History log of /llvm-project/llvm/test/CodeGen/AMDGPU/set-wave-priority.ll (Results 1 – 3 of 3)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1
# faa2c678 04-Apr-2023 Krzysztof Drewniak <Krzysztof.Drewniak@amd.com>

[AMDGPU] Add buffer intrinsics that take resources as pointers

In order to enable the LLVM frontend to better analyze buffer
operations (and to potentially enable more precise analyses on the
backen

[AMDGPU] Add buffer intrinsics that take resources as pointers

In order to enable the LLVM frontend to better analyze buffer
operations (and to potentially enable more precise analyses on the
backend), define versions of the raw and structured buffer intrinsics
that use `ptr addrspace(8)` instead of `<4 x i32>` to represent their
rsrc arguments.

The new intrinsics are named by replacing `buffer.` with `buffer.ptr`.

One advantage to these intrinsic definitions is that, instead of
specifying that a buffer load/store will read/write some memory, we
can indicate that the memory read or written will be based on the
pointer argument. This means that, for example, a read from a
`noalias` buffer can be pulled out of a loop that is modifying a
distinct buffer.

In the future, we will define custom PseudoSourceValues that will
allow us to package up the (buffer, index, offset) triples that buffer
intrinsics contain and allow for more precise backend analysis.

This work also enables creating address space 7, which represents
manipulation of raw buffers using native LLVM load and store
instructions.

Where tests simply used a buffer intrinsic while testing some other
code path (such as the tests for VGPR spills), they have been updated
to use the new intrinsic form. Tests that are "about" buffer
intrinsics (for instance, those that ensure that they codegen as
expected) have been duplicated, either within existing files or into
new ones.

Depends on D145441

Reviewed By: arsenm, #amdgpu

Differential Revision: https://reviews.llvm.org/D147547

show more ...


Revision tags: llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7, llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, working, llvmorg-15.0.2, llvmorg-15.0.1
# 57c943d5 08-Sep-2022 Ivan Kosarev <ivan.kosarev@amd.com>

[AMDGPU] Only raise wave priority if there is a long enough sequence of VALU instructions.

Reviewed By: nhaehnle

Differential Revision: https://reviews.llvm.org/D124671


Revision tags: llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3
# 6ddf2a82 27-Apr-2022 Ivan Kosarev <ivan.kosarev@amd.com>

[AMDGPU] Adjust wave priority based on VMEM instructions to avoid duty-cycling.

As older waves execute long sequences of VALU instructions, this may
prevent younger waves from address calculation an

[AMDGPU] Adjust wave priority based on VMEM instructions to avoid duty-cycling.

As older waves execute long sequences of VALU instructions, this may
prevent younger waves from address calculation and then issuing their
VMEM loads, which in turn leads the VALU unit to idle. This patch tries
to prevent this by temporarily raising the wave's priority.

Reviewed By: foad

Differential Revision: https://reviews.llvm.org/D124246

show more ...