xref: /spdk/test/unit/lib/nvmf/rdma.c/rdma_ut.c (revision cdb0726b95631d46eaf4f2e39ddb6533f150fd27)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (c) Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2021 Mellanox Technologies LTD. All rights reserved.
4  */
5 
6 #include "spdk/stdinc.h"
7 #include "spdk_cunit.h"
8 #include "common/lib/test_env.c"
9 #include "common/lib/test_rdma.c"
10 #include "nvmf/rdma.c"
11 #include "nvmf/transport.c"
12 
13 #define RDMA_UT_UNITS_IN_MAX_IO 16
14 
15 struct spdk_nvmf_transport_opts g_rdma_ut_transport_opts = {
16 	.max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH,
17 	.max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR,
18 	.in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE,
19 	.max_io_size = (SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE * RDMA_UT_UNITS_IN_MAX_IO),
20 	.io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE,
21 	.max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH,
22 	.num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS,
23 };
24 
25 SPDK_LOG_REGISTER_COMPONENT(nvmf)
26 DEFINE_STUB(spdk_mem_map_set_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
27 		uint64_t size, uint64_t translation), 0);
28 DEFINE_STUB(spdk_mem_map_clear_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
29 		uint64_t size), 0);
30 DEFINE_STUB(spdk_mem_map_alloc, struct spdk_mem_map *, (uint64_t default_translation,
31 		const struct spdk_mem_map_ops *ops, void *cb_ctx), NULL);
32 DEFINE_STUB(spdk_nvmf_qpair_disconnect, int, (struct spdk_nvmf_qpair *qpair,
33 		nvmf_qpair_disconnect_cb cb_fn, void *ctx), 0);
34 DEFINE_STUB(spdk_nvmf_qpair_get_listen_trid, int,
35 	    (struct spdk_nvmf_qpair *qpair, struct spdk_nvme_transport_id *trid), 0);
36 DEFINE_STUB_V(spdk_mem_map_free, (struct spdk_mem_map **pmap));
37 
38 DEFINE_STUB_V(spdk_nvmf_ctrlr_data_init, (struct spdk_nvmf_transport_opts *opts,
39 		struct spdk_nvmf_ctrlr_data *cdata));
40 DEFINE_STUB_V(spdk_nvmf_request_exec, (struct spdk_nvmf_request *req));
41 DEFINE_STUB(spdk_nvmf_request_complete, int, (struct spdk_nvmf_request *req), 0);
42 DEFINE_STUB(spdk_nvme_transport_id_compare, int, (const struct spdk_nvme_transport_id *trid1,
43 		const struct spdk_nvme_transport_id *trid2), 0);
44 DEFINE_STUB_V(nvmf_ctrlr_abort_aer, (struct spdk_nvmf_ctrlr *ctrlr));
45 DEFINE_STUB(spdk_nvmf_request_get_dif_ctx, bool, (struct spdk_nvmf_request *req,
46 		struct spdk_dif_ctx *dif_ctx), false);
47 DEFINE_STUB_V(spdk_nvme_trid_populate_transport, (struct spdk_nvme_transport_id *trid,
48 		enum spdk_nvme_transport_type trtype));
49 DEFINE_STUB_V(spdk_nvmf_tgt_new_qpair, (struct spdk_nvmf_tgt *tgt, struct spdk_nvmf_qpair *qpair));
50 DEFINE_STUB(nvmf_ctrlr_abort_request, int, (struct spdk_nvmf_request *req), 0);
51 DEFINE_STUB(spdk_nvme_transport_id_adrfam_str, const char *, (enum spdk_nvmf_adrfam adrfam), NULL);
52 DEFINE_STUB(ibv_dereg_mr, int, (struct ibv_mr *mr), 0);
53 DEFINE_STUB(ibv_resize_cq, int, (struct ibv_cq *cq, int cqe), 0);
54 
55 /* ibv_reg_mr can be a macro, need to undefine it */
56 #ifdef ibv_reg_mr
57 #undef ibv_reg_mr
58 #endif
59 
60 DEFINE_RETURN_MOCK(ibv_reg_mr, struct ibv_mr *);
61 struct ibv_mr *
62 ibv_reg_mr(struct ibv_pd *pd, void *addr, size_t length, int access)
63 {
64 	HANDLE_RETURN_MOCK(ibv_reg_mr);
65 	if (length > 0) {
66 		return &g_rdma_mr;
67 	} else {
68 		return NULL;
69 	}
70 }
71 
72 int
73 ibv_query_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr,
74 	     int attr_mask, struct ibv_qp_init_attr *init_attr)
75 {
76 	if (qp == NULL) {
77 		return -1;
78 	} else {
79 		attr->port_num = 80;
80 
81 		if (qp->state == IBV_QPS_ERR) {
82 			attr->qp_state = 10;
83 		} else {
84 			attr->qp_state = IBV_QPS_INIT;
85 		}
86 
87 		return 0;
88 	}
89 }
90 
91 const char *
92 spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
93 {
94 	switch (trtype) {
95 	case SPDK_NVME_TRANSPORT_PCIE:
96 		return "PCIe";
97 	case SPDK_NVME_TRANSPORT_RDMA:
98 		return "RDMA";
99 	case SPDK_NVME_TRANSPORT_FC:
100 		return "FC";
101 	default:
102 		return NULL;
103 	}
104 }
105 
106 int
107 spdk_nvme_transport_id_populate_trstring(struct spdk_nvme_transport_id *trid, const char *trstring)
108 {
109 	int len, i;
110 
111 	if (trstring == NULL) {
112 		return -EINVAL;
113 	}
114 
115 	len = strnlen(trstring, SPDK_NVMF_TRSTRING_MAX_LEN);
116 	if (len == SPDK_NVMF_TRSTRING_MAX_LEN) {
117 		return -EINVAL;
118 	}
119 
120 	/* cast official trstring to uppercase version of input. */
121 	for (i = 0; i < len; i++) {
122 		trid->trstring[i] = toupper(trstring[i]);
123 	}
124 	return 0;
125 }
126 
127 static void
128 reset_nvmf_rdma_request(struct spdk_nvmf_rdma_request *rdma_req)
129 {
130 	int i;
131 
132 	rdma_req->req.length = 0;
133 	rdma_req->req.data_from_pool = false;
134 	rdma_req->req.data = NULL;
135 	rdma_req->data.wr.num_sge = 0;
136 	rdma_req->data.wr.wr.rdma.remote_addr = 0;
137 	rdma_req->data.wr.wr.rdma.rkey = 0;
138 	rdma_req->offset = 0;
139 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
140 
141 	for (i = 0; i < SPDK_NVMF_MAX_SGL_ENTRIES; i++) {
142 		rdma_req->req.iov[i].iov_base = 0;
143 		rdma_req->req.iov[i].iov_len = 0;
144 		rdma_req->req.buffers[i] = 0;
145 		rdma_req->data.wr.sg_list[i].addr = 0;
146 		rdma_req->data.wr.sg_list[i].length = 0;
147 		rdma_req->data.wr.sg_list[i].lkey = 0;
148 	}
149 	rdma_req->req.iovcnt = 0;
150 	if (rdma_req->req.stripped_data) {
151 		free(rdma_req->req.stripped_data);
152 		rdma_req->req.stripped_data = NULL;
153 	}
154 }
155 
156 static void
157 test_spdk_nvmf_rdma_request_parse_sgl(void)
158 {
159 	struct spdk_nvmf_rdma_transport rtransport;
160 	struct spdk_nvmf_rdma_device device;
161 	struct spdk_nvmf_rdma_request rdma_req = {};
162 	struct spdk_nvmf_rdma_recv recv;
163 	struct spdk_nvmf_rdma_poll_group group;
164 	struct spdk_nvmf_rdma_qpair rqpair;
165 	struct spdk_nvmf_rdma_poller poller;
166 	union nvmf_c2h_msg cpl;
167 	union nvmf_h2c_msg cmd;
168 	struct spdk_nvme_sgl_descriptor *sgl;
169 	struct spdk_nvmf_transport_pg_cache_buf bufs[4];
170 	struct spdk_nvme_sgl_descriptor sgl_desc[SPDK_NVMF_MAX_SGL_ENTRIES] = {{0}};
171 	struct spdk_nvmf_rdma_request_data data;
172 	int rc, i;
173 	uint32_t sgl_length;
174 	uintptr_t aligned_buffer_address;
175 
176 	data.wr.sg_list = data.sgl;
177 	STAILQ_INIT(&group.group.buf_cache);
178 	group.group.buf_cache_size = 0;
179 	group.group.buf_cache_count = 0;
180 	group.group.transport = &rtransport.transport;
181 	poller.group = &group;
182 	rqpair.poller = &poller;
183 	rqpair.max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
184 
185 	sgl = &cmd.nvme_cmd.dptr.sgl1;
186 	rdma_req.recv = &recv;
187 	rdma_req.req.cmd = &cmd;
188 	rdma_req.req.rsp = &cpl;
189 	rdma_req.data.wr.sg_list = rdma_req.data.sgl;
190 	rdma_req.req.qpair = &rqpair.qpair;
191 	rdma_req.req.xfer = SPDK_NVME_DATA_CONTROLLER_TO_HOST;
192 
193 	rtransport.transport.opts = g_rdma_ut_transport_opts;
194 	rtransport.data_wr_pool = NULL;
195 	rtransport.transport.data_buf_pool = NULL;
196 
197 	device.attr.device_cap_flags = 0;
198 	sgl->keyed.key = 0xEEEE;
199 	sgl->address = 0xFFFF;
200 	rdma_req.recv->buf = (void *)0xDDDD;
201 
202 	/* Test 1: sgl type: keyed data block subtype: address */
203 	sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
204 	sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
205 
206 	/* Part 1: simple I/O, one SGL smaller than the transport io unit size */
207 	MOCK_SET(spdk_mempool_get, (void *)0x2000);
208 	reset_nvmf_rdma_request(&rdma_req);
209 	sgl->keyed.length = rtransport.transport.opts.io_unit_size / 2;
210 
211 	device.map = (void *)0x0;
212 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
213 	CU_ASSERT(rc == 0);
214 	CU_ASSERT(rdma_req.req.data_from_pool == true);
215 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size / 2);
216 	CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
217 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
218 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
219 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
220 	CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
221 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
222 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rtransport.transport.opts.io_unit_size / 2);
223 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
224 
225 	/* Part 2: simple I/O, one SGL larger than the transport io unit size (equal to the max io size) */
226 	reset_nvmf_rdma_request(&rdma_req);
227 	sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO;
228 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
229 
230 	CU_ASSERT(rc == 0);
231 	CU_ASSERT(rdma_req.req.data_from_pool == true);
232 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO);
233 	CU_ASSERT(rdma_req.data.wr.num_sge == RDMA_UT_UNITS_IN_MAX_IO);
234 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
235 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
236 	for (i = 0; i < RDMA_UT_UNITS_IN_MAX_IO; i++) {
237 		CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == 0x2000);
238 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
239 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
240 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
241 	}
242 
243 	/* Part 3: simple I/O one SGL larger than the transport max io size */
244 	reset_nvmf_rdma_request(&rdma_req);
245 	sgl->keyed.length = rtransport.transport.opts.max_io_size * 2;
246 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
247 
248 	CU_ASSERT(rc == -1);
249 
250 	/* Part 4: Pretend there are no buffer pools */
251 	MOCK_SET(spdk_mempool_get, NULL);
252 	reset_nvmf_rdma_request(&rdma_req);
253 	sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO;
254 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
255 
256 	CU_ASSERT(rc == 0);
257 	CU_ASSERT(rdma_req.req.data_from_pool == false);
258 	CU_ASSERT(rdma_req.req.data == NULL);
259 	CU_ASSERT(rdma_req.data.wr.num_sge == 0);
260 	CU_ASSERT(rdma_req.req.buffers[0] == NULL);
261 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0);
262 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == 0);
263 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == 0);
264 
265 	rdma_req.recv->buf = (void *)0xDDDD;
266 	/* Test 2: sgl type: keyed data block subtype: offset (in capsule data) */
267 	sgl->generic.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
268 	sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
269 
270 	/* Part 1: Normal I/O smaller than in capsule data size no offset */
271 	reset_nvmf_rdma_request(&rdma_req);
272 	sgl->address = 0;
273 	sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size;
274 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
275 
276 	CU_ASSERT(rc == 0);
277 	CU_ASSERT(rdma_req.req.data == (void *)0xDDDD);
278 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.in_capsule_data_size);
279 	CU_ASSERT(rdma_req.req.data_from_pool == false);
280 
281 	/* Part 2: I/O offset + length too large */
282 	reset_nvmf_rdma_request(&rdma_req);
283 	sgl->address = rtransport.transport.opts.in_capsule_data_size;
284 	sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size;
285 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
286 
287 	CU_ASSERT(rc == -1);
288 
289 	/* Part 3: I/O too large */
290 	reset_nvmf_rdma_request(&rdma_req);
291 	sgl->address = 0;
292 	sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size * 2;
293 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
294 
295 	CU_ASSERT(rc == -1);
296 
297 	/* Test 3: Multi SGL */
298 	sgl->generic.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
299 	sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
300 	sgl->address = 0;
301 	rdma_req.recv->buf = (void *)&sgl_desc;
302 	MOCK_SET(spdk_mempool_get, &data);
303 
304 	/* part 1: 2 segments each with 1 wr. */
305 	reset_nvmf_rdma_request(&rdma_req);
306 	sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
307 	for (i = 0; i < 2; i++) {
308 		sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
309 		sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
310 		sgl_desc[i].keyed.length = rtransport.transport.opts.io_unit_size;
311 		sgl_desc[i].address = 0x4000 + i * rtransport.transport.opts.io_unit_size;
312 		sgl_desc[i].keyed.key = 0x44;
313 	}
314 
315 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
316 
317 	CU_ASSERT(rc == 0);
318 	CU_ASSERT(rdma_req.req.data_from_pool == true);
319 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 2);
320 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
321 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
322 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
323 	CU_ASSERT(rdma_req.data.wr.next == &data.wr);
324 	CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
325 	CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size);
326 	CU_ASSERT(data.wr.num_sge == 1);
327 	CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
328 
329 	/* part 2: 2 segments, each with 1 wr containing 8 sge_elements */
330 	reset_nvmf_rdma_request(&rdma_req);
331 	sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
332 	for (i = 0; i < 2; i++) {
333 		sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
334 		sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
335 		sgl_desc[i].keyed.length = rtransport.transport.opts.io_unit_size * 8;
336 		sgl_desc[i].address = 0x4000 + i * 8 * rtransport.transport.opts.io_unit_size;
337 		sgl_desc[i].keyed.key = 0x44;
338 	}
339 
340 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
341 
342 	CU_ASSERT(rc == 0);
343 	CU_ASSERT(rdma_req.req.data_from_pool == true);
344 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 16);
345 	CU_ASSERT(rdma_req.req.iovcnt == 16);
346 	CU_ASSERT(rdma_req.data.wr.num_sge == 8);
347 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
348 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
349 	CU_ASSERT(rdma_req.data.wr.next == &data.wr);
350 	CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
351 	CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size * 8);
352 	CU_ASSERT(data.wr.num_sge == 8);
353 	CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
354 
355 	/* part 3: 2 segments, one very large, one very small */
356 	reset_nvmf_rdma_request(&rdma_req);
357 	for (i = 0; i < 2; i++) {
358 		sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
359 		sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
360 		sgl_desc[i].keyed.key = 0x44;
361 	}
362 
363 	sgl_desc[0].keyed.length = rtransport.transport.opts.io_unit_size * 15 +
364 				   rtransport.transport.opts.io_unit_size / 2;
365 	sgl_desc[0].address = 0x4000;
366 	sgl_desc[1].keyed.length = rtransport.transport.opts.io_unit_size / 2;
367 	sgl_desc[1].address = 0x4000 + rtransport.transport.opts.io_unit_size * 15 +
368 			      rtransport.transport.opts.io_unit_size / 2;
369 
370 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
371 
372 	CU_ASSERT(rc == 0);
373 	CU_ASSERT(rdma_req.req.data_from_pool == true);
374 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 16);
375 	CU_ASSERT(rdma_req.req.iovcnt == 16);
376 	CU_ASSERT(rdma_req.data.wr.num_sge == 16);
377 	for (i = 0; i < 15; i++) {
378 		CU_ASSERT(rdma_req.data.sgl[i].length == rtransport.transport.opts.io_unit_size);
379 	}
380 	CU_ASSERT(rdma_req.data.sgl[15].length == rtransport.transport.opts.io_unit_size / 2);
381 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
382 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
383 	CU_ASSERT(rdma_req.data.wr.next == &data.wr);
384 	CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
385 	CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size * 15 +
386 		  rtransport.transport.opts.io_unit_size / 2);
387 	CU_ASSERT(data.sgl[0].length == rtransport.transport.opts.io_unit_size / 2);
388 	CU_ASSERT(data.wr.num_sge == 1);
389 	CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
390 
391 	/* part 4: 2 SGL descriptors, each length is transport buffer / 2
392 	 * 1 transport buffers should be allocated */
393 	reset_nvmf_rdma_request(&rdma_req);
394 	aligned_buffer_address = ((uintptr_t)(&data) + NVMF_DATA_BUFFER_MASK) & ~NVMF_DATA_BUFFER_MASK;
395 	sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
396 	sgl_length = rtransport.transport.opts.io_unit_size / 2;
397 	for (i = 0; i < 2; i++) {
398 		sgl_desc[i].keyed.length = sgl_length;
399 		sgl_desc[i].address = 0x4000 + i * sgl_length;
400 	}
401 
402 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
403 
404 	CU_ASSERT(rc == 0);
405 	CU_ASSERT(rdma_req.req.data_from_pool == true);
406 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size);
407 	CU_ASSERT(rdma_req.req.iovcnt == 1);
408 
409 	CU_ASSERT(rdma_req.data.sgl[0].length == sgl_length);
410 	/* We mocked mempool_get to return address of data variable. Mempool is used
411 	 * to get both additional WRs and data buffers, so data points to &data */
412 	CU_ASSERT(rdma_req.data.sgl[0].addr == aligned_buffer_address);
413 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
414 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
415 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
416 	CU_ASSERT(rdma_req.data.wr.next == &data.wr);
417 
418 	CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
419 	CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + sgl_length);
420 	CU_ASSERT(data.sgl[0].length == sgl_length);
421 	CU_ASSERT(data.sgl[0].addr == aligned_buffer_address + sgl_length);
422 	CU_ASSERT(data.wr.num_sge == 1);
423 
424 	/* Test 4: use PG buffer cache */
425 	sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
426 	sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
427 	sgl->address = 0xFFFF;
428 	rdma_req.recv->buf = (void *)0xDDDD;
429 	sgl->keyed.key = 0xEEEE;
430 
431 	for (i = 0; i < 4; i++) {
432 		STAILQ_INSERT_TAIL(&group.group.buf_cache, &bufs[i], link);
433 	}
434 
435 	/* part 1: use the four buffers from the pg cache */
436 	group.group.buf_cache_size = 4;
437 	group.group.buf_cache_count = 4;
438 	MOCK_SET(spdk_mempool_get, (void *)0x2000);
439 	reset_nvmf_rdma_request(&rdma_req);
440 	sgl->keyed.length = rtransport.transport.opts.io_unit_size * 4;
441 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
442 
443 	SPDK_CU_ASSERT_FATAL(rc == 0);
444 	CU_ASSERT(rdma_req.req.data_from_pool == true);
445 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4);
446 	CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&bufs[0] + NVMF_DATA_BUFFER_MASK) &
447 			~NVMF_DATA_BUFFER_MASK));
448 	CU_ASSERT(rdma_req.data.wr.num_sge == 4);
449 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
450 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
451 	CU_ASSERT(group.group.buf_cache_count == 0);
452 	CU_ASSERT(STAILQ_EMPTY(&group.group.buf_cache));
453 	for (i = 0; i < 4; i++) {
454 		CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == (uint64_t)&bufs[i]);
455 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (((uint64_t)&bufs[i] + NVMF_DATA_BUFFER_MASK) &
456 				~NVMF_DATA_BUFFER_MASK));
457 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
458 	}
459 
460 	/* part 2: now that we have used the buffers from the cache, try again. We should get mempool buffers. */
461 	reset_nvmf_rdma_request(&rdma_req);
462 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
463 
464 	SPDK_CU_ASSERT_FATAL(rc == 0);
465 	CU_ASSERT(rdma_req.req.data_from_pool == true);
466 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4);
467 	CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
468 	CU_ASSERT(rdma_req.data.wr.num_sge == 4);
469 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
470 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
471 	CU_ASSERT(group.group.buf_cache_count == 0);
472 	CU_ASSERT(STAILQ_EMPTY(&group.group.buf_cache));
473 	for (i = 0; i < 4; i++) {
474 		CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == 0x2000);
475 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
476 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
477 		CU_ASSERT(group.group.buf_cache_count == 0);
478 	}
479 
480 	/* part 3: half and half */
481 	group.group.buf_cache_count = 2;
482 
483 	for (i = 0; i < 2; i++) {
484 		STAILQ_INSERT_TAIL(&group.group.buf_cache, &bufs[i], link);
485 	}
486 	reset_nvmf_rdma_request(&rdma_req);
487 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
488 
489 	SPDK_CU_ASSERT_FATAL(rc == 0);
490 	CU_ASSERT(rdma_req.req.data_from_pool == true);
491 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4);
492 	CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&bufs[0] + NVMF_DATA_BUFFER_MASK) &
493 			~NVMF_DATA_BUFFER_MASK));
494 	CU_ASSERT(rdma_req.data.wr.num_sge == 4);
495 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
496 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
497 	CU_ASSERT(group.group.buf_cache_count == 0);
498 	for (i = 0; i < 2; i++) {
499 		CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == (uint64_t)&bufs[i]);
500 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (((uint64_t)&bufs[i] + NVMF_DATA_BUFFER_MASK) &
501 				~NVMF_DATA_BUFFER_MASK));
502 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
503 	}
504 	for (i = 2; i < 4; i++) {
505 		CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == 0x2000);
506 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
507 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
508 	}
509 
510 	reset_nvmf_rdma_request(&rdma_req);
511 }
512 
513 static struct spdk_nvmf_rdma_recv *
514 create_recv(struct spdk_nvmf_rdma_qpair *rqpair, enum spdk_nvme_nvm_opcode opc)
515 {
516 	struct spdk_nvmf_rdma_recv *rdma_recv;
517 	union nvmf_h2c_msg *cmd;
518 	struct spdk_nvme_sgl_descriptor *sgl;
519 
520 	rdma_recv = calloc(1, sizeof(*rdma_recv));
521 	rdma_recv->qpair = rqpair;
522 	cmd = calloc(1, sizeof(*cmd));
523 	rdma_recv->sgl[0].addr = (uintptr_t)cmd;
524 	cmd->nvme_cmd.opc = opc;
525 	sgl = &cmd->nvme_cmd.dptr.sgl1;
526 	sgl->keyed.key = 0xEEEE;
527 	sgl->address = 0xFFFF;
528 	sgl->keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
529 	sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
530 	sgl->keyed.length = 1;
531 
532 	return rdma_recv;
533 }
534 
535 static void
536 free_recv(struct spdk_nvmf_rdma_recv *rdma_recv)
537 {
538 	free((void *)rdma_recv->sgl[0].addr);
539 	free(rdma_recv);
540 }
541 
542 static struct spdk_nvmf_rdma_request *
543 create_req(struct spdk_nvmf_rdma_qpair *rqpair,
544 	   struct spdk_nvmf_rdma_recv *rdma_recv)
545 {
546 	struct spdk_nvmf_rdma_request *rdma_req;
547 	union nvmf_c2h_msg *cpl;
548 
549 	rdma_req = calloc(1, sizeof(*rdma_req));
550 	rdma_req->recv = rdma_recv;
551 	rdma_req->req.qpair = &rqpair->qpair;
552 	rdma_req->state = RDMA_REQUEST_STATE_NEW;
553 	rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
554 	rdma_req->data.wr.sg_list = rdma_req->data.sgl;
555 	cpl = calloc(1, sizeof(*cpl));
556 	rdma_req->rsp.sgl[0].addr = (uintptr_t)cpl;
557 	rdma_req->req.rsp = cpl;
558 
559 	return rdma_req;
560 }
561 
562 static void
563 free_req(struct spdk_nvmf_rdma_request *rdma_req)
564 {
565 	free((void *)rdma_req->rsp.sgl[0].addr);
566 	free(rdma_req);
567 }
568 
569 static void
570 qpair_reset(struct spdk_nvmf_rdma_qpair *rqpair,
571 	    struct spdk_nvmf_rdma_poller *poller,
572 	    struct spdk_nvmf_rdma_device *device,
573 	    struct spdk_nvmf_rdma_resources *resources,
574 	    struct spdk_nvmf_transport *transport)
575 {
576 	memset(rqpair, 0, sizeof(*rqpair));
577 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
578 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
579 	rqpair->poller = poller;
580 	rqpair->device = device;
581 	rqpair->resources = resources;
582 	rqpair->qpair.qid = 1;
583 	rqpair->ibv_state = IBV_QPS_RTS;
584 	rqpair->qpair.state = SPDK_NVMF_QPAIR_ACTIVE;
585 	rqpair->max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
586 	rqpair->max_send_depth = 16;
587 	rqpair->max_read_depth = 16;
588 	rqpair->qpair.transport = transport;
589 }
590 
591 static void
592 poller_reset(struct spdk_nvmf_rdma_poller *poller,
593 	     struct spdk_nvmf_rdma_poll_group *group)
594 {
595 	memset(poller, 0, sizeof(*poller));
596 	STAILQ_INIT(&poller->qpairs_pending_recv);
597 	STAILQ_INIT(&poller->qpairs_pending_send);
598 	poller->group = group;
599 }
600 
601 static void
602 test_spdk_nvmf_rdma_request_process(void)
603 {
604 	struct spdk_nvmf_rdma_transport rtransport = {};
605 	struct spdk_nvmf_rdma_poll_group group = {};
606 	struct spdk_nvmf_rdma_poller poller = {};
607 	struct spdk_nvmf_rdma_device device = {};
608 	struct spdk_nvmf_rdma_resources resources = {};
609 	struct spdk_nvmf_rdma_qpair rqpair = {};
610 	struct spdk_nvmf_rdma_recv *rdma_recv;
611 	struct spdk_nvmf_rdma_request *rdma_req;
612 	bool progress;
613 
614 	STAILQ_INIT(&group.group.buf_cache);
615 	STAILQ_INIT(&group.group.pending_buf_queue);
616 	group.group.buf_cache_size = 0;
617 	group.group.buf_cache_count = 0;
618 	poller_reset(&poller, &group);
619 	qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
620 
621 	rtransport.transport.opts = g_rdma_ut_transport_opts;
622 	rtransport.transport.data_buf_pool = spdk_mempool_create("test_data_pool", 16, 128, 0, 0);
623 	rtransport.data_wr_pool = spdk_mempool_create("test_wr_pool", 128,
624 				  sizeof(struct spdk_nvmf_rdma_request_data),
625 				  0, 0);
626 	MOCK_CLEAR(spdk_mempool_get);
627 
628 	device.attr.device_cap_flags = 0;
629 	device.map = (void *)0x0;
630 
631 	/* Test 1: single SGL READ request */
632 	rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_READ);
633 	rdma_req = create_req(&rqpair, rdma_recv);
634 	rqpair.current_recv_depth = 1;
635 	/* NEW -> EXECUTING */
636 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
637 	CU_ASSERT(progress == true);
638 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING);
639 	CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST);
640 	/* EXECUTED -> TRANSFERRING_C2H */
641 	rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
642 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
643 	CU_ASSERT(progress == true);
644 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
645 	CU_ASSERT(rdma_req->recv == NULL);
646 	/* COMPLETED -> FREE */
647 	rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
648 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
649 	CU_ASSERT(progress == true);
650 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE);
651 
652 	free_recv(rdma_recv);
653 	free_req(rdma_req);
654 	poller_reset(&poller, &group);
655 	qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
656 
657 	/* Test 2: single SGL WRITE request */
658 	rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
659 	rdma_req = create_req(&rqpair, rdma_recv);
660 	rqpair.current_recv_depth = 1;
661 	/* NEW -> TRANSFERRING_H2C */
662 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
663 	CU_ASSERT(progress == true);
664 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
665 	CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
666 	STAILQ_INIT(&poller.qpairs_pending_send);
667 	/* READY_TO_EXECUTE -> EXECUTING */
668 	rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
669 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
670 	CU_ASSERT(progress == true);
671 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING);
672 	/* EXECUTED -> COMPLETING */
673 	rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
674 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
675 	CU_ASSERT(progress == true);
676 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_COMPLETING);
677 	CU_ASSERT(rdma_req->recv == NULL);
678 	/* COMPLETED -> FREE */
679 	rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
680 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
681 	CU_ASSERT(progress == true);
682 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE);
683 
684 	free_recv(rdma_recv);
685 	free_req(rdma_req);
686 	poller_reset(&poller, &group);
687 	qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
688 
689 	/* Test 3: WRITE+WRITE ibv_send batching */
690 	{
691 		struct spdk_nvmf_rdma_recv *recv1, *recv2;
692 		struct spdk_nvmf_rdma_request *req1, *req2;
693 		recv1 = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
694 		req1 = create_req(&rqpair, recv1);
695 		recv2 = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
696 		req2 = create_req(&rqpair, recv2);
697 
698 		/* WRITE 1: NEW -> TRANSFERRING_H2C */
699 		rqpair.current_recv_depth = 1;
700 		nvmf_rdma_request_process(&rtransport, req1);
701 		CU_ASSERT(req1->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
702 
703 		/* WRITE 2: NEW -> TRANSFERRING_H2C */
704 		rqpair.current_recv_depth = 2;
705 		nvmf_rdma_request_process(&rtransport, req2);
706 		CU_ASSERT(req2->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
707 
708 		STAILQ_INIT(&poller.qpairs_pending_send);
709 
710 		/* WRITE 1 completes before WRITE 2 has finished RDMA reading */
711 		/* WRITE 1: READY_TO_EXECUTE -> EXECUTING */
712 		req1->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
713 		nvmf_rdma_request_process(&rtransport, req1);
714 		CU_ASSERT(req1->state == RDMA_REQUEST_STATE_EXECUTING);
715 		/* WRITE 1: EXECUTED -> COMPLETING */
716 		req1->state = RDMA_REQUEST_STATE_EXECUTED;
717 		nvmf_rdma_request_process(&rtransport, req1);
718 		CU_ASSERT(req1->state == RDMA_REQUEST_STATE_COMPLETING);
719 		STAILQ_INIT(&poller.qpairs_pending_send);
720 		/* WRITE 1: COMPLETED -> FREE */
721 		req1->state = RDMA_REQUEST_STATE_COMPLETED;
722 		nvmf_rdma_request_process(&rtransport, req1);
723 		CU_ASSERT(req1->state == RDMA_REQUEST_STATE_FREE);
724 
725 		/* Now WRITE 2 has finished reading and completes */
726 		/* WRITE 2: COMPLETED -> FREE */
727 		/* WRITE 2: READY_TO_EXECUTE -> EXECUTING */
728 		req2->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
729 		nvmf_rdma_request_process(&rtransport, req2);
730 		CU_ASSERT(req2->state == RDMA_REQUEST_STATE_EXECUTING);
731 		/* WRITE 1: EXECUTED -> COMPLETING */
732 		req2->state = RDMA_REQUEST_STATE_EXECUTED;
733 		nvmf_rdma_request_process(&rtransport, req2);
734 		CU_ASSERT(req2->state == RDMA_REQUEST_STATE_COMPLETING);
735 		STAILQ_INIT(&poller.qpairs_pending_send);
736 		/* WRITE 1: COMPLETED -> FREE */
737 		req2->state = RDMA_REQUEST_STATE_COMPLETED;
738 		nvmf_rdma_request_process(&rtransport, req2);
739 		CU_ASSERT(req2->state == RDMA_REQUEST_STATE_FREE);
740 
741 		free_recv(recv1);
742 		free_req(req1);
743 		free_recv(recv2);
744 		free_req(req2);
745 		poller_reset(&poller, &group);
746 		qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
747 	}
748 
749 	/* Test 4, invalid command, check xfer type */
750 	{
751 		struct spdk_nvmf_rdma_recv *rdma_recv_inv;
752 		struct spdk_nvmf_rdma_request *rdma_req_inv;
753 		/* construct an opcode that specifies BIDIRECTIONAL transfer */
754 		uint8_t opc = 0x10 | SPDK_NVME_DATA_BIDIRECTIONAL;
755 
756 		rdma_recv_inv = create_recv(&rqpair, opc);
757 		rdma_req_inv = create_req(&rqpair, rdma_recv_inv);
758 
759 		/* NEW -> RDMA_REQUEST_STATE_COMPLETING */
760 		rqpair.current_recv_depth = 1;
761 		progress = nvmf_rdma_request_process(&rtransport, rdma_req_inv);
762 		CU_ASSERT(progress == true);
763 		CU_ASSERT(rdma_req_inv->state == RDMA_REQUEST_STATE_COMPLETING);
764 		CU_ASSERT(rdma_req_inv->req.rsp->nvme_cpl.status.sct == SPDK_NVME_SCT_GENERIC);
765 		CU_ASSERT(rdma_req_inv->req.rsp->nvme_cpl.status.sc == SPDK_NVME_SC_INVALID_OPCODE);
766 
767 		/* RDMA_REQUEST_STATE_COMPLETED -> FREE */
768 		rdma_req_inv->state = RDMA_REQUEST_STATE_COMPLETED;
769 		nvmf_rdma_request_process(&rtransport, rdma_req_inv);
770 		CU_ASSERT(rdma_req_inv->state == RDMA_REQUEST_STATE_FREE);
771 
772 		free_recv(rdma_recv_inv);
773 		free_req(rdma_req_inv);
774 		poller_reset(&poller, &group);
775 		qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
776 	}
777 
778 	spdk_mempool_free(rtransport.transport.data_buf_pool);
779 	spdk_mempool_free(rtransport.data_wr_pool);
780 }
781 
782 #define TEST_GROUPS_COUNT 5
783 static void
784 test_nvmf_rdma_get_optimal_poll_group(void)
785 {
786 	struct spdk_nvmf_rdma_transport rtransport = {};
787 	struct spdk_nvmf_transport *transport = &rtransport.transport;
788 	struct spdk_nvmf_rdma_qpair rqpair = {};
789 	struct spdk_nvmf_transport_poll_group *groups[TEST_GROUPS_COUNT];
790 	struct spdk_nvmf_rdma_poll_group *rgroups[TEST_GROUPS_COUNT];
791 	struct spdk_nvmf_transport_poll_group *result;
792 	uint32_t i;
793 
794 	rqpair.qpair.transport = transport;
795 	TAILQ_INIT(&rtransport.poll_groups);
796 
797 	for (i = 0; i < TEST_GROUPS_COUNT; i++) {
798 		groups[i] = nvmf_rdma_poll_group_create(transport, NULL);
799 		CU_ASSERT(groups[i] != NULL);
800 		rgroups[i] = SPDK_CONTAINEROF(groups[i], struct spdk_nvmf_rdma_poll_group, group);
801 		groups[i]->transport = transport;
802 	}
803 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[0]);
804 	CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[0]);
805 
806 	/* Emulate connection of %TEST_GROUPS_COUNT% initiators - each creates 1 admin and 1 io qp */
807 	for (i = 0; i < TEST_GROUPS_COUNT; i++) {
808 		rqpair.qpair.qid = 0;
809 		result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
810 		CU_ASSERT(result == groups[i]);
811 		CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
812 		CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[i]);
813 
814 		rqpair.qpair.qid = 1;
815 		result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
816 		CU_ASSERT(result == groups[i]);
817 		CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
818 		CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
819 	}
820 	/* wrap around, admin/io pg point to the first pg
821 	   Destroy all poll groups except of the last one */
822 	for (i = 0; i < TEST_GROUPS_COUNT - 1; i++) {
823 		nvmf_rdma_poll_group_destroy(groups[i]);
824 		CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[i + 1]);
825 		CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[i + 1]);
826 	}
827 
828 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
829 	CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
830 
831 	/* Check that pointers to the next admin/io poll groups are not changed */
832 	rqpair.qpair.qid = 0;
833 	result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
834 	CU_ASSERT(result == groups[TEST_GROUPS_COUNT - 1]);
835 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
836 	CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
837 
838 	rqpair.qpair.qid = 1;
839 	result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
840 	CU_ASSERT(result == groups[TEST_GROUPS_COUNT - 1]);
841 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
842 	CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
843 
844 	/* Remove the last poll group, check that pointers are NULL */
845 	nvmf_rdma_poll_group_destroy(groups[TEST_GROUPS_COUNT - 1]);
846 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == NULL);
847 	CU_ASSERT(rtransport.conn_sched.next_io_pg == NULL);
848 
849 	/* Request optimal poll group, result must be NULL */
850 	rqpair.qpair.qid = 0;
851 	result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
852 	CU_ASSERT(result == NULL);
853 
854 	rqpair.qpair.qid = 1;
855 	result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
856 	CU_ASSERT(result == NULL);
857 }
858 #undef TEST_GROUPS_COUNT
859 
860 static void
861 test_spdk_nvmf_rdma_request_parse_sgl_with_md(void)
862 {
863 	struct spdk_nvmf_rdma_transport rtransport;
864 	struct spdk_nvmf_rdma_device device;
865 	struct spdk_nvmf_rdma_request rdma_req = {};
866 	struct spdk_nvmf_rdma_recv recv;
867 	struct spdk_nvmf_rdma_poll_group group;
868 	struct spdk_nvmf_rdma_qpair rqpair;
869 	struct spdk_nvmf_rdma_poller poller;
870 	union nvmf_c2h_msg cpl;
871 	union nvmf_h2c_msg cmd;
872 	struct spdk_nvme_sgl_descriptor *sgl;
873 	struct spdk_nvme_sgl_descriptor sgl_desc[SPDK_NVMF_MAX_SGL_ENTRIES] = {{0}};
874 	char data_buffer[8192];
875 	struct spdk_nvmf_rdma_request_data *data = (struct spdk_nvmf_rdma_request_data *)data_buffer;
876 	char data2_buffer[8192];
877 	struct spdk_nvmf_rdma_request_data *data2 = (struct spdk_nvmf_rdma_request_data *)data2_buffer;
878 	const uint32_t data_bs = 512;
879 	const uint32_t md_size = 8;
880 	int rc, i;
881 	void *aligned_buffer;
882 
883 	data->wr.sg_list = data->sgl;
884 	STAILQ_INIT(&group.group.buf_cache);
885 	group.group.buf_cache_size = 0;
886 	group.group.buf_cache_count = 0;
887 	group.group.transport = &rtransport.transport;
888 	poller.group = &group;
889 	rqpair.poller = &poller;
890 	rqpair.max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
891 
892 	sgl = &cmd.nvme_cmd.dptr.sgl1;
893 	rdma_req.recv = &recv;
894 	rdma_req.req.cmd = &cmd;
895 	rdma_req.req.rsp = &cpl;
896 	rdma_req.data.wr.sg_list = rdma_req.data.sgl;
897 	rdma_req.req.qpair = &rqpair.qpair;
898 	rdma_req.req.xfer = SPDK_NVME_DATA_CONTROLLER_TO_HOST;
899 
900 	rtransport.transport.opts = g_rdma_ut_transport_opts;
901 	rtransport.data_wr_pool = NULL;
902 	rtransport.transport.data_buf_pool = NULL;
903 
904 	device.attr.device_cap_flags = 0;
905 	device.map = NULL;
906 	sgl->keyed.key = 0xEEEE;
907 	sgl->address = 0xFFFF;
908 	rdma_req.recv->buf = (void *)0xDDDD;
909 
910 	/* Test 1: sgl type: keyed data block subtype: address */
911 	sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
912 	sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
913 
914 	/* Part 1: simple I/O, one SGL smaller than the transport io unit size, block size 512 */
915 	MOCK_SET(spdk_mempool_get, (void *)0x2000);
916 	reset_nvmf_rdma_request(&rdma_req);
917 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
918 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
919 			  0, 0, 0, 0, 0);
920 	rdma_req.req.dif_enabled = true;
921 	rtransport.transport.opts.io_unit_size = data_bs * 8;
922 	rdma_req.req.qpair->transport = &rtransport.transport;
923 	sgl->keyed.length = data_bs * 4;
924 
925 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
926 
927 	CU_ASSERT(rc == 0);
928 	CU_ASSERT(rdma_req.req.data_from_pool == true);
929 	CU_ASSERT(rdma_req.req.length == data_bs * 4);
930 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
931 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
932 	CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
933 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
934 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
935 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
936 	CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
937 
938 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
939 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rdma_req.req.length);
940 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
941 
942 	/* Part 2: simple I/O, one SGL equal to io unit size, io_unit_size is not aligned with md_size,
943 		block size 512 */
944 	MOCK_SET(spdk_mempool_get, (void *)0x2000);
945 	reset_nvmf_rdma_request(&rdma_req);
946 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
947 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
948 			  0, 0, 0, 0, 0);
949 	rdma_req.req.dif_enabled = true;
950 	rtransport.transport.opts.io_unit_size = data_bs * 4;
951 	sgl->keyed.length = data_bs * 4;
952 
953 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
954 
955 	CU_ASSERT(rc == 0);
956 	CU_ASSERT(rdma_req.req.data_from_pool == true);
957 	CU_ASSERT(rdma_req.req.length == data_bs * 4);
958 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
959 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
960 	CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
961 	CU_ASSERT(rdma_req.data.wr.num_sge == 5);
962 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
963 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
964 	CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
965 
966 	for (i = 0; i < 3; ++i) {
967 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
968 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
969 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
970 	}
971 	CU_ASSERT(rdma_req.data.wr.sg_list[3].addr == 0x2000 + 3 * (data_bs + md_size));
972 	CU_ASSERT(rdma_req.data.wr.sg_list[3].length == 488);
973 	CU_ASSERT(rdma_req.data.wr.sg_list[3].lkey == RDMA_UT_LKEY);
974 
975 	/* 2nd buffer consumed */
976 	CU_ASSERT(rdma_req.data.wr.sg_list[4].addr == 0x2000);
977 	CU_ASSERT(rdma_req.data.wr.sg_list[4].length == 24);
978 	CU_ASSERT(rdma_req.data.wr.sg_list[4].lkey == RDMA_UT_LKEY);
979 
980 	/* Part 3: simple I/O, one SGL equal io unit size, io_unit_size is equal to block size 512 bytes */
981 	MOCK_SET(spdk_mempool_get, (void *)0x2000);
982 	reset_nvmf_rdma_request(&rdma_req);
983 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
984 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
985 			  0, 0, 0, 0, 0);
986 	rdma_req.req.dif_enabled = true;
987 	rtransport.transport.opts.io_unit_size = data_bs;
988 	sgl->keyed.length = data_bs;
989 
990 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
991 
992 	CU_ASSERT(rc == 0);
993 	CU_ASSERT(rdma_req.req.data_from_pool == true);
994 	CU_ASSERT(rdma_req.req.length == data_bs);
995 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
996 	CU_ASSERT(rdma_req.req.dif.elba_length == data_bs + md_size);
997 	CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
998 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
999 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1000 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1001 	CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
1002 
1003 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
1004 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == data_bs);
1005 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
1006 
1007 	CU_ASSERT(rdma_req.req.iovcnt == 2);
1008 	CU_ASSERT(rdma_req.req.iov[0].iov_base == (void *)((unsigned long)0x2000));
1009 	CU_ASSERT(rdma_req.req.iov[0].iov_len == data_bs);
1010 	/* 2nd buffer consumed for metadata */
1011 	CU_ASSERT(rdma_req.req.iov[1].iov_base == (void *)((unsigned long)0x2000));
1012 	CU_ASSERT(rdma_req.req.iov[1].iov_len == md_size);
1013 
1014 	/* Part 4: simple I/O, one SGL equal io unit size, io_unit_size is aligned with md_size,
1015 	   block size 512 */
1016 	MOCK_SET(spdk_mempool_get, (void *)0x2000);
1017 	reset_nvmf_rdma_request(&rdma_req);
1018 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1019 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
1020 			  0, 0, 0, 0, 0);
1021 	rdma_req.req.dif_enabled = true;
1022 	rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 4;
1023 	sgl->keyed.length = data_bs * 4;
1024 
1025 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1026 
1027 	CU_ASSERT(rc == 0);
1028 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1029 	CU_ASSERT(rdma_req.req.length == data_bs * 4);
1030 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1031 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
1032 	CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
1033 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
1034 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1035 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1036 	CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
1037 
1038 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
1039 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rdma_req.req.length);
1040 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
1041 
1042 	/* Part 5: simple I/O, one SGL equal to 2x io unit size, io_unit_size is aligned with md_size,
1043 	   block size 512 */
1044 	MOCK_SET(spdk_mempool_get, (void *)0x2000);
1045 	reset_nvmf_rdma_request(&rdma_req);
1046 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1047 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
1048 			  0, 0, 0, 0, 0);
1049 	rdma_req.req.dif_enabled = true;
1050 	rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 2;
1051 	sgl->keyed.length = data_bs * 4;
1052 
1053 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1054 
1055 	CU_ASSERT(rc == 0);
1056 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1057 	CU_ASSERT(rdma_req.req.length == data_bs * 4);
1058 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1059 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
1060 	CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
1061 	CU_ASSERT(rdma_req.data.wr.num_sge == 2);
1062 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1063 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1064 	CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
1065 
1066 	for (i = 0; i < 2; ++i) {
1067 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
1068 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs * 2);
1069 	}
1070 
1071 	/* Part 6: simple I/O, one SGL larger than the transport io unit size, io_unit_size is not aligned to md_size,
1072 	   block size 512 */
1073 	MOCK_SET(spdk_mempool_get, (void *)0x2000);
1074 	reset_nvmf_rdma_request(&rdma_req);
1075 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1076 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
1077 			  0, 0, 0, 0, 0);
1078 	rdma_req.req.dif_enabled = true;
1079 	rtransport.transport.opts.io_unit_size = data_bs * 4;
1080 	sgl->keyed.length = data_bs * 6;
1081 
1082 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1083 
1084 	CU_ASSERT(rc == 0);
1085 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1086 	CU_ASSERT(rdma_req.req.length == data_bs * 6);
1087 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1088 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 6);
1089 	CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
1090 	CU_ASSERT(rdma_req.data.wr.num_sge == 7);
1091 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1092 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1093 	CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
1094 
1095 	for (i = 0; i < 3; ++i) {
1096 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
1097 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
1098 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
1099 	}
1100 	CU_ASSERT(rdma_req.data.wr.sg_list[3].addr == 0x2000 + 3 * (data_bs + md_size));
1101 	CU_ASSERT(rdma_req.data.wr.sg_list[3].length == 488);
1102 	CU_ASSERT(rdma_req.data.wr.sg_list[3].lkey == RDMA_UT_LKEY);
1103 
1104 	/* 2nd IO buffer consumed */
1105 	CU_ASSERT(rdma_req.data.wr.sg_list[4].addr == 0x2000);
1106 	CU_ASSERT(rdma_req.data.wr.sg_list[4].length == 24);
1107 	CU_ASSERT(rdma_req.data.wr.sg_list[4].lkey == RDMA_UT_LKEY);
1108 
1109 	CU_ASSERT(rdma_req.data.wr.sg_list[5].addr == 0x2000 + 24 + md_size);
1110 	CU_ASSERT(rdma_req.data.wr.sg_list[5].length == 512);
1111 	CU_ASSERT(rdma_req.data.wr.sg_list[5].lkey == RDMA_UT_LKEY);
1112 
1113 	CU_ASSERT(rdma_req.data.wr.sg_list[6].addr == 0x2000 + 24 + 512 + md_size * 2);
1114 	CU_ASSERT(rdma_req.data.wr.sg_list[6].length == 512);
1115 	CU_ASSERT(rdma_req.data.wr.sg_list[6].lkey == RDMA_UT_LKEY);
1116 
1117 	/* Part 7: simple I/O, number of SGL entries exceeds the number of entries
1118 	   one WR can hold. Additional WR is chained */
1119 	MOCK_SET(spdk_mempool_get, data2_buffer);
1120 	aligned_buffer = (void *)((uintptr_t)(data2_buffer + NVMF_DATA_BUFFER_MASK) &
1121 				  ~NVMF_DATA_BUFFER_MASK);
1122 	reset_nvmf_rdma_request(&rdma_req);
1123 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1124 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
1125 			  0, 0, 0, 0, 0);
1126 	rdma_req.req.dif_enabled = true;
1127 	rtransport.transport.opts.io_unit_size = data_bs * 16;
1128 	sgl->keyed.length = data_bs * 16;
1129 
1130 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1131 
1132 	CU_ASSERT(rc == 0);
1133 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1134 	CU_ASSERT(rdma_req.req.length == data_bs * 16);
1135 	CU_ASSERT(rdma_req.req.iovcnt == 2);
1136 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1137 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 16);
1138 	CU_ASSERT(rdma_req.req.data == aligned_buffer);
1139 	CU_ASSERT(rdma_req.data.wr.num_sge == 16);
1140 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1141 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1142 
1143 	for (i = 0; i < 15; ++i) {
1144 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (uintptr_t)aligned_buffer + i * (data_bs + md_size));
1145 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
1146 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
1147 	}
1148 
1149 	/* 8192 - (512 + 8) * 15 = 392 */
1150 	CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (uintptr_t)aligned_buffer + i * (data_bs + md_size));
1151 	CU_ASSERT(rdma_req.data.wr.sg_list[i].length == 392);
1152 	CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
1153 
1154 	/* additional wr from pool */
1155 	CU_ASSERT(rdma_req.data.wr.next == (void *)&data2->wr);
1156 	CU_ASSERT(rdma_req.data.wr.next->num_sge == 1);
1157 	CU_ASSERT(rdma_req.data.wr.next->next == &rdma_req.rsp.wr);
1158 	/* 2nd IO buffer */
1159 	CU_ASSERT(data2->wr.sg_list[0].addr == (uintptr_t)aligned_buffer);
1160 	CU_ASSERT(data2->wr.sg_list[0].length == 120);
1161 	CU_ASSERT(data2->wr.sg_list[0].lkey == RDMA_UT_LKEY);
1162 
1163 	/* Part 8: simple I/O, data with metadata do not fit to 1 io_buffer */
1164 	MOCK_SET(spdk_mempool_get, (void *)0x2000);
1165 	reset_nvmf_rdma_request(&rdma_req);
1166 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1167 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
1168 			  0, 0, 0, 0, 0);
1169 	rdma_req.req.dif_enabled = true;
1170 	rtransport.transport.opts.io_unit_size = 516;
1171 	sgl->keyed.length = data_bs * 2;
1172 
1173 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1174 
1175 	CU_ASSERT(rc == 0);
1176 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1177 	CU_ASSERT(rdma_req.req.length == data_bs * 2);
1178 	CU_ASSERT(rdma_req.req.iovcnt == 3);
1179 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1180 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 2);
1181 	CU_ASSERT(rdma_req.req.data == (void *)0x2000);
1182 	CU_ASSERT(rdma_req.data.wr.num_sge == 2);
1183 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1184 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1185 
1186 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
1187 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == 512);
1188 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
1189 
1190 	/* 2nd IO buffer consumed, offset 4 bytes due to part of the metadata
1191 	  is located at the beginning of that buffer */
1192 	CU_ASSERT(rdma_req.data.wr.sg_list[1].addr == 0x2000 + 4);
1193 	CU_ASSERT(rdma_req.data.wr.sg_list[1].length == 512);
1194 	CU_ASSERT(rdma_req.data.wr.sg_list[1].lkey == RDMA_UT_LKEY);
1195 
1196 	/* Test 2: Multi SGL */
1197 	sgl->generic.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1198 	sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1199 	sgl->address = 0;
1200 	rdma_req.recv->buf = (void *)&sgl_desc;
1201 	MOCK_SET(spdk_mempool_get, data_buffer);
1202 	aligned_buffer = (void *)((uintptr_t)(data_buffer + NVMF_DATA_BUFFER_MASK) &
1203 				  ~NVMF_DATA_BUFFER_MASK);
1204 
1205 	/* part 1: 2 segments each with 1 wr. io_unit_size is aligned with data_bs + md_size */
1206 	reset_nvmf_rdma_request(&rdma_req);
1207 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1208 			  SPDK_DIF_TYPE1,
1209 			  SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK, 0, 0, 0, 0, 0);
1210 	rdma_req.req.dif_enabled = true;
1211 	rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 4;
1212 	sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
1213 
1214 	for (i = 0; i < 2; i++) {
1215 		sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1216 		sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1217 		sgl_desc[i].keyed.length = data_bs * 4;
1218 		sgl_desc[i].address = 0x4000 + i * data_bs * 4;
1219 		sgl_desc[i].keyed.key = 0x44;
1220 	}
1221 
1222 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1223 
1224 	CU_ASSERT(rc == 0);
1225 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1226 	CU_ASSERT(rdma_req.req.length == data_bs * 4 * 2);
1227 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1228 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4 * 2);
1229 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
1230 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == (uintptr_t)(aligned_buffer));
1231 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == data_bs * 4);
1232 
1233 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
1234 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
1235 	CU_ASSERT(rdma_req.data.wr.next == &data->wr);
1236 	CU_ASSERT(data->wr.wr.rdma.rkey == 0x44);
1237 	CU_ASSERT(data->wr.wr.rdma.remote_addr == 0x4000 + data_bs * 4);
1238 	CU_ASSERT(data->wr.num_sge == 1);
1239 	CU_ASSERT(data->wr.sg_list[0].addr == (uintptr_t)(aligned_buffer));
1240 	CU_ASSERT(data->wr.sg_list[0].length == data_bs * 4);
1241 
1242 	CU_ASSERT(data->wr.next == &rdma_req.rsp.wr);
1243 	reset_nvmf_rdma_request(&rdma_req);
1244 }
1245 
1246 static void
1247 test_nvmf_rdma_opts_init(void)
1248 {
1249 	struct spdk_nvmf_transport_opts	opts = {};
1250 
1251 	nvmf_rdma_opts_init(&opts);
1252 	CU_ASSERT(opts.max_queue_depth == SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH);
1253 	CU_ASSERT(opts.max_qpairs_per_ctrlr ==	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR);
1254 	CU_ASSERT(opts.in_capsule_data_size ==	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE);
1255 	CU_ASSERT(opts.max_io_size == SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE);
1256 	CU_ASSERT(opts.io_unit_size == SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
1257 	CU_ASSERT(opts.max_aq_depth == SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH);
1258 	CU_ASSERT(opts.num_shared_buffers == SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS);
1259 	CU_ASSERT(opts.buf_cache_size == SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE);
1260 	CU_ASSERT(opts.dif_insert_or_strip == SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP);
1261 	CU_ASSERT(opts.abort_timeout_sec == SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC);
1262 	CU_ASSERT(opts.transport_specific == NULL);
1263 }
1264 
1265 static void
1266 test_nvmf_rdma_request_free_data(void)
1267 {
1268 	struct spdk_nvmf_rdma_request rdma_req = {};
1269 	struct spdk_nvmf_rdma_transport rtransport = {};
1270 	struct spdk_nvmf_rdma_request_data *next_request_data = NULL;
1271 
1272 	MOCK_CLEAR(spdk_mempool_get);
1273 	rtransport.data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
1274 				  SPDK_NVMF_MAX_SGL_ENTRIES,
1275 				  sizeof(struct spdk_nvmf_rdma_request_data),
1276 				  SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
1277 				  SPDK_ENV_SOCKET_ID_ANY);
1278 	next_request_data = spdk_mempool_get(rtransport.data_wr_pool);
1279 	SPDK_CU_ASSERT_FATAL(((struct test_mempool *)rtransport.data_wr_pool)->count ==
1280 			     SPDK_NVMF_MAX_SGL_ENTRIES - 1);
1281 	next_request_data->wr.wr_id = 1;
1282 	next_request_data->wr.num_sge = 2;
1283 	next_request_data->wr.next = NULL;
1284 	rdma_req.data.wr.next = &next_request_data->wr;
1285 	rdma_req.data.wr.wr_id = 1;
1286 	rdma_req.data.wr.num_sge = 2;
1287 
1288 	nvmf_rdma_request_free_data(&rdma_req, &rtransport);
1289 	/* Check if next_request_data put into memory pool */
1290 	CU_ASSERT(((struct test_mempool *)rtransport.data_wr_pool)->count == SPDK_NVMF_MAX_SGL_ENTRIES);
1291 	CU_ASSERT(rdma_req.data.wr.num_sge == 0);
1292 
1293 	spdk_mempool_free(rtransport.data_wr_pool);
1294 }
1295 
1296 static void
1297 test_nvmf_rdma_update_ibv_state(void)
1298 {
1299 	struct spdk_nvmf_rdma_qpair rqpair = {};
1300 	struct spdk_rdma_qp rdma_qp = {};
1301 	struct ibv_qp qp = {};
1302 	int rc = 0;
1303 
1304 	rqpair.rdma_qp = &rdma_qp;
1305 
1306 	/* Case 1: Failed to get updated RDMA queue pair state */
1307 	rqpair.ibv_state = IBV_QPS_INIT;
1308 	rqpair.rdma_qp->qp = NULL;
1309 
1310 	rc = nvmf_rdma_update_ibv_state(&rqpair);
1311 	CU_ASSERT(rc == IBV_QPS_ERR + 1);
1312 
1313 	/* Case 2: Bad state updated */
1314 	rqpair.rdma_qp->qp = &qp;
1315 	qp.state = IBV_QPS_ERR;
1316 	rc = nvmf_rdma_update_ibv_state(&rqpair);
1317 	CU_ASSERT(rqpair.ibv_state == 10);
1318 	CU_ASSERT(rc == IBV_QPS_ERR + 1);
1319 
1320 	/* Case 3: Pass */
1321 	qp.state = IBV_QPS_INIT;
1322 	rc = nvmf_rdma_update_ibv_state(&rqpair);
1323 	CU_ASSERT(rqpair.ibv_state == IBV_QPS_INIT);
1324 	CU_ASSERT(rc == IBV_QPS_INIT);
1325 }
1326 
1327 static void
1328 test_nvmf_rdma_resources_create(void)
1329 {
1330 	static struct spdk_nvmf_rdma_resources *rdma_resource;
1331 	struct spdk_nvmf_rdma_resource_opts opts = {};
1332 	struct spdk_nvmf_rdma_qpair qpair = {};
1333 	struct spdk_nvmf_rdma_recv *recv = NULL;
1334 	struct spdk_nvmf_rdma_request *req = NULL;
1335 	const int DEPTH = 128;
1336 
1337 	opts.max_queue_depth = DEPTH;
1338 	opts.in_capsule_data_size = 4096;
1339 	opts.shared = true;
1340 	opts.qpair = &qpair;
1341 
1342 	rdma_resource = nvmf_rdma_resources_create(&opts);
1343 	CU_ASSERT(rdma_resource != NULL);
1344 	/* Just check first and last entry */
1345 	recv = &rdma_resource->recvs[0];
1346 	req = &rdma_resource->reqs[0];
1347 	CU_ASSERT(recv->rdma_wr.type == RDMA_WR_TYPE_RECV);
1348 	CU_ASSERT((uintptr_t)recv->buf == (uintptr_t)(rdma_resource->bufs));
1349 	CU_ASSERT(recv->sgl[0].addr == (uintptr_t)&rdma_resource->cmds[0]);
1350 	CU_ASSERT(recv->sgl[0].length == sizeof(rdma_resource->cmds[0]));
1351 	CU_ASSERT(recv->sgl[0].lkey == RDMA_UT_LKEY);
1352 	CU_ASSERT(recv->wr.num_sge == 2);
1353 	CU_ASSERT(recv->wr.wr_id == (uintptr_t)&rdma_resource->recvs[0].rdma_wr);
1354 	CU_ASSERT(recv->wr.sg_list == rdma_resource->recvs[0].sgl);
1355 	CU_ASSERT(req->req.rsp == &rdma_resource->cpls[0]);
1356 	CU_ASSERT(req->rsp.sgl[0].addr == (uintptr_t)&rdma_resource->cpls[0]);
1357 	CU_ASSERT(req->rsp.sgl[0].length == sizeof(rdma_resource->cpls[0]));
1358 	CU_ASSERT(req->rsp.sgl[0].lkey == RDMA_UT_LKEY);
1359 	CU_ASSERT(req->rsp.rdma_wr.type == RDMA_WR_TYPE_SEND);
1360 	CU_ASSERT(req->rsp.wr.wr_id == (uintptr_t)&rdma_resource->reqs[0].rsp.rdma_wr);
1361 	CU_ASSERT(req->rsp.wr.next == NULL);
1362 	CU_ASSERT(req->rsp.wr.opcode == IBV_WR_SEND);
1363 	CU_ASSERT(req->rsp.wr.send_flags == IBV_SEND_SIGNALED);
1364 	CU_ASSERT(req->rsp.wr.sg_list == rdma_resource->reqs[0].rsp.sgl);
1365 	CU_ASSERT(req->rsp.wr.num_sge == NVMF_DEFAULT_RSP_SGE);
1366 	CU_ASSERT(req->data.rdma_wr.type == RDMA_WR_TYPE_DATA);
1367 	CU_ASSERT(req->data.wr.wr_id == (uintptr_t)&rdma_resource->reqs[0].data.rdma_wr);
1368 	CU_ASSERT(req->data.wr.next == NULL);
1369 	CU_ASSERT(req->data.wr.send_flags == IBV_SEND_SIGNALED);
1370 	CU_ASSERT(req->data.wr.sg_list == rdma_resource->reqs[0].data.sgl);
1371 	CU_ASSERT(req->data.wr.num_sge == SPDK_NVMF_MAX_SGL_ENTRIES);
1372 	CU_ASSERT(req->state == RDMA_REQUEST_STATE_FREE);
1373 
1374 	recv = &rdma_resource->recvs[DEPTH - 1];
1375 	req = &rdma_resource->reqs[DEPTH - 1];
1376 	CU_ASSERT(recv->rdma_wr.type == RDMA_WR_TYPE_RECV);
1377 	CU_ASSERT((uintptr_t)recv->buf == (uintptr_t)(rdma_resource->bufs +
1378 			(DEPTH - 1) * 4096));
1379 	CU_ASSERT(recv->sgl[0].addr == (uintptr_t)&rdma_resource->cmds[DEPTH - 1]);
1380 	CU_ASSERT(recv->sgl[0].length == sizeof(rdma_resource->cmds[DEPTH - 1]));
1381 	CU_ASSERT(recv->sgl[0].lkey == RDMA_UT_LKEY);
1382 	CU_ASSERT(recv->wr.num_sge == 2);
1383 	CU_ASSERT(recv->wr.wr_id == (uintptr_t)&rdma_resource->recvs[DEPTH - 1].rdma_wr);
1384 	CU_ASSERT(recv->wr.sg_list == rdma_resource->recvs[DEPTH - 1].sgl);
1385 	CU_ASSERT(req->req.rsp == &rdma_resource->cpls[DEPTH - 1]);
1386 	CU_ASSERT(req->rsp.sgl[0].addr == (uintptr_t)&rdma_resource->cpls[DEPTH - 1]);
1387 	CU_ASSERT(req->rsp.sgl[0].length == sizeof(rdma_resource->cpls[DEPTH - 1]));
1388 	CU_ASSERT(req->rsp.sgl[0].lkey == RDMA_UT_LKEY);
1389 	CU_ASSERT(req->rsp.rdma_wr.type == RDMA_WR_TYPE_SEND);
1390 	CU_ASSERT(req->rsp.wr.wr_id == (uintptr_t)
1391 		  &req->rsp.rdma_wr);
1392 	CU_ASSERT(req->rsp.wr.next == NULL);
1393 	CU_ASSERT(req->rsp.wr.opcode == IBV_WR_SEND);
1394 	CU_ASSERT(req->rsp.wr.send_flags == IBV_SEND_SIGNALED);
1395 	CU_ASSERT(req->rsp.wr.sg_list == rdma_resource->reqs[DEPTH - 1].rsp.sgl);
1396 	CU_ASSERT(req->rsp.wr.num_sge == NVMF_DEFAULT_RSP_SGE);
1397 	CU_ASSERT(req->data.rdma_wr.type == RDMA_WR_TYPE_DATA);
1398 	CU_ASSERT(req->data.wr.wr_id == (uintptr_t)
1399 		  &req->data.rdma_wr);
1400 	CU_ASSERT(req->data.wr.next == NULL);
1401 	CU_ASSERT(req->data.wr.send_flags == IBV_SEND_SIGNALED);
1402 	CU_ASSERT(req->data.wr.sg_list == rdma_resource->reqs[DEPTH - 1].data.sgl);
1403 	CU_ASSERT(req->data.wr.num_sge == SPDK_NVMF_MAX_SGL_ENTRIES);
1404 	CU_ASSERT(req->state == RDMA_REQUEST_STATE_FREE);
1405 
1406 	nvmf_rdma_resources_destroy(rdma_resource);
1407 }
1408 
1409 static void
1410 test_nvmf_rdma_qpair_compare(void)
1411 {
1412 	struct spdk_nvmf_rdma_qpair rqpair1 = {}, rqpair2 = {};
1413 
1414 	rqpair1.qp_num = 0;
1415 	rqpair2.qp_num = UINT32_MAX;
1416 
1417 	CU_ASSERT(nvmf_rdma_qpair_compare(&rqpair1, &rqpair2) < 0);
1418 	CU_ASSERT(nvmf_rdma_qpair_compare(&rqpair2, &rqpair1) > 0);
1419 }
1420 
1421 static void
1422 test_nvmf_rdma_resize_cq(void)
1423 {
1424 	int rc = -1;
1425 	int tnum_wr = 0;
1426 	int tnum_cqe = 0;
1427 	struct spdk_nvmf_rdma_qpair rqpair = {};
1428 	struct spdk_nvmf_rdma_poller rpoller = {};
1429 	struct spdk_nvmf_rdma_device rdevice = {};
1430 	struct ibv_context ircontext = {};
1431 	struct ibv_device idevice = {};
1432 
1433 	rdevice.context = &ircontext;
1434 	rqpair.poller = &rpoller;
1435 	ircontext.device = &idevice;
1436 
1437 	/* Test1: Current capacity support required size. */
1438 	rpoller.required_num_wr = 10;
1439 	rpoller.num_cqe = 20;
1440 	rqpair.max_queue_depth = 2;
1441 	tnum_wr = rpoller.required_num_wr;
1442 	tnum_cqe = rpoller.num_cqe;
1443 
1444 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1445 	CU_ASSERT(rc == 0);
1446 	CU_ASSERT(rpoller.required_num_wr == 10 + MAX_WR_PER_QP(rqpair.max_queue_depth));
1447 	CU_ASSERT(rpoller.required_num_wr > tnum_wr);
1448 	CU_ASSERT(rpoller.num_cqe == tnum_cqe);
1449 
1450 	/* Test2: iWARP doesn't support CQ resize. */
1451 	tnum_wr = rpoller.required_num_wr;
1452 	tnum_cqe = rpoller.num_cqe;
1453 	idevice.transport_type = IBV_TRANSPORT_IWARP;
1454 
1455 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1456 	CU_ASSERT(rc == -1);
1457 	CU_ASSERT(rpoller.required_num_wr == tnum_wr);
1458 	CU_ASSERT(rpoller.num_cqe == tnum_cqe);
1459 
1460 
1461 	/* Test3: RDMA CQE requirement exceeds device max_cqe limitation. */
1462 	tnum_wr = rpoller.required_num_wr;
1463 	tnum_cqe = rpoller.num_cqe;
1464 	idevice.transport_type = IBV_TRANSPORT_UNKNOWN;
1465 	rdevice.attr.max_cqe = 3;
1466 
1467 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1468 	CU_ASSERT(rc == -1);
1469 	CU_ASSERT(rpoller.required_num_wr == tnum_wr);
1470 	CU_ASSERT(rpoller.num_cqe == tnum_cqe);
1471 
1472 	/* Test4: RDMA CQ resize failed. */
1473 	tnum_wr = rpoller.required_num_wr;
1474 	tnum_cqe = rpoller.num_cqe;
1475 	idevice.transport_type = IBV_TRANSPORT_IB;
1476 	rdevice.attr.max_cqe = 30;
1477 	MOCK_SET(ibv_resize_cq, -1);
1478 
1479 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1480 	CU_ASSERT(rc == -1);
1481 	CU_ASSERT(rpoller.required_num_wr == tnum_wr);
1482 	CU_ASSERT(rpoller.num_cqe == tnum_cqe);
1483 
1484 	/* Test5: RDMA CQ resize success. rsize = MIN(MAX(num_cqe * 2, required_num_wr), device->attr.max_cqe). */
1485 	tnum_wr = rpoller.required_num_wr;
1486 	tnum_cqe = rpoller.num_cqe;
1487 	MOCK_SET(ibv_resize_cq, 0);
1488 
1489 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1490 	CU_ASSERT(rc == 0);
1491 	CU_ASSERT(rpoller.num_cqe = 30);
1492 	CU_ASSERT(rpoller.required_num_wr == 18 + MAX_WR_PER_QP(rqpair.max_queue_depth));
1493 	CU_ASSERT(rpoller.required_num_wr > tnum_wr);
1494 	CU_ASSERT(rpoller.num_cqe > tnum_cqe);
1495 }
1496 
1497 int
1498 main(int argc, char **argv)
1499 {
1500 	CU_pSuite	suite = NULL;
1501 	unsigned int	num_failures;
1502 
1503 	CU_set_error_action(CUEA_ABORT);
1504 	CU_initialize_registry();
1505 
1506 	suite = CU_add_suite("nvmf", NULL, NULL);
1507 
1508 	CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_parse_sgl);
1509 	CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_process);
1510 	CU_ADD_TEST(suite, test_nvmf_rdma_get_optimal_poll_group);
1511 	CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_parse_sgl_with_md);
1512 	CU_ADD_TEST(suite, test_nvmf_rdma_opts_init);
1513 	CU_ADD_TEST(suite, test_nvmf_rdma_request_free_data);
1514 	CU_ADD_TEST(suite, test_nvmf_rdma_update_ibv_state);
1515 	CU_ADD_TEST(suite, test_nvmf_rdma_resources_create);
1516 	CU_ADD_TEST(suite, test_nvmf_rdma_qpair_compare);
1517 	CU_ADD_TEST(suite, test_nvmf_rdma_resize_cq);
1518 
1519 	CU_basic_set_mode(CU_BRM_VERBOSE);
1520 	CU_basic_run_tests();
1521 	num_failures = CU_get_number_of_failures();
1522 	CU_cleanup_registry();
1523 	return num_failures;
1524 }
1525