Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7
# 7d757725 14-Dec-2022 Nikita Popov <npopov@redhat.com>

[LoopVectorize] Convert some tests to opaque pointers (NFC)


# be51fa45 05-Dec-2022 Roman Lebedev <lebedev.ri@gmail.com>

[NFC] Port all runlines for LoopVectorize pass tests to -passes syntax


Revision tags: llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, working, llvmorg-15.0.2, llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1
# 872f7000 03-Apr-2022 Dávid Bolvanský <david.bolvansky@gmail.com>

Revert "[NFCI] Regenerate SROA/LoopVectorize test checks"

This reverts commit 14e3450fb57305aa9ff3e9e60687b458e43835c9.


# a113a582 03-Apr-2022 Dávid Bolvanský <david.bolvansky@gmail.com>

[NFCI] Regenerate LoopVectorize test checks


Revision tags: llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3, llvmorg-14.0.0-rc2, llvmorg-14.0.0-rc1, llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2, llvmorg-13.0.1-rc1, llvmorg-13.0.0, llvmorg-13.0.0-rc4, llvmorg-13.0.0-rc3, llvmorg-13.0.0-rc2, llvmorg-13.0.0-rc1
# 3fd96e1b 30-Jul-2021 David Sherwood <david.sherwood@arm.com>

[LoopVectorize] Improve vectorisation of some intrinsics by treating them as uniform

This patch adds more instructions to the Uniforms list, for example certain
intrinsics that are uniform by defini

[LoopVectorize] Improve vectorisation of some intrinsics by treating them as uniform

This patch adds more instructions to the Uniforms list, for example certain
intrinsics that are uniform by definition or whose operands are loop invariant.
This list includes:

1. The intrinsics 'experimental.noalias.scope.decl' and 'sideeffect', which
are always uniform by definition.
2. If intrinsics 'lifetime.start', 'lifetime.end' and 'assume' have
loop invariant input operands then these are also uniform too.

Also, in VPRecipeBuilder::handleReplication we check if an instruction is
uniform based purely on whether or not the instruction lives in the Uniforms
list. However, there are certain cases where calls to some intrinsics can
be effectively treated as uniform too. Therefore, we now also treat the
following cases as uniform for scalable vectors:

1. If the 'assume' intrinsic's operand is not loop invariant, then we
are free to treat this as uniform anyway since it's only a performance
hint. We will get the benefit for the first lane.
2. When the input pointers for 'lifetime.start' and 'lifetime.end' are loop
variant then for scalable vectors we assume these still ultimately come
from the broadcast of an alloca. We do not support scalable vectorisation
of loops containing alloca instructions, hence the alloca itself would
be invariant. If the pointer does not come from an alloca then the
intrinsic itself has no effect.

I have updated the assume test for fixed width, since we now treat it
as uniform:

Transforms/LoopVectorize/assume.ll

I've also added new scalable vectorisation tests for other intriniscs:

Transforms/LoopVectorize/scalable-assume.ll
Transforms/LoopVectorize/scalable-lifetime.ll
Transforms/LoopVectorize/scalable-noalias-scope-decl.ll

Differential Revision: https://reviews.llvm.org/D107284

show more ...


# 95800da9 30-Jul-2021 David Sherwood <david.sherwood@arm.com>

[LoopVectorize] Add support for replication of more intrinsics with scalable vectors

This patch adds more instructions to the Uniforms list, for example certain
intrinsics that are uniform by defini

[LoopVectorize] Add support for replication of more intrinsics with scalable vectors

This patch adds more instructions to the Uniforms list, for example certain
intrinsics that are uniform by definition or whose operands are loop invariant.
This list includes:

1. The intrinsics 'experimental.noalias.scope.decl' and 'sideeffect', which
are always uniform by definition.
2. If intrinsics 'lifetime.start', 'lifetime.end' and 'assume' have
loop invariant input operands then these are also uniform too.

Also, in VPRecipeBuilder::handleReplication we check if an instruction is
uniform based purely on whether or not the instruction lives in the Uniforms
list. However, there are certain cases where calls to some intrinsics can
be effectively treated as uniform too. Therefore, we now also treat the
following cases as uniform for scalable vectors:

1. If the 'assume' intrinsic's operand is not loop invariant, then we
are free to treat this as uniform anyway since it's only a performance
hint. We will get the benefit for the first lane.
2. When the input pointers for 'lifetime.start' and 'lifetime.end' are loop
variant then for scalable vectors we assume these still ultimately come
from the broadcast of an alloca. We do not support scalable vectorisation
of loops containing alloca instructions, hence the alloca itself would
be invariant. If the pointer does not come from an alloca then the
intrinsic itself has no effect.

I have updated the assume test for fixed width, since we now treat it
as uniform:

Transforms/LoopVectorize/assume.ll

I've also added new scalable vectorisation tests for other intriniscs:

Transforms/LoopVectorize/scalable-assume.ll
Transforms/LoopVectorize/scalable-lifetime.ll
Transforms/LoopVectorize/scalable-noalias-scope-decl.ll

Differential Revision: https://reviews.llvm.org/D107284

show more ...