rte_delay_ms(ms);
267 }
268 return -ETIMEDOUT;
269 }
270
cxgbe_setup_sge_fwevtq(struct adapter * adapter)271 int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
272 {
273 struct sge *s = &adapter->sge;
274 int err = 0;
275 int msi_idx = 0;
276
277 err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
278 msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
279 rte_socket_id());
280 return err;
281 }
282
closest_timer(const struct sge * s,int time)283 static int closest_timer(const struct sge *s, int time)
284 {
285 unsigned int i, match = 0;
286 int delta, min_delta = INT_MAX;
287
288 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
289 delta = time - s->timer_val[i];
290 if (delta < 0)
291 delta = -delta;
292 if (delta < min_delta) {
293 min_delta = delta;
294 match = i;
295 }
296 }
297 return match;
298 }
299
closest_thres(const struct sge * s,int thres)300 static int closest_thres(const struct sge *s, int thres)
301 {
302 unsigned int i, match = 0;
303 int delta, min_delta = INT_MAX;
304
305 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
306 delta = thres - s->counter_val[i];
307 if (delta < 0)
308 delta = -delta;
309 if (delta < min_delta) {
310 min_delta = delta;
311 match = i;
312 }
313 }
314 return match;
315 }
316
317 /**
318 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
319 * @q: the Rx queue
320 * @us: the hold-off time in us, or 0 to disable timer
321 * @cnt: the hold-off packet count, or 0 to disable counter
322 *
323 * Sets an Rx queue's interrupt hold-off time and packet count. At least
324 * one of the two needs to be enabled for the queue to generate interrupts.
325 */
cxgb4_set_rspq_intr_params(struct sge_rspq * q,unsigned int us,unsigned int cnt)326 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
327 unsigned int cnt)
328 {
329 struct adapter *adap = q->adapter;
330 unsigned int timer_val;
331
332 if (cnt) {
333 int err;
334 u32 v, new_idx;
335
336 new_idx = closest_thres(&adap->sge, cnt);
337 if (q->desc && q->pktcnt_idx != new_idx) {
338 /* the queue has already been created, update it */
339 v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
340 V_FW_PARAMS_PARAM_X(
341 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
342 V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
343 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
344 &v, &new_idx);
345 if (err)
346 return err;
347 }
348 q->pktcnt_idx = new_idx;
349 }
350
351 timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
352 closest_timer(&adap->sge, us);
353
354 if ((us | cnt) == 0)
355 q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
356 else
357 q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
358 V_QINTR_CNT_EN(cnt > 0);
359 return 0;
360 }
361
362 /**
363 * Allocate an active-open TID and set it to the supplied value.
364 */
cxgbe_alloc_atid(struct tid_info * t,void * data)365 int cxgbe_alloc_atid(struct tid_info *t, void *data)
366 {
367 int atid = -1;
368
369 t4_os_lock(&t->atid_lock);
370 if (t->afree) {
371 union aopen_entry *p = t->afree;
372
373 atid = p - t->atid_tab;
374 t->afree = p->next;
375 p->data = data;
376 t->atids_in_use++;
377 }
378 t4_os_unlock(&t->atid_lock);
379 return atid;
380 }
381
382 /**
383 * Release an active-open TID.
384 */
cxgbe_free_atid(struct tid_info * t,unsigned int atid)385 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
386 {
387 union aopen_entry *p = &t->atid_tab[atid];
388
389 t4_os_lock(&t->atid_lock);
390 p->next = t->afree;
391 t->afree = p;
392 t->atids_in_use--;
393 t4_os_unlock(&t->atid_lock);
394 }
395
396 /**
397 * Populate a TID_RELEASE WR. Caller must properly size the skb.
398 */
mk_tid_release(struct rte_mbuf * mbuf,unsigned int tid)399 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
400 {
401 struct cpl_tid_release *req;
402
403 req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
404 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
405 }
406
407 /**
408 * Release a TID and inform HW. If we are unable to allocate the release
409 * message we defer to a work queue.
410 */
cxgbe_remove_tid(struct tid_info * t,unsigned int chan,unsigned int tid,unsigned short family)411 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
412 unsigned short family)
413 {
414 struct rte_mbuf *mbuf;
415 struct adapter *adap = container_of(t, struct adapter, tids);
416
417 WARN_ON(tid >= t->ntids);
418
419 if (t->tid_tab[tid]) {
420 t->tid_tab[tid] = NULL;
421 rte_atomic_fetch_sub_explicit(&t->conns_in_use, 1, rte_memory_order_relaxed);
422 if (t->hash_base && tid >= t->hash_base) {
423 if (family == FILTER_TYPE_IPV4)
424 rte_atomic_fetch_sub_explicit(&t->hash_tids_in_use, 1,
425 rte_memory_order_relaxed);
426 } else {
427 if (family == FILTER_TYPE_IPV4)
428 rte_atomic_fetch_sub_explicit(&t->tids_in_use, 1,
429 rte_memory_order_relaxed);
430 }
431 }
432
433 mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
434 if (mbuf) {
435 mbuf->data_len = sizeof(struct cpl_tid_release);
436 mbuf->pkt_len = mbuf->data_len;
437 mk_tid_release(mbuf, tid);
438 t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
439 }
440 }
441
442 /**
443 * Insert a TID.
444 */
cxgbe_insert_tid(struct tid_info * t,void * data,unsigned int tid,unsigned short family)445 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
446 unsigned short family)
447 {
448 t->tid_tab[tid] = data;
449 if (t->hash_base && tid >= t->hash_base) {
450 if (family == FILTER_TYPE_IPV4)
451 rte_atomic_fetch_add_explicit(&t->hash_tids_in_use, 1,
452 rte_memory_order_relaxed);
453 } else {
454 if (family == FILTER_TYPE_IPV4)
455 rte_atomic_fetch_add_explicit(&t->tids_in_use, 1,
456 rte_memory_order_relaxed);
457 }
458
459 rte_atomic_fetch_add_explicit(&t->conns_in_use, 1, rte_memory_order_relaxed);
460 }
461
462 /**
463 * Free TID tables.
464 */
tid_free(struct tid_info * t)465 static void tid_free(struct tid_info *t)
466 {
467 if (t->tid_tab) {
468 rte_bitmap_free(t->ftid_bmap);
469
470 if (t->ftid_bmap_array)
471 t4_os_free(t->ftid_bmap_array);
472
473 t4_os_free(t->tid_tab);
474 }
475
476 memset(t, 0, sizeof(struct tid_info));
477 }
478
479 /**
480 * Allocate and initialize the TID tables. Returns 0 on success.
481 */
tid_init(struct tid_info * t)482 static int tid_init(struct tid_info *t)
483 {
484 size_t size;
485 unsigned int ftid_bmap_size;
486 unsigned int natids = t->natids;
487 unsigned int max_ftids = t->nftids;
488
489 ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
490 size = t->ntids * sizeof(*t->tid_tab) +
491 max_ftids * sizeof(*t->ftid_tab) +
492 natids * sizeof(*t->atid_tab);
493
494 t->tid_tab = t4_os_alloc(size);
495 if (!t->tid_tab)
496 return -ENOMEM;
497
498 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
499 t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
500 t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
501 if (!t->ftid_bmap_array) {
502 tid_free(t);
503 return -ENOMEM;
504 }
505
506 t4_os_lock_init(&t->atid_lock);
507 t4_os_lock_init(&t->ftid_lock);
508
509 t->afree = NULL;
510 t->atids_in_use = 0;
511 t->tids_in_use = 0;
512 t->conns_in_use = 0;
513
514 /* Setup the free list for atid_tab and clear the stid bitmap. */
515 if (natids) {
516 while (--natids)
517 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
518 t->afree = t->atid_tab;
519 }
520
521 t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
522 ftid_bmap_size);
523 if (!t->ftid_bmap) {
524 tid_free(t);
525 return -ENOMEM;
526 }
527
528 return 0;
529 }
530
init_rspq(struct adapter * adap,struct sge_rspq * q,unsigned int us,unsigned int cnt,unsigned int size,unsigned int iqe_size)531 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
532 unsigned int us, unsigned int cnt,
533 unsigned int size, unsigned int iqe_size)
534 {
535 q->adapter = adap;
536 cxgb4_set_rspq_intr_params(q, us, cnt);
537 q->iqe_len = iqe_size;
538 q->size = size;
539 }
540
cxgbe_cfg_queue_count(struct rte_eth_dev * eth_dev)541 int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
542 {
543 struct port_info *temp_pi, *pi = eth_dev->data->dev_private;
544 struct adapter *adap = pi->adapter;
545 u16 first_txq = 0, first_rxq = 0;
546 struct sge *s = &adap->sge;
547 u16 i, max_rxqs, max_txqs;
548
549 max_rxqs = s->max_ethqsets;
550 max_txqs = s->max_ethqsets;
551 for_each_port(adap, i) {
552 temp_pi = adap2pinfo(adap, i);
553 if (i == pi->port_id)
554 break;
555
556 if (max_rxqs <= temp_pi->n_rx_qsets ||
557 max_txqs <= temp_pi->n_tx_qsets)
558 return -ENOMEM;
559
560 first_rxq += temp_pi->n_rx_qsets;
561 first_txq += temp_pi->n_tx_qsets;
562 max_rxqs -= temp_pi->n_rx_qsets;
563 max_txqs -= temp_pi->n_tx_qsets;
564 }
565
566 if ((eth_dev->data->nb_rx_queues < 1) ||
567 (eth_dev->data->nb_tx_queues < 1))
568 return -EINVAL;
569
570 if (eth_dev->data->nb_rx_queues > max_rxqs ||
571 eth_dev->data->nb_tx_queues > max_txqs)
572 return -EINVAL;
573
574 /* We must configure RSS, since config has changed*/
575 pi->flags &= ~PORT_RSS_DONE;
576
577 pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
578 pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
579 pi->first_rxqset = first_rxq;
580 pi->first_txqset = first_txq;
581
582 return 0;
583 }
584
cxgbe_cfg_queues_free(struct adapter * adap)585 void cxgbe_cfg_queues_free(struct adapter *adap)
586 {
587 if (adap->sge.ethtxq) {
588 rte_free(adap->sge.ethtxq);
589 adap->sge.ethtxq = NULL;
590 }
591
592 if (adap->sge.ethrxq) {
593 rte_free(adap->sge.ethrxq);
594 adap->sge.ethrxq = NULL;
595 }
596
597 adap->flags &= ~CFG_QUEUES;
598 }
599
cxgbe_cfg_queues(struct rte_eth_dev * eth_dev)600 int cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
601 {
602 struct port_info *pi = eth_dev->data->dev_private;
603 struct adapter *adap = pi->adapter;
604 struct sge *s = &adap->sge;
605 u16 i;
606
607 if (!(adap->flags & CFG_QUEUES)) {
608 s->ethrxq = rte_calloc_socket(NULL, s->max_ethqsets,
609 sizeof(struct sge_eth_rxq), 0,
610 rte_socket_id());
611 if (!s->ethrxq)
612 return -ENOMEM;
613
614 s->ethtxq = rte_calloc_socket(NULL, s->max_ethqsets,
615 sizeof(struct sge_eth_txq), 0,
616 rte_socket_id());
617 if (!s->ethtxq) {
618 rte_free(s->ethrxq);
619 s->ethrxq = NULL;
620 return -ENOMEM;
621 }
622
623 for (i = 0; i < s->max_ethqsets; i++) {
624 struct sge_eth_rxq *r = &s->ethrxq[i];
625 struct sge_eth_txq *t = &s->ethtxq[i];
626
627 init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
628 r->fl.size = 1024;
629
630 t->q.size = 1024;
631 }
632
633 init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
634 adap->flags |= CFG_QUEUES;
635 }
636
637 return 0;
638 }
639
cxgbe_stats_get(struct port_info * pi,struct port_stats * stats)640 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
641 {
642 t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
643 &pi->stats_base);
644 }
645
cxgbe_stats_reset(struct port_info * pi)646 void cxgbe_stats_reset(struct port_info *pi)
647 {
648 t4_clr_port_stats(pi->adapter, pi->tx_chan);
649 }
650
setup_memwin(struct adapter * adap)651 static void setup_memwin(struct adapter *adap)
652 {
653 u32 mem_win0_base;
654
655 /* For T5, only relative offset inside the PCIe BAR is passed */
656 mem_win0_base = MEMWIN0_BASE;
657
658 /*
659 * Set up memory window for accessing adapter memory ranges. (Read
660 * back MA register to ensure that changes propagate before we attempt
661 * to use the new values.)
662 */
663 t4_write_reg(adap,
664 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
665 MEMWIN_NIC),
666 mem_win0_base | V_BIR(0) |
667 V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
668 t4_read_reg(adap,
669 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
670 MEMWIN_NIC));
671 }
672
cxgbe_init_rss(struct adapter * adap)673 int cxgbe_init_rss(struct adapter *adap)
674 {
675 unsigned int i;
676
677 if (is_pf4(adap)) {
678 int err;
679
680 err = t4_init_rss_mode(adap, adap->mbox);
681 if (err)
682 return err;
683 }
684
685 for_each_port(adap, i) {
686 struct port_info *pi = adap2pinfo(adap, i);
687
688 pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
689 if (!pi->rss)
690 return -ENOMEM;
691
692 pi->rss_hf = CXGBE_RSS_HF_ALL;
693 }
694 return 0;
695 }
696
697 /**
698 * Dump basic information about the adapter.
699 */
cxgbe_print_adapter_info(struct adapter * adap)700 void cxgbe_print_adapter_info(struct adapter *adap)
701 {
702 /**
703 * Hardware/Firmware/etc. Version/Revision IDs.
704 */
705 t4_dump_version_info(adap);
706 }
707
cxgbe_print_port_info(struct adapter * adap)708 void cxgbe_print_port_info(struct adapter *adap)
709 {
710 int i;
711 char buf[80];
712 struct rte_pci_addr *loc = &adap->pdev->addr;
713
714 for_each_port(adap, i) {
715 const struct port_info *pi = adap2pinfo(adap, i);
716 char *bufp = buf;
717
718 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
719 bufp += sprintf(bufp, "100M/");
720 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
721 bufp += sprintf(bufp, "1G/");
722 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
723 bufp += sprintf(bufp, "10G/");
724 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
725 bufp += sprintf(bufp, "25G/");
726 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
727 bufp += sprintf(bufp, "40G/");
728 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
729 bufp += sprintf(bufp, "50G/");
730 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
731 bufp += sprintf(bufp, "100G/");
732 if (bufp != buf)
733 --bufp;
734 sprintf(bufp, "BASE-%s",
735 t4_get_port_type_description(
736 (enum fw_port_type)pi->link_cfg.port_type));
737
738 dev_info(adap,
739 " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
740 loc->domain, loc->bus, loc->devid, loc->function,
741 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
742 (adap->flags & USING_MSIX) ? " MSI-X" :
743 (adap->flags & USING_MSI) ? " MSI" : "");
744 }
745 }
746
check_devargs_handler(const char * key,const char * value,void * p)747 static int check_devargs_handler(const char *key, const char *value, void *p)
748 {
749 if (!strncmp(key, CXGBE_DEVARG_CMN_KEEP_OVLAN, strlen(key)) ||
750 !strncmp(key, CXGBE_DEVARG_CMN_TX_MODE_LATENCY, strlen(key)) ||
751 !strncmp(key, CXGBE_DEVARG_VF_FORCE_LINK_UP, strlen(key))) {
752 if (!strncmp(value, "1", 1)) {
753 bool *dst_val = (bool *)p;
754
755 *dst_val = true;
756 }
757 }
758
759 if (!strncmp(key, CXGBE_DEVARG_PF_FILTER_MODE, strlen(key)) ||
760 !strncmp(key, CXGBE_DEVARG_PF_FILTER_MASK, strlen(key))) {
761 u32 *dst_val = (u32 *)p;
762 char *endptr = NULL;
763 u32 arg_val;
764
765 arg_val = strtoul(value, &endptr, 16);
766 if (errno || endptr == value)
767 return -EINVAL;
768
769 *dst_val = arg_val;
770 }
771
772 return 0;
773 }
774
cxgbe_get_devargs(struct rte_devargs * devargs,const char * key,void * p)775 static int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key,
776 void *p)
777 {
778 struct rte_kvargs *kvlist;
779 int ret = 0;
780
781 if (!devargs)
782 return 0;
783
784 kvlist = rte_kvargs_parse(devargs->args, NULL);
785 if (!kvlist)
786 return 0;
787
788 if (!rte_kvargs_count(kvlist, key))
789 goto out;
790
791 ret = rte_kvargs_process(kvlist, key, check_devargs_handler, p);
792
793 out:
794 rte_kvargs_free(kvlist);
795
796 return ret;
797 }
798
cxgbe_get_devargs_int(struct adapter * adap,bool * dst,const char * key,bool default_value)799 static void cxgbe_get_devargs_int(struct adapter *adap, bool *dst,
800 const char *key, bool default_value)
801 {
802 struct rte_pci_device *pdev = adap->pdev;
803 int ret;
804 bool devarg_value = default_value;
805
806 *dst = default_value;
807 if (!pdev)
808 return;
809
810 ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
811 if (ret)
812 return;
813
814 *dst = devarg_value;
815 }
816
cxgbe_get_devargs_u32(struct adapter * adap,u32 * dst,const char * key,u32 default_value)817 static void cxgbe_get_devargs_u32(struct adapter *adap, u32 *dst,
818 const char *key, u32 default_value)
819 {
820 struct rte_pci_device *pdev = adap->pdev;
821 u32 devarg_value = default_value;
822 int ret;
823
824 *dst = default_value;
825 if (!pdev)
826 return;
827
828 ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
829 if (ret)
830 return;
831
832 *dst = devarg_value;
833 }
834
cxgbe_process_devargs(struct adapter * adap)835 void cxgbe_process_devargs(struct adapter *adap)
836 {
837 cxgbe_get_devargs_int(adap, &adap->devargs.keep_ovlan,
838 CXGBE_DEVARG_CMN_KEEP_OVLAN, false);
839 cxgbe_get_devargs_int(adap, &adap->devargs.tx_mode_latency,
840 CXGBE_DEVARG_CMN_TX_MODE_LATENCY, false);
841 cxgbe_get_devargs_int(adap, &adap->devargs.force_link_up,
842 CXGBE_DEVARG_VF_FORCE_LINK_UP, false);
843 cxgbe_get_devargs_u32(adap, &adap->devargs.filtermode,
844 CXGBE_DEVARG_PF_FILTER_MODE, 0);
845 cxgbe_get_devargs_u32(adap, &adap->devargs.filtermask,
846 CXGBE_DEVARG_PF_FILTER_MASK, 0);
847 }
848
configure_vlan_types(struct adapter * adapter)849 static void configure_vlan_types(struct adapter *adapter)
850 {
851 int i;
852
853 for_each_port(adapter, i) {
854 /* OVLAN Type 0x88a8 */
855 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
856 V_OVLAN_MASK(M_OVLAN_MASK) |
857 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
858 V_OVLAN_MASK(M_OVLAN_MASK) |
859 V_OVLAN_ETYPE(0x88a8));
860 /* OVLAN Type 0x9100 */
861 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
862 V_OVLAN_MASK(M_OVLAN_MASK) |
863 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
864 V_OVLAN_MASK(M_OVLAN_MASK) |
865 V_OVLAN_ETYPE(0x9100));
866
867 /* IVLAN 0X8100 */
868 t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
869 V_IVLAN_ETYPE(M_IVLAN_ETYPE),
870 V_IVLAN_ETYPE(0x8100));
871
872 t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
873 F_OVLAN_EN0 | F_OVLAN_EN1 |
874 F_IVLAN_EN,
875 F_OVLAN_EN0 | F_OVLAN_EN1 |
876 F_IVLAN_EN);
877 }
878
879 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG, V_RM_OVLAN(1),
880 V_RM_OVLAN(!adapter->devargs.keep_ovlan));
881 }
882
cxgbe_get_filter_vnic_mode_from_devargs(u32 val)883 static int cxgbe_get_filter_vnic_mode_from_devargs(u32 val)
884 {
885 u32 vnic_mode;
886
887 vnic_mode = val & (CXGBE_DEVARGS_FILTER_MODE_PF_VF |
888 CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER);
889 if (vnic_mode) {
890 switch (vnic_mode) {
891 case CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER:
892 return CXGBE_FILTER_VNIC_MODE_OVLAN;
893 case CXGBE_DEVARGS_FILTER_MODE_PF_VF:
894 return CXGBE_FILTER_VNIC_MODE_PFVF;
895 default:
896 return -EINVAL;
897 }
898 }
899
900 return CXGBE_FILTER_VNIC_MODE_NONE;
901 }
902
cxgbe_get_filter_mode_from_devargs(u32 val,bool closest_match)903 static int cxgbe_get_filter_mode_from_devargs(u32 val, bool closest_match)
904 {
905 int vnic_mode, fmode = 0;
906 bool found = false;
907 u8 i;
908
909 if (val >= CXGBE_DEVARGS_FILTER_MODE_MAX) {
910 pr_err("Unsupported flags set in filter mode. Must be < 0x%x\n",
911 CXGBE_DEVARGS_FILTER_MODE_MAX);
912 return -ERANGE;
913 }
914
915 vnic_mode = cxgbe_get_filter_vnic_mode_from_devargs(val);
916 if (vnic_mode < 0) {
917 pr_err("Unsupported Vnic-mode, more than 1 Vnic-mode selected\n");
918 return vnic_mode;
919 }
920
921 if (vnic_mode)
922 fmode |= F_VNIC_ID;
923 if (val & CXGBE_DEVARGS_FILTER_MODE_PHYSICAL_PORT)
924 fmode |= F_PORT;
925 if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_DSTMAC)
926 fmode |= F_MACMATCH;
927 if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_ETHTYPE)
928 fmode |= F_ETHERTYPE;
929 if (val & CXGBE_DEVARGS_FILTER_MODE_VLAN_INNER)
930 fmode |= F_VLAN;
931 if (val & CXGBE_DEVARGS_FILTER_MODE_IP_TOS)
932 fmode |= F_TOS;
933 if (val & CXGBE_DEVARGS_FILTER_MODE_IP_PROTOCOL)
934 fmode |= F_PROTOCOL;
935
936 for (i = 0; i < ARRAY_SIZE(cxgbe_filter_mode_features); i++) {
937 if ((cxgbe_filter_mode_features[i] & fmode) == fmode) {
938 found = true;
939 break;
940 }
941 }
942
943 if (!found)
944 return -EINVAL;
945
946 return closest_match ? cxgbe_filter_mode_features[i] : fmode;
947 }
948
configure_filter_mode_mask(struct adapter * adap)949 static int configure_filter_mode_mask(struct adapter *adap)
950 {
951 u32 params[2], val[2], nparams = 0;
952 int ret;
953
954 if (!adap->devargs.filtermode && !adap->devargs.filtermask)
955 return 0;
956
957 if (!adap->devargs.filtermode || !adap->devargs.filtermask) {
958 pr_err("Unsupported, Provide both filtermode and filtermask devargs\n");
959 return -EINVAL;
960 }
961
962 if (adap->devargs.filtermask & ~adap->devargs.filtermode) {
963 pr_err("Unsupported, filtermask (0x%x) must be subset of filtermode (0x%x)\n",
964 adap->devargs.filtermask, adap->devargs.filtermode);
965
966 return -EINVAL;
967 }
968
969 params[0] = CXGBE_FW_PARAM_DEV(FILTER) |
970 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
971
972 ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermode,
973 true);
974 if (ret < 0) {
975 pr_err("Unsupported filtermode devargs combination:0x%x\n",
976 adap->devargs.filtermode);
977 return ret;
978 }
979
980 val[0] = V_FW_PARAMS_PARAM_FILTER_MODE(ret);
981
982 ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermask,
983 false);
984 if (ret < 0) {
985 pr_err("Unsupported filtermask devargs combination:0x%x\n",
986 adap->devargs.filtermask);
987 return ret;
988 }
989
990 val[0] |= V_FW_PARAMS_PARAM_FILTER_MASK(ret);
991
992 nparams++;
993
994 ret = cxgbe_get_filter_vnic_mode_from_devargs(adap->devargs.filtermode);
995 if (ret < 0)
996 return ret;
997
998 if (ret) {
999 params[1] = CXGBE_FW_PARAM_DEV(FILTER) |
1000 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
1001
1002 val[1] = ret - 1;
1003
1004 nparams++;
1005 }
1006
1007 return t4_set_params(adap, adap->mbox, adap->pf, 0, nparams,
1008 params, val);
1009 }
1010
1011 #define CXGBE_FW_CONFIG_PATH_T5 "/lib/firmware/cxgb4/t5-config.txt"
1012 #define CXGBE_FW_CONFIG_PATH_T6 "/lib/firmware/cxgb4/t6-config.txt"
1013
1014 /*
1015 * Load firmware configuration from file in /lib/firmware/cxgb4/ path,
1016 * if it is present.
1017 */
cxgbe_load_fw_config_from_filesystem(struct adapter * adap,const char ** config_name,u32 * mem_type,u32 * mem_addr)1018 static int cxgbe_load_fw_config_from_filesystem(struct adapter *adap,
1019 const char **config_name,
1020 u32 *mem_type, u32 *mem_addr)
1021 {
1022 u32 param, val, mtype, maddr;
1023 const char *fw_cfg_path;
1024 char *fw_cfg = NULL;
1025 struct stat st;
1026 int ret, fd;
1027
1028 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
1029 case CHELSIO_T5:
1030 fw_cfg_path = CXGBE_FW_CONFIG_PATH_T5;
1031 break;
1032 case CHELSIO_T6:
1033 fw_cfg_path = CXGBE_FW_CONFIG_PATH_T6;
1034 break;
1035 default:
1036 return -ENOENT;
1037 }
1038
1039 ret = open(fw_cfg_path, O_RDONLY);
1040 if (ret < 0) {
1041 dev_debug(adap, "Couldn't open FW config file\n");
1042 return ret;
1043 }
1044
1045 fd = ret;
1046
1047 ret = fstat(fd, &st);
1048 if (ret < 0) {
1049 dev_debug(adap, "Couldn't get FW config file size\n");
1050 goto out_err;
1051 }
1052
1053 if (st.st_size >= FLASH_CFG_MAX_SIZE) {
1054 dev_debug(adap, "FW config file size >= max(%u)\n",
1055 FLASH_CFG_MAX_SIZE);
1056 ret = -ENOMEM;
1057 goto out_err;
1058 }
1059
1060 fw_cfg = rte_zmalloc(NULL, st.st_size, 0);
1061 if (fw_cfg == NULL) {
1062 ret = -ENOMEM;
1063 goto out_err;
1064 }
1065
1066 if (read(fd, fw_cfg, st.st_size) != st.st_size) {
1067 dev_debug(adap, "Couldn't read FW config file data\n");
1068 ret = -EIO;
1069 goto out_err;
1070 }
1071
1072 close(fd);
1073
1074 /* Send it to FW to verify and update to new configuration */
1075 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1076 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF);
1077 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
1078 if (ret < 0) {
1079 dev_debug(adap, "FW config param query failed: %d\n", ret);
1080 goto out_free;
1081 }
1082
1083 mtype = val >> 8;
1084 maddr = (val & 0xff) << 16;
1085
1086 t4_os_lock(&adap->win0_lock);
1087 ret = t4_memory_rw(adap, MEMWIN_NIC, mtype, maddr, st.st_size,
1088 fw_cfg, T4_MEMORY_WRITE);
1089 t4_os_unlock(&adap->win0_lock);
1090 if (ret < 0) {
1091 dev_debug(adap, "FW config file update failed: %d\n", ret);
1092 goto out_free;
1093 }
1094
1095 rte_free(fw_cfg);
1096
1097 *mem_type = mtype;
1098 *mem_addr = maddr;
1099 *config_name = fw_cfg_path;
1100 return 0;
1101
1102 out_err:
1103 close(fd);
1104 out_free:
1105 rte_free(fw_cfg);
1106 return ret;
1107 }
1108
cxgbe_load_fw_config(struct adapter * adap)1109 static int cxgbe_load_fw_config(struct adapter *adap)
1110 {
1111 struct fw_caps_config_cmd caps_cmd = { 0 };
1112 u32 finiver, finicsum, cfcsum, param, val;
1113 const char *config_name = NULL;
1114 u32 mtype = 0, maddr = 0;
1115 int ret;
1116
1117 ret = cxgbe_load_fw_config_from_filesystem(adap, &config_name,
1118 &mtype, &maddr);
1119 if (ret < 0) {
1120 config_name = "On Flash";
1121
1122 ret = t4_flash_cfg_addr(adap);
1123 if (ret < 0) {
1124 dev_warn(adap,
1125 "Finding address for FW config file in flash failed: %d\n",
1126 ret);
1127 goto out_default_config;
1128 }
1129
1130 mtype = FW_MEMTYPE_CF_FLASH;
1131 maddr = ret;
1132 }
1133
1134 /* Enable HASH filter region when support is available. */
1135 val = 1;
1136 param = CXGBE_FW_PARAM_DEV(HASHFILTER_WITH_OFLD);
1137 t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
1138
1139 /*
1140 * Issue a Capability Configuration command to the firmware to get it
1141 * to parse the Configuration File.
1142 */
1143 caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1144 F_FW_CMD_REQUEST | F_FW_CMD_READ);
1145 caps_cmd.cfvalid_to_len16 =
1146 cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
1147 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
1148 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
1149 FW_LEN16(caps_cmd));
1150 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1151 &caps_cmd);
1152
1153 out_default_config:
1154 /*
1155 * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
1156 * Configuration File in filesystem or FLASH), our last gasp
1157 * effort is to use the Firmware Configuration File which is
1158 * embedded in the firmware.
1159 */
1160 if (ret == -ENOENT) {
1161 config_name = "Firmware Default";
1162
1163 memset(&caps_cmd, 0, sizeof(caps_cmd));
1164 caps_cmd.op_to_write =
1165 cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1166 F_FW_CMD_REQUEST | F_FW_CMD_READ);
1167 caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
1168 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1169 &caps_cmd);
1170 }
1171
1172 if (ret < 0) {
1173 dev_info(adap,
1174 "Failed to configure using %s Firmware Configuration file: %d\n",
1175 config_name, ret);
1176 return ret;
1177 }
1178
1179 finiver = be32_to_cpu(caps_cmd.finiver);
1180 finicsum = be32_to_cpu(caps_cmd.finicsum);
1181 cfcsum = be32_to_cpu(caps_cmd.cfcsum);
1182 if (finicsum != cfcsum)
1183 dev_warn(adap,
1184 "Configuration File checksum mismatch: [fini] csum=0x%x, computed csum=0x%x\n",
1185 finicsum, cfcsum);
1186
1187 /*
1188 * If we're a pure NIC driver then disable all offloading facilities.
1189 * This will allow the firmware to optimize aspects of the hardware
1190 * configuration which will result in improved performance.
1191 */
1192 caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
1193 caps_cmd.toecaps = 0;
1194 caps_cmd.iscsicaps = 0;
1195 caps_cmd.rdmacaps = 0;
1196 caps_cmd.fcoecaps = 0;
1197 caps_cmd.cryptocaps = 0;
1198
1199 /*
1200 * And now tell the firmware to use the configuration we just loaded.
1201 */
1202 caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1203 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
1204 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1205 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1206 NULL);
1207 if (ret < 0) {
1208 dev_warn(adap, "Unable to finalize Firmware Capabilities %d\n",
1209 ret);
1210 return ret;
1211 }
1212
1213 /*
1214 * Return successfully and note that we're operating with parameters
1215 * not supplied by the driver, rather than from hard-wired
1216 * initialization constants buried in the driver.
1217 */
1218 dev_info(adap,
1219 "Successfully configured using Firmware Configuration File \"%s\", version: 0x%x, computed csum: 0x%x\n",
1220 config_name, finiver, cfcsum);
1221 return 0;
1222 }
1223
configure_pcie_ext_tag(struct adapter * adapter)1224 static void configure_pcie_ext_tag(struct adapter *adapter)
1225 {
1226 u16 v;
1227 int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
1228
1229 if (!pos)
1230 return;
1231
1232 if (pos > 0) {
1233 t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
1234 v |= PCI_EXP_DEVCTL_EXT_TAG;
1235 t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
1236 if (is_t6(adapter->params.chip)) {
1237 t4_set_reg_field(adapter, A_PCIE_CFG2,
1238 V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
1239 V_T6_TOTMAXTAG(7));
1240 t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
1241 V_T6_MINTAG(M_T6_MINTAG),
1242 V_T6_MINTAG(8));
1243 } else {
1244 t4_set_reg_field(adapter, A_PCIE_CFG2,
1245 V_TOTMAXTAG(M_TOTMAXTAG),
1246 V_TOTMAXTAG(3));
1247 t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
1248 V_MINTAG(M_MINTAG),
1249 V_MINTAG(8));
1250 }
1251 }
1252 }
1253
1254 /* Figure out how many Queue Sets we can support */
cxgbe_configure_max_ethqsets(struct adapter * adapter)1255 void cxgbe_configure_max_ethqsets(struct adapter *adapter)
1256 {
1257 unsigned int ethqsets, reserved;
1258
1259 /* We need to reserve an Ingress Queue for the Asynchronous Firmware
1260 * Event Queue and 1 Control Queue per port.
1261 *
1262 * For each Queue Set, we'll need the ability to allocate two Egress
1263 * Contexts -- one for the Ingress Queue Free List and one for the TX
1264 * Ethernet Queue.
1265 */
1266 reserved = max(adapter->params.nports, 1);
1267 if (is_pf4(adapter)) {
1268 struct pf_resources *pfres = &adapter->params.pfres;
1269
1270 ethqsets = min(pfres->niqflint, pfres->nethctrl);
1271 if (ethqsets > (pfres->neq / 2))
1272 ethqsets = pfres->neq / 2;
1273 } else {
1274 struct vf_resources *vfres = &adapter->params.vfres;
1275
1276 ethqsets = min(vfres->niqflint, vfres->nethctrl);
1277 if (ethqsets > (vfres->neq / 2))
1278 ethqsets = vfres->neq / 2;
1279 }
1280
1281 ethqsets -= reserved;
1282 adapter->sge.max_ethqsets = ethqsets;
1283 }
1284
1285 /*
1286 * Tweak configuration based on system architecture, etc. Most of these have
1287 * defaults assigned to them by Firmware Configuration Files (if we're using
1288 * them) but need to be explicitly set if we're using hard-coded
1289 * initialization. So these are essentially common tweaks/settings for
1290 * Configuration Files and hard-coded initialization ...
1291 */
adap_init0_tweaks(struct adapter * adapter)1292 static int adap_init0_tweaks(struct adapter *adapter)
1293 {
1294 u8 rx_dma_offset;
1295
1296 /*
1297 * Fix up various Host-Dependent Parameters like Page Size, Cache
1298 * Line Size, etc. The firmware default is for a 4KB Page Size and
1299 * 64B Cache Line Size ...
1300 */
1301 t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
1302 T5_LAST_REV);
1303
1304 /*
1305 * Keep the chip default offset to deliver Ingress packets into our
1306 * DMA buffers to zero
1307 */
1308 rx_dma_offset = 0;
1309 t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
1310 V_PKTSHIFT(rx_dma_offset));
1311
1312 t4_set_reg_field(adapter, A_SGE_FLM_CFG,
1313 V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
1314 V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
1315
1316 t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
1317 V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
1318
1319 t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
1320 V_IDMAARBROUNDROBIN(1U));
1321
1322 /*
1323 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
1324 * adds the pseudo header itself.
1325 */
1326 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
1327 F_CSUM_HAS_PSEUDO_HDR, 0);
1328
1329 return 0;
1330 }
1331
1332 /*
1333 * Attempt to initialize the adapter via a Firmware Configuration File.
1334 */
adap_init0_config(struct adapter * adapter,int reset)1335 static int adap_init0_config(struct adapter *adapter, int reset)
1336 {
1337 int ret;
1338
1339 /*
1340 * Reset device if necessary.
1341 */
1342 if (reset) {
1343 ret = t4_fw_reset(adapter, adapter->mbox,
1344 F_PIORSTMODE | F_PIORST);
1345 if (ret < 0) {
1346 dev_warn(adapter, "Firmware reset failed, error %d\n",
1347 -ret);
1348 goto bye;
1349 }
1350 }
1351
1352 ret = cxgbe_load_fw_config(adapter);
1353 if (ret < 0)
1354 goto bye;
1355
1356 /*
1357 * Tweak configuration based on system architecture, etc.
1358 */
1359 ret = adap_init0_tweaks(adapter);
1360 if (ret < 0) {
1361 dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
1362 goto bye;
1363 }
1364
1365 /*
1366 * And finally tell the firmware to initialize itself using the
1367 * parameters from the Configuration File.
1368 */
1369 ret = t4_fw_initialize(adapter, adapter->mbox);
1370 if (ret < 0) {
1371 dev_warn(adapter, "Initializing Firmware failed, error %d\n",
1372 -ret);
1373 goto bye;
1374 }
1375
1376 return 0;
1377
1378 bye:
1379 dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1380 return ret;
1381 }
1382
adap_init0(struct adapter * adap)1383 static int adap_init0(struct adapter *adap)
1384 {
1385 struct fw_caps_config_cmd caps_cmd;
1386 int ret = 0;
1387 u32 v, port_vec;
1388 enum dev_state state;
1389 u32 params[7], val[7];
1390 int reset = 1;
1391 int mbox = adap->mbox;
1392
1393 /*
1394 * Contact FW, advertising Master capability.
1395 */
1396 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1397 if (ret < 0) {
1398 dev_err(adap, "%s: could not connect to FW, error %d\n",
1399 __func__, -ret);
1400 goto bye;
1401 }
1402
1403 CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1404 adap->mbox, ret);
1405
1406 if (ret == mbox)
1407 adap->flags |= MASTER_PF;
1408
1409 if (state == DEV_STATE_INIT) {
1410 /*
1411 * Force halt and reset FW because a previous instance may have
1412 * exited abnormally without properly shutting down
1413 */
1414 ret = t4_fw_halt(adap, adap->mbox, reset);
1415 if (ret < 0) {
1416 dev_err(adap, "Failed to halt. Exit.\n");
1417 goto bye;
1418 }
1419
1420 ret = t4_fw_restart(adap, adap->mbox, reset);
1421 if (ret < 0) {
1422 dev_err(adap, "Failed to restart. Exit.\n");
1423 goto bye;
1424 }
1425 state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1426 }
1427
1428 t4_get_version_info(adap);
1429
1430 ret = t4_get_core_clock(adap, &adap->params.vpd);
1431 if (ret < 0) {
1432 dev_err(adap, "%s: could not get core clock, error %d\n",
1433 __func__, -ret);
1434 goto bye;
1435 }
1436
1437 /*
1438 * If the firmware is initialized already (and we're not forcing a
1439 * master initialization), note that we're living with existing
1440 * adapter parameters. Otherwise, it's time to try initializing the
1441 * adapter ...
1442 */
1443 if (state == DEV_STATE_INIT) {
1444 dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1445 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1446 } else {
1447 dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1448
1449 ret = adap_init0_config(adap, reset);
1450 if (ret == -ENOENT) {
1451 dev_err(adap,
1452 "No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1453 goto bye;
1454 }
1455 }
1456 if (ret < 0) {
1457 dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1458 goto bye;
1459 }
1460
1461 /* Now that we've successfully configured and initialized the adapter
1462 * (or found it already initialized), we can ask the Firmware what
1463 * resources it has provisioned for us.
1464 */
1465 ret = t4_get_pfres(adap);
1466 if (ret) {
1467 dev_err(adap->pdev_dev,
1468 "Unable to retrieve resource provisioning info\n");
1469 goto bye;
1470 }
1471
1472 /* Find out what ports are available to us. */
1473 v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1474 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1475 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1476 if (ret < 0) {
1477 dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1478 __func__, ret);
1479 goto bye;
1480 }
1481
1482 adap->params.nports = hweight32(port_vec);
1483 adap->params.portvec = port_vec;
1484
1485 dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1486 adap->params.nports);
1487
1488 /*
1489 * Give the SGE code a chance to pull in anything that it needs ...
1490 * Note that this must be called after we retrieve our VPD parameters
1491 * in order to know how to convert core ticks to seconds, etc.
1492 */
1493 ret = t4_sge_init(adap);
1494 if (ret < 0) {
1495 dev_err(adap, "t4_sge_init failed with error %d\n",
1496 -ret);
1497 goto bye;
1498 }
1499
1500 /*
1501 * Grab some of our basic fundamental operating parameters.
1502 */
1503 params[0] = CXGBE_FW_PARAM_PFVF(L2T_START);
1504 params[1] = CXGBE_FW_PARAM_PFVF(L2T_END);
1505 params[2] = CXGBE_FW_PARAM_PFVF(FILTER_START);
1506 params[3] = CXGBE_FW_PARAM_PFVF(FILTER_END);
1507 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1508 if (ret < 0)
1509 goto bye;
1510 adap->l2t_start = val[0];
1511 adap->l2t_end = val[1];
1512 adap->tids.ftid_base = val[2];
1513 adap->tids.nftids = val[3] - val[2] + 1;
1514
1515 params[0] = CXGBE_FW_PARAM_PFVF(CLIP_START);
1516 params[1] = CXGBE_FW_PARAM_PFVF(CLIP_END);
1517 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1518 if (ret < 0)
1519 goto bye;
1520 adap->clipt_start = val[0];
1521 adap->clipt_end = val[1];
1522
1523 /*
1524 * Get device capabilities so we can determine what resources we need
1525 * to manage.
1526 */
1527 memset(&caps_cmd, 0, sizeof(caps_cmd));
1528 caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1529 F_FW_CMD_REQUEST | F_FW_CMD_READ);
1530 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1531 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1532 &caps_cmd);
1533 if (ret < 0)
1534 goto bye;
1535
1536 if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1537 is_t6(adap->params.chip)) {
1538 if (cxgbe_init_hash_filter(adap) < 0)
1539 goto bye;
1540 }
1541
1542 /* See if FW supports FW_FILTER2 work request */
1543 if (is_t4(adap->params.chip)) {
1544 adap->params.filter2_wr_support = 0;
1545 } else {
1546 params[0] = CXGBE_FW_PARAM_DEV(FILTER2_WR);
1547 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1548 1, params, val);
1549 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1550 }
1551
1552 /* Check if FW supports returning vin.
1553 * If this is not supported, driver will interpret
1554 * these values from viid.
1555 */
1556 params[0] = CXGBE_FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
1557 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1558 1, params, val);
1559 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
1560
1561 /* query tid-related parameters */
1562 params[0] = CXGBE_FW_PARAM_DEV(NTID);
1563 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1564 params, val);
1565 if (ret < 0)
1566 goto bye;
1567 adap->tids.ntids = val[0];
1568 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1569
1570 /* If we're running on newer firmware, let it know that we're
1571 * prepared to deal with encapsulated CPL messages. Older
1572 * firmware won't understand this and we'll just get
1573 * unencapsulated messages ...
1574 */
1575 params[0] = CXGBE_FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1576 val[0] = 1;
1577 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1578
1579 /*
1580 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1581 * capability. Earlier versions of the firmware didn't have the
1582 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1583 * permission to use ULPTX MEMWRITE DSGL.
1584 */
1585 if (is_t4(adap->params.chip)) {
1586 adap->params.ulptx_memwrite_dsgl = false;
1587 } else {
1588 params[0] = CXGBE_FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1589 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1590 1, params, val);
1591 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1592 }
1593
1594 /* Query for max number of packets that can be coalesced for Tx */
1595 params[0] = CXGBE_FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
1596 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1597 if (!ret && val[0] > 0)
1598 adap->params.max_tx_coalesce_num = val[0];
1599 else
1600 adap->params.max_tx_coalesce_num = ETH_COALESCE_PKT_NUM;
1601
1602 params[0] = CXGBE_FW_PARAM_DEV(VI_ENABLE_INGRESS_AFTER_LINKUP);
1603 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1604 adap->params.vi_enable_rx = (ret == 0 && val[0] != 0);
1605
1606 /* Read the RAW MPS entries. In T6, the last 2 TCAM entries
1607 * are reserved for RAW MAC addresses (rawf = 2, one per port).
1608 */
1609 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
1610 params[0] = CXGBE_FW_PARAM_PFVF(RAWF_START);
1611 params[1] = CXGBE_FW_PARAM_PFVF(RAWF_END);
1612 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
1613 params, val);
1614 if (ret == 0) {
1615 adap->params.rawf_start = val[0];
1616 adap->params.rawf_size = val[1] - val[0] + 1;
1617 }
1618 }
1619
1620 /*
1621 * The MTU/MSS Table is initialized by now, so load their values. If
1622 * we're initializing the adapter, then we'll make any modifications
1623 * we want to the MTU/MSS Table and also initialize the congestion
1624 * parameters.
1625 */
1626 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1627 if (state != DEV_STATE_INIT) {
1628 int i;
1629
1630 /*
1631 * The default MTU Table contains values 1492 and 1500.
1632 * However, for TCP, it's better to have two values which are
1633 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1634 * This allows us to have a TCP Data Payload which is a
1635 * multiple of 8 regardless of what combination of TCP Options
1636 * are in use (always a multiple of 4 bytes) which is
1637 * important for performance reasons. For instance, if no
1638 * options are in use, then we have a 20-byte IP header and a
1639 * 20-byte TCP header. In this case, a 1500-byte MSS would
1640 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1641 * which is not a multiple of 8. So using an MSS of 1488 in
1642 * this case results in a TCP Data Payload of 1448 bytes which
1643 * is a multiple of 8. On the other hand, if 12-byte TCP Time
1644 * Stamps have been negotiated, then an MTU of 1500 bytes
1645 * results in a TCP Data Payload of 1448 bytes which, as
1646 * above, is a multiple of 8 bytes ...
1647 */
1648 for (i = 0; i < NMTUS; i++)
1649 if (adap->params.mtus[i] == 1492) {
1650 adap->params.mtus[i] = 1488;
1651 break;
1652 }
1653
1654 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1655 adap->params.b_wnd);
1656 }
1657 t4_init_sge_params(adap);
1658 ret = configure_filter_mode_mask(adap);
1659 if (ret < 0)
1660 goto bye;
1661 t4_init_tp_params(adap);
1662 configure_pcie_ext_tag(adap);
1663 configure_vlan_types(adap);
1664 cxgbe_configure_max_ethqsets(adap);
1665
1666 adap->params.drv_memwin = MEMWIN_NIC;
1667 adap->flags |= FW_OK;
1668 dev_debug(adap, "%s: returning zero..\n", __func__);
1669 return 0;
1670
1671 /*
1672 * Something bad happened. If a command timed out or failed with EIO
1673 * FW does not operate within its spec or something catastrophic
1674 * happened to HW/FW, stop issuing commands.
1675 */
1676 bye:
1677 if (ret != -ETIMEDOUT && ret != -EIO)
1678 t4_fw_bye(adap, adap->mbox);
1679 return ret;
1680 }
1681
1682 /**
1683 * t4_os_portmod_changed - handle port module changes
1684 * @adap: the adapter associated with the module change
1685 * @port_id: the port index whose module status has changed
1686 *
1687 * This is the OS-dependent handler for port module changes. It is
1688 * invoked when a port module is removed or inserted for any OS-specific
1689 * processing.
1690 */
t4_os_portmod_changed(const struct adapter * adap,int port_id)1691 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1692 {
1693 static const char * const mod_str[] = {
1694 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1695 };
1696
1697 const struct port_info *pi = adap2pinfo(adap, port_id);
1698
1699 if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_NONE)
1700 dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1701 else if (pi->link_cfg.mod_type < ARRAY_SIZE(mod_str))
1702 dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1703 mod_str[pi->link_cfg.mod_type]);
1704 else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1705 dev_info(adap, "Port%d: unsupported port module inserted\n",
1706 pi->port_id);
1707 else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1708 dev_info(adap, "Port%d: unknown port module inserted\n",
1709 pi->port_id);
1710 else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_ERROR)
1711 dev_info(adap, "Port%d: transceiver module error\n",
1712 pi->port_id);
1713 else
1714 dev_info(adap, "Port%d: unknown module type %d inserted\n",
1715 pi->port_id, pi->link_cfg.mod_type);
1716 }
1717
t4_os_link_changed(struct adapter * adap,int port_id)1718 void t4_os_link_changed(struct adapter *adap, int port_id)
1719 {
1720 struct port_info *pi = adap2pinfo(adap, port_id);
1721
1722 /* If link status has not changed or if firmware doesn't
1723 * support enabling/disabling VI's Rx path during runtime,
1724 * then return.
1725 */
1726 if (adap->params.vi_enable_rx == 0 ||
1727 pi->vi_en_rx == pi->link_cfg.link_ok)
1728 return;
1729
1730 /* Don't enable VI Rx path, if link has been administratively
1731 * turned off.
1732 */
1733 if (pi->vi_en_tx == 0 && pi->vi_en_rx == 0)
1734 return;
1735
1736 /* When link goes down, disable the port's Rx path to drop
1737 * Rx traffic closer to the wire, instead of processing it
1738 * further in the Rx pipeline. The Rx path will be re-enabled
1739 * once the link up message comes in firmware event queue.
1740 */
1741 pi->vi_en_rx = pi->link_cfg.link_ok;
1742 t4_enable_vi(adap, adap->mbox, pi->viid, pi->vi_en_rx, pi->vi_en_tx);
1743 }
1744
cxgbe_force_linkup(struct adapter * adap)1745 bool cxgbe_force_linkup(struct adapter *adap)
1746 {
1747 if (is_pf4(adap))
1748 return false; /* force_linkup not required for pf driver */
1749
1750 return adap->devargs.force_link_up;
1751 }
1752
1753 /**
1754 * link_start - enable a port
1755 * @dev: the port to enable
1756 *
1757 * Performs the MAC and PHY actions needed to enable a port.
1758 */
cxgbe_link_start(struct port_info * pi)1759 int cxgbe_link_start(struct port_info *pi)
1760 {
1761 struct adapter *adapter = pi->adapter;
1762 u64 conf_offloads;
1763 unsigned int mtu;
1764 int ret;
1765
1766 mtu = pi->eth_dev->data->mtu;
1767
1768 conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
1769
1770 /*
1771 * We do not set address filters and promiscuity here, the stack does
1772 * that step explicitly.
1773 */
1774 ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
1775 !!(conf_offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP),
1776 true);
1777 if (ret == 0) {
1778 ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1779 (u8 *)&pi->eth_dev->data->mac_addrs[0]);
1780 if (ret >= 0) {
1781 pi->xact_addr_filt = ret;
1782 ret = 0;
1783 }
1784 }
1785 if (ret == 0 && is_pf4(adapter))
1786 ret = t4_link_l1cfg(pi, pi->link_cfg.admin_caps);
1787 if (ret == 0) {
1788 /* Disable VI Rx until link up message is received in
1789 * firmware event queue, if firmware supports enabling/
1790 * disabling VI Rx at runtime.
1791 */
1792 pi->vi_en_rx = adapter->params.vi_enable_rx ? 0 : 1;
1793 pi->vi_en_tx = 1;
1794 ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1795 pi->vi_en_rx, pi->vi_en_tx, false);
1796 }
1797
1798 if (ret == 0 && cxgbe_force_linkup(adapter))
1799 pi->eth_dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
1800 return ret;
1801 }
1802
1803 /**
1804 * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1805 * @pi: the port
1806 * @rss_hf: Hash configuration to apply
1807 */
cxgbe_write_rss_conf(const struct port_info * pi,uint64_t rss_hf)1808 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1809 {
1810 struct adapter *adapter = pi->adapter;
1811 const struct sge_eth_rxq *rxq;
1812 u64 flags = 0;
1813 u16 rss;
1814 int err;
1815
1816 /* Should never be called before setting up sge eth rx queues */
1817 if (!(adapter->flags & FULL_INIT_DONE)) {
1818 dev_err(adap, "%s No RXQs available on port %d\n",
1819 __func__, pi->port_id);
1820 return -EINVAL;
1821 }
1822
1823 /* Don't allow unsupported hash functions */
1824 if (rss_hf & ~CXGBE_RSS_HF_ALL)
1825 return -EINVAL;
1826
1827 if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1828 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1829
1830 if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP)
1831 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1832
1833 if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP)
1834 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1835 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1836
1837 if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1838 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1839
1840 if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1841 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1842 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1843
1844 if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1845 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1846 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1847 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1848
1849 rxq = &adapter->sge.ethrxq[pi->first_rxqset];
1850 rss = rxq[0].rspq.abs_id;
1851
1852 /* If Tunnel All Lookup isn't specified in the global RSS
1853 * Configuration, then we need to specify a default Ingress
1854 * Queue for any ingress packets which aren't hashed. We'll
1855 * use our first ingress queue ...
1856 */
1857 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1858 flags, rss);
1859 return err;
1860 }
1861
1862 /**
1863 * cxgbe_write_rss - write the RSS table for a given port
1864 * @pi: the port
1865 * @queues: array of queue indices for RSS
1866 *
1867 * Sets up the portion of the HW RSS table for the port's VI to distribute
1868 * packets to the Rx queues in @queues.
1869 */
cxgbe_write_rss(const struct port_info * pi,const u16 * queues)1870 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1871 {
1872 u16 *rss;
1873 int i, err;
1874 struct adapter *adapter = pi->adapter;
1875 const struct sge_eth_rxq *rxq;
1876
1877 /* Should never be called before setting up sge eth rx queues */
1878 BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1879
1880 rxq = &adapter->sge.ethrxq[pi->first_rxqset];
1881 rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1882 if (!rss)
1883 return -ENOMEM;
1884
1885 /* map the queue indices to queue ids */
1886 for (i = 0; i < pi->rss_size; i++, queues++)
1887 rss[i] = rxq[*queues].rspq.abs_id;
1888
1889 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1890 pi->rss_size, rss, pi->rss_size);
1891 rte_free(rss);
1892 return err;
1893 }
1894
1895 /**
1896 * setup_rss - configure RSS
1897 * @adapter: the adapter
1898 *
1899 * Sets up RSS to distribute packets to multiple receive queues. We
1900 * configure the RSS CPU lookup table to distribute to the number of HW
1901 * receive queues, and the response queue lookup table to narrow that
1902 * down to the response queues actually configured for each port.
1903 * We always configure the RSS mapping for all ports since the mapping
1904 * table has plenty of entries.
1905 */
cxgbe_setup_rss(struct port_info * pi)1906 int cxgbe_setup_rss(struct port_info *pi)
1907 {
1908 int j, err;
1909 struct adapter *adapter = pi->adapter;
1910
1911 dev_debug(adapter, "%s: pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1912 __func__, pi->rss_size, pi->n_rx_qsets);
1913
1914 if (!(pi->flags & PORT_RSS_DONE)) {
1915 if (adapter->flags & FULL_INIT_DONE) {
1916 /* Fill default values with equal distribution */
1917 for (j = 0; j < pi->rss_size; j++)
1918 pi->rss[j] = j % pi->n_rx_qsets;
1919
1920 err = cxgbe_write_rss(pi, pi->rss);
1921 if (err)
1922 return err;
1923
1924 err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1925 if (err)
1926 return err;
1927 pi->flags |= PORT_RSS_DONE;
1928 }
1929 }
1930 return 0;
1931 }
1932
1933 /*
1934 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1935 */
enable_rx(struct adapter * adap,struct sge_rspq * q)1936 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1937 {
1938 /* 0-increment GTS to start the timer and enable interrupts */
1939 t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1940 T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1941 V_SEINTARM(q->intr_params) |
1942 V_INGRESSQID(q->cntxt_id));
1943 }
1944
cxgbe_enable_rx_queues(struct port_info * pi)1945 void cxgbe_enable_rx_queues(struct port_info *pi)
1946 {
1947 struct adapter *adap = pi->adapter;
1948 struct sge *s = &adap->sge;
1949 unsigned int i;
1950
1951 for (i = 0; i < pi->n_rx_qsets; i++)
1952 enable_rx(adap, &s->ethrxq[pi->first_rxqset + i].rspq);
1953 }
1954
1955 /**
1956 * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1957 * @port_type: Firmware Port Type
1958 * @fw_caps: Firmware Port Capabilities
1959 * @speed_caps: Device Info Speed Capabilities
1960 *
1961 * Translate a Firmware Port Capabilities specification to Device Info
1962 * Speed Capabilities.
1963 */
fw_caps_to_speed_caps(enum fw_port_type port_type,unsigned int fw_caps,u32 * speed_caps)1964 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1965 unsigned int fw_caps,
1966 u32 *speed_caps)
1967 {
1968 #define SET_SPEED(__speed_name) \
1969 do { \
1970 *speed_caps |= RTE_ETH_LINK_ ## __speed_name; \
1971 } while (0)
1972
1973 #define FW_CAPS_TO_SPEED(__fw_name) \
1974 do { \
1975 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1976 SET_SPEED(__fw_name); \
1977 } while (0)
1978
1979 switch (port_type) {
1980 case FW_PORT_TYPE_BT_SGMII:
1981 case FW_PORT_TYPE_BT_XFI:
1982 case FW_PORT_TYPE_BT_XAUI:
1983 FW_CAPS_TO_SPEED(SPEED_100M);
1984 FW_CAPS_TO_SPEED(SPEED_1G);
1985 FW_CAPS_TO_SPEED(SPEED_10G);
1986 break;
1987
1988 case FW_PORT_TYPE_KX4:
1989 case FW_PORT_TYPE_KX:
1990 case FW_PORT_TYPE_FIBER_XFI:
1991 case FW_PORT_TYPE_FIBER_XAUI:
1992 case FW_PORT_TYPE_SFP:
1993 case FW_PORT_TYPE_QSFP_10G:
1994 case FW_PORT_TYPE_QSA:
1995 FW_CAPS_TO_SPEED(SPEED_1G);
1996 FW_CAPS_TO_SPEED(SPEED_10G);
1997 break;
1998
1999 case FW_PORT_TYPE_KR:
2000 SET_SPEED(SPEED_10G);
2001 break;
2002
2003 case FW_PORT_TYPE_BP_AP:
2004 case FW_PORT_TYPE_BP4_AP:
2005 SET_SPEED(SPEED_1G);
2006 SET_SPEED(SPEED_10G);
2007 break;
2008
2009 case FW_PORT_TYPE_BP40_BA:
2010 case FW_PORT_TYPE_QSFP:
2011 SET_SPEED(SPEED_40G);
2012 break;
2013
2014 case FW_PORT_TYPE_CR_QSFP:
2015 case FW_PORT_TYPE_SFP28:
2016 case FW_PORT_TYPE_KR_SFP28:
2017 FW_CAPS_TO_SPEED(SPEED_1G);
2018 FW_CAPS_TO_SPEED(SPEED_10G);
2019 FW_CAPS_TO_SPEED(SPEED_25G);
2020 break;
2021
2022 case FW_PORT_TYPE_CR2_QSFP:
2023 SET_SPEED(SPEED_50G);
2024 break;
2025
2026 case FW_PORT_TYPE_KR4_100G:
2027 case FW_PORT_TYPE_CR4_QSFP:
2028 FW_CAPS_TO_SPEED(SPEED_25G);
2029 FW_CAPS_TO_SPEED(SPEED_40G);
2030 FW_CAPS_TO_SPEED(SPEED_50G);
2031 FW_CAPS_TO_SPEED(SPEED_100G);
2032 break;
2033
2034 default:
2035 break;
2036 }
2037
2038 #undef FW_CAPS_TO_SPEED
2039 #undef SET_SPEED
2040 }
2041
2042 /**
2043 * cxgbe_get_speed_caps - Fetch supported speed capabilities
2044 * @pi: Underlying port's info
2045 * @speed_caps: Device Info speed capabilities
2046 *
2047 * Fetch supported speed capabilities of the underlying port.
2048 */
cxgbe_get_speed_caps(struct port_info * pi,u32 * speed_caps)2049 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
2050 {
2051 *speed_caps = 0;
2052
2053 fw_caps_to_speed_caps(pi->link_cfg.port_type, pi->link_cfg.pcaps,
2054 speed_caps);
2055
2056 if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
2057 *speed_caps |= RTE_ETH_LINK_SPEED_FIXED;
2058 }
2059
2060 /**
2061 * cxgbe_set_link_status - Set device link up or down.
2062 * @pi: Underlying port's info
2063 * @status: 0 - down, 1 - up
2064 *
2065 * Set the device link up or down.
2066 */
cxgbe_set_link_status(struct port_info * pi,bool status)2067 int cxgbe_set_link_status(struct port_info *pi, bool status)
2068 {
2069 struct adapter *adapter = pi->adapter;
2070 int err = 0;
2071
2072 /* Wait for link up message from firmware to enable Rx path,
2073 * if firmware supports enabling/disabling VI Rx at runtime.
2074 */
2075 pi->vi_en_rx = adapter->params.vi_enable_rx ? 0 : status;
2076 pi->vi_en_tx = status;
2077 err = t4_enable_vi(adapter, adapter->mbox, pi->viid, pi->vi_en_rx,
2078 pi->vi_en_tx);
2079 if (err) {
2080 dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
2081 return err;
2082 }
2083
2084 if (!status)
2085 t4_reset_link_config(adapter, pi->pidx);
2086
2087 return 0;
2088 }
2089
2090 /**
2091 * cxgb_up - enable the adapter
2092 * @adap: adapter being enabled
2093 *
2094 * Called when the first port is enabled, this function performs the
2095 * actions necessary to make an adapter operational, such as completing
2096 * the initialization of HW modules, and enabling interrupts.
2097 */
cxgbe_up(struct adapter * adap)2098 int cxgbe_up(struct adapter *adap)
2099 {
2100 enable_rx(adap, &adap->sge.fw_evtq);
2101 t4_sge_tx_monitor_start(adap);
2102 if (is_pf4(adap))
2103 t4_intr_enable(adap);
2104 adap->flags |= FULL_INIT_DONE;
2105
2106 /* TODO: deadman watchdog ?? */
2107 return 0;
2108 }
2109
2110 /*
2111 * Close the port
2112 */
cxgbe_down(struct port_info * pi)2113 int cxgbe_down(struct port_info *pi)
2114 {
2115 return cxgbe_set_link_status(pi, false);
2116 }
2117
2118 /*
2119 * Release resources when all the ports have been stopped.
2120 */
cxgbe_close(struct adapter * adapter)2121 void cxgbe_close(struct adapter *adapter)
2122 {
2123 if (adapter->flags & FULL_INIT_DONE) {
2124 tid_free(&adapter->tids);
2125 t4_cleanup_mpstcam(adapter);
2126 t4_cleanup_clip_tbl(adapter);
2127 t4_cleanup_l2t(adapter);
2128 t4_cleanup_smt(adapter);
2129 if (is_pf4(adapter))
2130 t4_intr_disable(adapter);
2131 t4_sge_tx_monitor_stop(adapter);
2132 t4_free_sge_resources(adapter);
2133 adapter->flags &= ~FULL_INIT_DONE;
2134 }
2135
2136 cxgbe_cfg_queues_free(adapter);
2137
2138 if (is_pf4(adapter) && (adapter->flags & FW_OK))
2139 t4_fw_bye(adapter, adapter->mbox);
2140 }
2141
adap_smt_index(struct adapter * adapter,u32 * smt_start_idx,u32 * smt_size)2142 static void adap_smt_index(struct adapter *adapter, u32 *smt_start_idx,
2143 u32 *smt_size)
2144 {
2145 u32 params[2], smt_val[2];
2146 int ret;
2147
2148 params[0] = CXGBE_FW_PARAM_PFVF(GET_SMT_START);
2149 params[1] = CXGBE_FW_PARAM_PFVF(GET_SMT_SIZE);
2150
2151 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2152 2, params, smt_val);
2153
2154 /* if FW doesn't recognize this command then set it to default setting
2155 * which is start index as 0 and size as 256.
2156 */
2157 if (ret < 0) {
2158 *smt_start_idx = 0;
2159 *smt_size = SMT_SIZE;
2160 } else {
2161 *smt_start_idx = smt_val[0];
2162 /* smt size can be zero, if nsmt is not yet configured in
2163 * the config file or set as zero, then configure all the
2164 * remaining entries to this PF itself.
2165 */
2166 if (!smt_val[1])
2167 *smt_size = SMT_SIZE - *smt_start_idx;
2168 else
2169 *smt_size = smt_val[1];
2170 }
2171 }
2172
cxgbe_probe(struct adapter * adapter)2173 int cxgbe_probe(struct adapter *adapter)
2174 {
2175 u32 smt_start_idx, smt_size;
2176 struct port_info *pi;
2177 int func, i;
2178 int err = 0;
2179 u32 whoami;
2180 int chip;
2181
2182 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2183 chip = t4_get_chip_type(adapter,
2184 CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
2185 if (chip < 0)
2186 return chip;
2187
2188 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
2189 G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2190
2191 adapter->mbox = func;
2192 adapter->pf = func;
2193
2194 t4_os_lock_init(&adapter->mbox_lock);
2195 TAILQ_INIT(&adapter->mbox_list);
2196 t4_os_lock_init(&adapter->win0_lock);
2197
2198 err = t4_prep_adapter(adapter);
2199 if (err)
2200 return err;
2201
2202 setup_memwin(adapter);
2203 err = adap_init0(adapter);
2204 if (err) {
2205 dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
2206 __func__, err);
2207 goto out_free;
2208 }
2209
2210 if (!is_t4(adapter->params.chip)) {
2211 /*
2212 * The userspace doorbell BAR is split evenly into doorbell
2213 * regions, each associated with an egress queue. If this
2214 * per-queue region is large enough (at least UDBS_SEG_SIZE)
2215 * then it can be used to submit a tx work request with an
2216 * implied doorbell. Enable write combining on the BAR if
2217 * there is room for such work requests.
2218 */
2219 int s_qpp, qpp, num_seg;
2220
2221 s_qpp = (S_QUEUESPERPAGEPF0 +
2222 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
2223 adapter->pf);
2224 qpp = 1 << ((t4_read_reg(adapter,
2225 A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
2226 & M_QUEUESPERPAGEPF0);
2227 num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
2228 if (qpp > num_seg)
2229 dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
2230
2231 adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
2232 if (!adapter->bar2) {
2233 dev_err(adapter, "cannot map device bar2 region\n");
2234 err = -ENOMEM;
2235 goto out_free;
2236 }
2237 t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
2238 V_STATMODE(0));
2239 }
2240
2241 for_each_port(adapter, i) {
2242 const unsigned int numa_node = rte_socket_id();
2243 char name[RTE_ETH_NAME_MAX_LEN];
2244 struct rte_eth_dev *eth_dev;
2245
2246 snprintf(name, sizeof(name), "%s_%d",
2247 adapter->pdev->device.name, i);
2248
2249 if (i == 0) {
2250 /* First port is already allocated by DPDK */
2251 eth_dev = adapter->eth_dev;
2252 goto allocate_mac;
2253 }
2254
2255 /*
2256 * now do all data allocation - for eth_dev structure,
2257 * and internal (private) data for the remaining ports
2258 */
2259
2260 /* reserve an ethdev entry */
2261 eth_dev = rte_eth_dev_allocate(name);
2262 if (!eth_dev)
2263 goto out_free;
2264
2265 eth_dev->data->dev_private =
2266 rte_zmalloc_socket(name, sizeof(struct port_info),
2267 RTE_CACHE_LINE_SIZE, numa_node);
2268 if (!eth_dev->data->dev_private)
2269 goto out_free;
2270
2271 allocate_mac:
2272 pi = eth_dev->data->dev_private;
2273 adapter->port[i] = pi;
2274 pi->eth_dev = eth_dev;
2275 pi->adapter = adapter;
2276 pi->xact_addr_filt = -1;
2277 pi->port_id = i;
2278 pi->pidx = i;
2279
2280 pi->eth_dev->device = &adapter->pdev->device;
2281 pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
2282 pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
2283 pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
2284
2285 rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
2286
2287 pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
2288 RTE_ETHER_ADDR_LEN, 0);
2289 if (!pi->eth_dev->data->mac_addrs) {
2290 dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
2291 __func__);
2292 err = -1;
2293 goto out_free;
2294 }
2295
2296 if (i > 0) {
2297 /* First port will be notified by upper layer */
2298 rte_eth_dev_probing_finish(eth_dev);
2299 }
2300 }
2301
2302 if (adapter->flags & FW_OK) {
2303 err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
2304 if (err) {
2305 dev_err(adapter, "%s: t4_port_init failed with err %d\n",
2306 __func__, err);
2307 goto out_free;
2308 }
2309 }
2310
2311 err = cxgbe_cfg_queues(adapter->eth_dev);
2312 if (err)
2313 goto out_free;
2314
2315 cxgbe_print_adapter_info(adapter);
2316 cxgbe_print_port_info(adapter);
2317
2318 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
2319 adapter->clipt_end);
2320 if (!adapter->clipt) {
2321 /* We tolerate a lack of clip_table, giving up some
2322 * functionality
2323 */
2324 dev_warn(adapter, "could not allocate CLIP. Continuing\n");
2325 }
2326
2327 adap_smt_index(adapter, &smt_start_idx, &smt_size);
2328 adapter->smt = t4_init_smt(smt_start_idx, smt_size);
2329 if (!adapter->smt)
2330 dev_warn(adapter, "could not allocate SMT, continuing\n");
2331
2332 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
2333 if (!adapter->l2t) {
2334 /* We tolerate a lack of L2T, giving up some functionality */
2335 dev_warn(adapter, "could not allocate L2T. Continuing\n");
2336 }
2337
2338 if (tid_init(&adapter->tids) < 0) {
2339 /* Disable filtering support */
2340 dev_warn(adapter, "could not allocate TID table, "
2341 "filter support disabled. Continuing\n");
2342 }
2343
2344 t4_os_lock_init(&adapter->flow_lock);
2345
2346 adapter->mpstcam = t4_init_mpstcam(adapter);
2347 if (!adapter->mpstcam)
2348 dev_warn(adapter, "could not allocate mps tcam table."
2349 " Continuing\n");
2350
2351 if (is_hashfilter(adapter)) {
2352 if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
2353 u32 hash_base, hash_reg;
2354
2355 hash_reg = A_LE_DB_TID_HASHBASE;
2356 hash_base = t4_read_reg(adapter, hash_reg);
2357 adapter->tids.hash_base = hash_base / 4;
2358 }
2359 } else {
2360 /* Disable hash filtering support */
2361 dev_warn(adapter,
2362 "Maskless filter support disabled. Continuing\n");
2363 }
2364
2365 err = cxgbe_init_rss(adapter);
2366 if (err)
2367 goto out_free;
2368
2369 return 0;
2370
2371 out_free:
2372 cxgbe_cfg_queues_free(adapter);
2373
2374 for_each_port(adapter, i) {
2375 pi = adap2pinfo(adapter, i);
2376 if (pi->viid != 0)
2377 t4_free_vi(adapter, adapter->mbox, adapter->pf,
2378 0, pi->viid);
2379 rte_eth_dev_release_port(pi->eth_dev);
2380 }
2381
2382 if (adapter->flags & FW_OK)
2383 t4_fw_bye(adapter, adapter->mbox);
2384 return -err;
2385 }
2386