xref: /spdk/test/unit/lib/nvmf/rdma.c/rdma_ut.c (revision 60982c759db49b4f4579f16e3b24df0725ba4b94)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2021 Mellanox Technologies LTD. All rights reserved.
4  */
5 
6 #include "spdk/stdinc.h"
7 #include "spdk_internal/cunit.h"
8 #include "common/lib/test_env.c"
9 #include "common/lib/test_iobuf.c"
10 #include "common/lib/test_rdma.c"
11 #include "nvmf/rdma.c"
12 #include "nvmf/transport.c"
13 
14 #define RDMA_UT_UNITS_IN_MAX_IO 16
15 
16 struct spdk_nvmf_transport_opts g_rdma_ut_transport_opts = {
17 	.max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH,
18 	.max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR,
19 	.in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE,
20 	.max_io_size = (SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE * RDMA_UT_UNITS_IN_MAX_IO),
21 	.io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE,
22 	.max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH,
23 	.num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS,
24 };
25 
26 SPDK_LOG_REGISTER_COMPONENT(nvmf)
27 DEFINE_STUB(spdk_mem_map_set_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
28 		uint64_t size, uint64_t translation), 0);
29 DEFINE_STUB(spdk_mem_map_clear_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
30 		uint64_t size), 0);
31 DEFINE_STUB(spdk_mem_map_alloc, struct spdk_mem_map *, (uint64_t default_translation,
32 		const struct spdk_mem_map_ops *ops, void *cb_ctx), NULL);
33 DEFINE_STUB(spdk_nvmf_qpair_disconnect, int, (struct spdk_nvmf_qpair *qpair,
34 		nvmf_qpair_disconnect_cb cb_fn, void *ctx), 0);
35 DEFINE_STUB(spdk_nvmf_qpair_get_listen_trid, int,
36 	    (struct spdk_nvmf_qpair *qpair, struct spdk_nvme_transport_id *trid), 0);
37 DEFINE_STUB_V(spdk_mem_map_free, (struct spdk_mem_map **pmap));
38 
39 DEFINE_STUB_V(spdk_nvmf_ctrlr_data_init, (struct spdk_nvmf_transport_opts *opts,
40 		struct spdk_nvmf_ctrlr_data *cdata));
41 DEFINE_STUB_V(spdk_nvmf_request_exec, (struct spdk_nvmf_request *req));
42 DEFINE_STUB(spdk_nvmf_request_complete, int, (struct spdk_nvmf_request *req), 0);
43 DEFINE_STUB(spdk_nvme_transport_id_compare, int, (const struct spdk_nvme_transport_id *trid1,
44 		const struct spdk_nvme_transport_id *trid2), 0);
45 DEFINE_STUB_V(spdk_nvmf_ctrlr_abort_aer, (struct spdk_nvmf_ctrlr *ctrlr));
46 DEFINE_STUB(spdk_nvmf_request_get_dif_ctx, bool, (struct spdk_nvmf_request *req,
47 		struct spdk_dif_ctx *dif_ctx), false);
48 DEFINE_STUB_V(spdk_nvme_trid_populate_transport, (struct spdk_nvme_transport_id *trid,
49 		enum spdk_nvme_transport_type trtype));
50 DEFINE_STUB_V(spdk_nvmf_tgt_new_qpair, (struct spdk_nvmf_tgt *tgt, struct spdk_nvmf_qpair *qpair));
51 DEFINE_STUB(nvmf_ctrlr_abort_request, int, (struct spdk_nvmf_request *req), 0);
52 DEFINE_STUB(spdk_nvme_transport_id_adrfam_str, const char *, (enum spdk_nvmf_adrfam adrfam), NULL);
53 DEFINE_STUB(ibv_dereg_mr, int, (struct ibv_mr *mr), 0);
54 DEFINE_STUB(ibv_resize_cq, int, (struct ibv_cq *cq, int cqe), 0);
55 DEFINE_STUB(spdk_mempool_lookup, struct spdk_mempool *, (const char *name), NULL);
56 
57 /* ibv_reg_mr can be a macro, need to undefine it */
58 #ifdef ibv_reg_mr
59 #undef ibv_reg_mr
60 #endif
61 
62 DEFINE_RETURN_MOCK(ibv_reg_mr, struct ibv_mr *);
63 struct ibv_mr *
64 ibv_reg_mr(struct ibv_pd *pd, void *addr, size_t length, int access)
65 {
66 	HANDLE_RETURN_MOCK(ibv_reg_mr);
67 	if (length > 0) {
68 		return &g_rdma_mr;
69 	} else {
70 		return NULL;
71 	}
72 }
73 
74 int
75 ibv_query_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr,
76 	     int attr_mask, struct ibv_qp_init_attr *init_attr)
77 {
78 	if (qp == NULL) {
79 		return -1;
80 	} else {
81 		attr->port_num = 80;
82 
83 		if (qp->state == IBV_QPS_ERR) {
84 			attr->qp_state = 10;
85 		} else {
86 			attr->qp_state = IBV_QPS_INIT;
87 		}
88 
89 		return 0;
90 	}
91 }
92 
93 const char *
94 spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
95 {
96 	switch (trtype) {
97 	case SPDK_NVME_TRANSPORT_PCIE:
98 		return "PCIe";
99 	case SPDK_NVME_TRANSPORT_RDMA:
100 		return "RDMA";
101 	case SPDK_NVME_TRANSPORT_FC:
102 		return "FC";
103 	default:
104 		return NULL;
105 	}
106 }
107 
108 int
109 spdk_nvme_transport_id_populate_trstring(struct spdk_nvme_transport_id *trid, const char *trstring)
110 {
111 	int len, i;
112 
113 	if (trstring == NULL) {
114 		return -EINVAL;
115 	}
116 
117 	len = strnlen(trstring, SPDK_NVMF_TRSTRING_MAX_LEN);
118 	if (len == SPDK_NVMF_TRSTRING_MAX_LEN) {
119 		return -EINVAL;
120 	}
121 
122 	/* cast official trstring to uppercase version of input. */
123 	for (i = 0; i < len; i++) {
124 		trid->trstring[i] = toupper(trstring[i]);
125 	}
126 	return 0;
127 }
128 
129 static void
130 reset_nvmf_rdma_request(struct spdk_nvmf_rdma_request *rdma_req)
131 {
132 	int i;
133 
134 	rdma_req->req.length = 0;
135 	rdma_req->req.data_from_pool = false;
136 	rdma_req->data.wr.num_sge = 0;
137 	rdma_req->data.wr.wr.rdma.remote_addr = 0;
138 	rdma_req->data.wr.wr.rdma.rkey = 0;
139 	rdma_req->offset = 0;
140 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
141 
142 	for (i = 0; i < SPDK_NVMF_MAX_SGL_ENTRIES; i++) {
143 		rdma_req->req.iov[i].iov_base = 0;
144 		rdma_req->req.iov[i].iov_len = 0;
145 		rdma_req->data.wr.sg_list[i].addr = 0;
146 		rdma_req->data.wr.sg_list[i].length = 0;
147 		rdma_req->data.wr.sg_list[i].lkey = 0;
148 	}
149 	rdma_req->req.iovcnt = 0;
150 	if (rdma_req->req.stripped_data) {
151 		free(rdma_req->req.stripped_data);
152 		rdma_req->req.stripped_data = NULL;
153 	}
154 }
155 
156 static void
157 test_spdk_nvmf_rdma_request_parse_sgl(void)
158 {
159 	struct spdk_nvmf_rdma_transport rtransport;
160 	struct spdk_nvmf_rdma_device device;
161 	struct spdk_nvmf_rdma_request rdma_req = {};
162 	struct spdk_nvmf_rdma_recv recv;
163 	struct spdk_nvmf_rdma_poll_group group;
164 	struct spdk_nvmf_rdma_qpair rqpair;
165 	struct spdk_nvmf_rdma_poller poller;
166 	union nvmf_c2h_msg cpl;
167 	union nvmf_h2c_msg cmd;
168 	struct spdk_nvme_sgl_descriptor *sgl;
169 	struct spdk_nvme_sgl_descriptor sgl_desc[SPDK_NVMF_MAX_SGL_ENTRIES] = {{0}};
170 	struct spdk_nvmf_rdma_request_data data;
171 	int rc, i;
172 	uint32_t sgl_length;
173 
174 	data.wr.sg_list = data.sgl;
175 	group.group.transport = &rtransport.transport;
176 	poller.group = &group;
177 	rqpair.poller = &poller;
178 	rqpair.max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
179 
180 	sgl = &cmd.nvme_cmd.dptr.sgl1;
181 	rdma_req.recv = &recv;
182 	rdma_req.req.cmd = &cmd;
183 	rdma_req.req.rsp = &cpl;
184 	rdma_req.data.wr.sg_list = rdma_req.data.sgl;
185 	rdma_req.req.qpair = &rqpair.qpair;
186 	rdma_req.req.xfer = SPDK_NVME_DATA_CONTROLLER_TO_HOST;
187 
188 	rtransport.transport.opts = g_rdma_ut_transport_opts;
189 	rtransport.data_wr_pool = NULL;
190 
191 	device.attr.device_cap_flags = 0;
192 	sgl->keyed.key = 0xEEEE;
193 	sgl->address = 0xFFFF;
194 	rdma_req.recv->buf = (void *)0xDDDD;
195 
196 	/* Test 1: sgl type: keyed data block subtype: address */
197 	sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
198 	sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
199 
200 	/* Part 1: simple I/O, one SGL smaller than the transport io unit size */
201 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
202 	reset_nvmf_rdma_request(&rdma_req);
203 	sgl->keyed.length = rtransport.transport.opts.io_unit_size / 2;
204 
205 	device.map = (void *)0x0;
206 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
207 	CU_ASSERT(rc == 0);
208 	CU_ASSERT(rdma_req.req.data_from_pool == true);
209 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size / 2);
210 	CU_ASSERT((uint64_t)rdma_req.req.iovcnt == 1);
211 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
212 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
213 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
214 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
215 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
216 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
217 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rtransport.transport.opts.io_unit_size / 2);
218 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
219 
220 	/* Part 2: simple I/O, one SGL larger than the transport io unit size (equal to the max io size) */
221 	reset_nvmf_rdma_request(&rdma_req);
222 	sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO;
223 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
224 
225 	CU_ASSERT(rc == 0);
226 	CU_ASSERT(rdma_req.req.data_from_pool == true);
227 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO);
228 	CU_ASSERT(rdma_req.data.wr.num_sge == RDMA_UT_UNITS_IN_MAX_IO);
229 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
230 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
231 	for (i = 0; i < RDMA_UT_UNITS_IN_MAX_IO; i++) {
232 		CU_ASSERT((uint64_t)rdma_req.req.iov[i].iov_base == 0x2000);
233 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
234 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
235 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
236 	}
237 
238 	/* Part 3: simple I/O one SGL larger than the transport max io size */
239 	reset_nvmf_rdma_request(&rdma_req);
240 	sgl->keyed.length = rtransport.transport.opts.max_io_size * 2;
241 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
242 
243 	CU_ASSERT(rc == -1);
244 
245 	/* Part 4: Pretend there are no buffer pools */
246 	MOCK_SET(spdk_iobuf_get, NULL);
247 	reset_nvmf_rdma_request(&rdma_req);
248 	sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO;
249 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
250 
251 	CU_ASSERT(rc == 0);
252 	CU_ASSERT(rdma_req.req.data_from_pool == false);
253 	CU_ASSERT(rdma_req.req.iovcnt == 0);
254 	CU_ASSERT(rdma_req.data.wr.num_sge == 0);
255 	CU_ASSERT(rdma_req.req.iov[0].iov_base == NULL);
256 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0);
257 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == 0);
258 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == 0);
259 
260 	rdma_req.recv->buf = (void *)0xDDDD;
261 	/* Test 2: sgl type: keyed data block subtype: offset (in capsule data) */
262 	sgl->generic.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
263 	sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
264 
265 	/* Part 1: Normal I/O smaller than in capsule data size no offset */
266 	reset_nvmf_rdma_request(&rdma_req);
267 	sgl->address = 0;
268 	sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size;
269 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
270 
271 	CU_ASSERT(rc == 0);
272 	CU_ASSERT(rdma_req.req.iovcnt == 1);
273 	CU_ASSERT(rdma_req.req.iov[0].iov_base == (void *)0xDDDD);
274 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.in_capsule_data_size);
275 	CU_ASSERT(rdma_req.req.data_from_pool == false);
276 
277 	/* Part 2: I/O offset + length too large */
278 	reset_nvmf_rdma_request(&rdma_req);
279 	sgl->address = rtransport.transport.opts.in_capsule_data_size;
280 	sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size;
281 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
282 
283 	CU_ASSERT(rc == -1);
284 
285 	/* Part 3: I/O too large */
286 	reset_nvmf_rdma_request(&rdma_req);
287 	sgl->address = 0;
288 	sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size * 2;
289 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
290 
291 	CU_ASSERT(rc == -1);
292 
293 	/* Test 3: Multi SGL */
294 	sgl->generic.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
295 	sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
296 	sgl->address = 0;
297 	rdma_req.recv->buf = (void *)&sgl_desc;
298 	MOCK_SET(spdk_iobuf_get, &data);
299 	MOCK_SET(spdk_mempool_get, &data);
300 
301 	/* part 1: 2 segments each with 1 wr. */
302 	reset_nvmf_rdma_request(&rdma_req);
303 	sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
304 	for (i = 0; i < 2; i++) {
305 		sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
306 		sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
307 		sgl_desc[i].keyed.length = rtransport.transport.opts.io_unit_size;
308 		sgl_desc[i].address = 0x4000 + i * rtransport.transport.opts.io_unit_size;
309 		sgl_desc[i].keyed.key = 0x44;
310 	}
311 
312 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
313 
314 	CU_ASSERT(rc == 0);
315 	CU_ASSERT(rdma_req.req.data_from_pool == true);
316 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 2);
317 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
318 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
319 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
320 	CU_ASSERT(rdma_req.data.wr.next == &data.wr);
321 	CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
322 	CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size);
323 	CU_ASSERT(data.wr.num_sge == 1);
324 	CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
325 
326 	/* part 2: 2 segments, each with 1 wr containing 8 sge_elements */
327 	reset_nvmf_rdma_request(&rdma_req);
328 	sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
329 	for (i = 0; i < 2; i++) {
330 		sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
331 		sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
332 		sgl_desc[i].keyed.length = rtransport.transport.opts.io_unit_size * 8;
333 		sgl_desc[i].address = 0x4000 + i * 8 * rtransport.transport.opts.io_unit_size;
334 		sgl_desc[i].keyed.key = 0x44;
335 	}
336 
337 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
338 
339 	CU_ASSERT(rc == 0);
340 	CU_ASSERT(rdma_req.req.data_from_pool == true);
341 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 16);
342 	CU_ASSERT(rdma_req.req.iovcnt == 16);
343 	CU_ASSERT(rdma_req.data.wr.num_sge == 8);
344 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
345 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
346 	CU_ASSERT(rdma_req.data.wr.next == &data.wr);
347 	CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
348 	CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size * 8);
349 	CU_ASSERT(data.wr.num_sge == 8);
350 	CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
351 
352 	/* part 3: 2 segments, one very large, one very small */
353 	reset_nvmf_rdma_request(&rdma_req);
354 	for (i = 0; i < 2; i++) {
355 		sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
356 		sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
357 		sgl_desc[i].keyed.key = 0x44;
358 	}
359 
360 	sgl_desc[0].keyed.length = rtransport.transport.opts.io_unit_size * 15 +
361 				   rtransport.transport.opts.io_unit_size / 2;
362 	sgl_desc[0].address = 0x4000;
363 	sgl_desc[1].keyed.length = rtransport.transport.opts.io_unit_size / 2;
364 	sgl_desc[1].address = 0x4000 + rtransport.transport.opts.io_unit_size * 15 +
365 			      rtransport.transport.opts.io_unit_size / 2;
366 
367 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
368 
369 	CU_ASSERT(rc == 0);
370 	CU_ASSERT(rdma_req.req.data_from_pool == true);
371 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 16);
372 	CU_ASSERT(rdma_req.req.iovcnt == 16);
373 	CU_ASSERT(rdma_req.data.wr.num_sge == 16);
374 	for (i = 0; i < 15; i++) {
375 		CU_ASSERT(rdma_req.data.sgl[i].length == rtransport.transport.opts.io_unit_size);
376 	}
377 	CU_ASSERT(rdma_req.data.sgl[15].length == rtransport.transport.opts.io_unit_size / 2);
378 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
379 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
380 	CU_ASSERT(rdma_req.data.wr.next == &data.wr);
381 	CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
382 	CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size * 15 +
383 		  rtransport.transport.opts.io_unit_size / 2);
384 	CU_ASSERT(data.sgl[0].length == rtransport.transport.opts.io_unit_size / 2);
385 	CU_ASSERT(data.wr.num_sge == 1);
386 	CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
387 
388 	/* part 4: 2 SGL descriptors, each length is transport buffer / 2
389 	 * 1 transport buffers should be allocated */
390 	reset_nvmf_rdma_request(&rdma_req);
391 	sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
392 	sgl_length = rtransport.transport.opts.io_unit_size / 2;
393 	for (i = 0; i < 2; i++) {
394 		sgl_desc[i].keyed.length = sgl_length;
395 		sgl_desc[i].address = 0x4000 + i * sgl_length;
396 	}
397 
398 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
399 
400 	CU_ASSERT(rc == 0);
401 	CU_ASSERT(rdma_req.req.data_from_pool == true);
402 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size);
403 	CU_ASSERT(rdma_req.req.iovcnt == 1);
404 
405 	CU_ASSERT(rdma_req.data.sgl[0].length == sgl_length);
406 	/* We mocked mempool_get to return address of data variable. Mempool is used
407 	 * to get both additional WRs and data buffers, so data points to &data */
408 	CU_ASSERT(rdma_req.data.sgl[0].addr == (uint64_t)&data);
409 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
410 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
411 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
412 	CU_ASSERT(rdma_req.data.wr.next == &data.wr);
413 
414 	CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
415 	CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + sgl_length);
416 	CU_ASSERT(data.sgl[0].length == sgl_length);
417 	CU_ASSERT(data.sgl[0].addr == (uint64_t)&data + sgl_length);
418 	CU_ASSERT(data.wr.num_sge == 1);
419 
420 	MOCK_CLEAR(spdk_mempool_get);
421 	MOCK_CLEAR(spdk_iobuf_get);
422 
423 	reset_nvmf_rdma_request(&rdma_req);
424 }
425 
426 static struct spdk_nvmf_rdma_recv *
427 create_recv(struct spdk_nvmf_rdma_qpair *rqpair, enum spdk_nvme_nvm_opcode opc)
428 {
429 	struct spdk_nvmf_rdma_recv *rdma_recv;
430 	union nvmf_h2c_msg *cmd;
431 	struct spdk_nvme_sgl_descriptor *sgl;
432 
433 	rdma_recv = calloc(1, sizeof(*rdma_recv));
434 	rdma_recv->qpair = rqpair;
435 	cmd = calloc(1, sizeof(*cmd));
436 	rdma_recv->sgl[0].addr = (uintptr_t)cmd;
437 	cmd->nvme_cmd.opc = opc;
438 	sgl = &cmd->nvme_cmd.dptr.sgl1;
439 	sgl->keyed.key = 0xEEEE;
440 	sgl->address = 0xFFFF;
441 	sgl->keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
442 	sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
443 	sgl->keyed.length = 1;
444 
445 	return rdma_recv;
446 }
447 
448 static void
449 free_recv(struct spdk_nvmf_rdma_recv *rdma_recv)
450 {
451 	free((void *)rdma_recv->sgl[0].addr);
452 	free(rdma_recv);
453 }
454 
455 static struct spdk_nvmf_rdma_request *
456 create_req(struct spdk_nvmf_rdma_qpair *rqpair,
457 	   struct spdk_nvmf_rdma_recv *rdma_recv)
458 {
459 	struct spdk_nvmf_rdma_request *rdma_req;
460 	union nvmf_c2h_msg *cpl;
461 
462 	rdma_req = calloc(1, sizeof(*rdma_req));
463 	rdma_req->recv = rdma_recv;
464 	rdma_req->req.qpair = &rqpair->qpair;
465 	rdma_req->state = RDMA_REQUEST_STATE_NEW;
466 	rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
467 	rdma_req->data.wr.sg_list = rdma_req->data.sgl;
468 	cpl = calloc(1, sizeof(*cpl));
469 	rdma_req->rsp.sgl[0].addr = (uintptr_t)cpl;
470 	rdma_req->req.rsp = cpl;
471 
472 	return rdma_req;
473 }
474 
475 static void
476 free_req(struct spdk_nvmf_rdma_request *rdma_req)
477 {
478 	free((void *)rdma_req->rsp.sgl[0].addr);
479 	free(rdma_req);
480 }
481 
482 static void
483 qpair_reset(struct spdk_nvmf_rdma_qpair *rqpair,
484 	    struct spdk_nvmf_rdma_poller *poller,
485 	    struct spdk_nvmf_rdma_device *device,
486 	    struct spdk_nvmf_rdma_resources *resources,
487 	    struct spdk_nvmf_transport *transport)
488 {
489 	memset(rqpair, 0, sizeof(*rqpair));
490 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
491 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
492 	rqpair->poller = poller;
493 	rqpair->device = device;
494 	rqpair->resources = resources;
495 	rqpair->qpair.qid = 1;
496 	rqpair->ibv_state = IBV_QPS_RTS;
497 	rqpair->qpair.state = SPDK_NVMF_QPAIR_ACTIVE;
498 	rqpair->max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
499 	rqpair->max_send_depth = 16;
500 	rqpair->max_read_depth = 16;
501 	rqpair->qpair.transport = transport;
502 }
503 
504 static void
505 poller_reset(struct spdk_nvmf_rdma_poller *poller,
506 	     struct spdk_nvmf_rdma_poll_group *group)
507 {
508 	memset(poller, 0, sizeof(*poller));
509 	STAILQ_INIT(&poller->qpairs_pending_recv);
510 	STAILQ_INIT(&poller->qpairs_pending_send);
511 	poller->group = group;
512 }
513 
514 static void
515 test_spdk_nvmf_rdma_request_process(void)
516 {
517 	struct spdk_nvmf_rdma_transport rtransport = {};
518 	struct spdk_nvmf_rdma_poll_group group = {};
519 	struct spdk_nvmf_rdma_poller poller = {};
520 	struct spdk_nvmf_rdma_device device = {};
521 	struct spdk_nvmf_rdma_resources resources = {};
522 	struct spdk_nvmf_rdma_qpair rqpair = {};
523 	struct spdk_nvmf_rdma_recv *rdma_recv;
524 	struct spdk_nvmf_rdma_request *rdma_req;
525 	bool progress;
526 
527 	STAILQ_INIT(&group.group.pending_buf_queue);
528 	poller_reset(&poller, &group);
529 	qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
530 
531 	rtransport.transport.opts = g_rdma_ut_transport_opts;
532 	rtransport.data_wr_pool = spdk_mempool_create("test_wr_pool", 128,
533 				  sizeof(struct spdk_nvmf_rdma_request_data),
534 				  0, 0);
535 	MOCK_CLEAR(spdk_iobuf_get);
536 
537 	device.attr.device_cap_flags = 0;
538 	device.map = (void *)0x0;
539 
540 	/* Test 1: single SGL READ request */
541 	rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_READ);
542 	rdma_req = create_req(&rqpair, rdma_recv);
543 	rqpair.current_recv_depth = 1;
544 	/* NEW -> EXECUTING */
545 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
546 	CU_ASSERT(progress == true);
547 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING);
548 	CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST);
549 	/* EXECUTED -> TRANSFERRING_C2H */
550 	rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
551 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
552 	CU_ASSERT(progress == true);
553 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
554 	CU_ASSERT(rdma_req->recv == NULL);
555 	/* COMPLETED -> FREE */
556 	rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
557 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
558 	CU_ASSERT(progress == true);
559 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE);
560 
561 	free_recv(rdma_recv);
562 	free_req(rdma_req);
563 	poller_reset(&poller, &group);
564 	qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
565 
566 	/* Test 2: single SGL WRITE request */
567 	rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
568 	rdma_req = create_req(&rqpair, rdma_recv);
569 	rqpair.current_recv_depth = 1;
570 	/* NEW -> TRANSFERRING_H2C */
571 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
572 	CU_ASSERT(progress == true);
573 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
574 	CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
575 	STAILQ_INIT(&poller.qpairs_pending_send);
576 	/* READY_TO_EXECUTE -> EXECUTING */
577 	rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
578 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
579 	CU_ASSERT(progress == true);
580 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING);
581 	/* EXECUTED -> COMPLETING */
582 	rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
583 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
584 	CU_ASSERT(progress == true);
585 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_COMPLETING);
586 	CU_ASSERT(rdma_req->recv == NULL);
587 	/* COMPLETED -> FREE */
588 	rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
589 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
590 	CU_ASSERT(progress == true);
591 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE);
592 
593 	free_recv(rdma_recv);
594 	free_req(rdma_req);
595 	poller_reset(&poller, &group);
596 	qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
597 
598 	/* Test 3: WRITE+WRITE ibv_send batching */
599 	{
600 		struct spdk_nvmf_rdma_recv *recv1, *recv2;
601 		struct spdk_nvmf_rdma_request *req1, *req2;
602 		recv1 = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
603 		req1 = create_req(&rqpair, recv1);
604 		recv2 = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
605 		req2 = create_req(&rqpair, recv2);
606 
607 		/* WRITE 1: NEW -> TRANSFERRING_H2C */
608 		rqpair.current_recv_depth = 1;
609 		nvmf_rdma_request_process(&rtransport, req1);
610 		CU_ASSERT(req1->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
611 
612 		/* WRITE 2: NEW -> TRANSFERRING_H2C */
613 		rqpair.current_recv_depth = 2;
614 		nvmf_rdma_request_process(&rtransport, req2);
615 		CU_ASSERT(req2->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
616 
617 		STAILQ_INIT(&poller.qpairs_pending_send);
618 
619 		/* WRITE 1 completes before WRITE 2 has finished RDMA reading */
620 		/* WRITE 1: READY_TO_EXECUTE -> EXECUTING */
621 		req1->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
622 		nvmf_rdma_request_process(&rtransport, req1);
623 		CU_ASSERT(req1->state == RDMA_REQUEST_STATE_EXECUTING);
624 		/* WRITE 1: EXECUTED -> COMPLETING */
625 		req1->state = RDMA_REQUEST_STATE_EXECUTED;
626 		nvmf_rdma_request_process(&rtransport, req1);
627 		CU_ASSERT(req1->state == RDMA_REQUEST_STATE_COMPLETING);
628 		STAILQ_INIT(&poller.qpairs_pending_send);
629 		/* WRITE 1: COMPLETED -> FREE */
630 		req1->state = RDMA_REQUEST_STATE_COMPLETED;
631 		nvmf_rdma_request_process(&rtransport, req1);
632 		CU_ASSERT(req1->state == RDMA_REQUEST_STATE_FREE);
633 
634 		/* Now WRITE 2 has finished reading and completes */
635 		/* WRITE 2: COMPLETED -> FREE */
636 		/* WRITE 2: READY_TO_EXECUTE -> EXECUTING */
637 		req2->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
638 		nvmf_rdma_request_process(&rtransport, req2);
639 		CU_ASSERT(req2->state == RDMA_REQUEST_STATE_EXECUTING);
640 		/* WRITE 1: EXECUTED -> COMPLETING */
641 		req2->state = RDMA_REQUEST_STATE_EXECUTED;
642 		nvmf_rdma_request_process(&rtransport, req2);
643 		CU_ASSERT(req2->state == RDMA_REQUEST_STATE_COMPLETING);
644 		STAILQ_INIT(&poller.qpairs_pending_send);
645 		/* WRITE 1: COMPLETED -> FREE */
646 		req2->state = RDMA_REQUEST_STATE_COMPLETED;
647 		nvmf_rdma_request_process(&rtransport, req2);
648 		CU_ASSERT(req2->state == RDMA_REQUEST_STATE_FREE);
649 
650 		free_recv(recv1);
651 		free_req(req1);
652 		free_recv(recv2);
653 		free_req(req2);
654 		poller_reset(&poller, &group);
655 		qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
656 	}
657 
658 	/* Test 4, invalid command, check xfer type */
659 	{
660 		struct spdk_nvmf_rdma_recv *rdma_recv_inv;
661 		struct spdk_nvmf_rdma_request *rdma_req_inv;
662 		/* construct an opcode that specifies BIDIRECTIONAL transfer */
663 		uint8_t opc = 0x10 | SPDK_NVME_DATA_BIDIRECTIONAL;
664 
665 		rdma_recv_inv = create_recv(&rqpair, opc);
666 		rdma_req_inv = create_req(&rqpair, rdma_recv_inv);
667 
668 		/* NEW -> RDMA_REQUEST_STATE_COMPLETING */
669 		rqpair.current_recv_depth = 1;
670 		progress = nvmf_rdma_request_process(&rtransport, rdma_req_inv);
671 		CU_ASSERT(progress == true);
672 		CU_ASSERT(rdma_req_inv->state == RDMA_REQUEST_STATE_COMPLETING);
673 		CU_ASSERT(rdma_req_inv->req.rsp->nvme_cpl.status.sct == SPDK_NVME_SCT_GENERIC);
674 		CU_ASSERT(rdma_req_inv->req.rsp->nvme_cpl.status.sc == SPDK_NVME_SC_INVALID_OPCODE);
675 
676 		/* RDMA_REQUEST_STATE_COMPLETED -> FREE */
677 		rdma_req_inv->state = RDMA_REQUEST_STATE_COMPLETED;
678 		nvmf_rdma_request_process(&rtransport, rdma_req_inv);
679 		CU_ASSERT(rdma_req_inv->state == RDMA_REQUEST_STATE_FREE);
680 
681 		free_recv(rdma_recv_inv);
682 		free_req(rdma_req_inv);
683 		poller_reset(&poller, &group);
684 		qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
685 	}
686 
687 	spdk_mempool_free(rtransport.data_wr_pool);
688 }
689 
690 #define TEST_GROUPS_COUNT 5
691 static void
692 test_nvmf_rdma_get_optimal_poll_group(void)
693 {
694 	struct spdk_nvmf_rdma_transport rtransport = {};
695 	struct spdk_nvmf_transport *transport = &rtransport.transport;
696 	struct spdk_nvmf_rdma_qpair rqpair = {};
697 	struct spdk_nvmf_transport_poll_group *groups[TEST_GROUPS_COUNT];
698 	struct spdk_nvmf_rdma_poll_group *rgroups[TEST_GROUPS_COUNT];
699 	struct spdk_nvmf_transport_poll_group *result;
700 	struct spdk_nvmf_poll_group group = {};
701 	uint32_t i;
702 
703 	rqpair.qpair.transport = transport;
704 	TAILQ_INIT(&rtransport.poll_groups);
705 
706 	for (i = 0; i < TEST_GROUPS_COUNT; i++) {
707 		groups[i] = nvmf_rdma_poll_group_create(transport, NULL);
708 		CU_ASSERT(groups[i] != NULL);
709 		groups[i]->group = &group;
710 		rgroups[i] = SPDK_CONTAINEROF(groups[i], struct spdk_nvmf_rdma_poll_group, group);
711 		groups[i]->transport = transport;
712 	}
713 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[0]);
714 	CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[0]);
715 
716 	/* Emulate connection of %TEST_GROUPS_COUNT% initiators - each creates 1 admin and 1 io qp */
717 	for (i = 0; i < TEST_GROUPS_COUNT; i++) {
718 		rqpair.qpair.qid = 0;
719 		result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
720 		CU_ASSERT(result == groups[i]);
721 		CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
722 		CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[i]);
723 
724 		rqpair.qpair.qid = 1;
725 		result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
726 		CU_ASSERT(result == groups[i]);
727 		CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
728 		CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
729 	}
730 	/* wrap around, admin/io pg point to the first pg
731 	   Destroy all poll groups except of the last one */
732 	for (i = 0; i < TEST_GROUPS_COUNT - 1; i++) {
733 		nvmf_rdma_poll_group_destroy(groups[i]);
734 		CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[i + 1]);
735 		CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[i + 1]);
736 	}
737 
738 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
739 	CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
740 
741 	/* Check that pointers to the next admin/io poll groups are not changed */
742 	rqpair.qpair.qid = 0;
743 	result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
744 	CU_ASSERT(result == groups[TEST_GROUPS_COUNT - 1]);
745 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
746 	CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
747 
748 	rqpair.qpair.qid = 1;
749 	result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
750 	CU_ASSERT(result == groups[TEST_GROUPS_COUNT - 1]);
751 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
752 	CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
753 
754 	/* Remove the last poll group, check that pointers are NULL */
755 	nvmf_rdma_poll_group_destroy(groups[TEST_GROUPS_COUNT - 1]);
756 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == NULL);
757 	CU_ASSERT(rtransport.conn_sched.next_io_pg == NULL);
758 
759 	/* Request optimal poll group, result must be NULL */
760 	rqpair.qpair.qid = 0;
761 	result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
762 	CU_ASSERT(result == NULL);
763 
764 	rqpair.qpair.qid = 1;
765 	result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
766 	CU_ASSERT(result == NULL);
767 }
768 #undef TEST_GROUPS_COUNT
769 
770 static void
771 test_spdk_nvmf_rdma_request_parse_sgl_with_md(void)
772 {
773 	struct spdk_nvmf_rdma_transport rtransport;
774 	struct spdk_nvmf_rdma_device device;
775 	struct spdk_nvmf_rdma_request rdma_req = {};
776 	struct spdk_nvmf_rdma_recv recv;
777 	struct spdk_nvmf_rdma_poll_group group;
778 	struct spdk_nvmf_rdma_qpair rqpair;
779 	struct spdk_nvmf_rdma_poller poller;
780 	union nvmf_c2h_msg cpl;
781 	union nvmf_h2c_msg cmd;
782 	struct spdk_nvme_sgl_descriptor *sgl;
783 	struct spdk_nvme_sgl_descriptor sgl_desc[SPDK_NVMF_MAX_SGL_ENTRIES] = {{0}};
784 	char data_buffer[8192];
785 	struct spdk_nvmf_rdma_request_data *data = (struct spdk_nvmf_rdma_request_data *)data_buffer;
786 	char data2_buffer[8192];
787 	struct spdk_nvmf_rdma_request_data *data2 = (struct spdk_nvmf_rdma_request_data *)data2_buffer;
788 	const uint32_t data_bs = 512;
789 	const uint32_t md_size = 8;
790 	int rc, i;
791 	struct spdk_dif_ctx_init_ext_opts dif_opts;
792 
793 	MOCK_CLEAR(spdk_mempool_get);
794 	MOCK_CLEAR(spdk_iobuf_get);
795 
796 	data->wr.sg_list = data->sgl;
797 	group.group.transport = &rtransport.transport;
798 	poller.group = &group;
799 	rqpair.poller = &poller;
800 	rqpair.max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
801 
802 	sgl = &cmd.nvme_cmd.dptr.sgl1;
803 	rdma_req.recv = &recv;
804 	rdma_req.req.cmd = &cmd;
805 	rdma_req.req.rsp = &cpl;
806 	rdma_req.data.wr.sg_list = rdma_req.data.sgl;
807 	rdma_req.req.qpair = &rqpair.qpair;
808 	rdma_req.req.xfer = SPDK_NVME_DATA_CONTROLLER_TO_HOST;
809 
810 	rtransport.transport.opts = g_rdma_ut_transport_opts;
811 	rtransport.data_wr_pool = NULL;
812 
813 	device.attr.device_cap_flags = 0;
814 	device.map = NULL;
815 	sgl->keyed.key = 0xEEEE;
816 	sgl->address = 0xFFFF;
817 	rdma_req.recv->buf = (void *)0xDDDD;
818 
819 	/* Test 1: sgl type: keyed data block subtype: address */
820 	sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
821 	sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
822 
823 	/* Part 1: simple I/O, one SGL smaller than the transport io unit size, block size 512 */
824 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
825 	reset_nvmf_rdma_request(&rdma_req);
826 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
827 	dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16;
828 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
829 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
830 			  0, 0, 0, 0, 0, &dif_opts);
831 	rdma_req.req.dif_enabled = true;
832 	rtransport.transport.opts.io_unit_size = data_bs * 8;
833 	rdma_req.req.qpair->transport = &rtransport.transport;
834 	sgl->keyed.length = data_bs * 4;
835 
836 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
837 
838 	CU_ASSERT(rc == 0);
839 	CU_ASSERT(rdma_req.req.data_from_pool == true);
840 	CU_ASSERT(rdma_req.req.length == data_bs * 4);
841 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
842 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
843 	CU_ASSERT(rdma_req.req.iovcnt == 1);
844 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
845 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
846 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
847 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
848 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
849 
850 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
851 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rdma_req.req.length);
852 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
853 
854 	/* Part 2: simple I/O, one SGL equal to io unit size, io_unit_size is not aligned with md_size,
855 		block size 512 */
856 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
857 	reset_nvmf_rdma_request(&rdma_req);
858 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
859 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
860 			  0, 0, 0, 0, 0, &dif_opts);
861 	rdma_req.req.dif_enabled = true;
862 	rtransport.transport.opts.io_unit_size = data_bs * 4;
863 	sgl->keyed.length = data_bs * 4;
864 
865 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
866 
867 	CU_ASSERT(rc == 0);
868 	CU_ASSERT(rdma_req.req.data_from_pool == true);
869 	CU_ASSERT(rdma_req.req.length == data_bs * 4);
870 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
871 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
872 	CU_ASSERT(rdma_req.req.iovcnt == 2);
873 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
874 	CU_ASSERT(rdma_req.data.wr.num_sge == 5);
875 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
876 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
877 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
878 
879 	for (i = 0; i < 3; ++i) {
880 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
881 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
882 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
883 	}
884 	CU_ASSERT(rdma_req.data.wr.sg_list[3].addr == 0x2000 + 3 * (data_bs + md_size));
885 	CU_ASSERT(rdma_req.data.wr.sg_list[3].length == 488);
886 	CU_ASSERT(rdma_req.data.wr.sg_list[3].lkey == RDMA_UT_LKEY);
887 
888 	/* 2nd buffer consumed */
889 	CU_ASSERT(rdma_req.data.wr.sg_list[4].addr == 0x2000);
890 	CU_ASSERT(rdma_req.data.wr.sg_list[4].length == 24);
891 	CU_ASSERT(rdma_req.data.wr.sg_list[4].lkey == RDMA_UT_LKEY);
892 
893 	/* Part 3: simple I/O, one SGL equal io unit size, io_unit_size is equal to block size 512 bytes */
894 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
895 	reset_nvmf_rdma_request(&rdma_req);
896 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
897 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
898 			  0, 0, 0, 0, 0, &dif_opts);
899 	rdma_req.req.dif_enabled = true;
900 	rtransport.transport.opts.io_unit_size = data_bs;
901 	sgl->keyed.length = data_bs;
902 
903 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
904 
905 	CU_ASSERT(rc == 0);
906 	CU_ASSERT(rdma_req.req.data_from_pool == true);
907 	CU_ASSERT(rdma_req.req.length == data_bs);
908 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
909 	CU_ASSERT(rdma_req.req.dif.elba_length == data_bs + md_size);
910 	CU_ASSERT(rdma_req.req.iovcnt == 2);
911 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
912 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
913 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
914 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
915 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
916 
917 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
918 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == data_bs);
919 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
920 
921 	CU_ASSERT(rdma_req.req.iovcnt == 2);
922 	CU_ASSERT(rdma_req.req.iov[0].iov_base == (void *)((unsigned long)0x2000));
923 	CU_ASSERT(rdma_req.req.iov[0].iov_len == data_bs);
924 	/* 2nd buffer consumed for metadata */
925 	CU_ASSERT(rdma_req.req.iov[1].iov_base == (void *)((unsigned long)0x2000));
926 	CU_ASSERT(rdma_req.req.iov[1].iov_len == md_size);
927 
928 	/* Part 4: simple I/O, one SGL equal io unit size, io_unit_size is aligned with md_size,
929 	   block size 512 */
930 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
931 	reset_nvmf_rdma_request(&rdma_req);
932 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
933 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
934 			  0, 0, 0, 0, 0, &dif_opts);
935 	rdma_req.req.dif_enabled = true;
936 	rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 4;
937 	sgl->keyed.length = data_bs * 4;
938 
939 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
940 
941 	CU_ASSERT(rc == 0);
942 	CU_ASSERT(rdma_req.req.data_from_pool == true);
943 	CU_ASSERT(rdma_req.req.length == data_bs * 4);
944 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
945 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
946 	CU_ASSERT(rdma_req.req.iovcnt == 1);
947 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
948 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
949 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
950 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
951 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
952 
953 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
954 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rdma_req.req.length);
955 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
956 
957 	/* Part 5: simple I/O, one SGL equal to 2x io unit size, io_unit_size is aligned with md_size,
958 	   block size 512 */
959 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
960 	reset_nvmf_rdma_request(&rdma_req);
961 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
962 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
963 			  0, 0, 0, 0, 0, &dif_opts);
964 	rdma_req.req.dif_enabled = true;
965 	rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 2;
966 	sgl->keyed.length = data_bs * 4;
967 
968 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
969 
970 	CU_ASSERT(rc == 0);
971 	CU_ASSERT(rdma_req.req.data_from_pool == true);
972 	CU_ASSERT(rdma_req.req.length == data_bs * 4);
973 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
974 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
975 	CU_ASSERT(rdma_req.req.iovcnt == 2);
976 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
977 	CU_ASSERT(rdma_req.data.wr.num_sge == 2);
978 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
979 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
980 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
981 
982 	for (i = 0; i < 2; ++i) {
983 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
984 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs * 2);
985 	}
986 
987 	/* Part 6: simple I/O, one SGL larger than the transport io unit size, io_unit_size is not aligned to md_size,
988 	   block size 512 */
989 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
990 	reset_nvmf_rdma_request(&rdma_req);
991 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
992 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
993 			  0, 0, 0, 0, 0, &dif_opts);
994 	rdma_req.req.dif_enabled = true;
995 	rtransport.transport.opts.io_unit_size = data_bs * 4;
996 	sgl->keyed.length = data_bs * 6;
997 
998 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
999 
1000 	CU_ASSERT(rc == 0);
1001 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1002 	CU_ASSERT(rdma_req.req.length == data_bs * 6);
1003 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1004 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 6);
1005 	CU_ASSERT(rdma_req.req.iovcnt == 2);
1006 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
1007 	CU_ASSERT(rdma_req.data.wr.num_sge == 7);
1008 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1009 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1010 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
1011 
1012 	for (i = 0; i < 3; ++i) {
1013 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
1014 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
1015 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
1016 	}
1017 	CU_ASSERT(rdma_req.data.wr.sg_list[3].addr == 0x2000 + 3 * (data_bs + md_size));
1018 	CU_ASSERT(rdma_req.data.wr.sg_list[3].length == 488);
1019 	CU_ASSERT(rdma_req.data.wr.sg_list[3].lkey == RDMA_UT_LKEY);
1020 
1021 	/* 2nd IO buffer consumed */
1022 	CU_ASSERT(rdma_req.data.wr.sg_list[4].addr == 0x2000);
1023 	CU_ASSERT(rdma_req.data.wr.sg_list[4].length == 24);
1024 	CU_ASSERT(rdma_req.data.wr.sg_list[4].lkey == RDMA_UT_LKEY);
1025 
1026 	CU_ASSERT(rdma_req.data.wr.sg_list[5].addr == 0x2000 + 24 + md_size);
1027 	CU_ASSERT(rdma_req.data.wr.sg_list[5].length == 512);
1028 	CU_ASSERT(rdma_req.data.wr.sg_list[5].lkey == RDMA_UT_LKEY);
1029 
1030 	CU_ASSERT(rdma_req.data.wr.sg_list[6].addr == 0x2000 + 24 + 512 + md_size * 2);
1031 	CU_ASSERT(rdma_req.data.wr.sg_list[6].length == 512);
1032 	CU_ASSERT(rdma_req.data.wr.sg_list[6].lkey == RDMA_UT_LKEY);
1033 
1034 	/* Part 7: simple I/O, number of SGL entries exceeds the number of entries
1035 	   one WR can hold. Additional WR is chained */
1036 	MOCK_SET(spdk_iobuf_get, data2_buffer);
1037 	MOCK_SET(spdk_mempool_get, data2_buffer);
1038 	reset_nvmf_rdma_request(&rdma_req);
1039 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1040 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
1041 			  0, 0, 0, 0, 0, &dif_opts);
1042 	rdma_req.req.dif_enabled = true;
1043 	rtransport.transport.opts.io_unit_size = data_bs * 16;
1044 	sgl->keyed.length = data_bs * 16;
1045 
1046 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1047 
1048 	CU_ASSERT(rc == 0);
1049 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1050 	CU_ASSERT(rdma_req.req.length == data_bs * 16);
1051 	CU_ASSERT(rdma_req.req.iovcnt == 2);
1052 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1053 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 16);
1054 	CU_ASSERT(rdma_req.req.iov[0].iov_base == data2_buffer);
1055 	CU_ASSERT(rdma_req.data.wr.num_sge == 16);
1056 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1057 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1058 
1059 	for (i = 0; i < 15; ++i) {
1060 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (uintptr_t)data2_buffer + i * (data_bs + md_size));
1061 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
1062 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
1063 	}
1064 
1065 	/* 8192 - (512 + 8) * 15 = 392 */
1066 	CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (uintptr_t)data2_buffer + i * (data_bs + md_size));
1067 	CU_ASSERT(rdma_req.data.wr.sg_list[i].length == 392);
1068 	CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
1069 
1070 	/* additional wr from pool */
1071 	CU_ASSERT(rdma_req.data.wr.next == (void *)&data2->wr);
1072 	CU_ASSERT(rdma_req.data.wr.next->num_sge == 1);
1073 	CU_ASSERT(rdma_req.data.wr.next->next == &rdma_req.rsp.wr);
1074 	/* 2nd IO buffer */
1075 	CU_ASSERT(data2->wr.sg_list[0].addr == (uintptr_t)data2_buffer);
1076 	CU_ASSERT(data2->wr.sg_list[0].length == 120);
1077 	CU_ASSERT(data2->wr.sg_list[0].lkey == RDMA_UT_LKEY);
1078 
1079 	/* Part 8: simple I/O, data with metadata do not fit to 1 io_buffer */
1080 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
1081 	reset_nvmf_rdma_request(&rdma_req);
1082 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1083 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
1084 			  0, 0, 0, 0, 0, &dif_opts);
1085 	rdma_req.req.dif_enabled = true;
1086 	rtransport.transport.opts.io_unit_size = 516;
1087 	sgl->keyed.length = data_bs * 2;
1088 
1089 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1090 
1091 	CU_ASSERT(rc == 0);
1092 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1093 	CU_ASSERT(rdma_req.req.length == data_bs * 2);
1094 	CU_ASSERT(rdma_req.req.iovcnt == 3);
1095 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1096 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 2);
1097 	CU_ASSERT(rdma_req.req.iov[0].iov_base == (void *)0x2000);
1098 	CU_ASSERT(rdma_req.data.wr.num_sge == 2);
1099 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1100 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1101 
1102 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
1103 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == 512);
1104 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
1105 
1106 	/* 2nd IO buffer consumed, offset 4 bytes due to part of the metadata
1107 	  is located at the beginning of that buffer */
1108 	CU_ASSERT(rdma_req.data.wr.sg_list[1].addr == 0x2000 + 4);
1109 	CU_ASSERT(rdma_req.data.wr.sg_list[1].length == 512);
1110 	CU_ASSERT(rdma_req.data.wr.sg_list[1].lkey == RDMA_UT_LKEY);
1111 
1112 	/* Test 2: Multi SGL */
1113 	sgl->generic.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1114 	sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1115 	sgl->address = 0;
1116 	rdma_req.recv->buf = (void *)&sgl_desc;
1117 	MOCK_SET(spdk_mempool_get, data_buffer);
1118 	MOCK_SET(spdk_iobuf_get, data_buffer);
1119 
1120 	/* part 1: 2 segments each with 1 wr. io_unit_size is aligned with data_bs + md_size */
1121 	reset_nvmf_rdma_request(&rdma_req);
1122 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1123 			  SPDK_DIF_TYPE1,
1124 			  SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
1125 			  0, 0, 0, 0, 0, &dif_opts);
1126 	rdma_req.req.dif_enabled = true;
1127 	rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 4;
1128 	sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
1129 
1130 	for (i = 0; i < 2; i++) {
1131 		sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1132 		sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1133 		sgl_desc[i].keyed.length = data_bs * 4;
1134 		sgl_desc[i].address = 0x4000 + i * data_bs * 4;
1135 		sgl_desc[i].keyed.key = 0x44;
1136 	}
1137 
1138 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1139 
1140 	CU_ASSERT(rc == 0);
1141 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1142 	CU_ASSERT(rdma_req.req.length == data_bs * 4 * 2);
1143 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1144 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4 * 2);
1145 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
1146 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == (uintptr_t)(data_buffer));
1147 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == data_bs * 4);
1148 
1149 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
1150 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
1151 	CU_ASSERT(rdma_req.data.wr.next == &data->wr);
1152 	CU_ASSERT(data->wr.wr.rdma.rkey == 0x44);
1153 	CU_ASSERT(data->wr.wr.rdma.remote_addr == 0x4000 + data_bs * 4);
1154 	CU_ASSERT(data->wr.num_sge == 1);
1155 	CU_ASSERT(data->wr.sg_list[0].addr == (uintptr_t)(data_buffer));
1156 	CU_ASSERT(data->wr.sg_list[0].length == data_bs * 4);
1157 
1158 	CU_ASSERT(data->wr.next == &rdma_req.rsp.wr);
1159 	reset_nvmf_rdma_request(&rdma_req);
1160 }
1161 
1162 static void
1163 test_nvmf_rdma_opts_init(void)
1164 {
1165 	struct spdk_nvmf_transport_opts	opts = {};
1166 
1167 	nvmf_rdma_opts_init(&opts);
1168 	CU_ASSERT(opts.max_queue_depth == SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH);
1169 	CU_ASSERT(opts.max_qpairs_per_ctrlr ==	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR);
1170 	CU_ASSERT(opts.in_capsule_data_size ==	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE);
1171 	CU_ASSERT(opts.max_io_size == SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE);
1172 	CU_ASSERT(opts.io_unit_size == SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
1173 	CU_ASSERT(opts.max_aq_depth == SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH);
1174 	CU_ASSERT(opts.num_shared_buffers == SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS);
1175 	CU_ASSERT(opts.buf_cache_size == SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE);
1176 	CU_ASSERT(opts.dif_insert_or_strip == SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP);
1177 	CU_ASSERT(opts.abort_timeout_sec == SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC);
1178 	CU_ASSERT(opts.transport_specific == NULL);
1179 }
1180 
1181 static void
1182 test_nvmf_rdma_request_free_data(void)
1183 {
1184 	struct spdk_nvmf_rdma_request rdma_req = {};
1185 	struct spdk_nvmf_rdma_transport rtransport = {};
1186 	struct spdk_nvmf_rdma_request_data *next_request_data = NULL;
1187 
1188 	MOCK_CLEAR(spdk_mempool_get);
1189 	rtransport.data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
1190 				  SPDK_NVMF_MAX_SGL_ENTRIES,
1191 				  sizeof(struct spdk_nvmf_rdma_request_data),
1192 				  SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
1193 				  SPDK_ENV_SOCKET_ID_ANY);
1194 	next_request_data = spdk_mempool_get(rtransport.data_wr_pool);
1195 	SPDK_CU_ASSERT_FATAL(((struct test_mempool *)rtransport.data_wr_pool)->count ==
1196 			     SPDK_NVMF_MAX_SGL_ENTRIES - 1);
1197 	next_request_data->wr.wr_id = 1;
1198 	next_request_data->wr.num_sge = 2;
1199 	next_request_data->wr.next = NULL;
1200 	rdma_req.data.wr.next = &next_request_data->wr;
1201 	rdma_req.data.wr.wr_id = 1;
1202 	rdma_req.data.wr.num_sge = 2;
1203 
1204 	nvmf_rdma_request_free_data(&rdma_req, &rtransport);
1205 	/* Check if next_request_data put into memory pool */
1206 	CU_ASSERT(((struct test_mempool *)rtransport.data_wr_pool)->count == SPDK_NVMF_MAX_SGL_ENTRIES);
1207 	CU_ASSERT(rdma_req.data.wr.num_sge == 0);
1208 
1209 	spdk_mempool_free(rtransport.data_wr_pool);
1210 }
1211 
1212 static void
1213 test_nvmf_rdma_update_ibv_state(void)
1214 {
1215 	struct spdk_nvmf_rdma_qpair rqpair = {};
1216 	struct spdk_rdma_qp rdma_qp = {};
1217 	struct ibv_qp qp = {};
1218 	int rc = 0;
1219 
1220 	rqpair.rdma_qp = &rdma_qp;
1221 
1222 	/* Case 1: Failed to get updated RDMA queue pair state */
1223 	rqpair.ibv_state = IBV_QPS_INIT;
1224 	rqpair.rdma_qp->qp = NULL;
1225 
1226 	rc = nvmf_rdma_update_ibv_state(&rqpair);
1227 	CU_ASSERT(rc == IBV_QPS_ERR + 1);
1228 
1229 	/* Case 2: Bad state updated */
1230 	rqpair.rdma_qp->qp = &qp;
1231 	qp.state = IBV_QPS_ERR;
1232 	rc = nvmf_rdma_update_ibv_state(&rqpair);
1233 	CU_ASSERT(rqpair.ibv_state == 10);
1234 	CU_ASSERT(rc == IBV_QPS_ERR + 1);
1235 
1236 	/* Case 3: Pass */
1237 	qp.state = IBV_QPS_INIT;
1238 	rc = nvmf_rdma_update_ibv_state(&rqpair);
1239 	CU_ASSERT(rqpair.ibv_state == IBV_QPS_INIT);
1240 	CU_ASSERT(rc == IBV_QPS_INIT);
1241 }
1242 
1243 static void
1244 test_nvmf_rdma_resources_create(void)
1245 {
1246 	static struct spdk_nvmf_rdma_resources *rdma_resource;
1247 	struct spdk_nvmf_rdma_resource_opts opts = {};
1248 	struct spdk_nvmf_rdma_qpair qpair = {};
1249 	struct spdk_nvmf_rdma_recv *recv = NULL;
1250 	struct spdk_nvmf_rdma_request *req = NULL;
1251 	const int DEPTH = 128;
1252 
1253 	opts.max_queue_depth = DEPTH;
1254 	opts.in_capsule_data_size = 4096;
1255 	opts.shared = true;
1256 	opts.qpair = &qpair;
1257 
1258 	rdma_resource = nvmf_rdma_resources_create(&opts);
1259 	CU_ASSERT(rdma_resource != NULL);
1260 	/* Just check first and last entry */
1261 	recv = &rdma_resource->recvs[0];
1262 	req = &rdma_resource->reqs[0];
1263 	CU_ASSERT(recv->rdma_wr.type == RDMA_WR_TYPE_RECV);
1264 	CU_ASSERT((uintptr_t)recv->buf == (uintptr_t)(rdma_resource->bufs));
1265 	CU_ASSERT(recv->sgl[0].addr == (uintptr_t)&rdma_resource->cmds[0]);
1266 	CU_ASSERT(recv->sgl[0].length == sizeof(rdma_resource->cmds[0]));
1267 	CU_ASSERT(recv->sgl[0].lkey == RDMA_UT_LKEY);
1268 	CU_ASSERT(recv->wr.num_sge == 2);
1269 	CU_ASSERT(recv->wr.wr_id == (uintptr_t)&rdma_resource->recvs[0].rdma_wr);
1270 	CU_ASSERT(recv->wr.sg_list == rdma_resource->recvs[0].sgl);
1271 	CU_ASSERT(req->req.rsp == &rdma_resource->cpls[0]);
1272 	CU_ASSERT(req->rsp.sgl[0].addr == (uintptr_t)&rdma_resource->cpls[0]);
1273 	CU_ASSERT(req->rsp.sgl[0].length == sizeof(rdma_resource->cpls[0]));
1274 	CU_ASSERT(req->rsp.sgl[0].lkey == RDMA_UT_LKEY);
1275 	CU_ASSERT(req->rsp.rdma_wr.type == RDMA_WR_TYPE_SEND);
1276 	CU_ASSERT(req->rsp.wr.wr_id == (uintptr_t)&rdma_resource->reqs[0].rsp.rdma_wr);
1277 	CU_ASSERT(req->rsp.wr.next == NULL);
1278 	CU_ASSERT(req->rsp.wr.opcode == IBV_WR_SEND);
1279 	CU_ASSERT(req->rsp.wr.send_flags == IBV_SEND_SIGNALED);
1280 	CU_ASSERT(req->rsp.wr.sg_list == rdma_resource->reqs[0].rsp.sgl);
1281 	CU_ASSERT(req->rsp.wr.num_sge == NVMF_DEFAULT_RSP_SGE);
1282 	CU_ASSERT(req->data.rdma_wr.type == RDMA_WR_TYPE_DATA);
1283 	CU_ASSERT(req->data.wr.wr_id == (uintptr_t)&rdma_resource->reqs[0].data.rdma_wr);
1284 	CU_ASSERT(req->data.wr.next == NULL);
1285 	CU_ASSERT(req->data.wr.send_flags == IBV_SEND_SIGNALED);
1286 	CU_ASSERT(req->data.wr.sg_list == rdma_resource->reqs[0].data.sgl);
1287 	CU_ASSERT(req->data.wr.num_sge == SPDK_NVMF_MAX_SGL_ENTRIES);
1288 	CU_ASSERT(req->state == RDMA_REQUEST_STATE_FREE);
1289 
1290 	recv = &rdma_resource->recvs[DEPTH - 1];
1291 	req = &rdma_resource->reqs[DEPTH - 1];
1292 	CU_ASSERT(recv->rdma_wr.type == RDMA_WR_TYPE_RECV);
1293 	CU_ASSERT((uintptr_t)recv->buf == (uintptr_t)(rdma_resource->bufs +
1294 			(DEPTH - 1) * 4096));
1295 	CU_ASSERT(recv->sgl[0].addr == (uintptr_t)&rdma_resource->cmds[DEPTH - 1]);
1296 	CU_ASSERT(recv->sgl[0].length == sizeof(rdma_resource->cmds[DEPTH - 1]));
1297 	CU_ASSERT(recv->sgl[0].lkey == RDMA_UT_LKEY);
1298 	CU_ASSERT(recv->wr.num_sge == 2);
1299 	CU_ASSERT(recv->wr.wr_id == (uintptr_t)&rdma_resource->recvs[DEPTH - 1].rdma_wr);
1300 	CU_ASSERT(recv->wr.sg_list == rdma_resource->recvs[DEPTH - 1].sgl);
1301 	CU_ASSERT(req->req.rsp == &rdma_resource->cpls[DEPTH - 1]);
1302 	CU_ASSERT(req->rsp.sgl[0].addr == (uintptr_t)&rdma_resource->cpls[DEPTH - 1]);
1303 	CU_ASSERT(req->rsp.sgl[0].length == sizeof(rdma_resource->cpls[DEPTH - 1]));
1304 	CU_ASSERT(req->rsp.sgl[0].lkey == RDMA_UT_LKEY);
1305 	CU_ASSERT(req->rsp.rdma_wr.type == RDMA_WR_TYPE_SEND);
1306 	CU_ASSERT(req->rsp.wr.wr_id == (uintptr_t)
1307 		  &req->rsp.rdma_wr);
1308 	CU_ASSERT(req->rsp.wr.next == NULL);
1309 	CU_ASSERT(req->rsp.wr.opcode == IBV_WR_SEND);
1310 	CU_ASSERT(req->rsp.wr.send_flags == IBV_SEND_SIGNALED);
1311 	CU_ASSERT(req->rsp.wr.sg_list == rdma_resource->reqs[DEPTH - 1].rsp.sgl);
1312 	CU_ASSERT(req->rsp.wr.num_sge == NVMF_DEFAULT_RSP_SGE);
1313 	CU_ASSERT(req->data.rdma_wr.type == RDMA_WR_TYPE_DATA);
1314 	CU_ASSERT(req->data.wr.wr_id == (uintptr_t)
1315 		  &req->data.rdma_wr);
1316 	CU_ASSERT(req->data.wr.next == NULL);
1317 	CU_ASSERT(req->data.wr.send_flags == IBV_SEND_SIGNALED);
1318 	CU_ASSERT(req->data.wr.sg_list == rdma_resource->reqs[DEPTH - 1].data.sgl);
1319 	CU_ASSERT(req->data.wr.num_sge == SPDK_NVMF_MAX_SGL_ENTRIES);
1320 	CU_ASSERT(req->state == RDMA_REQUEST_STATE_FREE);
1321 
1322 	nvmf_rdma_resources_destroy(rdma_resource);
1323 }
1324 
1325 static void
1326 test_nvmf_rdma_qpair_compare(void)
1327 {
1328 	struct spdk_nvmf_rdma_qpair rqpair1 = {}, rqpair2 = {};
1329 
1330 	rqpair1.qp_num = 0;
1331 	rqpair2.qp_num = UINT32_MAX;
1332 
1333 	CU_ASSERT(nvmf_rdma_qpair_compare(&rqpair1, &rqpair2) < 0);
1334 	CU_ASSERT(nvmf_rdma_qpair_compare(&rqpair2, &rqpair1) > 0);
1335 }
1336 
1337 static void
1338 test_nvmf_rdma_resize_cq(void)
1339 {
1340 	int rc = -1;
1341 	int tnum_wr = 0;
1342 	int tnum_cqe = 0;
1343 	struct spdk_nvmf_rdma_qpair rqpair = {};
1344 	struct spdk_nvmf_rdma_poller rpoller = {};
1345 	struct spdk_nvmf_rdma_device rdevice = {};
1346 	struct ibv_context ircontext = {};
1347 	struct ibv_device idevice = {};
1348 
1349 	rdevice.context = &ircontext;
1350 	rqpair.poller = &rpoller;
1351 	ircontext.device = &idevice;
1352 
1353 	/* Test1: Current capacity support required size. */
1354 	rpoller.required_num_wr = 10;
1355 	rpoller.num_cqe = 20;
1356 	rqpair.max_queue_depth = 2;
1357 	tnum_wr = rpoller.required_num_wr;
1358 	tnum_cqe = rpoller.num_cqe;
1359 
1360 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1361 	CU_ASSERT(rc == 0);
1362 	CU_ASSERT(rpoller.required_num_wr == 10 + MAX_WR_PER_QP(rqpair.max_queue_depth));
1363 	CU_ASSERT(rpoller.required_num_wr > tnum_wr);
1364 	CU_ASSERT(rpoller.num_cqe == tnum_cqe);
1365 
1366 	/* Test2: iWARP doesn't support CQ resize. */
1367 	tnum_wr = rpoller.required_num_wr;
1368 	tnum_cqe = rpoller.num_cqe;
1369 	idevice.transport_type = IBV_TRANSPORT_IWARP;
1370 
1371 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1372 	CU_ASSERT(rc == -1);
1373 	CU_ASSERT(rpoller.required_num_wr == tnum_wr);
1374 	CU_ASSERT(rpoller.num_cqe == tnum_cqe);
1375 
1376 
1377 	/* Test3: RDMA CQE requirement exceeds device max_cqe limitation. */
1378 	tnum_wr = rpoller.required_num_wr;
1379 	tnum_cqe = rpoller.num_cqe;
1380 	idevice.transport_type = IBV_TRANSPORT_UNKNOWN;
1381 	rdevice.attr.max_cqe = 3;
1382 
1383 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1384 	CU_ASSERT(rc == -1);
1385 	CU_ASSERT(rpoller.required_num_wr == tnum_wr);
1386 	CU_ASSERT(rpoller.num_cqe == tnum_cqe);
1387 
1388 	/* Test4: RDMA CQ resize failed. */
1389 	tnum_wr = rpoller.required_num_wr;
1390 	tnum_cqe = rpoller.num_cqe;
1391 	idevice.transport_type = IBV_TRANSPORT_IB;
1392 	rdevice.attr.max_cqe = 30;
1393 	MOCK_SET(ibv_resize_cq, -1);
1394 
1395 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1396 	CU_ASSERT(rc == -1);
1397 	CU_ASSERT(rpoller.required_num_wr == tnum_wr);
1398 	CU_ASSERT(rpoller.num_cqe == tnum_cqe);
1399 
1400 	/* Test5: RDMA CQ resize success. rsize = MIN(MAX(num_cqe * 2, required_num_wr), device->attr.max_cqe). */
1401 	tnum_wr = rpoller.required_num_wr;
1402 	tnum_cqe = rpoller.num_cqe;
1403 	MOCK_SET(ibv_resize_cq, 0);
1404 
1405 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1406 	CU_ASSERT(rc == 0);
1407 	CU_ASSERT(rpoller.num_cqe = 30);
1408 	CU_ASSERT(rpoller.required_num_wr == 18 + MAX_WR_PER_QP(rqpair.max_queue_depth));
1409 	CU_ASSERT(rpoller.required_num_wr > tnum_wr);
1410 	CU_ASSERT(rpoller.num_cqe > tnum_cqe);
1411 }
1412 
1413 int
1414 main(int argc, char **argv)
1415 {
1416 	CU_pSuite	suite = NULL;
1417 	unsigned int	num_failures;
1418 
1419 	CU_initialize_registry();
1420 
1421 	suite = CU_add_suite("nvmf", NULL, NULL);
1422 
1423 	CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_parse_sgl);
1424 	CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_process);
1425 	CU_ADD_TEST(suite, test_nvmf_rdma_get_optimal_poll_group);
1426 	CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_parse_sgl_with_md);
1427 	CU_ADD_TEST(suite, test_nvmf_rdma_opts_init);
1428 	CU_ADD_TEST(suite, test_nvmf_rdma_request_free_data);
1429 	CU_ADD_TEST(suite, test_nvmf_rdma_update_ibv_state);
1430 	CU_ADD_TEST(suite, test_nvmf_rdma_resources_create);
1431 	CU_ADD_TEST(suite, test_nvmf_rdma_qpair_compare);
1432 	CU_ADD_TEST(suite, test_nvmf_rdma_resize_cq);
1433 
1434 	num_failures = spdk_ut_run_tests(argc, argv, NULL);
1435 	CU_cleanup_registry();
1436 	return num_failures;
1437 }
1438