xref: /spdk/test/unit/lib/nvmf/rdma.c/rdma_ut.c (revision 1666fcfcf19b6b62f5bed5e64a6c72286c41f77d)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2023, 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 #include "spdk_internal/cunit.h"
9 #include "common/lib/test_env.c"
10 #include "common/lib/test_iobuf.c"
11 #include "common/lib/test_rdma.c"
12 #include "nvmf/rdma.c"
13 #include "nvmf/transport.c"
14 
15 #define RDMA_UT_UNITS_IN_MAX_IO 16
16 
17 struct spdk_nvmf_transport_opts g_rdma_ut_transport_opts = {
18 	.max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH,
19 	.max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR,
20 	.in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE,
21 	.max_io_size = (SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE * RDMA_UT_UNITS_IN_MAX_IO),
22 	.io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE,
23 	.max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH,
24 	.num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS,
25 };
26 
27 SPDK_LOG_REGISTER_COMPONENT(nvmf)
28 DEFINE_STUB(spdk_mem_map_set_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
29 		uint64_t size, uint64_t translation), 0);
30 DEFINE_STUB(spdk_mem_map_clear_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
31 		uint64_t size), 0);
32 DEFINE_STUB(spdk_mem_map_alloc, struct spdk_mem_map *, (uint64_t default_translation,
33 		const struct spdk_mem_map_ops *ops, void *cb_ctx), NULL);
34 DEFINE_STUB(spdk_nvmf_qpair_disconnect, int, (struct spdk_nvmf_qpair *qpair), 0);
35 DEFINE_STUB(spdk_nvmf_qpair_get_listen_trid, int,
36 	    (struct spdk_nvmf_qpair *qpair, struct spdk_nvme_transport_id *trid), 0);
37 DEFINE_STUB_V(spdk_mem_map_free, (struct spdk_mem_map **pmap));
38 
39 DEFINE_STUB_V(spdk_nvmf_request_exec, (struct spdk_nvmf_request *req));
40 DEFINE_STUB(spdk_nvmf_request_complete, int, (struct spdk_nvmf_request *req), 0);
41 DEFINE_STUB(spdk_nvme_transport_id_compare, int, (const struct spdk_nvme_transport_id *trid1,
42 		const struct spdk_nvme_transport_id *trid2), 0);
43 DEFINE_STUB_V(spdk_nvmf_ctrlr_abort_aer, (struct spdk_nvmf_ctrlr *ctrlr));
44 DEFINE_STUB(spdk_nvmf_request_get_dif_ctx, bool, (struct spdk_nvmf_request *req,
45 		struct spdk_dif_ctx *dif_ctx), false);
46 DEFINE_STUB_V(spdk_nvme_trid_populate_transport, (struct spdk_nvme_transport_id *trid,
47 		enum spdk_nvme_transport_type trtype));
48 DEFINE_STUB_V(spdk_nvmf_tgt_new_qpair, (struct spdk_nvmf_tgt *tgt, struct spdk_nvmf_qpair *qpair));
49 DEFINE_STUB(nvmf_ctrlr_abort_request, int, (struct spdk_nvmf_request *req), 0);
50 DEFINE_STUB(spdk_nvme_transport_id_adrfam_str, const char *, (enum spdk_nvmf_adrfam adrfam), NULL);
51 DEFINE_STUB(ibv_dereg_mr, int, (struct ibv_mr *mr), 0);
52 DEFINE_STUB(ibv_resize_cq, int, (struct ibv_cq *cq, int cqe), 0);
53 DEFINE_STUB(spdk_mempool_lookup, struct spdk_mempool *, (const char *name), NULL);
54 
55 /* ibv_reg_mr can be a macro, need to undefine it */
56 #ifdef ibv_reg_mr
57 #undef ibv_reg_mr
58 #endif
59 
60 DEFINE_RETURN_MOCK(ibv_reg_mr, struct ibv_mr *);
61 struct ibv_mr *
62 ibv_reg_mr(struct ibv_pd *pd, void *addr, size_t length, int access)
63 {
64 	HANDLE_RETURN_MOCK(ibv_reg_mr);
65 	if (length > 0) {
66 		return &g_rdma_mr;
67 	} else {
68 		return NULL;
69 	}
70 }
71 
72 int
73 ibv_query_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr,
74 	     int attr_mask, struct ibv_qp_init_attr *init_attr)
75 {
76 	if (qp == NULL) {
77 		return -1;
78 	} else {
79 		attr->port_num = 80;
80 
81 		if (qp->state == IBV_QPS_ERR) {
82 			attr->qp_state = 10;
83 		} else {
84 			attr->qp_state = IBV_QPS_INIT;
85 		}
86 
87 		return 0;
88 	}
89 }
90 
91 const char *
92 spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
93 {
94 	switch (trtype) {
95 	case SPDK_NVME_TRANSPORT_PCIE:
96 		return "PCIe";
97 	case SPDK_NVME_TRANSPORT_RDMA:
98 		return "RDMA";
99 	case SPDK_NVME_TRANSPORT_FC:
100 		return "FC";
101 	default:
102 		return NULL;
103 	}
104 }
105 
106 int
107 spdk_nvme_transport_id_populate_trstring(struct spdk_nvme_transport_id *trid, const char *trstring)
108 {
109 	int len, i;
110 
111 	if (trstring == NULL) {
112 		return -EINVAL;
113 	}
114 
115 	len = strnlen(trstring, SPDK_NVMF_TRSTRING_MAX_LEN);
116 	if (len == SPDK_NVMF_TRSTRING_MAX_LEN) {
117 		return -EINVAL;
118 	}
119 
120 	/* cast official trstring to uppercase version of input. */
121 	for (i = 0; i < len; i++) {
122 		trid->trstring[i] = toupper(trstring[i]);
123 	}
124 	return 0;
125 }
126 
127 static void
128 reset_nvmf_rdma_request(struct spdk_nvmf_rdma_request *rdma_req)
129 {
130 	int i;
131 
132 	rdma_req->req.length = 0;
133 	rdma_req->req.data_from_pool = false;
134 	rdma_req->data.wr.num_sge = 0;
135 	rdma_req->data.wr.wr.rdma.remote_addr = 0;
136 	rdma_req->data.wr.wr.rdma.rkey = 0;
137 	rdma_req->offset = 0;
138 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
139 
140 	for (i = 0; i < SPDK_NVMF_MAX_SGL_ENTRIES; i++) {
141 		rdma_req->req.iov[i].iov_base = 0;
142 		rdma_req->req.iov[i].iov_len = 0;
143 		rdma_req->data.wr.sg_list[i].addr = 0;
144 		rdma_req->data.wr.sg_list[i].length = 0;
145 		rdma_req->data.wr.sg_list[i].lkey = 0;
146 	}
147 	rdma_req->req.iovcnt = 0;
148 	if (rdma_req->req.stripped_data) {
149 		free(rdma_req->req.stripped_data);
150 		rdma_req->req.stripped_data = NULL;
151 	}
152 }
153 
154 static void
155 test_spdk_nvmf_rdma_request_parse_sgl(void)
156 {
157 	struct spdk_nvmf_rdma_transport rtransport;
158 	struct spdk_nvmf_rdma_device device;
159 	struct spdk_nvmf_rdma_request rdma_req = {};
160 	struct spdk_nvmf_rdma_recv recv;
161 	struct spdk_nvmf_rdma_poll_group group;
162 	struct spdk_nvmf_rdma_qpair rqpair;
163 	struct spdk_nvmf_rdma_poller poller;
164 	union nvmf_c2h_msg cpl;
165 	union nvmf_h2c_msg cmd;
166 	struct spdk_nvme_sgl_descriptor *sgl;
167 	struct spdk_nvme_sgl_descriptor sgl_desc[SPDK_NVMF_MAX_SGL_ENTRIES] = {{0}};
168 	struct spdk_nvmf_rdma_request_data data;
169 	int rc, i;
170 	uint32_t sgl_length;
171 
172 	data.wr.sg_list = data.sgl;
173 	group.group.transport = &rtransport.transport;
174 	poller.group = &group;
175 	rqpair.poller = &poller;
176 	rqpair.max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
177 
178 	sgl = &cmd.nvme_cmd.dptr.sgl1;
179 	rdma_req.recv = &recv;
180 	rdma_req.req.cmd = &cmd;
181 	rdma_req.req.rsp = &cpl;
182 	rdma_req.data.wr.sg_list = rdma_req.data.sgl;
183 	rdma_req.req.qpair = &rqpair.qpair;
184 	rdma_req.req.xfer = SPDK_NVME_DATA_CONTROLLER_TO_HOST;
185 
186 	rtransport.transport.opts = g_rdma_ut_transport_opts;
187 	rtransport.data_wr_pool = NULL;
188 
189 	device.attr.device_cap_flags = 0;
190 	sgl->keyed.key = 0xEEEE;
191 	sgl->address = 0xFFFF;
192 	rdma_req.recv->buf = (void *)0xDDDD;
193 
194 	/* Test 1: sgl type: keyed data block subtype: address */
195 	sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
196 	sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
197 
198 	/* Part 1: simple I/O, one SGL smaller than the transport io unit size */
199 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
200 	reset_nvmf_rdma_request(&rdma_req);
201 	sgl->keyed.length = rtransport.transport.opts.io_unit_size / 2;
202 
203 	device.map = (void *)0x0;
204 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
205 	CU_ASSERT(rc == 0);
206 	CU_ASSERT(rdma_req.req.data_from_pool == true);
207 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size / 2);
208 	CU_ASSERT((uint64_t)rdma_req.req.iovcnt == 1);
209 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
210 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
211 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
212 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
213 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
214 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
215 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rtransport.transport.opts.io_unit_size / 2);
216 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
217 
218 	/* Part 2: simple I/O, one SGL larger than the transport io unit size (equal to the max io size) */
219 	reset_nvmf_rdma_request(&rdma_req);
220 	sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO;
221 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
222 
223 	CU_ASSERT(rc == 0);
224 	CU_ASSERT(rdma_req.req.data_from_pool == true);
225 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO);
226 	CU_ASSERT(rdma_req.data.wr.num_sge == RDMA_UT_UNITS_IN_MAX_IO);
227 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
228 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
229 	for (i = 0; i < RDMA_UT_UNITS_IN_MAX_IO; i++) {
230 		CU_ASSERT((uint64_t)rdma_req.req.iov[i].iov_base == 0x2000);
231 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
232 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
233 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
234 	}
235 
236 	/* Part 3: simple I/O one SGL larger than the transport max io size */
237 	reset_nvmf_rdma_request(&rdma_req);
238 	sgl->keyed.length = rtransport.transport.opts.max_io_size * 2;
239 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
240 
241 	CU_ASSERT(rc == -1);
242 
243 	/* Part 4: Pretend there are no buffer pools */
244 	MOCK_SET(spdk_iobuf_get, NULL);
245 	reset_nvmf_rdma_request(&rdma_req);
246 	sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO;
247 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
248 
249 	CU_ASSERT(rc == 0);
250 	CU_ASSERT(rdma_req.req.data_from_pool == false);
251 	CU_ASSERT(rdma_req.req.iovcnt == 0);
252 	CU_ASSERT(rdma_req.data.wr.num_sge == 0);
253 	CU_ASSERT(rdma_req.req.iov[0].iov_base == NULL);
254 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0);
255 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == 0);
256 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == 0);
257 
258 	rdma_req.recv->buf = (void *)0xDDDD;
259 	/* Test 2: sgl type: keyed data block subtype: offset (in capsule data) */
260 	sgl->generic.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
261 	sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
262 
263 	/* Part 1: Normal I/O smaller than in capsule data size no offset */
264 	reset_nvmf_rdma_request(&rdma_req);
265 	sgl->address = 0;
266 	sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size;
267 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
268 
269 	CU_ASSERT(rc == 0);
270 	CU_ASSERT(rdma_req.req.iovcnt == 1);
271 	CU_ASSERT(rdma_req.req.iov[0].iov_base == (void *)0xDDDD);
272 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.in_capsule_data_size);
273 	CU_ASSERT(rdma_req.req.data_from_pool == false);
274 
275 	/* Part 2: I/O offset + length too large */
276 	reset_nvmf_rdma_request(&rdma_req);
277 	sgl->address = rtransport.transport.opts.in_capsule_data_size;
278 	sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size;
279 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
280 
281 	CU_ASSERT(rc == -1);
282 
283 	/* Part 3: I/O too large */
284 	reset_nvmf_rdma_request(&rdma_req);
285 	sgl->address = 0;
286 	sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size * 2;
287 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
288 
289 	CU_ASSERT(rc == -1);
290 
291 	/* Test 3: Multi SGL */
292 	sgl->generic.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
293 	sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
294 	sgl->address = 0;
295 	rdma_req.recv->buf = (void *)&sgl_desc;
296 	MOCK_SET(spdk_iobuf_get, &data);
297 	MOCK_SET(spdk_mempool_get, &data);
298 
299 	/* part 1: 2 segments each with 1 wr. */
300 	reset_nvmf_rdma_request(&rdma_req);
301 	sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
302 	for (i = 0; i < 2; i++) {
303 		sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
304 		sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
305 		sgl_desc[i].keyed.length = rtransport.transport.opts.io_unit_size;
306 		sgl_desc[i].address = 0x4000 + i * rtransport.transport.opts.io_unit_size;
307 		sgl_desc[i].keyed.key = 0x44;
308 	}
309 
310 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
311 
312 	CU_ASSERT(rc == 0);
313 	CU_ASSERT(rdma_req.req.data_from_pool == true);
314 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 2);
315 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
316 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
317 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
318 	CU_ASSERT(rdma_req.data.wr.next == &data.wr);
319 	CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
320 	CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size);
321 	CU_ASSERT(data.wr.num_sge == 1);
322 	CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
323 
324 	/* part 2: 2 segments, each with 1 wr containing 8 sge_elements */
325 	reset_nvmf_rdma_request(&rdma_req);
326 	sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
327 	for (i = 0; i < 2; i++) {
328 		sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
329 		sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
330 		sgl_desc[i].keyed.length = rtransport.transport.opts.io_unit_size * 8;
331 		sgl_desc[i].address = 0x4000 + i * 8 * rtransport.transport.opts.io_unit_size;
332 		sgl_desc[i].keyed.key = 0x44;
333 	}
334 
335 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
336 
337 	CU_ASSERT(rc == 0);
338 	CU_ASSERT(rdma_req.req.data_from_pool == true);
339 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 16);
340 	CU_ASSERT(rdma_req.req.iovcnt == 16);
341 	CU_ASSERT(rdma_req.data.wr.num_sge == 8);
342 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
343 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
344 	CU_ASSERT(rdma_req.data.wr.next == &data.wr);
345 	CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
346 	CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size * 8);
347 	CU_ASSERT(data.wr.num_sge == 8);
348 	CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
349 
350 	/* part 3: 2 segments, one very large, one very small */
351 	reset_nvmf_rdma_request(&rdma_req);
352 	for (i = 0; i < 2; i++) {
353 		sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
354 		sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
355 		sgl_desc[i].keyed.key = 0x44;
356 	}
357 
358 	sgl_desc[0].keyed.length = rtransport.transport.opts.io_unit_size * 15 +
359 				   rtransport.transport.opts.io_unit_size / 2;
360 	sgl_desc[0].address = 0x4000;
361 	sgl_desc[1].keyed.length = rtransport.transport.opts.io_unit_size / 2;
362 	sgl_desc[1].address = 0x4000 + rtransport.transport.opts.io_unit_size * 15 +
363 			      rtransport.transport.opts.io_unit_size / 2;
364 
365 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
366 
367 	CU_ASSERT(rc == 0);
368 	CU_ASSERT(rdma_req.req.data_from_pool == true);
369 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 16);
370 	CU_ASSERT(rdma_req.req.iovcnt == 16);
371 	CU_ASSERT(rdma_req.data.wr.num_sge == 16);
372 	for (i = 0; i < 15; i++) {
373 		CU_ASSERT(rdma_req.data.sgl[i].length == rtransport.transport.opts.io_unit_size);
374 	}
375 	CU_ASSERT(rdma_req.data.sgl[15].length == rtransport.transport.opts.io_unit_size / 2);
376 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
377 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
378 	CU_ASSERT(rdma_req.data.wr.next == &data.wr);
379 	CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
380 	CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size * 15 +
381 		  rtransport.transport.opts.io_unit_size / 2);
382 	CU_ASSERT(data.sgl[0].length == rtransport.transport.opts.io_unit_size / 2);
383 	CU_ASSERT(data.wr.num_sge == 1);
384 	CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
385 
386 	/* part 4: 2 SGL descriptors, each length is transport buffer / 2
387 	 * 1 transport buffers should be allocated */
388 	reset_nvmf_rdma_request(&rdma_req);
389 	sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
390 	sgl_length = rtransport.transport.opts.io_unit_size / 2;
391 	for (i = 0; i < 2; i++) {
392 		sgl_desc[i].keyed.length = sgl_length;
393 		sgl_desc[i].address = 0x4000 + i * sgl_length;
394 	}
395 
396 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
397 
398 	CU_ASSERT(rc == 0);
399 	CU_ASSERT(rdma_req.req.data_from_pool == true);
400 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size);
401 	CU_ASSERT(rdma_req.req.iovcnt == 1);
402 
403 	CU_ASSERT(rdma_req.data.sgl[0].length == sgl_length);
404 	/* We mocked mempool_get to return address of data variable. Mempool is used
405 	 * to get both additional WRs and data buffers, so data points to &data */
406 	CU_ASSERT(rdma_req.data.sgl[0].addr == (uint64_t)&data);
407 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
408 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
409 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
410 	CU_ASSERT(rdma_req.data.wr.next == &data.wr);
411 
412 	CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
413 	CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + sgl_length);
414 	CU_ASSERT(data.sgl[0].length == sgl_length);
415 	CU_ASSERT(data.sgl[0].addr == (uint64_t)&data + sgl_length);
416 	CU_ASSERT(data.wr.num_sge == 1);
417 
418 	MOCK_CLEAR(spdk_mempool_get);
419 	MOCK_CLEAR(spdk_iobuf_get);
420 
421 	reset_nvmf_rdma_request(&rdma_req);
422 }
423 
424 static struct spdk_nvmf_rdma_recv *
425 create_recv(struct spdk_nvmf_rdma_qpair *rqpair, enum spdk_nvme_nvm_opcode opc)
426 {
427 	struct spdk_nvmf_rdma_recv *rdma_recv;
428 	union nvmf_h2c_msg *cmd;
429 	struct spdk_nvme_sgl_descriptor *sgl;
430 
431 	rdma_recv = calloc(1, sizeof(*rdma_recv));
432 	rdma_recv->qpair = rqpair;
433 	cmd = calloc(1, sizeof(*cmd));
434 	rdma_recv->sgl[0].addr = (uintptr_t)cmd;
435 	cmd->nvme_cmd.opc = opc;
436 	sgl = &cmd->nvme_cmd.dptr.sgl1;
437 	sgl->keyed.key = 0xEEEE;
438 	sgl->address = 0xFFFF;
439 	sgl->keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
440 	sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
441 	sgl->keyed.length = 1;
442 
443 	return rdma_recv;
444 }
445 
446 static void
447 free_recv(struct spdk_nvmf_rdma_recv *rdma_recv)
448 {
449 	free((void *)rdma_recv->sgl[0].addr);
450 	free(rdma_recv);
451 }
452 
453 static struct spdk_nvmf_rdma_request *
454 create_req(struct spdk_nvmf_rdma_qpair *rqpair,
455 	   struct spdk_nvmf_rdma_recv *rdma_recv)
456 {
457 	struct spdk_nvmf_rdma_request *rdma_req;
458 	union nvmf_c2h_msg *cpl;
459 
460 	rdma_req = calloc(1, sizeof(*rdma_req));
461 	rdma_req->recv = rdma_recv;
462 	rdma_req->req.qpair = &rqpair->qpair;
463 	rdma_req->state = RDMA_REQUEST_STATE_NEW;
464 	rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data_wr;
465 	rdma_req->data.wr.sg_list = rdma_req->data.sgl;
466 	cpl = calloc(1, sizeof(*cpl));
467 	rdma_req->rsp.sgl[0].addr = (uintptr_t)cpl;
468 	rdma_req->req.rsp = cpl;
469 
470 	return rdma_req;
471 }
472 
473 static void
474 free_req(struct spdk_nvmf_rdma_request *rdma_req)
475 {
476 	free((void *)rdma_req->rsp.sgl[0].addr);
477 	free(rdma_req);
478 }
479 
480 static void
481 qpair_reset(struct spdk_nvmf_rdma_qpair *rqpair,
482 	    struct spdk_nvmf_rdma_poller *poller,
483 	    struct spdk_nvmf_rdma_device *device,
484 	    struct spdk_nvmf_rdma_resources *resources,
485 	    struct spdk_nvmf_transport *transport)
486 {
487 	memset(rqpair, 0, sizeof(*rqpair));
488 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
489 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
490 	STAILQ_INIT(&rqpair->pending_rdma_send_queue);
491 	rqpair->poller = poller;
492 	rqpair->device = device;
493 	rqpair->resources = resources;
494 	rqpair->qpair.qid = 1;
495 	rqpair->qpair.state = SPDK_NVMF_QPAIR_ENABLED;
496 	rqpair->max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
497 	rqpair->max_send_depth = 16;
498 	rqpair->max_read_depth = 16;
499 	rqpair->qpair.transport = transport;
500 }
501 
502 static void
503 poller_reset(struct spdk_nvmf_rdma_poller *poller,
504 	     struct spdk_nvmf_rdma_poll_group *group)
505 {
506 	memset(poller, 0, sizeof(*poller));
507 	STAILQ_INIT(&poller->qpairs_pending_recv);
508 	STAILQ_INIT(&poller->qpairs_pending_send);
509 	poller->group = group;
510 }
511 
512 static void
513 test_spdk_nvmf_rdma_request_process(void)
514 {
515 	struct spdk_nvmf_rdma_transport rtransport = {};
516 	struct spdk_nvmf_rdma_poll_group group = {};
517 	struct spdk_nvmf_rdma_poller poller = {};
518 	struct spdk_nvmf_rdma_device device = {};
519 	struct spdk_nvmf_rdma_resources resources = {};
520 	struct spdk_nvmf_rdma_qpair rqpair = {};
521 	struct spdk_nvmf_rdma_recv *rdma_recv;
522 	struct spdk_nvmf_rdma_request *rdma_req;
523 	struct spdk_iobuf_channel ch = {};
524 	bool progress;
525 
526 	group.group.buf_cache = &ch;
527 
528 	STAILQ_INIT(&group.group.pending_buf_queue);
529 	poller_reset(&poller, &group);
530 	qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
531 
532 	rtransport.transport.opts = g_rdma_ut_transport_opts;
533 	rtransport.data_wr_pool = spdk_mempool_create("test_wr_pool", 128,
534 				  sizeof(struct spdk_nvmf_rdma_request_data),
535 				  0, 0);
536 	MOCK_CLEAR(spdk_iobuf_get);
537 
538 	device.attr.device_cap_flags = 0;
539 	device.map = (void *)0x0;
540 
541 	/* Test 1: single SGL READ request */
542 	rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_READ);
543 	rdma_req = create_req(&rqpair, rdma_recv);
544 	rqpair.current_recv_depth = 1;
545 	/* NEW -> EXECUTING */
546 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
547 	CU_ASSERT(progress == true);
548 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING);
549 	CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST);
550 	/* EXECUTED -> TRANSFERRING_C2H */
551 	rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
552 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
553 	CU_ASSERT(progress == true);
554 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
555 	CU_ASSERT(rdma_req->recv == NULL);
556 	/* COMPLETED -> FREE */
557 	rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
558 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
559 	CU_ASSERT(progress == true);
560 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE);
561 
562 	free_recv(rdma_recv);
563 	free_req(rdma_req);
564 	poller_reset(&poller, &group);
565 	qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
566 
567 	/* Test 2: single SGL WRITE request */
568 	rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
569 	rdma_req = create_req(&rqpair, rdma_recv);
570 	rqpair.current_recv_depth = 1;
571 	/* NEW -> TRANSFERRING_H2C */
572 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
573 	CU_ASSERT(progress == true);
574 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
575 	CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
576 	STAILQ_INIT(&poller.qpairs_pending_send);
577 	/* READY_TO_EXECUTE -> EXECUTING */
578 	rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
579 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
580 	CU_ASSERT(progress == true);
581 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING);
582 	/* EXECUTED -> COMPLETING */
583 	rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
584 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
585 	CU_ASSERT(progress == true);
586 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_COMPLETING);
587 	CU_ASSERT(rdma_req->recv == NULL);
588 	/* COMPLETED -> FREE */
589 	rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
590 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
591 	CU_ASSERT(progress == true);
592 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE);
593 
594 	free_recv(rdma_recv);
595 	free_req(rdma_req);
596 	poller_reset(&poller, &group);
597 	qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
598 
599 	/* Test 3: WRITE+WRITE ibv_send batching */
600 	{
601 		struct spdk_nvmf_rdma_recv *recv1, *recv2;
602 		struct spdk_nvmf_rdma_request *req1, *req2;
603 		recv1 = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
604 		req1 = create_req(&rqpair, recv1);
605 		recv2 = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
606 		req2 = create_req(&rqpair, recv2);
607 
608 		/* WRITE 1: NEW -> TRANSFERRING_H2C */
609 		rqpair.current_recv_depth = 1;
610 		nvmf_rdma_request_process(&rtransport, req1);
611 		CU_ASSERT(req1->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
612 
613 		/* WRITE 2: NEW -> TRANSFERRING_H2C */
614 		rqpair.current_recv_depth = 2;
615 		nvmf_rdma_request_process(&rtransport, req2);
616 		CU_ASSERT(req2->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
617 
618 		STAILQ_INIT(&poller.qpairs_pending_send);
619 
620 		/* WRITE 1 completes before WRITE 2 has finished RDMA reading */
621 		/* WRITE 1: READY_TO_EXECUTE -> EXECUTING */
622 		req1->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
623 		nvmf_rdma_request_process(&rtransport, req1);
624 		CU_ASSERT(req1->state == RDMA_REQUEST_STATE_EXECUTING);
625 		/* WRITE 1: EXECUTED -> COMPLETING */
626 		req1->state = RDMA_REQUEST_STATE_EXECUTED;
627 		nvmf_rdma_request_process(&rtransport, req1);
628 		CU_ASSERT(req1->state == RDMA_REQUEST_STATE_COMPLETING);
629 		STAILQ_INIT(&poller.qpairs_pending_send);
630 		/* WRITE 1: COMPLETED -> FREE */
631 		req1->state = RDMA_REQUEST_STATE_COMPLETED;
632 		nvmf_rdma_request_process(&rtransport, req1);
633 		CU_ASSERT(req1->state == RDMA_REQUEST_STATE_FREE);
634 
635 		/* Now WRITE 2 has finished reading and completes */
636 		/* WRITE 2: COMPLETED -> FREE */
637 		/* WRITE 2: READY_TO_EXECUTE -> EXECUTING */
638 		req2->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
639 		nvmf_rdma_request_process(&rtransport, req2);
640 		CU_ASSERT(req2->state == RDMA_REQUEST_STATE_EXECUTING);
641 		/* WRITE 1: EXECUTED -> COMPLETING */
642 		req2->state = RDMA_REQUEST_STATE_EXECUTED;
643 		nvmf_rdma_request_process(&rtransport, req2);
644 		CU_ASSERT(req2->state == RDMA_REQUEST_STATE_COMPLETING);
645 		STAILQ_INIT(&poller.qpairs_pending_send);
646 		/* WRITE 1: COMPLETED -> FREE */
647 		req2->state = RDMA_REQUEST_STATE_COMPLETED;
648 		nvmf_rdma_request_process(&rtransport, req2);
649 		CU_ASSERT(req2->state == RDMA_REQUEST_STATE_FREE);
650 
651 		free_recv(recv1);
652 		free_req(req1);
653 		free_recv(recv2);
654 		free_req(req2);
655 		poller_reset(&poller, &group);
656 		qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
657 	}
658 
659 	/* Test 4, invalid command, check xfer type */
660 	{
661 		struct spdk_nvmf_rdma_recv *rdma_recv_inv;
662 		struct spdk_nvmf_rdma_request *rdma_req_inv;
663 		/* construct an opcode that specifies BIDIRECTIONAL transfer */
664 		uint8_t opc = 0x10 | SPDK_NVME_DATA_BIDIRECTIONAL;
665 
666 		rdma_recv_inv = create_recv(&rqpair, opc);
667 		rdma_req_inv = create_req(&rqpair, rdma_recv_inv);
668 
669 		/* NEW -> RDMA_REQUEST_STATE_COMPLETING */
670 		rqpair.current_recv_depth = 1;
671 		progress = nvmf_rdma_request_process(&rtransport, rdma_req_inv);
672 		CU_ASSERT(progress == true);
673 		CU_ASSERT(rdma_req_inv->state == RDMA_REQUEST_STATE_COMPLETING);
674 		CU_ASSERT(rdma_req_inv->req.rsp->nvme_cpl.status.sct == SPDK_NVME_SCT_GENERIC);
675 		CU_ASSERT(rdma_req_inv->req.rsp->nvme_cpl.status.sc == SPDK_NVME_SC_INVALID_OPCODE);
676 
677 		/* RDMA_REQUEST_STATE_COMPLETED -> FREE */
678 		rdma_req_inv->state = RDMA_REQUEST_STATE_COMPLETED;
679 		nvmf_rdma_request_process(&rtransport, rdma_req_inv);
680 		CU_ASSERT(rdma_req_inv->state == RDMA_REQUEST_STATE_FREE);
681 
682 		free_recv(rdma_recv_inv);
683 		free_req(rdma_req_inv);
684 		poller_reset(&poller, &group);
685 		qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
686 	}
687 
688 	/* Test 5: Write response waits in queue */
689 	{
690 		rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
691 		rdma_req = create_req(&rqpair, rdma_recv);
692 		rqpair.current_recv_depth = 1;
693 		/* NEW -> TRANSFERRING_H2C */
694 		progress = nvmf_rdma_request_process(&rtransport, rdma_req);
695 		CU_ASSERT(progress == true);
696 		CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
697 		CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
698 		STAILQ_INIT(&poller.qpairs_pending_send);
699 		/* READY_TO_EXECUTE -> EXECUTING */
700 		rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
701 		progress = nvmf_rdma_request_process(&rtransport, rdma_req);
702 		CU_ASSERT(progress == true);
703 		CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING);
704 		/* EXECUTED -> COMPLETING */
705 		rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
706 		/* Send queue is full */
707 		rqpair.current_send_depth = rqpair.max_send_depth;
708 		progress = nvmf_rdma_request_process(&rtransport, rdma_req);
709 		CU_ASSERT(progress == true);
710 		CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING);
711 		CU_ASSERT(rdma_req == STAILQ_FIRST(&rqpair.pending_rdma_send_queue));
712 
713 		/* Send queue is still full */
714 		progress = nvmf_rdma_request_process(&rtransport, rdma_req);
715 		CU_ASSERT(progress == false);
716 		CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_READY_TO_COMPLETE_PENDING);
717 		CU_ASSERT(rdma_req == STAILQ_FIRST(&rqpair.pending_rdma_send_queue));
718 
719 		/* Slot is available */
720 		rqpair.current_send_depth = rqpair.max_send_depth - 1;
721 		progress = nvmf_rdma_request_process(&rtransport, rdma_req);
722 		CU_ASSERT(progress == true);
723 		CU_ASSERT(STAILQ_EMPTY(&rqpair.pending_rdma_send_queue));
724 		CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_COMPLETING);
725 		CU_ASSERT(rdma_req->recv == NULL);
726 		/* COMPLETED -> FREE */
727 		rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
728 		progress = nvmf_rdma_request_process(&rtransport, rdma_req);
729 		CU_ASSERT(progress == true);
730 		CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE);
731 
732 		free_recv(rdma_recv);
733 		free_req(rdma_req);
734 		poller_reset(&poller, &group);
735 		qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
736 
737 	}
738 
739 	spdk_mempool_free(rtransport.data_wr_pool);
740 }
741 
742 #define TEST_GROUPS_COUNT 5
743 static void
744 test_nvmf_rdma_get_optimal_poll_group(void)
745 {
746 	struct spdk_nvmf_rdma_transport rtransport = {};
747 	struct spdk_nvmf_transport *transport = &rtransport.transport;
748 	struct spdk_nvmf_rdma_qpair rqpair = {};
749 	struct spdk_nvmf_transport_poll_group *groups[TEST_GROUPS_COUNT];
750 	struct spdk_nvmf_rdma_poll_group *rgroups[TEST_GROUPS_COUNT];
751 	struct spdk_nvmf_transport_poll_group *result;
752 	struct spdk_nvmf_poll_group group = {};
753 	uint32_t i;
754 
755 	rqpair.qpair.transport = transport;
756 	TAILQ_INIT(&rtransport.poll_groups);
757 
758 	for (i = 0; i < TEST_GROUPS_COUNT; i++) {
759 		groups[i] = nvmf_rdma_poll_group_create(transport, NULL);
760 		CU_ASSERT(groups[i] != NULL);
761 		groups[i]->group = &group;
762 		rgroups[i] = SPDK_CONTAINEROF(groups[i], struct spdk_nvmf_rdma_poll_group, group);
763 		groups[i]->transport = transport;
764 	}
765 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[0]);
766 	CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[0]);
767 
768 	/* Emulate connection of %TEST_GROUPS_COUNT% initiators - each creates 1 admin and 1 io qp */
769 	for (i = 0; i < TEST_GROUPS_COUNT; i++) {
770 		rqpair.qpair.qid = 0;
771 		result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
772 		CU_ASSERT(result == groups[i]);
773 		CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
774 		CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[i]);
775 
776 		rqpair.qpair.qid = 1;
777 		result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
778 		CU_ASSERT(result == groups[i]);
779 		CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
780 		CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
781 	}
782 	/* wrap around, admin/io pg point to the first pg
783 	   Destroy all poll groups except of the last one */
784 	for (i = 0; i < TEST_GROUPS_COUNT - 1; i++) {
785 		nvmf_rdma_poll_group_destroy(groups[i]);
786 		CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[i + 1]);
787 		CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[i + 1]);
788 	}
789 
790 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
791 	CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
792 
793 	/* Check that pointers to the next admin/io poll groups are not changed */
794 	rqpair.qpair.qid = 0;
795 	result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
796 	CU_ASSERT(result == groups[TEST_GROUPS_COUNT - 1]);
797 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
798 	CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
799 
800 	rqpair.qpair.qid = 1;
801 	result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
802 	CU_ASSERT(result == groups[TEST_GROUPS_COUNT - 1]);
803 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
804 	CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
805 
806 	/* Remove the last poll group, check that pointers are NULL */
807 	nvmf_rdma_poll_group_destroy(groups[TEST_GROUPS_COUNT - 1]);
808 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == NULL);
809 	CU_ASSERT(rtransport.conn_sched.next_io_pg == NULL);
810 
811 	/* Request optimal poll group, result must be NULL */
812 	rqpair.qpair.qid = 0;
813 	result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
814 	CU_ASSERT(result == NULL);
815 
816 	rqpair.qpair.qid = 1;
817 	result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
818 	CU_ASSERT(result == NULL);
819 }
820 #undef TEST_GROUPS_COUNT
821 
822 static void
823 test_spdk_nvmf_rdma_request_parse_sgl_with_md(void)
824 {
825 	struct spdk_nvmf_rdma_transport rtransport;
826 	struct spdk_nvmf_rdma_device device;
827 	struct spdk_nvmf_rdma_request rdma_req = {};
828 	struct spdk_nvmf_rdma_recv recv;
829 	struct spdk_nvmf_rdma_poll_group group;
830 	struct spdk_nvmf_rdma_qpair rqpair;
831 	struct spdk_nvmf_rdma_poller poller;
832 	union nvmf_c2h_msg cpl;
833 	union nvmf_h2c_msg cmd;
834 	struct spdk_nvme_sgl_descriptor *sgl;
835 	struct spdk_nvme_sgl_descriptor sgl_desc[SPDK_NVMF_MAX_SGL_ENTRIES] = {{0}};
836 	char data_buffer[8192];
837 	struct spdk_nvmf_rdma_request_data *data = (struct spdk_nvmf_rdma_request_data *)data_buffer;
838 	char data2_buffer[8192];
839 	struct spdk_nvmf_rdma_request_data *data2 = (struct spdk_nvmf_rdma_request_data *)data2_buffer;
840 	const uint32_t data_bs = 512;
841 	const uint32_t md_size = 8;
842 	int rc, i;
843 	struct spdk_dif_ctx_init_ext_opts dif_opts;
844 
845 	MOCK_CLEAR(spdk_mempool_get);
846 	MOCK_CLEAR(spdk_iobuf_get);
847 
848 	data->wr.sg_list = data->sgl;
849 	group.group.transport = &rtransport.transport;
850 	poller.group = &group;
851 	rqpair.poller = &poller;
852 	rqpair.max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
853 
854 	sgl = &cmd.nvme_cmd.dptr.sgl1;
855 	rdma_req.recv = &recv;
856 	rdma_req.req.cmd = &cmd;
857 	rdma_req.req.rsp = &cpl;
858 	rdma_req.data.wr.sg_list = rdma_req.data.sgl;
859 	rdma_req.req.qpair = &rqpair.qpair;
860 	rdma_req.req.xfer = SPDK_NVME_DATA_CONTROLLER_TO_HOST;
861 
862 	rtransport.transport.opts = g_rdma_ut_transport_opts;
863 	rtransport.data_wr_pool = NULL;
864 
865 	device.attr.device_cap_flags = 0;
866 	device.map = NULL;
867 	sgl->keyed.key = 0xEEEE;
868 	sgl->address = 0xFFFF;
869 	rdma_req.recv->buf = (void *)0xDDDD;
870 
871 	/* Test 1: sgl type: keyed data block subtype: address */
872 	sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
873 	sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
874 
875 	/* Part 1: simple I/O, one SGL smaller than the transport io unit size, block size 512 */
876 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
877 	reset_nvmf_rdma_request(&rdma_req);
878 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
879 	dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16;
880 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
881 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
882 			  0, 0, 0, 0, 0, &dif_opts);
883 	rdma_req.req.dif_enabled = true;
884 	rtransport.transport.opts.io_unit_size = data_bs * 8;
885 	rdma_req.req.qpair->transport = &rtransport.transport;
886 	sgl->keyed.length = data_bs * 4;
887 
888 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
889 
890 	CU_ASSERT(rc == 0);
891 	CU_ASSERT(rdma_req.req.data_from_pool == true);
892 	CU_ASSERT(rdma_req.req.length == data_bs * 4);
893 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
894 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
895 	CU_ASSERT(rdma_req.req.iovcnt == 1);
896 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
897 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
898 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
899 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
900 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
901 
902 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
903 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rdma_req.req.length);
904 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
905 
906 	/* Part 2: simple I/O, one SGL equal to io unit size, io_unit_size is not aligned with md_size,
907 		block size 512 */
908 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
909 	reset_nvmf_rdma_request(&rdma_req);
910 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
911 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
912 			  0, 0, 0, 0, 0, &dif_opts);
913 	rdma_req.req.dif_enabled = true;
914 	rtransport.transport.opts.io_unit_size = data_bs * 4;
915 	sgl->keyed.length = data_bs * 4;
916 
917 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
918 
919 	CU_ASSERT(rc == 0);
920 	CU_ASSERT(rdma_req.req.data_from_pool == true);
921 	CU_ASSERT(rdma_req.req.length == data_bs * 4);
922 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
923 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
924 	CU_ASSERT(rdma_req.req.iovcnt == 2);
925 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
926 	CU_ASSERT(rdma_req.data.wr.num_sge == 5);
927 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
928 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
929 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
930 
931 	for (i = 0; i < 3; ++i) {
932 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
933 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
934 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
935 	}
936 	CU_ASSERT(rdma_req.data.wr.sg_list[3].addr == 0x2000 + 3 * (data_bs + md_size));
937 	CU_ASSERT(rdma_req.data.wr.sg_list[3].length == 488);
938 	CU_ASSERT(rdma_req.data.wr.sg_list[3].lkey == RDMA_UT_LKEY);
939 
940 	/* 2nd buffer consumed */
941 	CU_ASSERT(rdma_req.data.wr.sg_list[4].addr == 0x2000);
942 	CU_ASSERT(rdma_req.data.wr.sg_list[4].length == 24);
943 	CU_ASSERT(rdma_req.data.wr.sg_list[4].lkey == RDMA_UT_LKEY);
944 
945 	/* Part 3: simple I/O, one SGL equal io unit size, io_unit_size is equal to block size 512 bytes */
946 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
947 	reset_nvmf_rdma_request(&rdma_req);
948 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
949 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
950 			  0, 0, 0, 0, 0, &dif_opts);
951 	rdma_req.req.dif_enabled = true;
952 	rtransport.transport.opts.io_unit_size = data_bs;
953 	sgl->keyed.length = data_bs;
954 
955 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
956 
957 	CU_ASSERT(rc == 0);
958 	CU_ASSERT(rdma_req.req.data_from_pool == true);
959 	CU_ASSERT(rdma_req.req.length == data_bs);
960 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
961 	CU_ASSERT(rdma_req.req.dif.elba_length == data_bs + md_size);
962 	CU_ASSERT(rdma_req.req.iovcnt == 2);
963 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
964 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
965 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
966 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
967 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
968 
969 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
970 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == data_bs);
971 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
972 
973 	CU_ASSERT(rdma_req.req.iovcnt == 2);
974 	CU_ASSERT(rdma_req.req.iov[0].iov_base == (void *)((unsigned long)0x2000));
975 	CU_ASSERT(rdma_req.req.iov[0].iov_len == data_bs);
976 	/* 2nd buffer consumed for metadata */
977 	CU_ASSERT(rdma_req.req.iov[1].iov_base == (void *)((unsigned long)0x2000));
978 	CU_ASSERT(rdma_req.req.iov[1].iov_len == md_size);
979 
980 	/* Part 4: simple I/O, one SGL equal io unit size, io_unit_size is aligned with md_size,
981 	   block size 512 */
982 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
983 	reset_nvmf_rdma_request(&rdma_req);
984 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
985 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
986 			  0, 0, 0, 0, 0, &dif_opts);
987 	rdma_req.req.dif_enabled = true;
988 	rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 4;
989 	sgl->keyed.length = data_bs * 4;
990 
991 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
992 
993 	CU_ASSERT(rc == 0);
994 	CU_ASSERT(rdma_req.req.data_from_pool == true);
995 	CU_ASSERT(rdma_req.req.length == data_bs * 4);
996 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
997 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
998 	CU_ASSERT(rdma_req.req.iovcnt == 1);
999 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
1000 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
1001 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1002 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1003 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
1004 
1005 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
1006 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rdma_req.req.length);
1007 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
1008 
1009 	/* Part 5: simple I/O, one SGL equal to 2x io unit size, io_unit_size is aligned with md_size,
1010 	   block size 512 */
1011 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
1012 	reset_nvmf_rdma_request(&rdma_req);
1013 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1014 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
1015 			  0, 0, 0, 0, 0, &dif_opts);
1016 	rdma_req.req.dif_enabled = true;
1017 	rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 2;
1018 	sgl->keyed.length = data_bs * 4;
1019 
1020 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1021 
1022 	CU_ASSERT(rc == 0);
1023 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1024 	CU_ASSERT(rdma_req.req.length == data_bs * 4);
1025 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1026 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
1027 	CU_ASSERT(rdma_req.req.iovcnt == 2);
1028 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
1029 	CU_ASSERT(rdma_req.data.wr.num_sge == 2);
1030 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1031 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1032 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
1033 
1034 	for (i = 0; i < 2; ++i) {
1035 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
1036 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs * 2);
1037 	}
1038 
1039 	/* Part 6: simple I/O, one SGL larger than the transport io unit size, io_unit_size is not aligned to md_size,
1040 	   block size 512 */
1041 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
1042 	reset_nvmf_rdma_request(&rdma_req);
1043 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1044 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
1045 			  0, 0, 0, 0, 0, &dif_opts);
1046 	rdma_req.req.dif_enabled = true;
1047 	rtransport.transport.opts.io_unit_size = data_bs * 4;
1048 	sgl->keyed.length = data_bs * 6;
1049 
1050 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1051 
1052 	CU_ASSERT(rc == 0);
1053 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1054 	CU_ASSERT(rdma_req.req.length == data_bs * 6);
1055 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1056 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 6);
1057 	CU_ASSERT(rdma_req.req.iovcnt == 2);
1058 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
1059 	CU_ASSERT(rdma_req.data.wr.num_sge == 7);
1060 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1061 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1062 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
1063 
1064 	for (i = 0; i < 3; ++i) {
1065 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
1066 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
1067 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
1068 	}
1069 	CU_ASSERT(rdma_req.data.wr.sg_list[3].addr == 0x2000 + 3 * (data_bs + md_size));
1070 	CU_ASSERT(rdma_req.data.wr.sg_list[3].length == 488);
1071 	CU_ASSERT(rdma_req.data.wr.sg_list[3].lkey == RDMA_UT_LKEY);
1072 
1073 	/* 2nd IO buffer consumed */
1074 	CU_ASSERT(rdma_req.data.wr.sg_list[4].addr == 0x2000);
1075 	CU_ASSERT(rdma_req.data.wr.sg_list[4].length == 24);
1076 	CU_ASSERT(rdma_req.data.wr.sg_list[4].lkey == RDMA_UT_LKEY);
1077 
1078 	CU_ASSERT(rdma_req.data.wr.sg_list[5].addr == 0x2000 + 24 + md_size);
1079 	CU_ASSERT(rdma_req.data.wr.sg_list[5].length == 512);
1080 	CU_ASSERT(rdma_req.data.wr.sg_list[5].lkey == RDMA_UT_LKEY);
1081 
1082 	CU_ASSERT(rdma_req.data.wr.sg_list[6].addr == 0x2000 + 24 + 512 + md_size * 2);
1083 	CU_ASSERT(rdma_req.data.wr.sg_list[6].length == 512);
1084 	CU_ASSERT(rdma_req.data.wr.sg_list[6].lkey == RDMA_UT_LKEY);
1085 
1086 	/* Part 7: simple I/O, number of SGL entries exceeds the number of entries
1087 	   one WR can hold. Additional WR is chained */
1088 	MOCK_SET(spdk_iobuf_get, data2_buffer);
1089 	MOCK_SET(spdk_mempool_get, data2_buffer);
1090 	reset_nvmf_rdma_request(&rdma_req);
1091 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1092 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
1093 			  0, 0, 0, 0, 0, &dif_opts);
1094 	rdma_req.req.dif_enabled = true;
1095 	rtransport.transport.opts.io_unit_size = data_bs * 16;
1096 	sgl->keyed.length = data_bs * 16;
1097 
1098 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1099 
1100 	CU_ASSERT(rc == 0);
1101 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1102 	CU_ASSERT(rdma_req.req.length == data_bs * 16);
1103 	CU_ASSERT(rdma_req.req.iovcnt == 2);
1104 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1105 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 16);
1106 	CU_ASSERT(rdma_req.req.iov[0].iov_base == data2_buffer);
1107 	CU_ASSERT(rdma_req.data.wr.num_sge == 16);
1108 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1109 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1110 
1111 	for (i = 0; i < 15; ++i) {
1112 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (uintptr_t)data2_buffer + i * (data_bs + md_size));
1113 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
1114 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
1115 	}
1116 
1117 	/* 8192 - (512 + 8) * 15 = 392 */
1118 	CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (uintptr_t)data2_buffer + i * (data_bs + md_size));
1119 	CU_ASSERT(rdma_req.data.wr.sg_list[i].length == 392);
1120 	CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
1121 
1122 	/* additional wr from pool */
1123 	CU_ASSERT(rdma_req.data.wr.next == (void *)&data2->wr);
1124 	CU_ASSERT(rdma_req.data.wr.next->num_sge == 1);
1125 	CU_ASSERT(rdma_req.data.wr.next->next == &rdma_req.rsp.wr);
1126 	/* 2nd IO buffer */
1127 	CU_ASSERT(data2->wr.sg_list[0].addr == (uintptr_t)data2_buffer);
1128 	CU_ASSERT(data2->wr.sg_list[0].length == 120);
1129 	CU_ASSERT(data2->wr.sg_list[0].lkey == RDMA_UT_LKEY);
1130 
1131 	/* Part 8: simple I/O, data with metadata do not fit to 1 io_buffer */
1132 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
1133 	reset_nvmf_rdma_request(&rdma_req);
1134 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1135 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
1136 			  0, 0, 0, 0, 0, &dif_opts);
1137 	rdma_req.req.dif_enabled = true;
1138 	rtransport.transport.opts.io_unit_size = 516;
1139 	sgl->keyed.length = data_bs * 2;
1140 
1141 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1142 
1143 	CU_ASSERT(rc == 0);
1144 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1145 	CU_ASSERT(rdma_req.req.length == data_bs * 2);
1146 	CU_ASSERT(rdma_req.req.iovcnt == 3);
1147 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1148 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 2);
1149 	CU_ASSERT(rdma_req.req.iov[0].iov_base == (void *)0x2000);
1150 	CU_ASSERT(rdma_req.data.wr.num_sge == 2);
1151 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1152 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1153 
1154 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
1155 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == 512);
1156 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
1157 
1158 	/* 2nd IO buffer consumed, offset 4 bytes due to part of the metadata
1159 	  is located at the beginning of that buffer */
1160 	CU_ASSERT(rdma_req.data.wr.sg_list[1].addr == 0x2000 + 4);
1161 	CU_ASSERT(rdma_req.data.wr.sg_list[1].length == 512);
1162 	CU_ASSERT(rdma_req.data.wr.sg_list[1].lkey == RDMA_UT_LKEY);
1163 
1164 	/* Test 2: Multi SGL */
1165 	sgl->generic.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1166 	sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1167 	sgl->address = 0;
1168 	rdma_req.recv->buf = (void *)&sgl_desc;
1169 	MOCK_SET(spdk_mempool_get, data_buffer);
1170 	MOCK_SET(spdk_iobuf_get, data_buffer);
1171 
1172 	/* part 1: 2 segments each with 1 wr. io_unit_size is aligned with data_bs + md_size */
1173 	reset_nvmf_rdma_request(&rdma_req);
1174 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1175 			  SPDK_DIF_TYPE1,
1176 			  SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
1177 			  0, 0, 0, 0, 0, &dif_opts);
1178 	rdma_req.req.dif_enabled = true;
1179 	rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 4;
1180 	sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
1181 
1182 	for (i = 0; i < 2; i++) {
1183 		sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1184 		sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1185 		sgl_desc[i].keyed.length = data_bs * 4;
1186 		sgl_desc[i].address = 0x4000 + i * data_bs * 4;
1187 		sgl_desc[i].keyed.key = 0x44;
1188 	}
1189 
1190 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1191 
1192 	CU_ASSERT(rc == 0);
1193 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1194 	CU_ASSERT(rdma_req.req.length == data_bs * 4 * 2);
1195 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1196 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4 * 2);
1197 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
1198 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == (uintptr_t)(data_buffer));
1199 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == data_bs * 4);
1200 
1201 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
1202 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
1203 	CU_ASSERT(rdma_req.data.wr.next == &data->wr);
1204 	CU_ASSERT(data->wr.wr.rdma.rkey == 0x44);
1205 	CU_ASSERT(data->wr.wr.rdma.remote_addr == 0x4000 + data_bs * 4);
1206 	CU_ASSERT(data->wr.num_sge == 1);
1207 	CU_ASSERT(data->wr.sg_list[0].addr == (uintptr_t)(data_buffer));
1208 	CU_ASSERT(data->wr.sg_list[0].length == data_bs * 4);
1209 
1210 	CU_ASSERT(data->wr.next == &rdma_req.rsp.wr);
1211 	reset_nvmf_rdma_request(&rdma_req);
1212 }
1213 
1214 static void
1215 test_nvmf_rdma_opts_init(void)
1216 {
1217 	struct spdk_nvmf_transport_opts	opts = {};
1218 
1219 	nvmf_rdma_opts_init(&opts);
1220 	CU_ASSERT(opts.max_queue_depth == SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH);
1221 	CU_ASSERT(opts.max_qpairs_per_ctrlr ==	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR);
1222 	CU_ASSERT(opts.in_capsule_data_size ==	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE);
1223 	CU_ASSERT(opts.max_io_size == SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE);
1224 	CU_ASSERT(opts.io_unit_size == SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
1225 	CU_ASSERT(opts.max_aq_depth == SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH);
1226 	CU_ASSERT(opts.num_shared_buffers == SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS);
1227 	CU_ASSERT(opts.buf_cache_size == SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE);
1228 	CU_ASSERT(opts.dif_insert_or_strip == SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP);
1229 	CU_ASSERT(opts.abort_timeout_sec == SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC);
1230 	CU_ASSERT(opts.transport_specific == NULL);
1231 }
1232 
1233 static void
1234 test_nvmf_rdma_request_free_data(void)
1235 {
1236 	struct spdk_nvmf_rdma_request rdma_req = {};
1237 	struct spdk_nvmf_rdma_transport rtransport = {};
1238 	struct spdk_nvmf_rdma_request_data *next_request_data = NULL;
1239 
1240 	MOCK_CLEAR(spdk_mempool_get);
1241 	rtransport.data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
1242 				  SPDK_NVMF_MAX_SGL_ENTRIES,
1243 				  sizeof(struct spdk_nvmf_rdma_request_data),
1244 				  SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
1245 				  SPDK_ENV_SOCKET_ID_ANY);
1246 	next_request_data = spdk_mempool_get(rtransport.data_wr_pool);
1247 	SPDK_CU_ASSERT_FATAL(((struct test_mempool *)rtransport.data_wr_pool)->count ==
1248 			     SPDK_NVMF_MAX_SGL_ENTRIES - 1);
1249 	next_request_data->wr.wr_id = (uint64_t)&rdma_req.data_wr;
1250 	next_request_data->wr.num_sge = 2;
1251 	next_request_data->wr.next = NULL;
1252 	rdma_req.data.wr.next = &next_request_data->wr;
1253 	rdma_req.data.wr.wr_id = (uint64_t)&rdma_req.data_wr;
1254 	rdma_req.data.wr.num_sge = 2;
1255 	rdma_req.transfer_wr = &rdma_req.data.wr;
1256 
1257 	nvmf_rdma_request_free_data(&rdma_req, &rtransport);
1258 	/* Check if next_request_data put into memory pool */
1259 	CU_ASSERT(((struct test_mempool *)rtransport.data_wr_pool)->count == SPDK_NVMF_MAX_SGL_ENTRIES);
1260 	CU_ASSERT(rdma_req.data.wr.num_sge == 0);
1261 
1262 	spdk_mempool_free(rtransport.data_wr_pool);
1263 }
1264 
1265 static void
1266 test_nvmf_rdma_resources_create(void)
1267 {
1268 	static struct spdk_nvmf_rdma_resources *rdma_resource;
1269 	struct spdk_nvmf_rdma_resource_opts opts = {};
1270 	struct spdk_nvmf_rdma_qpair qpair = {};
1271 	struct spdk_nvmf_rdma_recv *recv = NULL;
1272 	struct spdk_nvmf_rdma_request *req = NULL;
1273 	const int DEPTH = 128;
1274 
1275 	opts.max_queue_depth = DEPTH;
1276 	opts.in_capsule_data_size = 4096;
1277 	opts.shared = true;
1278 	opts.qpair = &qpair;
1279 
1280 	rdma_resource = nvmf_rdma_resources_create(&opts);
1281 	CU_ASSERT(rdma_resource != NULL);
1282 	/* Just check first and last entry */
1283 	recv = &rdma_resource->recvs[0];
1284 	req = &rdma_resource->reqs[0];
1285 	CU_ASSERT(recv->rdma_wr.type == RDMA_WR_TYPE_RECV);
1286 	CU_ASSERT((uintptr_t)recv->buf == (uintptr_t)(rdma_resource->bufs));
1287 	CU_ASSERT(recv->sgl[0].addr == (uintptr_t)&rdma_resource->cmds[0]);
1288 	CU_ASSERT(recv->sgl[0].length == sizeof(rdma_resource->cmds[0]));
1289 	CU_ASSERT(recv->sgl[0].lkey == RDMA_UT_LKEY);
1290 	CU_ASSERT(recv->wr.num_sge == 2);
1291 	CU_ASSERT(recv->wr.wr_id == (uintptr_t)&rdma_resource->recvs[0].rdma_wr);
1292 	CU_ASSERT(recv->wr.sg_list == rdma_resource->recvs[0].sgl);
1293 	CU_ASSERT(req->req.rsp == &rdma_resource->cpls[0]);
1294 	CU_ASSERT(req->rsp.sgl[0].addr == (uintptr_t)&rdma_resource->cpls[0]);
1295 	CU_ASSERT(req->rsp.sgl[0].length == sizeof(rdma_resource->cpls[0]));
1296 	CU_ASSERT(req->rsp.sgl[0].lkey == RDMA_UT_LKEY);
1297 	CU_ASSERT(req->rsp_wr.type == RDMA_WR_TYPE_SEND);
1298 	CU_ASSERT(req->rsp.wr.wr_id == (uintptr_t)&rdma_resource->reqs[0].rsp_wr);
1299 	CU_ASSERT(req->rsp.wr.next == NULL);
1300 	CU_ASSERT(req->rsp.wr.opcode == IBV_WR_SEND);
1301 	CU_ASSERT(req->rsp.wr.send_flags == IBV_SEND_SIGNALED);
1302 	CU_ASSERT(req->rsp.wr.sg_list == rdma_resource->reqs[0].rsp.sgl);
1303 	CU_ASSERT(req->rsp.wr.num_sge == NVMF_DEFAULT_RSP_SGE);
1304 	CU_ASSERT(req->data_wr.type == RDMA_WR_TYPE_DATA);
1305 	CU_ASSERT(req->data.wr.wr_id == (uintptr_t)&rdma_resource->reqs[0].data_wr);
1306 	CU_ASSERT(req->data.wr.next == NULL);
1307 	CU_ASSERT(req->data.wr.send_flags == IBV_SEND_SIGNALED);
1308 	CU_ASSERT(req->data.wr.sg_list == rdma_resource->reqs[0].data.sgl);
1309 	CU_ASSERT(req->data.wr.num_sge == SPDK_NVMF_MAX_SGL_ENTRIES);
1310 	CU_ASSERT(req->state == RDMA_REQUEST_STATE_FREE);
1311 
1312 	recv = &rdma_resource->recvs[DEPTH - 1];
1313 	req = &rdma_resource->reqs[DEPTH - 1];
1314 	CU_ASSERT(recv->rdma_wr.type == RDMA_WR_TYPE_RECV);
1315 	CU_ASSERT((uintptr_t)recv->buf == (uintptr_t)(rdma_resource->bufs +
1316 			(DEPTH - 1) * 4096));
1317 	CU_ASSERT(recv->sgl[0].addr == (uintptr_t)&rdma_resource->cmds[DEPTH - 1]);
1318 	CU_ASSERT(recv->sgl[0].length == sizeof(rdma_resource->cmds[DEPTH - 1]));
1319 	CU_ASSERT(recv->sgl[0].lkey == RDMA_UT_LKEY);
1320 	CU_ASSERT(recv->wr.num_sge == 2);
1321 	CU_ASSERT(recv->wr.wr_id == (uintptr_t)&rdma_resource->recvs[DEPTH - 1].rdma_wr);
1322 	CU_ASSERT(recv->wr.sg_list == rdma_resource->recvs[DEPTH - 1].sgl);
1323 	CU_ASSERT(req->req.rsp == &rdma_resource->cpls[DEPTH - 1]);
1324 	CU_ASSERT(req->rsp.sgl[0].addr == (uintptr_t)&rdma_resource->cpls[DEPTH - 1]);
1325 	CU_ASSERT(req->rsp.sgl[0].length == sizeof(rdma_resource->cpls[DEPTH - 1]));
1326 	CU_ASSERT(req->rsp.sgl[0].lkey == RDMA_UT_LKEY);
1327 	CU_ASSERT(req->rsp_wr.type == RDMA_WR_TYPE_SEND);
1328 	CU_ASSERT(req->rsp.wr.wr_id == (uintptr_t)&req->rsp_wr);
1329 	CU_ASSERT(req->rsp.wr.next == NULL);
1330 	CU_ASSERT(req->rsp.wr.opcode == IBV_WR_SEND);
1331 	CU_ASSERT(req->rsp.wr.send_flags == IBV_SEND_SIGNALED);
1332 	CU_ASSERT(req->rsp.wr.sg_list == rdma_resource->reqs[DEPTH - 1].rsp.sgl);
1333 	CU_ASSERT(req->rsp.wr.num_sge == NVMF_DEFAULT_RSP_SGE);
1334 	CU_ASSERT(req->data_wr.type == RDMA_WR_TYPE_DATA);
1335 	CU_ASSERT(req->data.wr.wr_id == (uintptr_t)&req->data_wr);
1336 	CU_ASSERT(req->data.wr.next == NULL);
1337 	CU_ASSERT(req->data.wr.send_flags == IBV_SEND_SIGNALED);
1338 	CU_ASSERT(req->data.wr.sg_list == rdma_resource->reqs[DEPTH - 1].data.sgl);
1339 	CU_ASSERT(req->data.wr.num_sge == SPDK_NVMF_MAX_SGL_ENTRIES);
1340 	CU_ASSERT(req->state == RDMA_REQUEST_STATE_FREE);
1341 
1342 	nvmf_rdma_resources_destroy(rdma_resource);
1343 }
1344 
1345 static void
1346 test_nvmf_rdma_qpair_compare(void)
1347 {
1348 	struct spdk_nvmf_rdma_qpair rqpair1 = {}, rqpair2 = {};
1349 
1350 	rqpair1.qp_num = 0;
1351 	rqpair2.qp_num = UINT32_MAX;
1352 
1353 	CU_ASSERT(nvmf_rdma_qpair_compare(&rqpair1, &rqpair2) < 0);
1354 	CU_ASSERT(nvmf_rdma_qpair_compare(&rqpair2, &rqpair1) > 0);
1355 }
1356 
1357 static void
1358 test_nvmf_rdma_resize_cq(void)
1359 {
1360 	int rc = -1;
1361 	int tnum_wr = 0;
1362 	int tnum_cqe = 0;
1363 	struct spdk_nvmf_rdma_qpair rqpair = {};
1364 	struct spdk_nvmf_rdma_poller rpoller = {};
1365 	struct spdk_nvmf_rdma_device rdevice = {};
1366 	struct ibv_context ircontext = {};
1367 	struct ibv_device idevice = {};
1368 
1369 	rdevice.context = &ircontext;
1370 	rqpair.poller = &rpoller;
1371 	ircontext.device = &idevice;
1372 
1373 	/* Test1: Current capacity support required size. */
1374 	rpoller.required_num_wr = 10;
1375 	rpoller.num_cqe = 20;
1376 	rqpair.max_queue_depth = 2;
1377 	tnum_wr = rpoller.required_num_wr;
1378 	tnum_cqe = rpoller.num_cqe;
1379 
1380 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1381 	CU_ASSERT(rc == 0);
1382 	CU_ASSERT(rpoller.required_num_wr == 10 + MAX_WR_PER_QP(rqpair.max_queue_depth));
1383 	CU_ASSERT(rpoller.required_num_wr > tnum_wr);
1384 	CU_ASSERT(rpoller.num_cqe == tnum_cqe);
1385 
1386 	/* Test2: iWARP doesn't support CQ resize. */
1387 	tnum_wr = rpoller.required_num_wr;
1388 	tnum_cqe = rpoller.num_cqe;
1389 	idevice.transport_type = IBV_TRANSPORT_IWARP;
1390 
1391 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1392 	CU_ASSERT(rc == -1);
1393 	CU_ASSERT(rpoller.required_num_wr == tnum_wr);
1394 	CU_ASSERT(rpoller.num_cqe == tnum_cqe);
1395 
1396 
1397 	/* Test3: RDMA CQE requirement exceeds device max_cqe limitation. */
1398 	tnum_wr = rpoller.required_num_wr;
1399 	tnum_cqe = rpoller.num_cqe;
1400 	idevice.transport_type = IBV_TRANSPORT_UNKNOWN;
1401 	rdevice.attr.max_cqe = 3;
1402 
1403 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1404 	CU_ASSERT(rc == -1);
1405 	CU_ASSERT(rpoller.required_num_wr == tnum_wr);
1406 	CU_ASSERT(rpoller.num_cqe == tnum_cqe);
1407 
1408 	/* Test4: RDMA CQ resize failed. */
1409 	tnum_wr = rpoller.required_num_wr;
1410 	tnum_cqe = rpoller.num_cqe;
1411 	idevice.transport_type = IBV_TRANSPORT_IB;
1412 	rdevice.attr.max_cqe = 30;
1413 	MOCK_SET(ibv_resize_cq, -1);
1414 
1415 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1416 	CU_ASSERT(rc == -1);
1417 	CU_ASSERT(rpoller.required_num_wr == tnum_wr);
1418 	CU_ASSERT(rpoller.num_cqe == tnum_cqe);
1419 
1420 	/* Test5: RDMA CQ resize success. rsize = MIN(MAX(num_cqe * 2, required_num_wr), device->attr.max_cqe). */
1421 	tnum_wr = rpoller.required_num_wr;
1422 	tnum_cqe = rpoller.num_cqe;
1423 	MOCK_SET(ibv_resize_cq, 0);
1424 
1425 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1426 	CU_ASSERT(rc == 0);
1427 	CU_ASSERT(rpoller.num_cqe = 30);
1428 	CU_ASSERT(rpoller.required_num_wr == 18 + MAX_WR_PER_QP(rqpair.max_queue_depth));
1429 	CU_ASSERT(rpoller.required_num_wr > tnum_wr);
1430 	CU_ASSERT(rpoller.num_cqe > tnum_cqe);
1431 }
1432 
1433 int
1434 main(int argc, char **argv)
1435 {
1436 	CU_pSuite	suite = NULL;
1437 	unsigned int	num_failures;
1438 
1439 	CU_initialize_registry();
1440 
1441 	suite = CU_add_suite("nvmf", NULL, NULL);
1442 
1443 	CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_parse_sgl);
1444 	CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_process);
1445 	CU_ADD_TEST(suite, test_nvmf_rdma_get_optimal_poll_group);
1446 	CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_parse_sgl_with_md);
1447 	CU_ADD_TEST(suite, test_nvmf_rdma_opts_init);
1448 	CU_ADD_TEST(suite, test_nvmf_rdma_request_free_data);
1449 	CU_ADD_TEST(suite, test_nvmf_rdma_resources_create);
1450 	CU_ADD_TEST(suite, test_nvmf_rdma_qpair_compare);
1451 	CU_ADD_TEST(suite, test_nvmf_rdma_resize_cq);
1452 
1453 	num_failures = spdk_ut_run_tests(argc, argv, NULL);
1454 	CU_cleanup_registry();
1455 	return num_failures;
1456 }
1457