Lines Matching defs:D0
6750 // - D must be constant, with D = D0 * 2^K where D0 is odd
6751 // - P is the multiplicative inverse of D0 modulo 2^W
6807 // Decompose D into D0 * 2^K
6810 APInt D0 = D.lshr(K);
6814 // D is a power-of-two if D0 is one.
6816 AllDivisorsArePowerOfTwo &= D0.isOne();
6818 // P = inv(D0, 2^W)
6821 APInt P = D0.multiplicativeInverse();
6822 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6998 // - D must be constant, with D = D0 * 2^K where D0 is odd
6999 // - P is the multiplicative inverse of D0 modulo 2^W
7000 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
7004 // When D is a power of two (and thus D0 is 1), the normal
7060 // Decompose D into D0 * 2^K
7063 APInt D0 = D.lshr(K);
7071 // D is a power-of-two if D0 is one. This includes INT_MIN.
7073 AllDivisorsArePowerOfTwo &= D0.isOne();
7075 // P = inv(D0, 2^W)
7078 APInt P = D0.multiplicativeInverse();
7079 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
7081 // A = floor((2^(W - 1) - 1) / D0) & -2^K
7082 APInt A = APInt::getSignedMaxValue(W).udiv(D0);
7100 if (D0.isOne()) {