History log of /llvm-project/clang/lib/Basic/Targets/SPIR.cpp (Results 1 – 9 of 9)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: llvmorg-21-init, llvmorg-19.1.7
# 21edac25 06-Jan-2025 Farzon Lotfi <farzonlotfi@microsoft.com>

[SPIRV] Add Target Builtins using Distance ext as an example (#121598)

- Update pr labeler so new SPIRV files get properly labeled.
- Add distance target builtin to BuiltinsSPIRV.td.
- Update Targ

[SPIRV] Add Target Builtins using Distance ext as an example (#121598)

- Update pr labeler so new SPIRV files get properly labeled.
- Add distance target builtin to BuiltinsSPIRV.td.
- Update TargetBuiltins.h to account for spirv builtins.
- Update clang basic CMakeLists.txt to build spirv builtin tablegen.
- Hook up sema for SPIRV in Sema.h|cpp, SemaSPIRV.h|cpp, and
SemaChecking.cpp.
- Hookup sprv target builtins to SPIR.h|SPIR.cpp target.
- Update GBuiltin.cpp to emit spirv intrinsics when we get the expected
spirv target builtin.

Consensus was reach in this RFC to add both target builtins and pattern
matching:
https://discourse.llvm.org/t/rfc-add-targetbuiltins-for-spirv-to-support-hlsl/83329.

pattern matching will come in a separate pr this one just sets up the
groundwork to do target builtins for spirv.

partially resolves
[#99107](https://github.com/llvm/llvm-project/issues/99107)

show more ...


Revision tags: llvmorg-19.1.6
# ca79ff07 14-Dec-2024 Chandler Carruth <chandlerc@gmail.com>

Revert "Switch builtin strings to use string tables" (#119638)

Reverts llvm/llvm-project#118734

There are currently some specific versions of MSVC that are miscompiling
this code (we think). We

Revert "Switch builtin strings to use string tables" (#119638)

Reverts llvm/llvm-project#118734

There are currently some specific versions of MSVC that are miscompiling
this code (we think). We don't know why as all the other build bots and
at least some folks' local Windows builds work fine.

This is a candidate revert to help the relevant folks catch their
builders up and have time to debug the issue. However, the expectation
is to roll forward at some point with a workaround if at all possible.

show more ...


# be2df95e 09-Dec-2024 Chandler Carruth <chandlerc@gmail.com>

Switch builtin strings to use string tables (#118734)

The Clang binary (and any binary linking Clang as a library), when built
using PIE, ends up with a pretty shocking number of dynamic relocation

Switch builtin strings to use string tables (#118734)

The Clang binary (and any binary linking Clang as a library), when built
using PIE, ends up with a pretty shocking number of dynamic relocations
to apply to the executable image: roughly 400k.

Each of these takes up binary space in the executable, and perhaps most
interestingly takes start-up time to apply the relocations.

The largest pattern I identified were the strings used to describe
target builtins. The addresses of these string literals were stored into
huge arrays, each one requiring a dynamic relocation. The way to avoid
this is to design the target builtins to use a single large table of
strings and offsets within the table for the individual strings. This
switches the builtin management to such a scheme.

This saves over 100k dynamic relocations by my measurement, an over 25%
reduction. Just looking at byte size improvements, using the `bloaty`
tool to compare a newly built `clang` binary to an old one:

```
FILE SIZE VM SIZE
-------------- --------------
+1.4% +653Ki +1.4% +653Ki .rodata
+0.0% +960 +0.0% +960 .text
+0.0% +197 +0.0% +197 .dynstr
+0.0% +184 +0.0% +184 .eh_frame
+0.0% +96 +0.0% +96 .dynsym
+0.0% +40 +0.0% +40 .eh_frame_hdr
+114% +32 [ = ] 0 [Unmapped]
+0.0% +20 +0.0% +20 .gnu.hash
+0.0% +8 +0.0% +8 .gnu.version
+0.9% +7 +0.9% +7 [LOAD #2 [R]]
[ = ] 0 -75.4% -3.00Ki .relro_padding
-16.1% -802Ki -16.1% -802Ki .data.rel.ro
-27.3% -2.52Mi -27.3% -2.52Mi .rela.dyn
-1.6% -2.66Mi -1.6% -2.66Mi TOTAL
```

We get a 16% reduction in the `.data.rel.ro` section, and nearly 30%
reduction in `.rela.dyn` where those reloctaions are stored.

This is also visible in my benchmarking of binary start-up overhead at
least:

```
Benchmark 1: ./old_clang --version
Time (mean ± σ): 17.6 ms ± 1.5 ms [User: 4.1 ms, System: 13.3 ms]
Range (min … max): 14.2 ms … 22.8 ms 162 runs

Benchmark 2: ./new_clang --version
Time (mean ± σ): 15.5 ms ± 1.4 ms [User: 3.6 ms, System: 11.8 ms]
Range (min … max): 12.4 ms … 20.3 ms 216 runs

Summary
'./new_clang --version' ran
1.13 ± 0.14 times faster than './old_clang --version'
```

We get about 2ms faster `--version` runs. While there is a lot of noise
in binary execution time, this delta is pretty consistent, and
represents over 10% improvement. This is particularly interesting to me
because for very short source files, repeatedly starting the `clang`
binary is actually the dominant cost. For example, `configure` scripts
running against the `clang` compiler are slow in large part because of
binary start up time, not the time to process the actual inputs to the
compiler.

----

This PR implements the string tables using `constexpr` code and the
existing macro system. I understand that the builtins are moving towards
a TableGen model, and if complete that would provide more options for
modeling this. Unfortunately, that migration isn't complete, and even
the parts that are migrated still rely on the ability to break out of
the TableGen model and directly expand an X-macro style `BUILTIN(...)`
textually. I looked at trying to complete the move to TableGen, but it
would both require the difficult migration of the remaining targets, and
solving some tricky problems with how to move away from any macro-based
expansion.

I was also able to find a reasonably clean and effective way of doing
this with the existing macros and some `constexpr` code that I think is
clean enough to be a pretty good intermediate state, and maybe give a
good target for the eventual TableGen solution. I was also able to
factor the macros into set of consistent patterns that avoids a
significant regression in overall boilerplate.

show more ...


Revision tags: llvmorg-19.1.5, llvmorg-19.1.4, llvmorg-19.1.3, llvmorg-19.1.2, llvmorg-19.1.1, llvmorg-19.1.0, llvmorg-19.1.0-rc4, llvmorg-19.1.0-rc3, llvmorg-19.1.0-rc2, llvmorg-19.1.0-rc1, llvmorg-20-init, llvmorg-18.1.8
# 88e2bb40 07-Jun-2024 Alex Voicu <alexandru.voicu@amd.com>

[clang][SPIR-V] Add support for AMDGCN flavoured SPIRV (#89796)

This change seeks to add support for vendor flavoured SPIRV - more
specifically, AMDGCN flavoured SPIRV. The aim is to generate SPIRV

[clang][SPIR-V] Add support for AMDGCN flavoured SPIRV (#89796)

This change seeks to add support for vendor flavoured SPIRV - more
specifically, AMDGCN flavoured SPIRV. The aim is to generate SPIRV that
carries some extra bits of information that are only usable by AMDGCN
targets, forfeiting absolute genericity to obtain greater expressiveness
for target features:

- AMDGCN inline ASM is allowed/supported, under the assumption that the
[SPV_INTEL_inline_assembly](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/spirv-extensions/SPV_INTEL_inline_assembly.asciidoc)
extension is enabled/used
- AMDGCN target specific builtins are allowed/supported, under the
assumption that e.g. the `--spirv-allow-unknown-intrinsics` option is
enabled when using the downstream translator
- the featureset matches the union of AMDGCN targets' features
- the datalayout string is overspecified to affix both the program
address space and the alloca address space, the latter under the
assumption that the
[SPV_INTEL_function_pointers](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/spirv-extensions/SPV_INTEL_function_pointers.asciidoc)
extension is enabled/used, case in which the extant SPIRV datalayout
string would lead to pointers to function pointing to the private
address space, which would be wrong.

Existing AMDGCN tests are extended to cover this new target. It is
currently dormant / will require some additional changes, but I thought
I'd rather put it up for review to get feedback as early as possible. I
will note that an alternative option is to place this under AMDGPU, but
that seems slightly less natural, since this is still SPIRV, albeit
relaxed in terms of preconditions & constrained in terms of
postconditions, and only guaranteed to be usable on AMDGCN targets (it
is still possible to obtain pristine portable SPIRV through usage of the
flavoured target, though).

show more ...


Revision tags: llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init
# 53b6a169 21-Jul-2023 Nathan Gauër <brioche@google.com>

[SPIR-V] Add SPIR-V logical triple.

Clang implements SPIR-V with both Physical32 and Physical64 addressing
models. This commit adds a new triple value for the Logical
addressing model.

Differential

[SPIR-V] Add SPIR-V logical triple.

Clang implements SPIR-V with both Physical32 and Physical64 addressing
models. This commit adds a new triple value for the Logical
addressing model.

Differential Revision: https://reviews.llvm.org/D155978

show more ...


Revision tags: llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7, llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, working, llvmorg-15.0.2, llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1, llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3, llvmorg-14.0.0-rc2, llvmorg-14.0.0-rc1, llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2, llvmorg-13.0.1-rc1
# a10a69fe 08-Nov-2021 Anastasia Stulova <anastasia.stulova@arm.com>

[SPIR-V] Add SPIR-V triple and clang target info.

Add new triple and target info for ‘spirv32’ and ‘spirv64’ and,
thus, enabling clang (LLVM IR) code emission to SPIR-V target.

The target for SPIR-

[SPIR-V] Add SPIR-V triple and clang target info.

Add new triple and target info for ‘spirv32’ and ‘spirv64’ and,
thus, enabling clang (LLVM IR) code emission to SPIR-V target.

The target for SPIR-V is mostly reused from SPIR by derivation
from a common base class since IR output for SPIR-V is mostly
the same as SPIR. Some refactoring are made accordingly.

Added and updated tests for parts that are different between
SPIR and SPIR-V.

Patch by linjamaki (Henry Linjamäki)!

Differential Revision: https://reviews.llvm.org/D109144

show more ...


Revision tags: llvmorg-13.0.0, llvmorg-13.0.0-rc4, llvmorg-13.0.0-rc3, llvmorg-13.0.0-rc2, llvmorg-13.0.0-rc1, llvmorg-14-init, llvmorg-12.0.1, llvmorg-12.0.1-rc4, llvmorg-12.0.1-rc3, llvmorg-12.0.1-rc2, llvmorg-12.0.1-rc1, llvmorg-12.0.0, llvmorg-12.0.0-rc5, llvmorg-12.0.0-rc4, llvmorg-12.0.0-rc3, llvmorg-12.0.0-rc2, llvmorg-11.1.0, llvmorg-11.1.0-rc3, llvmorg-12.0.0-rc1, llvmorg-13-init, llvmorg-11.1.0-rc2, llvmorg-11.1.0-rc1, llvmorg-11.0.1, llvmorg-11.0.1-rc2, llvmorg-11.0.1-rc1, llvmorg-11.0.0, llvmorg-11.0.0-rc6, llvmorg-11.0.0-rc5, llvmorg-11.0.0-rc4, llvmorg-11.0.0-rc3, llvmorg-11.0.0-rc2, llvmorg-11.0.0-rc1, llvmorg-12-init, llvmorg-10.0.1, llvmorg-10.0.1-rc4, llvmorg-10.0.1-rc3, llvmorg-10.0.1-rc2
# 3a1b0750 27-May-2020 Vyacheslav Zakharin <vyacheslav.p.zakharin@intel.com>

Define __SPIR__ macro for spir/spir64 targets.

Differential Revision: https://reviews.llvm.org/D80655


Revision tags: llvmorg-10.0.1-rc1, llvmorg-10.0.0, llvmorg-10.0.0-rc6, llvmorg-10.0.0-rc5, llvmorg-10.0.0-rc4, llvmorg-10.0.0-rc3, llvmorg-10.0.0-rc2, llvmorg-10.0.0-rc1, llvmorg-11-init, llvmorg-9.0.1, llvmorg-9.0.1-rc3, llvmorg-9.0.1-rc2, llvmorg-9.0.1-rc1, llvmorg-9.0.0, llvmorg-9.0.0-rc6, llvmorg-9.0.0-rc5, llvmorg-9.0.0-rc4, llvmorg-9.0.0-rc3, llvmorg-9.0.0-rc2, llvmorg-9.0.0-rc1, llvmorg-10-init, llvmorg-8.0.1, llvmorg-8.0.1-rc4, llvmorg-8.0.1-rc3, llvmorg-8.0.1-rc2, llvmorg-8.0.1-rc1, llvmorg-8.0.0, llvmorg-8.0.0-rc5, llvmorg-8.0.0-rc4, llvmorg-8.0.0-rc3, llvmorg-7.1.0, llvmorg-7.1.0-rc1, llvmorg-8.0.0-rc2, llvmorg-8.0.0-rc1
# 2946cd70 19-Jan-2019 Chandler Carruth <chandlerc@gmail.com>

Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the ne

Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636

show more ...


Revision tags: llvmorg-7.0.1, llvmorg-7.0.1-rc3, llvmorg-7.0.1-rc2, llvmorg-7.0.1-rc1, llvmorg-7.0.0, llvmorg-7.0.0-rc3, llvmorg-7.0.0-rc2, llvmorg-7.0.0-rc1, llvmorg-6.0.1, llvmorg-6.0.1-rc3, llvmorg-6.0.1-rc2, llvmorg-6.0.1-rc1, llvmorg-5.0.2, llvmorg-5.0.2-rc2, llvmorg-5.0.2-rc1, llvmorg-6.0.0, llvmorg-6.0.0-rc3, llvmorg-6.0.0-rc2, llvmorg-6.0.0-rc1, llvmorg-5.0.1, llvmorg-5.0.1-rc3, llvmorg-5.0.1-rc2, llvmorg-5.0.1-rc1, llvmorg-5.0.0, llvmorg-5.0.0-rc5, llvmorg-5.0.0-rc4, llvmorg-5.0.0-rc3, llvmorg-5.0.0-rc2, llvmorg-5.0.0-rc1
# ebba5926 21-Jul-2017 Erich Keane <erich.keane@intel.com>

Break up Targets.cpp into a header/impl pair per target type[NFCI]

Targets.cpp is getting unwieldy, and even minor changes cause the entire thing
to cause recompilation for everyone. This patch bit

Break up Targets.cpp into a header/impl pair per target type[NFCI]

Targets.cpp is getting unwieldy, and even minor changes cause the entire thing
to cause recompilation for everyone. This patch bites the bullet and breaks
it up into a number of files.

I tended to keep function definitions in the class declaration unless it
caused additional includes to be necessary. In those cases, I pulled it
over into the .cpp file. Content is copy/paste for the most part,
besides includes/format/etc.


Differential Revision: https://reviews.llvm.org/D35701

llvm-svn: 308791

show more ...