1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk/stdinc.h" 35 36 #include "spdk_cunit.h" 37 38 #include "spdk_internal/thread.h" 39 40 #include "thread/thread.c" 41 #include "common/lib/ut_multithread.c" 42 43 static int g_sched_rc = 0; 44 45 static int 46 _thread_schedule(struct spdk_thread *thread) 47 { 48 return g_sched_rc; 49 } 50 51 static void 52 thread_alloc(void) 53 { 54 struct spdk_thread *thread; 55 56 /* No schedule callback */ 57 spdk_thread_lib_init(NULL, 0); 58 thread = spdk_thread_create(NULL, NULL); 59 SPDK_CU_ASSERT_FATAL(thread != NULL); 60 spdk_set_thread(thread); 61 spdk_thread_exit(thread); 62 spdk_thread_destroy(thread); 63 spdk_thread_lib_fini(); 64 65 /* Schedule callback exists */ 66 spdk_thread_lib_init(_thread_schedule, 0); 67 68 /* Scheduling succeeds */ 69 g_sched_rc = 0; 70 thread = spdk_thread_create(NULL, NULL); 71 SPDK_CU_ASSERT_FATAL(thread != NULL); 72 spdk_set_thread(thread); 73 spdk_thread_exit(thread); 74 spdk_thread_destroy(thread); 75 76 /* Scheduling fails */ 77 g_sched_rc = -1; 78 thread = spdk_thread_create(NULL, NULL); 79 SPDK_CU_ASSERT_FATAL(thread == NULL); 80 81 spdk_thread_lib_fini(); 82 } 83 84 static void 85 send_msg_cb(void *ctx) 86 { 87 bool *done = ctx; 88 89 *done = true; 90 } 91 92 static void 93 thread_send_msg(void) 94 { 95 struct spdk_thread *thread0; 96 bool done = false; 97 98 allocate_threads(2); 99 set_thread(0); 100 thread0 = spdk_get_thread(); 101 102 set_thread(1); 103 /* Simulate thread 1 sending a message to thread 0. */ 104 spdk_thread_send_msg(thread0, send_msg_cb, &done); 105 106 /* We have not polled thread 0 yet, so done should be false. */ 107 CU_ASSERT(!done); 108 109 /* 110 * Poll thread 1. The message was sent to thread 0, so this should be 111 * a nop and done should still be false. 112 */ 113 poll_thread(1); 114 CU_ASSERT(!done); 115 116 /* 117 * Poll thread 0. This should execute the message and done should then 118 * be true. 119 */ 120 poll_thread(0); 121 CU_ASSERT(done); 122 123 free_threads(); 124 } 125 126 static int 127 poller_run_done(void *ctx) 128 { 129 bool *poller_run = ctx; 130 131 *poller_run = true; 132 133 return -1; 134 } 135 136 static void 137 thread_poller(void) 138 { 139 struct spdk_poller *poller = NULL; 140 bool poller_run = false; 141 142 allocate_threads(1); 143 144 set_thread(0); 145 MOCK_SET(spdk_get_ticks, 0); 146 /* Register a poller with no-wait time and test execution */ 147 poller = spdk_poller_register(poller_run_done, &poller_run, 0); 148 CU_ASSERT(poller != NULL); 149 150 poll_threads(); 151 CU_ASSERT(poller_run == true); 152 153 spdk_poller_unregister(&poller); 154 CU_ASSERT(poller == NULL); 155 156 /* Register a poller with 1000us wait time and test single execution */ 157 poller_run = false; 158 poller = spdk_poller_register(poller_run_done, &poller_run, 1000); 159 CU_ASSERT(poller != NULL); 160 161 poll_threads(); 162 CU_ASSERT(poller_run == false); 163 164 spdk_delay_us(1000); 165 poll_threads(); 166 CU_ASSERT(poller_run == true); 167 168 poller_run = false; 169 poll_threads(); 170 CU_ASSERT(poller_run == false); 171 172 spdk_delay_us(1000); 173 poll_threads(); 174 CU_ASSERT(poller_run == true); 175 176 spdk_poller_unregister(&poller); 177 CU_ASSERT(poller == NULL); 178 179 free_threads(); 180 } 181 182 struct poller_ctx { 183 struct spdk_poller *poller; 184 bool run; 185 }; 186 187 static int 188 poller_run_pause(void *ctx) 189 { 190 struct poller_ctx *poller_ctx = ctx; 191 192 poller_ctx->run = true; 193 spdk_poller_pause(poller_ctx->poller); 194 195 return 0; 196 } 197 198 static void 199 poller_msg_pause_cb(void *ctx) 200 { 201 struct spdk_poller *poller = ctx; 202 203 spdk_poller_pause(poller); 204 } 205 206 static void 207 poller_msg_resume_cb(void *ctx) 208 { 209 struct spdk_poller *poller = ctx; 210 211 spdk_poller_resume(poller); 212 } 213 214 static void 215 poller_pause(void) 216 { 217 struct poller_ctx poller_ctx = {}; 218 unsigned int delay[] = { 0, 1000 }; 219 unsigned int i; 220 221 allocate_threads(1); 222 set_thread(0); 223 224 /* Register a poller that pauses itself */ 225 poller_ctx.poller = spdk_poller_register(poller_run_pause, &poller_ctx, 0); 226 CU_ASSERT_PTR_NOT_NULL(poller_ctx.poller); 227 228 poller_ctx.run = false; 229 poll_threads(); 230 CU_ASSERT_EQUAL(poller_ctx.run, true); 231 232 poller_ctx.run = false; 233 poll_threads(); 234 CU_ASSERT_EQUAL(poller_ctx.run, false); 235 236 spdk_poller_unregister(&poller_ctx.poller); 237 CU_ASSERT_PTR_NULL(poller_ctx.poller); 238 239 /* Verify that resuming an unpaused poller doesn't do anything */ 240 poller_ctx.poller = spdk_poller_register(poller_run_done, &poller_ctx.run, 0); 241 CU_ASSERT_PTR_NOT_NULL(poller_ctx.poller); 242 243 spdk_poller_resume(poller_ctx.poller); 244 245 poller_ctx.run = false; 246 poll_threads(); 247 CU_ASSERT_EQUAL(poller_ctx.run, true); 248 249 /* Verify that pausing the same poller twice works too */ 250 spdk_poller_pause(poller_ctx.poller); 251 252 poller_ctx.run = false; 253 poll_threads(); 254 CU_ASSERT_EQUAL(poller_ctx.run, false); 255 256 spdk_poller_pause(poller_ctx.poller); 257 poll_threads(); 258 CU_ASSERT_EQUAL(poller_ctx.run, false); 259 260 spdk_poller_resume(poller_ctx.poller); 261 poll_threads(); 262 CU_ASSERT_EQUAL(poller_ctx.run, true); 263 264 /* Verify that a poller is run when it's resumed immediately after pausing */ 265 poller_ctx.run = false; 266 spdk_poller_pause(poller_ctx.poller); 267 spdk_poller_resume(poller_ctx.poller); 268 poll_threads(); 269 CU_ASSERT_EQUAL(poller_ctx.run, true); 270 271 spdk_poller_unregister(&poller_ctx.poller); 272 CU_ASSERT_PTR_NULL(poller_ctx.poller); 273 274 /* Poll the thread to make sure the previous poller gets unregistered */ 275 poll_threads(); 276 CU_ASSERT_EQUAL(spdk_thread_has_pollers(spdk_get_thread()), false); 277 278 /* Verify that it's possible to unregister a paused poller */ 279 poller_ctx.poller = spdk_poller_register(poller_run_done, &poller_ctx.run, 0); 280 CU_ASSERT_PTR_NOT_NULL(poller_ctx.poller); 281 282 poller_ctx.run = false; 283 poll_threads(); 284 CU_ASSERT_EQUAL(poller_ctx.run, true); 285 286 spdk_poller_pause(poller_ctx.poller); 287 288 poller_ctx.run = false; 289 poll_threads(); 290 CU_ASSERT_EQUAL(poller_ctx.run, false); 291 292 spdk_poller_unregister(&poller_ctx.poller); 293 294 poll_threads(); 295 CU_ASSERT_EQUAL(poller_ctx.run, false); 296 CU_ASSERT_EQUAL(spdk_thread_has_pollers(spdk_get_thread()), false); 297 298 /* Register pollers with 0 and 1000us wait time and pause/resume them */ 299 for (i = 0; i < SPDK_COUNTOF(delay); ++i) { 300 poller_ctx.poller = spdk_poller_register(poller_run_done, &poller_ctx.run, delay[i]); 301 CU_ASSERT_PTR_NOT_NULL(poller_ctx.poller); 302 303 spdk_delay_us(delay[i]); 304 poller_ctx.run = false; 305 poll_threads(); 306 CU_ASSERT_EQUAL(poller_ctx.run, true); 307 308 spdk_poller_pause(poller_ctx.poller); 309 310 spdk_delay_us(delay[i]); 311 poller_ctx.run = false; 312 poll_threads(); 313 CU_ASSERT_EQUAL(poller_ctx.run, false); 314 315 spdk_poller_resume(poller_ctx.poller); 316 317 spdk_delay_us(delay[i]); 318 poll_threads(); 319 CU_ASSERT_EQUAL(poller_ctx.run, true); 320 321 /* Verify that the poller can be paused/resumed from spdk_thread_send_msg */ 322 spdk_thread_send_msg(spdk_get_thread(), poller_msg_pause_cb, poller_ctx.poller); 323 324 spdk_delay_us(delay[i]); 325 poller_ctx.run = false; 326 poll_threads(); 327 CU_ASSERT_EQUAL(poller_ctx.run, false); 328 329 spdk_thread_send_msg(spdk_get_thread(), poller_msg_resume_cb, poller_ctx.poller); 330 331 poll_threads(); 332 if (delay[i] > 0) { 333 spdk_delay_us(delay[i]); 334 poll_threads(); 335 } 336 CU_ASSERT_EQUAL(poller_ctx.run, true); 337 338 spdk_poller_unregister(&poller_ctx.poller); 339 CU_ASSERT_PTR_NULL(poller_ctx.poller); 340 } 341 342 free_threads(); 343 } 344 345 static void 346 for_each_cb(void *ctx) 347 { 348 int *count = ctx; 349 350 (*count)++; 351 } 352 353 static void 354 thread_for_each(void) 355 { 356 int count = 0; 357 int i; 358 359 allocate_threads(3); 360 set_thread(0); 361 362 spdk_for_each_thread(for_each_cb, &count, for_each_cb); 363 364 /* We have not polled thread 0 yet, so count should be 0 */ 365 CU_ASSERT(count == 0); 366 367 /* Poll each thread to verify the message is passed to each */ 368 for (i = 0; i < 3; i++) { 369 poll_thread(i); 370 CU_ASSERT(count == (i + 1)); 371 } 372 373 /* 374 * After each thread is called, the completion calls it 375 * one more time. 376 */ 377 poll_thread(0); 378 CU_ASSERT(count == 4); 379 380 free_threads(); 381 } 382 383 static int 384 channel_create(void *io_device, void *ctx_buf) 385 { 386 return 0; 387 } 388 389 static void 390 channel_destroy(void *io_device, void *ctx_buf) 391 { 392 } 393 394 static void 395 channel_msg(struct spdk_io_channel_iter *i) 396 { 397 struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); 398 int *count = spdk_io_channel_get_ctx(ch); 399 400 (*count)++; 401 402 spdk_for_each_channel_continue(i, 0); 403 } 404 405 static void 406 channel_cpl(struct spdk_io_channel_iter *i, int status) 407 { 408 } 409 410 static void 411 for_each_channel_remove(void) 412 { 413 struct spdk_io_channel *ch0, *ch1, *ch2; 414 int io_target; 415 int count = 0; 416 417 allocate_threads(3); 418 set_thread(0); 419 spdk_io_device_register(&io_target, channel_create, channel_destroy, sizeof(int), NULL); 420 ch0 = spdk_get_io_channel(&io_target); 421 set_thread(1); 422 ch1 = spdk_get_io_channel(&io_target); 423 set_thread(2); 424 ch2 = spdk_get_io_channel(&io_target); 425 426 /* 427 * Test that io_channel handles the case where we start to iterate through 428 * the channels, and during the iteration, one of the channels is deleted. 429 * This is done in some different and sometimes non-intuitive orders, because 430 * some operations are deferred and won't execute until their threads are 431 * polled. 432 * 433 * Case #1: Put the I/O channel before spdk_for_each_channel. 434 */ 435 set_thread(0); 436 spdk_put_io_channel(ch0); 437 poll_threads(); 438 spdk_for_each_channel(&io_target, channel_msg, &count, channel_cpl); 439 poll_threads(); 440 441 /* 442 * Case #2: Put the I/O channel after spdk_for_each_channel, but before 443 * thread 0 is polled. 444 */ 445 ch0 = spdk_get_io_channel(&io_target); 446 spdk_for_each_channel(&io_target, channel_msg, &count, channel_cpl); 447 spdk_put_io_channel(ch0); 448 poll_threads(); 449 450 set_thread(1); 451 spdk_put_io_channel(ch1); 452 set_thread(2); 453 spdk_put_io_channel(ch2); 454 spdk_io_device_unregister(&io_target, NULL); 455 poll_threads(); 456 457 free_threads(); 458 } 459 460 struct unreg_ctx { 461 bool ch_done; 462 bool foreach_done; 463 }; 464 465 static void 466 unreg_ch_done(struct spdk_io_channel_iter *i) 467 { 468 struct unreg_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 469 470 ctx->ch_done = true; 471 472 SPDK_CU_ASSERT_FATAL(i->cur_thread != NULL); 473 spdk_for_each_channel_continue(i, 0); 474 } 475 476 static void 477 unreg_foreach_done(struct spdk_io_channel_iter *i, int status) 478 { 479 struct unreg_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 480 481 ctx->foreach_done = true; 482 } 483 484 static void 485 for_each_channel_unreg(void) 486 { 487 struct spdk_io_channel *ch0; 488 struct io_device *dev; 489 struct unreg_ctx ctx = {}; 490 int io_target; 491 492 allocate_threads(1); 493 set_thread(0); 494 CU_ASSERT(TAILQ_EMPTY(&g_io_devices)); 495 spdk_io_device_register(&io_target, channel_create, channel_destroy, sizeof(int), NULL); 496 CU_ASSERT(!TAILQ_EMPTY(&g_io_devices)); 497 dev = TAILQ_FIRST(&g_io_devices); 498 SPDK_CU_ASSERT_FATAL(dev != NULL); 499 CU_ASSERT(TAILQ_NEXT(dev, tailq) == NULL); 500 ch0 = spdk_get_io_channel(&io_target); 501 spdk_for_each_channel(&io_target, unreg_ch_done, &ctx, unreg_foreach_done); 502 503 spdk_io_device_unregister(&io_target, NULL); 504 /* 505 * There is an outstanding foreach call on the io_device, so the unregister should not 506 * have removed the device. 507 */ 508 CU_ASSERT(dev == TAILQ_FIRST(&g_io_devices)); 509 spdk_io_device_register(&io_target, channel_create, channel_destroy, sizeof(int), NULL); 510 /* 511 * There is already a device registered at &io_target, so a new io_device should not 512 * have been added to g_io_devices. 513 */ 514 CU_ASSERT(dev == TAILQ_FIRST(&g_io_devices)); 515 CU_ASSERT(TAILQ_NEXT(dev, tailq) == NULL); 516 517 poll_thread(0); 518 CU_ASSERT(ctx.ch_done == true); 519 CU_ASSERT(ctx.foreach_done == true); 520 /* 521 * There are no more foreach operations outstanding, so we can unregister the device, 522 * even though a channel still exists for the device. 523 */ 524 spdk_io_device_unregister(&io_target, NULL); 525 CU_ASSERT(TAILQ_EMPTY(&g_io_devices)); 526 527 set_thread(0); 528 spdk_put_io_channel(ch0); 529 530 poll_threads(); 531 532 free_threads(); 533 } 534 535 static void 536 thread_name(void) 537 { 538 struct spdk_thread *thread; 539 const char *name; 540 541 spdk_thread_lib_init(NULL, 0); 542 543 /* Create thread with no name, which automatically generates one */ 544 thread = spdk_thread_create(NULL, NULL); 545 spdk_set_thread(thread); 546 thread = spdk_get_thread(); 547 SPDK_CU_ASSERT_FATAL(thread != NULL); 548 name = spdk_thread_get_name(thread); 549 CU_ASSERT(name != NULL); 550 spdk_thread_exit(thread); 551 spdk_thread_destroy(thread); 552 553 /* Create thread named "test_thread" */ 554 thread = spdk_thread_create("test_thread", NULL); 555 spdk_set_thread(thread); 556 thread = spdk_get_thread(); 557 SPDK_CU_ASSERT_FATAL(thread != NULL); 558 name = spdk_thread_get_name(thread); 559 SPDK_CU_ASSERT_FATAL(name != NULL); 560 CU_ASSERT(strcmp(name, "test_thread") == 0); 561 spdk_thread_exit(thread); 562 spdk_thread_destroy(thread); 563 564 spdk_thread_lib_fini(); 565 } 566 567 static uint64_t device1; 568 static uint64_t device2; 569 static uint64_t device3; 570 571 static uint64_t ctx1 = 0x1111; 572 static uint64_t ctx2 = 0x2222; 573 574 static int g_create_cb_calls = 0; 575 static int g_destroy_cb_calls = 0; 576 577 static int 578 create_cb_1(void *io_device, void *ctx_buf) 579 { 580 CU_ASSERT(io_device == &device1); 581 *(uint64_t *)ctx_buf = ctx1; 582 g_create_cb_calls++; 583 return 0; 584 } 585 586 static void 587 destroy_cb_1(void *io_device, void *ctx_buf) 588 { 589 CU_ASSERT(io_device == &device1); 590 CU_ASSERT(*(uint64_t *)ctx_buf == ctx1); 591 g_destroy_cb_calls++; 592 } 593 594 static int 595 create_cb_2(void *io_device, void *ctx_buf) 596 { 597 CU_ASSERT(io_device == &device2); 598 *(uint64_t *)ctx_buf = ctx2; 599 g_create_cb_calls++; 600 return 0; 601 } 602 603 static void 604 destroy_cb_2(void *io_device, void *ctx_buf) 605 { 606 CU_ASSERT(io_device == &device2); 607 CU_ASSERT(*(uint64_t *)ctx_buf == ctx2); 608 g_destroy_cb_calls++; 609 } 610 611 static void 612 channel(void) 613 { 614 struct spdk_io_channel *ch1, *ch2; 615 void *ctx; 616 617 allocate_threads(1); 618 set_thread(0); 619 620 spdk_io_device_register(&device1, create_cb_1, destroy_cb_1, sizeof(ctx1), NULL); 621 spdk_io_device_register(&device2, create_cb_2, destroy_cb_2, sizeof(ctx2), NULL); 622 623 g_create_cb_calls = 0; 624 ch1 = spdk_get_io_channel(&device1); 625 CU_ASSERT(g_create_cb_calls == 1); 626 SPDK_CU_ASSERT_FATAL(ch1 != NULL); 627 628 g_create_cb_calls = 0; 629 ch2 = spdk_get_io_channel(&device1); 630 CU_ASSERT(g_create_cb_calls == 0); 631 CU_ASSERT(ch1 == ch2); 632 SPDK_CU_ASSERT_FATAL(ch2 != NULL); 633 634 g_destroy_cb_calls = 0; 635 spdk_put_io_channel(ch2); 636 poll_threads(); 637 CU_ASSERT(g_destroy_cb_calls == 0); 638 639 g_create_cb_calls = 0; 640 ch2 = spdk_get_io_channel(&device2); 641 CU_ASSERT(g_create_cb_calls == 1); 642 CU_ASSERT(ch1 != ch2); 643 SPDK_CU_ASSERT_FATAL(ch2 != NULL); 644 645 ctx = spdk_io_channel_get_ctx(ch2); 646 CU_ASSERT(*(uint64_t *)ctx == ctx2); 647 648 g_destroy_cb_calls = 0; 649 spdk_put_io_channel(ch1); 650 poll_threads(); 651 CU_ASSERT(g_destroy_cb_calls == 1); 652 653 g_destroy_cb_calls = 0; 654 spdk_put_io_channel(ch2); 655 poll_threads(); 656 CU_ASSERT(g_destroy_cb_calls == 1); 657 658 ch1 = spdk_get_io_channel(&device3); 659 CU_ASSERT(ch1 == NULL); 660 661 spdk_io_device_unregister(&device1, NULL); 662 poll_threads(); 663 spdk_io_device_unregister(&device2, NULL); 664 poll_threads(); 665 CU_ASSERT(TAILQ_EMPTY(&g_io_devices)); 666 free_threads(); 667 CU_ASSERT(TAILQ_EMPTY(&g_threads)); 668 } 669 670 static int 671 create_cb(void *io_device, void *ctx_buf) 672 { 673 uint64_t *refcnt = (uint64_t *)ctx_buf; 674 675 CU_ASSERT(*refcnt == 0); 676 *refcnt = 1; 677 678 return 0; 679 } 680 681 static void 682 destroy_cb(void *io_device, void *ctx_buf) 683 { 684 uint64_t *refcnt = (uint64_t *)ctx_buf; 685 686 CU_ASSERT(*refcnt == 1); 687 *refcnt = 0; 688 } 689 690 /** 691 * This test is checking that a sequence of get, put, get, put without allowing 692 * the deferred put operation to complete doesn't result in releasing the memory 693 * for the channel twice. 694 */ 695 static void 696 channel_destroy_races(void) 697 { 698 uint64_t device; 699 struct spdk_io_channel *ch; 700 701 allocate_threads(1); 702 set_thread(0); 703 704 spdk_io_device_register(&device, create_cb, destroy_cb, sizeof(uint64_t), NULL); 705 706 ch = spdk_get_io_channel(&device); 707 SPDK_CU_ASSERT_FATAL(ch != NULL); 708 709 spdk_put_io_channel(ch); 710 711 ch = spdk_get_io_channel(&device); 712 SPDK_CU_ASSERT_FATAL(ch != NULL); 713 714 spdk_put_io_channel(ch); 715 poll_threads(); 716 717 spdk_io_device_unregister(&device, NULL); 718 poll_threads(); 719 720 CU_ASSERT(TAILQ_EMPTY(&g_io_devices)); 721 free_threads(); 722 CU_ASSERT(TAILQ_EMPTY(&g_threads)); 723 } 724 725 int 726 main(int argc, char **argv) 727 { 728 CU_pSuite suite = NULL; 729 unsigned int num_failures; 730 731 if (CU_initialize_registry() != CUE_SUCCESS) { 732 return CU_get_error(); 733 } 734 735 suite = CU_add_suite("io_channel", NULL, NULL); 736 if (suite == NULL) { 737 CU_cleanup_registry(); 738 return CU_get_error(); 739 } 740 741 if ( 742 CU_add_test(suite, "thread_alloc", thread_alloc) == NULL || 743 CU_add_test(suite, "thread_send_msg", thread_send_msg) == NULL || 744 CU_add_test(suite, "thread_poller", thread_poller) == NULL || 745 CU_add_test(suite, "poller_pause", poller_pause) == NULL || 746 CU_add_test(suite, "thread_for_each", thread_for_each) == NULL || 747 CU_add_test(suite, "for_each_channel_remove", for_each_channel_remove) == NULL || 748 CU_add_test(suite, "for_each_channel_unreg", for_each_channel_unreg) == NULL || 749 CU_add_test(suite, "thread_name", thread_name) == NULL || 750 CU_add_test(suite, "channel", channel) == NULL || 751 CU_add_test(suite, "channel_destroy_races", channel_destroy_races) == NULL 752 ) { 753 CU_cleanup_registry(); 754 return CU_get_error(); 755 } 756 757 CU_basic_set_mode(CU_BRM_VERBOSE); 758 CU_basic_run_tests(); 759 num_failures = CU_get_number_of_failures(); 760 CU_cleanup_registry(); 761 return num_failures; 762 } 763