xref: /spdk/test/unit/lib/nvmf/rdma.c/rdma_ut.c (revision 1fc4165fe9bf8512483356ad8e6d27f793f2e3db)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk/stdinc.h"
35 #include "spdk_cunit.h"
36 #include "common/lib/test_env.c"
37 #include "nvmf/rdma.c"
38 
39 uint64_t g_mr_size;
40 struct ibv_mr g_rdma_mr;
41 
42 #define RDMA_UT_UNITS_IN_MAX_IO 16
43 
44 struct spdk_nvmf_transport_opts g_rdma_ut_transport_opts = {
45 	.max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH,
46 	.max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR,
47 	.in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE,
48 	.max_io_size = (SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE * RDMA_UT_UNITS_IN_MAX_IO),
49 	.io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE,
50 	.max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH,
51 	.num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS,
52 };
53 
54 SPDK_LOG_REGISTER_COMPONENT("nvmf", SPDK_LOG_NVMF)
55 DEFINE_STUB(spdk_mem_map_set_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
56 		uint64_t size, uint64_t translation), 0);
57 DEFINE_STUB(spdk_mem_map_clear_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
58 		uint64_t size), 0);
59 DEFINE_STUB(spdk_mem_map_alloc, struct spdk_mem_map *, (uint64_t default_translation,
60 		const struct spdk_mem_map_ops *ops, void *cb_ctx), NULL);
61 DEFINE_STUB(spdk_nvmf_qpair_disconnect, int, (struct spdk_nvmf_qpair *qpair,
62 		nvmf_qpair_disconnect_cb cb_fn, void *ctx), 0);
63 DEFINE_STUB_V(spdk_mem_map_free, (struct spdk_mem_map **pmap));
64 
65 struct spdk_trace_histories *g_trace_histories;
66 DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
67 DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
68 DEFINE_STUB_V(spdk_trace_register_description, (const char *name, const char *short_name,
69 		uint16_t tpoint_id, uint8_t owner_type, uint8_t object_type, uint8_t new_object,
70 		uint8_t arg1_is_ptr, const char *arg1_name));
71 DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
72 				   uint32_t size, uint64_t object_id, uint64_t arg1));
73 
74 DEFINE_STUB_V(spdk_nvmf_request_exec, (struct spdk_nvmf_request *req));
75 DEFINE_STUB(spdk_nvme_transport_id_compare, int, (const struct spdk_nvme_transport_id *trid1,
76 		const struct spdk_nvme_transport_id *trid2), 0);
77 DEFINE_STUB_V(spdk_nvmf_ctrlr_abort_aer, (struct spdk_nvmf_ctrlr *ctrlr));
78 
79 uint64_t
80 spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size)
81 {
82 	if (g_mr_size != 0) {
83 		*(uint32_t *)size = g_mr_size;
84 	}
85 
86 	return (uint64_t)&g_rdma_mr;
87 }
88 
89 static void reset_nvmf_rdma_request(struct spdk_nvmf_rdma_request *rdma_req)
90 {
91 	int i;
92 
93 	rdma_req->req.length = 0;
94 	rdma_req->data_from_pool = false;
95 	rdma_req->req.data = NULL;
96 	rdma_req->data.wr.num_sge = 0;
97 	rdma_req->data.wr.wr.rdma.remote_addr = 0;
98 	rdma_req->data.wr.wr.rdma.rkey = 0;
99 
100 	for (i = 0; i < SPDK_NVMF_MAX_SGL_ENTRIES; i++) {
101 		rdma_req->req.iov[i].iov_base = 0;
102 		rdma_req->req.iov[i].iov_len = 0;
103 		rdma_req->data.buffers[i] = 0;
104 		rdma_req->data.wr.sg_list[i].addr = 0;
105 		rdma_req->data.wr.sg_list[i].length = 0;
106 		rdma_req->data.wr.sg_list[i].lkey = 0;
107 	}
108 }
109 
110 static void
111 test_spdk_nvmf_rdma_request_parse_sgl(void)
112 {
113 	struct spdk_nvmf_rdma_transport rtransport;
114 	struct spdk_nvmf_rdma_device device;
115 	struct spdk_nvmf_rdma_request rdma_req;
116 	struct spdk_nvmf_rdma_recv recv;
117 	struct spdk_nvmf_rdma_poll_group group;
118 	struct spdk_nvmf_rdma_qpair rqpair;
119 	struct spdk_nvmf_rdma_poller poller;
120 	union nvmf_c2h_msg cpl;
121 	union nvmf_h2c_msg cmd;
122 	struct spdk_nvme_sgl_descriptor *sgl;
123 	struct spdk_nvmf_transport_pg_cache_buf bufs[4];
124 	int rc, i;
125 
126 	STAILQ_INIT(&group.group.buf_cache);
127 	group.group.buf_cache_size = 0;
128 	group.group.buf_cache_count = 0;
129 	poller.group = &group;
130 	rqpair.poller = &poller;
131 	rqpair.max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
132 
133 	sgl = &cmd.nvme_cmd.dptr.sgl1;
134 	rdma_req.recv = &recv;
135 	rdma_req.req.cmd = &cmd;
136 	rdma_req.req.rsp = &cpl;
137 	rdma_req.data.wr.sg_list = rdma_req.data.sgl;
138 	rdma_req.req.qpair = &rqpair.qpair;
139 	rdma_req.req.xfer = SPDK_NVME_DATA_CONTROLLER_TO_HOST;
140 
141 	rtransport.transport.opts = g_rdma_ut_transport_opts;
142 
143 	device.attr.device_cap_flags = 0;
144 	g_rdma_mr.lkey = 0xABCD;
145 	sgl->keyed.key = 0xEEEE;
146 	sgl->address = 0xFFFF;
147 	rdma_req.recv->buf = (void *)0xDDDD;
148 
149 	/* Test 1: sgl type: keyed data block subtype: address */
150 	sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
151 	sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
152 
153 	/* Part 1: simple I/O, one SGL smaller than the transport io unit size */
154 	MOCK_SET(spdk_mempool_get, (void *)0x2000);
155 	reset_nvmf_rdma_request(&rdma_req);
156 	sgl->keyed.length = rtransport.transport.opts.io_unit_size / 2;
157 
158 	rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
159 	CU_ASSERT(rc == 0);
160 	CU_ASSERT(rdma_req.data_from_pool == true);
161 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size / 2);
162 	CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
163 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
164 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
165 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
166 	CU_ASSERT((uint64_t)rdma_req.data.buffers[0] == 0x2000);
167 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
168 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rtransport.transport.opts.io_unit_size / 2);
169 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == g_rdma_mr.lkey);
170 
171 	/* Part 2: simple I/O, one SGL larger than the transport io unit size (equal to the max io size) */
172 	reset_nvmf_rdma_request(&rdma_req);
173 	sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO;
174 	rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
175 
176 	CU_ASSERT(rc == 0);
177 	CU_ASSERT(rdma_req.data_from_pool == true);
178 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO);
179 	CU_ASSERT(rdma_req.data.wr.num_sge == RDMA_UT_UNITS_IN_MAX_IO);
180 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
181 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
182 	for (i = 0; i < RDMA_UT_UNITS_IN_MAX_IO; i++) {
183 		CU_ASSERT((uint64_t)rdma_req.data.buffers[i] == 0x2000);
184 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
185 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
186 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey);
187 	}
188 
189 	/* Part 3: simple I/O one SGL larger than the transport max io size */
190 	reset_nvmf_rdma_request(&rdma_req);
191 	sgl->keyed.length = rtransport.transport.opts.max_io_size * 2;
192 	rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
193 
194 	CU_ASSERT(rc == -1);
195 
196 	/* Part 4: Pretend there are no buffer pools */
197 	MOCK_SET(spdk_mempool_get, NULL);
198 	reset_nvmf_rdma_request(&rdma_req);
199 	sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO;
200 	rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
201 
202 	CU_ASSERT(rc == 0);
203 	CU_ASSERT(rdma_req.data_from_pool == false);
204 	CU_ASSERT(rdma_req.req.data == NULL);
205 	CU_ASSERT(rdma_req.data.wr.num_sge == 0);
206 	CU_ASSERT(rdma_req.data.buffers[0] == NULL);
207 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0);
208 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == 0);
209 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == 0);
210 
211 
212 	rdma_req.recv->buf = (void *)0xDDDD;
213 	/* Test 2: sgl type: keyed data block subtype: offset (in capsule data) */
214 	sgl->generic.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
215 	sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
216 
217 	/* Part 1: Normal I/O smaller than in capsule data size no offset */
218 	reset_nvmf_rdma_request(&rdma_req);
219 	sgl->address = 0;
220 	sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size;
221 	rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
222 
223 	CU_ASSERT(rc == 0);
224 	CU_ASSERT(rdma_req.req.data == (void *)0xDDDD);
225 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.in_capsule_data_size);
226 	CU_ASSERT(rdma_req.data_from_pool == false);
227 
228 	/* Part 2: I/O offset + length too large */
229 	reset_nvmf_rdma_request(&rdma_req);
230 	sgl->address = rtransport.transport.opts.in_capsule_data_size;
231 	sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size;
232 	rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
233 
234 	CU_ASSERT(rc == -1);
235 
236 	/* Part 3: I/O too large */
237 	reset_nvmf_rdma_request(&rdma_req);
238 	sgl->address = 0;
239 	sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size * 2;
240 	rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
241 
242 	CU_ASSERT(rc == -1);
243 	/* Test 3: use PG buffer cache */
244 	sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
245 	sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
246 	sgl->address = 0xFFFF;
247 	rdma_req.recv->buf = (void *)0xDDDD;
248 	g_rdma_mr.lkey = 0xABCD;
249 	sgl->keyed.key = 0xEEEE;
250 
251 	for (i = 0; i < 4; i++) {
252 		STAILQ_INSERT_TAIL(&group.group.buf_cache, &bufs[i], link);
253 	}
254 
255 	/* part 1: use the four buffers from the pg cache */
256 
257 	group.group.buf_cache_size = 4;
258 	group.group.buf_cache_count = 4;
259 	MOCK_SET(spdk_mempool_get, (void *)0x2000);
260 	reset_nvmf_rdma_request(&rdma_req);
261 	sgl->keyed.length = rtransport.transport.opts.io_unit_size * 4;
262 	rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
263 
264 	SPDK_CU_ASSERT_FATAL(rc == 0);
265 	CU_ASSERT(rdma_req.data_from_pool == true);
266 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4);
267 	CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&bufs[0] + NVMF_DATA_BUFFER_MASK) &
268 			~NVMF_DATA_BUFFER_MASK));
269 	CU_ASSERT(rdma_req.data.wr.num_sge == 4);
270 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
271 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
272 	CU_ASSERT(group.group.buf_cache_count == 0);
273 	CU_ASSERT(STAILQ_EMPTY(&group.group.buf_cache));
274 	for (i = 0; i < 4; i++) {
275 		CU_ASSERT((uint64_t)rdma_req.data.buffers[i] == (uint64_t)&bufs[i]);
276 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (((uint64_t)&bufs[i] + NVMF_DATA_BUFFER_MASK) &
277 				~NVMF_DATA_BUFFER_MASK));
278 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
279 	}
280 	/* part 2: now that we have used the buffers from the cache, try again. We should get mempool buffers. */
281 
282 	reset_nvmf_rdma_request(&rdma_req);
283 	rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
284 
285 	SPDK_CU_ASSERT_FATAL(rc == 0);
286 	CU_ASSERT(rdma_req.data_from_pool == true);
287 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4);
288 	CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
289 	CU_ASSERT(rdma_req.data.wr.num_sge == 4);
290 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
291 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
292 	CU_ASSERT(group.group.buf_cache_count == 0);
293 	CU_ASSERT(STAILQ_EMPTY(&group.group.buf_cache));
294 	for (i = 0; i < 4; i++) {
295 		CU_ASSERT((uint64_t)rdma_req.data.buffers[i] == 0x2000);
296 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
297 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
298 		CU_ASSERT(group.group.buf_cache_count == 0);
299 	}
300 
301 	/* part 3: half and half */
302 	group.group.buf_cache_count = 2;
303 
304 	for (i = 0; i < 2; i++) {
305 		STAILQ_INSERT_TAIL(&group.group.buf_cache, &bufs[i], link);
306 	}
307 	reset_nvmf_rdma_request(&rdma_req);
308 	rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
309 
310 	SPDK_CU_ASSERT_FATAL(rc == 0);
311 	CU_ASSERT(rdma_req.data_from_pool == true);
312 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4);
313 	CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&bufs[0] + NVMF_DATA_BUFFER_MASK) &
314 			~NVMF_DATA_BUFFER_MASK));
315 	CU_ASSERT(rdma_req.data.wr.num_sge == 4);
316 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
317 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
318 	CU_ASSERT(group.group.buf_cache_count == 0);
319 	for (i = 0; i < 2; i++) {
320 		CU_ASSERT((uint64_t)rdma_req.data.buffers[i] == (uint64_t)&bufs[i]);
321 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (((uint64_t)&bufs[i] + NVMF_DATA_BUFFER_MASK) &
322 				~NVMF_DATA_BUFFER_MASK));
323 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
324 	}
325 	for (i = 2; i < 4; i++) {
326 		CU_ASSERT((uint64_t)rdma_req.data.buffers[i] == 0x2000);
327 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
328 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
329 	}
330 }
331 
332 int main(int argc, char **argv)
333 {
334 	CU_pSuite	suite = NULL;
335 	unsigned int	num_failures;
336 
337 	if (CU_initialize_registry() != CUE_SUCCESS) {
338 		return CU_get_error();
339 	}
340 
341 	suite = CU_add_suite("nvmf", NULL, NULL);
342 	if (suite == NULL) {
343 		CU_cleanup_registry();
344 		return CU_get_error();
345 	}
346 
347 	if (
348 		CU_add_test(suite, "test_parse_sgl", test_spdk_nvmf_rdma_request_parse_sgl) == NULL) {
349 		CU_cleanup_registry();
350 		return CU_get_error();
351 	}
352 
353 	CU_basic_set_mode(CU_BRM_VERBOSE);
354 	CU_basic_run_tests();
355 	num_failures = CU_get_number_of_failures();
356 	CU_cleanup_registry();
357 	return num_failures;
358 }
359