Revision tags: llvmorg-21-init, llvmorg-19.1.7, llvmorg-19.1.6, llvmorg-19.1.5, llvmorg-19.1.4, llvmorg-19.1.3, llvmorg-19.1.2, llvmorg-19.1.1, llvmorg-19.1.0, llvmorg-19.1.0-rc4, llvmorg-19.1.0-rc3 |
|
#
513c3726 |
| 12-Aug-2024 |
David Spickett <david.spickett@linaro.org> |
[lldb][test] Break early when walking backtrace in concurrent tests
We only need to see that 1 frame of the stack is in user code. No need to carry on looking.
Doing so actually caused a test failu
[lldb][test] Break early when walking backtrace in concurrent tests
We only need to see that 1 frame of the stack is in user code. No need to carry on looking.
Doing so actually caused a test failure on Armv8 Ubuntu Jammy where a libc function does not have a display name. I'm sure I'm going to get stung by this elsewhere, but for this test, breaking early sidesteps the problem.
show more ...
|
Revision tags: llvmorg-19.1.0-rc2, llvmorg-19.1.0-rc1, llvmorg-20-init, llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3 |
|
#
dbc40b34 |
| 14-Feb-2024 |
Jason Molenda <jmolenda@apple.com> |
[lldb] Fix the flakey Concurrent tests on macOS (#81710)
The concurrent tests all do a pthread_join at the end, and
concurrent_base.py stops after that pthread_join and sanity checks that
only 1 t
[lldb] Fix the flakey Concurrent tests on macOS (#81710)
The concurrent tests all do a pthread_join at the end, and
concurrent_base.py stops after that pthread_join and sanity checks that
only 1 thread is running. On macOS, after pthread_join() has completed,
there can be an extra thread still running which is completing the
details of that task asynchronously; this causes testsuite failures.
When this happens, we see the second thread is in
```
frame #0: 0x0000000180ce7700 libsystem_kernel.dylib`__ulock_wake + 8
frame #1: 0x0000000180d25ad4 libsystem_pthread.dylib`_pthread_joiner_wake + 52
frame #2: 0x0000000180d23c18 libsystem_pthread.dylib`_pthread_terminate + 384
frame #3: 0x0000000180d23a98 libsystem_pthread.dylib`_pthread_terminate_invoke + 92
frame #4: 0x0000000180d26740 libsystem_pthread.dylib`_pthread_exit + 112
frame #5: 0x0000000180d26040 libsystem_pthread.dylib`_pthread_start + 148
```
there are none of the functions from the test file present on this
thread.
In this patch, instead of counting the number of threads, I iterate over
the threads looking for functions from our test file (by name) and only
count threads that have at least one of them.
It's a lower frequency failure than the darwin kernel bug causing an
extra step instruction mach exception when hardware
breakpoint/watchpoints are used, but once I fixed that, this came up as
the next most common failure for these tests.
rdar://110555062
show more ...
|
Revision tags: llvmorg-18.1.0-rc2 |
|
#
147d7a64 |
| 01-Feb-2024 |
Jason Molenda <jason@molenda.com> |
[lldb] Add support for large watchpoints in lldb (#79962)
This patch is the next piece of work in my Large Watchpoint proposal, https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/7211
[lldb] Add support for large watchpoints in lldb (#79962)
This patch is the next piece of work in my Large Watchpoint proposal, https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
This patch breaks a user's watchpoint into one or more WatchpointResources which reflect what the hardware registers can cover. This means we can watch objects larger than 8 bytes, and we can watched unaligned address ranges. On a typical 64-bit target with 4 watchpoint registers you can watch 32 bytes of memory if the start address is doubleword aligned.
Additionally, if the remote stub implements AArch64 MASK style watchpoints (e.g. debugserver on Darwin), we can watch any power-of-2 size region of memory up to 2GB, aligned to that same size.
I updated the Watchpoint constructor and CommandObjectWatchpoint to create a CompilerType of Array<UInt8> when the size of the watched region is greater than pointer-size and we don't have a variable type to use. For pointer-size and smaller, we can display the watched granule as an integer value; for larger-than-pointer-size we will display as an array of bytes.
I have `watchpoint list` now print the WatchpointResources used to implement the watchpoint.
I added a WatchpointAlgorithm class which has a top-level static method that takes an enum flag mask WatchpointHardwareFeature and a user address and size, and returns a vector of WatchpointResources covering the request. It does not take into account the number of watchpoint registers the target has, or the number still available for use. Right now there is only one algorithm, which monitors power-of-2 regions of memory. For up to pointer-size, this is what Intel hardware supports. AArch64 Byte Address Select watchpoints can watch any number of contiguous bytes in a pointer-size memory granule, that is not currently supported so if you ask to watch bytes 3-5, the algorithm will watch the entire doubleword (8 bytes). The newly default "modify" style means we will silently ignore modifications to bytes outside the watched range.
I've temporarily skipped TestLargeWatchpoint.py for all targets. It was only run on Darwin when using the in-tree debugserver, which was a proxy for "debugserver supports MASK watchpoints". I'll be adding the aforementioned feature flag from the stub and enabling full mask watchpoints when a debugserver with that feature is enabled, and re-enable this test.
I added a new TestUnalignedLargeWatchpoint.py which only has one test but it's a great one, watching a 22-byte range that is unaligned and requires four 8-byte watchpoints to cover.
I also added a unit test, WatchpointAlgorithmsTests, which has a number of simple tests against WatchpointAlgorithms::PowerOf2Watchpoints. I think there's interesting possible different approaches to how we cover these; I note in the unit test that a user requesting a watch on address 0x12e0 of 120 bytes will be covered by two watchpoints today, a 128-bytes at 0x1280 and at 0x1300. But it could be done with a 16-byte watchpoint at 0x12e0 and a 128-byte at 0x1300, which would have fewer false positives/private stops. As we try refining this one, it's helpful to have a collection of tests to make sure things don't regress.
I tested this on arm64 macOS, (genuine) x86_64 macOS, and AArch64 Ubuntu. I have not modifed the Windows process plugins yet, I might try that as a standalone patch, I'd be making the change blind, but the necessary changes (see ProcessGDBRemote::EnableWatchpoint) are pretty small so it might be obvious enough that I can change it and see what the Windows CI thinks.
There isn't yet a packet (or a qSupported feature query) for the gdb remote serial protocol stub to communicate its watchpoint capabilities to lldb. I'll be doing that in a patch right after this is landed, having debugserver advertise its capability of AArch64 MASK watchpoints, and have ProcessGDBRemote add eWatchpointHardwareArmMASK to WatchpointAlgorithms so we can watch larger than 32-byte requests on Darwin.
I haven't yet tackled WatchpointResource *sharing* by multiple Watchpoints. This is all part of the goal, especially when we may be watching a larger memory range than the user requested, if they then add another watchpoint next to their first request, it may be covered by the same WatchpointResource (hardware watchpoint register). Also one "read" watchpoint and one "write" watchpoint on the same memory granule need to be handled, making the WatchpointResource cover all requests.
As WatchpointResources aren't shared among multiple Watchpoints yet, there's no handling of running the conditions/commands/etc on multiple Watchpoints when their shared WatchpointResource is hit. The goal beyond "large watchpoint" is to unify (much more) the Watchpoint and Breakpoint behavior and commands. I have a feeling I may be slowly chipping away at this for a while.
Re-landing this patch after fixing two undefined behaviors in WatchpointAlgorithms found by UBSan and by failures on different CI bots.
rdar://108234227
show more ...
|
#
d347c564 |
| 31-Jan-2024 |
Jason Molenda <jason@molenda.com> |
Revert "[lldb] Add support for large watchpoints in lldb (#79962)"
This reverts commit 57c66b35a885b571f9897d75d18f1d974c29e533.
|
#
57c66b35 |
| 31-Jan-2024 |
Jason Molenda <jmolenda@apple.com> |
[lldb] Add support for large watchpoints in lldb (#79962)
This patch is the next piece of work in my Large Watchpoint proposal,
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/721
[lldb] Add support for large watchpoints in lldb (#79962)
This patch is the next piece of work in my Large Watchpoint proposal,
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
This patch breaks a user's watchpoint into one or more
WatchpointResources which reflect what the hardware registers can cover.
This means we can watch objects larger than 8 bytes, and we can watched
unaligned address ranges. On a typical 64-bit target with 4 watchpoint
registers you can watch 32 bytes of memory if the start address is
doubleword aligned.
Additionally, if the remote stub implements AArch64 MASK style
watchpoints (e.g. debugserver on Darwin), we can watch any power-of-2
size region of memory up to 2GB, aligned to that same size.
I updated the Watchpoint constructor and CommandObjectWatchpoint to
create a CompilerType of Array<UInt8> when the size of the watched
region is greater than pointer-size and we don't have a variable type to
use. For pointer-size and smaller, we can display the watched granule as
an integer value; for larger-than-pointer-size we will display as an
array of bytes.
I have `watchpoint list` now print the WatchpointResources used to
implement the watchpoint.
I added a WatchpointAlgorithm class which has a top-level static method
that takes an enum flag mask WatchpointHardwareFeature and a user
address and size, and returns a vector of WatchpointResources covering
the request. It does not take into account the number of watchpoint
registers the target has, or the number still available for use. Right
now there is only one algorithm, which monitors power-of-2 regions of
memory. For up to pointer-size, this is what Intel hardware supports.
AArch64 Byte Address Select watchpoints can watch any number of
contiguous bytes in a pointer-size memory granule, that is not currently
supported so if you ask to watch bytes 3-5, the algorithm will watch the
entire doubleword (8 bytes). The newly default "modify" style means we
will silently ignore modifications to bytes outside the watched range.
I've temporarily skipped TestLargeWatchpoint.py for all targets. It was
only run on Darwin when using the in-tree debugserver, which was a proxy
for "debugserver supports MASK watchpoints". I'll be adding the
aforementioned feature flag from the stub and enabling full mask
watchpoints when a debugserver with that feature is enabled, and
re-enable this test.
I added a new TestUnalignedLargeWatchpoint.py which only has one test
but it's a great one, watching a 22-byte range that is unaligned and
requires four 8-byte watchpoints to cover.
I also added a unit test, WatchpointAlgorithmsTests, which has a number
of simple tests against WatchpointAlgorithms::PowerOf2Watchpoints. I
think there's interesting possible different approaches to how we cover
these; I note in the unit test that a user requesting a watch on address
0x12e0 of 120 bytes will be covered by two watchpoints today, a
128-bytes at 0x1280 and at 0x1300. But it could be done with a 16-byte
watchpoint at 0x12e0 and a 128-byte at 0x1300, which would have fewer
false positives/private stops. As we try refining this one, it's helpful
to have a collection of tests to make sure things don't regress.
I tested this on arm64 macOS, (genuine) x86_64 macOS, and AArch64
Ubuntu. I have not modifed the Windows process plugins yet, I might try
that as a standalone patch, I'd be making the change blind, but the
necessary changes (see ProcessGDBRemote::EnableWatchpoint) are pretty
small so it might be obvious enough that I can change it and see what
the Windows CI thinks.
There isn't yet a packet (or a qSupported feature query) for the gdb
remote serial protocol stub to communicate its watchpoint capabilities
to lldb. I'll be doing that in a patch right after this is landed,
having debugserver advertise its capability of AArch64 MASK watchpoints,
and have ProcessGDBRemote add eWatchpointHardwareArmMASK to
WatchpointAlgorithms so we can watch larger than 32-byte requests on
Darwin.
I haven't yet tackled WatchpointResource *sharing* by multiple
Watchpoints. This is all part of the goal, especially when we may be
watching a larger memory range than the user requested, if they then add
another watchpoint next to their first request, it may be covered by the
same WatchpointResource (hardware watchpoint register). Also one "read"
watchpoint and one "write" watchpoint on the same memory granule need to
be handled, making the WatchpointResource cover all requests.
As WatchpointResources aren't shared among multiple Watchpoints yet,
there's no handling of running the conditions/commands/etc on multiple
Watchpoints when their shared WatchpointResource is hit. The goal beyond
"large watchpoint" is to unify (much more) the Watchpoint and Breakpoint
behavior and commands. I have a feeling I may be slowly chipping away at
this for a while.
rdar://108234227
show more ...
|
Revision tags: llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5 |
|
#
2238dcc3 |
| 25-May-2023 |
Jonas Devlieghere <jonas@devlieghere.com> |
[NFC][Py Reformat] Reformat python files in lldb
This is an ongoing series of commits that are reformatting our Python code. Reformatting is done with `black` (23.1.0).
If you end up having problem
[NFC][Py Reformat] Reformat python files in lldb
This is an ongoing series of commits that are reformatting our Python code. Reformatting is done with `black` (23.1.0).
If you end up having problems merging this commit because you have made changes to a python file, the best way to handle that is to run `git checkout --ours <yourfile>` and then reformat it with black.
RFC: https://discourse.llvm.org/t/rfc-document-and-standardize-python-code-style
Differential revision: https://reviews.llvm.org/D151460
show more ...
|
Revision tags: llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1 |
|
#
dd9b31e2 |
| 27-Jan-2023 |
Jordan Rupprecht <rupprecht@google.com> |
[test] Remove unused `unittest2` import from concurrent_base.py
|
Revision tags: llvmorg-17-init, llvmorg-15.0.7, llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3 |
|
#
021a3d5a |
| 12-Oct-2022 |
Arthur Eubanks <aeubanks@google.com> |
[lldb] Start from end of previous substr when checking ordered substrs
I'm trying to add a test which tests that the same substr occurs twice in a row, but it matches even if only one of the substr
[lldb] Start from end of previous substr when checking ordered substrs
I'm trying to add a test which tests that the same substr occurs twice in a row, but it matches even if only one of the substr occurs.
This found a bug in concurrent_base.py.
Reviewed By: DavidSpickett
Differential Revision: https://reviews.llvm.org/D135826
show more ...
|
Revision tags: working, llvmorg-15.0.2, llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1, llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3, llvmorg-14.0.0-rc2, llvmorg-14.0.0-rc1, llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2, llvmorg-13.0.1-rc1, llvmorg-13.0.0, llvmorg-13.0.0-rc4, llvmorg-13.0.0-rc3, llvmorg-13.0.0-rc2, llvmorg-13.0.0-rc1, llvmorg-14-init, llvmorg-12.0.1, llvmorg-12.0.1-rc4, llvmorg-12.0.1-rc3, llvmorg-12.0.1-rc2, llvmorg-12.0.1-rc1, llvmorg-12.0.0, llvmorg-12.0.0-rc5, llvmorg-12.0.0-rc4, llvmorg-12.0.0-rc3, llvmorg-12.0.0-rc2, llvmorg-11.1.0, llvmorg-11.1.0-rc3, llvmorg-12.0.0-rc1, llvmorg-13-init, llvmorg-11.1.0-rc2, llvmorg-11.1.0-rc1, llvmorg-11.0.1, llvmorg-11.0.1-rc2, llvmorg-11.0.1-rc1, llvmorg-11.0.0, llvmorg-11.0.0-rc6, llvmorg-11.0.0-rc5, llvmorg-11.0.0-rc4, llvmorg-11.0.0-rc3, llvmorg-11.0.0-rc2, llvmorg-11.0.0-rc1, llvmorg-12-init, llvmorg-10.0.1, llvmorg-10.0.1-rc4, llvmorg-10.0.1-rc3, llvmorg-10.0.1-rc2, llvmorg-10.0.1-rc1, llvmorg-10.0.0, llvmorg-10.0.0-rc6, llvmorg-10.0.0-rc5, llvmorg-10.0.0-rc4, llvmorg-10.0.0-rc3, llvmorg-10.0.0-rc2, llvmorg-10.0.0-rc1, llvmorg-11-init |
|
#
a52a1113 |
| 13-Dec-2019 |
Raphael Isemann <teemperor@gmail.com> |
[lldb][NFC] Remove 'from __future__ import print_function' from all tests that don't actually call 'print()'
Summary: A lot of tests do this trick but the vast majority of them don't even call `prin
[lldb][NFC] Remove 'from __future__ import print_function' from all tests that don't actually call 'print()'
Summary: A lot of tests do this trick but the vast majority of them don't even call `print()`.
Most of this patch was generated by a script that just looks at all the files and deletes the line if there is no `print (` or `print(` anywhere else in the file. I checked the remaining tests manually and deleted the import if we never call print (but instead do stuff like `expr print(...)` and similar false-positives). I also corrected the additional empty lines after the import in the files that I manually edited.
Reviewers: JDevlieghere, labath, jfb
Reviewed By: labath
Subscribers: dexonsmith, wuzish, nemanjai, kbarton, christof, arphaman, abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71452
show more ...
|
Revision tags: llvmorg-9.0.1, llvmorg-9.0.1-rc3, llvmorg-9.0.1-rc2, llvmorg-9.0.1-rc1, llvmorg-9.0.0, llvmorg-9.0.0-rc6, llvmorg-9.0.0-rc5, llvmorg-9.0.0-rc4, llvmorg-9.0.0-rc3, llvmorg-9.0.0-rc2 |
|
#
9eedbc4f |
| 02-Aug-2019 |
Raphael Isemann <teemperor@gmail.com> |
[lldb][NFC] Remove unused imports in python tests
llvm-svn: 367663
|
Revision tags: llvmorg-9.0.0-rc1, llvmorg-10-init, llvmorg-8.0.1, llvmorg-8.0.1-rc4, llvmorg-8.0.1-rc3, llvmorg-8.0.1-rc2, llvmorg-8.0.1-rc1, llvmorg-8.0.0, llvmorg-8.0.0-rc5, llvmorg-8.0.0-rc4, llvmorg-8.0.0-rc3, llvmorg-7.1.0, llvmorg-7.1.0-rc1, llvmorg-8.0.0-rc2, llvmorg-8.0.0-rc1, llvmorg-7.0.1, llvmorg-7.0.1-rc3, llvmorg-7.0.1-rc2, llvmorg-7.0.1-rc1, llvmorg-7.0.0, llvmorg-7.0.0-rc3, llvmorg-7.0.0-rc2, llvmorg-7.0.0-rc1, llvmorg-6.0.1, llvmorg-6.0.1-rc3, llvmorg-6.0.1-rc2, llvmorg-6.0.1-rc1, llvmorg-5.0.2, llvmorg-5.0.2-rc2, llvmorg-5.0.2-rc1, llvmorg-6.0.0 |
|
#
de872a69 |
| 27-Feb-2018 |
Pavel Labath <labath@google.com> |
Move "concurrent events" tests back into one folder
These tests all test very similar things, and use the same inferior. They were only placed in separate folders to achieve better paralelization. N
Move "concurrent events" tests back into one folder
These tests all test very similar things, and use the same inferior. They were only placed in separate folders to achieve better paralelization. Now that we paralelize at a file level, this is no longer relevant, and we can put them together again.
llvm-svn: 326159
show more ...
|
Revision tags: llvmorg-6.0.0-rc3, llvmorg-6.0.0-rc2 |
|
#
595048f3 |
| 19-Jan-2018 |
Adrian Prantl <aprantl@apple.com> |
Wrap all references to build artifacts in the LLDB testsuite (NFC)
in TestBase::getBuildArtifact(). This NFC commit is in preparation for https://reviews.llvm.org/D42281 (compile the LLDB tests out-
Wrap all references to build artifacts in the LLDB testsuite (NFC)
in TestBase::getBuildArtifact(). This NFC commit is in preparation for https://reviews.llvm.org/D42281 (compile the LLDB tests out-of-tree).
Differential Revision: https://reviews.llvm.org/D42280
llvm-svn: 323007
show more ...
|
Revision tags: llvmorg-6.0.0-rc1, llvmorg-5.0.1, llvmorg-5.0.1-rc3, llvmorg-5.0.1-rc2, llvmorg-5.0.1-rc1, llvmorg-5.0.0, llvmorg-5.0.0-rc5, llvmorg-5.0.0-rc4, llvmorg-5.0.0-rc3, llvmorg-5.0.0-rc2, llvmorg-5.0.0-rc1, llvmorg-4.0.1, llvmorg-4.0.1-rc3, llvmorg-4.0.1-rc2, llvmorg-4.0.1-rc1, llvmorg-4.0.0, llvmorg-4.0.0-rc4, llvmorg-4.0.0-rc3, llvmorg-4.0.0-rc2, llvmorg-4.0.0-rc1, llvmorg-3.9.1, llvmorg-3.9.1-rc3, llvmorg-3.9.1-rc2, llvmorg-3.9.1-rc1 |
|
#
b9c1b51e |
| 06-Sep-2016 |
Kate Stone <katherine.stone@apple.com> |
*** This commit represents a complete reformatting of the LLDB source code *** to conform to clang-format’s LLVM style. This kind of mass change has *** two obvious implications:
Firstly, merging t
*** This commit represents a complete reformatting of the LLDB source code *** to conform to clang-format’s LLVM style. This kind of mass change has *** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge effort. Alternatively, it may be worth merging all changes up to this commit, performing the same reformatting operation locally, and then discarding the merge for this particular commit. The commands used to accomplish this reformatting were as follows (with current working directory as the root of the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} + find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of a meaningful prior commit. There are alternatives available that will attempt to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
show more ...
|
Revision tags: llvmorg-3.9.0, llvmorg-3.9.0-rc3, llvmorg-3.9.0-rc2, llvmorg-3.9.0-rc1 |
|
#
6118ce12 |
| 22-Jul-2016 |
Todd Fiala <todd.fiala@gmail.com> |
Breakup TestConcurrentEvents.py into separate test subdirs per test method
This change breaks up the monolithic TestConcurrentEvents.py into a separate subdir per test method. This allows them to ru
Breakup TestConcurrentEvents.py into separate test subdirs per test method
This change breaks up the monolithic TestConcurrentEvents.py into a separate subdir per test method. This allows them to run concurrently, reduces the chance of a timeout occurring during normal operation, and allows us to home in on any test methods that may be locking up.
This is step one in the process of squashing timeouts in these test methods.
The reason for breaking each test method into its own file is to make it very clear to us if there are a subset of the tests that do in fact lock up frequently. This will limit how much hunting we need to do to recreate it.
The reason for putting each file in a separate subdirectory is so that our concurrent test runner can run multiple test files at the same time. The unit of serialization in the LLDB test suite is the test directory, so moving them into separate directories enables the test runner to do more at the same time.
This change introduces usage of VPATH from gnu make. I use that to facilitate keeping a single copy of the main.cpp in the parent concurrent_events directory. Initially I had tried specifying the source file as ../main.cpp, but our current makefile rules get confused by that and then also build the output into the parent directory, which defeats the ability to run each of the test methods concurrently. In the event that not all systems support VPATH, I can do a bit of surgery on the Makefile rules and attempt to make it smarter with regards to relative paths to source files used in the build.
llvm-svn: 276478
show more ...
|