xref: /spdk/test/unit/lib/nvmf/rdma.c/rdma_ut.c (revision 12fbe739a31b09aff0d05f354d4f3bbef99afc55)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2018 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019, 2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 #include "spdk_internal/cunit.h"
9 #include "common/lib/test_env.c"
10 #include "common/lib/test_iobuf.c"
11 #include "common/lib/test_rdma.c"
12 #include "nvmf/rdma.c"
13 #include "nvmf/transport.c"
14 
15 #define RDMA_UT_UNITS_IN_MAX_IO 16
16 
17 struct spdk_nvmf_transport_opts g_rdma_ut_transport_opts = {
18 	.max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH,
19 	.max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR,
20 	.in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE,
21 	.max_io_size = (SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE * RDMA_UT_UNITS_IN_MAX_IO),
22 	.io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE,
23 	.max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH,
24 	.num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS,
25 };
26 
27 SPDK_LOG_REGISTER_COMPONENT(nvmf)
28 DEFINE_STUB(spdk_mem_map_set_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
29 		uint64_t size, uint64_t translation), 0);
30 DEFINE_STUB(spdk_mem_map_clear_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
31 		uint64_t size), 0);
32 DEFINE_STUB(spdk_mem_map_alloc, struct spdk_mem_map *, (uint64_t default_translation,
33 		const struct spdk_mem_map_ops *ops, void *cb_ctx), NULL);
34 DEFINE_STUB(spdk_nvmf_qpair_disconnect, int, (struct spdk_nvmf_qpair *qpair,
35 		nvmf_qpair_disconnect_cb cb_fn, void *ctx), 0);
36 DEFINE_STUB(spdk_nvmf_qpair_get_listen_trid, int,
37 	    (struct spdk_nvmf_qpair *qpair, struct spdk_nvme_transport_id *trid), 0);
38 DEFINE_STUB_V(spdk_mem_map_free, (struct spdk_mem_map **pmap));
39 
40 DEFINE_STUB_V(spdk_nvmf_request_exec, (struct spdk_nvmf_request *req));
41 DEFINE_STUB(spdk_nvmf_request_complete, int, (struct spdk_nvmf_request *req), 0);
42 DEFINE_STUB(spdk_nvme_transport_id_compare, int, (const struct spdk_nvme_transport_id *trid1,
43 		const struct spdk_nvme_transport_id *trid2), 0);
44 DEFINE_STUB_V(spdk_nvmf_ctrlr_abort_aer, (struct spdk_nvmf_ctrlr *ctrlr));
45 DEFINE_STUB(spdk_nvmf_request_get_dif_ctx, bool, (struct spdk_nvmf_request *req,
46 		struct spdk_dif_ctx *dif_ctx), false);
47 DEFINE_STUB_V(spdk_nvme_trid_populate_transport, (struct spdk_nvme_transport_id *trid,
48 		enum spdk_nvme_transport_type trtype));
49 DEFINE_STUB_V(spdk_nvmf_tgt_new_qpair, (struct spdk_nvmf_tgt *tgt, struct spdk_nvmf_qpair *qpair));
50 DEFINE_STUB(nvmf_ctrlr_abort_request, int, (struct spdk_nvmf_request *req), 0);
51 DEFINE_STUB(spdk_nvme_transport_id_adrfam_str, const char *, (enum spdk_nvmf_adrfam adrfam), NULL);
52 DEFINE_STUB(ibv_dereg_mr, int, (struct ibv_mr *mr), 0);
53 DEFINE_STUB(ibv_resize_cq, int, (struct ibv_cq *cq, int cqe), 0);
54 DEFINE_STUB(spdk_mempool_lookup, struct spdk_mempool *, (const char *name), NULL);
55 
56 /* ibv_reg_mr can be a macro, need to undefine it */
57 #ifdef ibv_reg_mr
58 #undef ibv_reg_mr
59 #endif
60 
61 DEFINE_RETURN_MOCK(ibv_reg_mr, struct ibv_mr *);
62 struct ibv_mr *
63 ibv_reg_mr(struct ibv_pd *pd, void *addr, size_t length, int access)
64 {
65 	HANDLE_RETURN_MOCK(ibv_reg_mr);
66 	if (length > 0) {
67 		return &g_rdma_mr;
68 	} else {
69 		return NULL;
70 	}
71 }
72 
73 int
74 ibv_query_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr,
75 	     int attr_mask, struct ibv_qp_init_attr *init_attr)
76 {
77 	if (qp == NULL) {
78 		return -1;
79 	} else {
80 		attr->port_num = 80;
81 
82 		if (qp->state == IBV_QPS_ERR) {
83 			attr->qp_state = 10;
84 		} else {
85 			attr->qp_state = IBV_QPS_INIT;
86 		}
87 
88 		return 0;
89 	}
90 }
91 
92 const char *
93 spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
94 {
95 	switch (trtype) {
96 	case SPDK_NVME_TRANSPORT_PCIE:
97 		return "PCIe";
98 	case SPDK_NVME_TRANSPORT_RDMA:
99 		return "RDMA";
100 	case SPDK_NVME_TRANSPORT_FC:
101 		return "FC";
102 	default:
103 		return NULL;
104 	}
105 }
106 
107 int
108 spdk_nvme_transport_id_populate_trstring(struct spdk_nvme_transport_id *trid, const char *trstring)
109 {
110 	int len, i;
111 
112 	if (trstring == NULL) {
113 		return -EINVAL;
114 	}
115 
116 	len = strnlen(trstring, SPDK_NVMF_TRSTRING_MAX_LEN);
117 	if (len == SPDK_NVMF_TRSTRING_MAX_LEN) {
118 		return -EINVAL;
119 	}
120 
121 	/* cast official trstring to uppercase version of input. */
122 	for (i = 0; i < len; i++) {
123 		trid->trstring[i] = toupper(trstring[i]);
124 	}
125 	return 0;
126 }
127 
128 static void
129 reset_nvmf_rdma_request(struct spdk_nvmf_rdma_request *rdma_req)
130 {
131 	int i;
132 
133 	rdma_req->req.length = 0;
134 	rdma_req->req.data_from_pool = false;
135 	rdma_req->data.wr.num_sge = 0;
136 	rdma_req->data.wr.wr.rdma.remote_addr = 0;
137 	rdma_req->data.wr.wr.rdma.rkey = 0;
138 	rdma_req->offset = 0;
139 	memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
140 
141 	for (i = 0; i < SPDK_NVMF_MAX_SGL_ENTRIES; i++) {
142 		rdma_req->req.iov[i].iov_base = 0;
143 		rdma_req->req.iov[i].iov_len = 0;
144 		rdma_req->data.wr.sg_list[i].addr = 0;
145 		rdma_req->data.wr.sg_list[i].length = 0;
146 		rdma_req->data.wr.sg_list[i].lkey = 0;
147 	}
148 	rdma_req->req.iovcnt = 0;
149 	if (rdma_req->req.stripped_data) {
150 		free(rdma_req->req.stripped_data);
151 		rdma_req->req.stripped_data = NULL;
152 	}
153 }
154 
155 static void
156 test_spdk_nvmf_rdma_request_parse_sgl(void)
157 {
158 	struct spdk_nvmf_rdma_transport rtransport;
159 	struct spdk_nvmf_rdma_device device;
160 	struct spdk_nvmf_rdma_request rdma_req = {};
161 	struct spdk_nvmf_rdma_recv recv;
162 	struct spdk_nvmf_rdma_poll_group group;
163 	struct spdk_nvmf_rdma_qpair rqpair;
164 	struct spdk_nvmf_rdma_poller poller;
165 	union nvmf_c2h_msg cpl;
166 	union nvmf_h2c_msg cmd;
167 	struct spdk_nvme_sgl_descriptor *sgl;
168 	struct spdk_nvme_sgl_descriptor sgl_desc[SPDK_NVMF_MAX_SGL_ENTRIES] = {{0}};
169 	struct spdk_nvmf_rdma_request_data data;
170 	int rc, i;
171 	uint32_t sgl_length;
172 
173 	data.wr.sg_list = data.sgl;
174 	group.group.transport = &rtransport.transport;
175 	poller.group = &group;
176 	rqpair.poller = &poller;
177 	rqpair.max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
178 
179 	sgl = &cmd.nvme_cmd.dptr.sgl1;
180 	rdma_req.recv = &recv;
181 	rdma_req.req.cmd = &cmd;
182 	rdma_req.req.rsp = &cpl;
183 	rdma_req.data.wr.sg_list = rdma_req.data.sgl;
184 	rdma_req.req.qpair = &rqpair.qpair;
185 	rdma_req.req.xfer = SPDK_NVME_DATA_CONTROLLER_TO_HOST;
186 
187 	rtransport.transport.opts = g_rdma_ut_transport_opts;
188 	rtransport.data_wr_pool = NULL;
189 
190 	device.attr.device_cap_flags = 0;
191 	sgl->keyed.key = 0xEEEE;
192 	sgl->address = 0xFFFF;
193 	rdma_req.recv->buf = (void *)0xDDDD;
194 
195 	/* Test 1: sgl type: keyed data block subtype: address */
196 	sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
197 	sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
198 
199 	/* Part 1: simple I/O, one SGL smaller than the transport io unit size */
200 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
201 	reset_nvmf_rdma_request(&rdma_req);
202 	sgl->keyed.length = rtransport.transport.opts.io_unit_size / 2;
203 
204 	device.map = (void *)0x0;
205 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
206 	CU_ASSERT(rc == 0);
207 	CU_ASSERT(rdma_req.req.data_from_pool == true);
208 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size / 2);
209 	CU_ASSERT((uint64_t)rdma_req.req.iovcnt == 1);
210 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
211 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
212 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
213 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
214 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
215 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
216 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rtransport.transport.opts.io_unit_size / 2);
217 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
218 
219 	/* Part 2: simple I/O, one SGL larger than the transport io unit size (equal to the max io size) */
220 	reset_nvmf_rdma_request(&rdma_req);
221 	sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO;
222 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
223 
224 	CU_ASSERT(rc == 0);
225 	CU_ASSERT(rdma_req.req.data_from_pool == true);
226 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO);
227 	CU_ASSERT(rdma_req.data.wr.num_sge == RDMA_UT_UNITS_IN_MAX_IO);
228 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
229 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
230 	for (i = 0; i < RDMA_UT_UNITS_IN_MAX_IO; i++) {
231 		CU_ASSERT((uint64_t)rdma_req.req.iov[i].iov_base == 0x2000);
232 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
233 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
234 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
235 	}
236 
237 	/* Part 3: simple I/O one SGL larger than the transport max io size */
238 	reset_nvmf_rdma_request(&rdma_req);
239 	sgl->keyed.length = rtransport.transport.opts.max_io_size * 2;
240 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
241 
242 	CU_ASSERT(rc == -1);
243 
244 	/* Part 4: Pretend there are no buffer pools */
245 	MOCK_SET(spdk_iobuf_get, NULL);
246 	reset_nvmf_rdma_request(&rdma_req);
247 	sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO;
248 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
249 
250 	CU_ASSERT(rc == 0);
251 	CU_ASSERT(rdma_req.req.data_from_pool == false);
252 	CU_ASSERT(rdma_req.req.iovcnt == 0);
253 	CU_ASSERT(rdma_req.data.wr.num_sge == 0);
254 	CU_ASSERT(rdma_req.req.iov[0].iov_base == NULL);
255 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0);
256 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == 0);
257 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == 0);
258 
259 	rdma_req.recv->buf = (void *)0xDDDD;
260 	/* Test 2: sgl type: keyed data block subtype: offset (in capsule data) */
261 	sgl->generic.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
262 	sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
263 
264 	/* Part 1: Normal I/O smaller than in capsule data size no offset */
265 	reset_nvmf_rdma_request(&rdma_req);
266 	sgl->address = 0;
267 	sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size;
268 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
269 
270 	CU_ASSERT(rc == 0);
271 	CU_ASSERT(rdma_req.req.iovcnt == 1);
272 	CU_ASSERT(rdma_req.req.iov[0].iov_base == (void *)0xDDDD);
273 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.in_capsule_data_size);
274 	CU_ASSERT(rdma_req.req.data_from_pool == false);
275 
276 	/* Part 2: I/O offset + length too large */
277 	reset_nvmf_rdma_request(&rdma_req);
278 	sgl->address = rtransport.transport.opts.in_capsule_data_size;
279 	sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size;
280 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
281 
282 	CU_ASSERT(rc == -1);
283 
284 	/* Part 3: I/O too large */
285 	reset_nvmf_rdma_request(&rdma_req);
286 	sgl->address = 0;
287 	sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size * 2;
288 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
289 
290 	CU_ASSERT(rc == -1);
291 
292 	/* Test 3: Multi SGL */
293 	sgl->generic.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
294 	sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
295 	sgl->address = 0;
296 	rdma_req.recv->buf = (void *)&sgl_desc;
297 	MOCK_SET(spdk_iobuf_get, &data);
298 	MOCK_SET(spdk_mempool_get, &data);
299 
300 	/* part 1: 2 segments each with 1 wr. */
301 	reset_nvmf_rdma_request(&rdma_req);
302 	sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
303 	for (i = 0; i < 2; i++) {
304 		sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
305 		sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
306 		sgl_desc[i].keyed.length = rtransport.transport.opts.io_unit_size;
307 		sgl_desc[i].address = 0x4000 + i * rtransport.transport.opts.io_unit_size;
308 		sgl_desc[i].keyed.key = 0x44;
309 	}
310 
311 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
312 
313 	CU_ASSERT(rc == 0);
314 	CU_ASSERT(rdma_req.req.data_from_pool == true);
315 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 2);
316 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
317 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
318 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
319 	CU_ASSERT(rdma_req.data.wr.next == &data.wr);
320 	CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
321 	CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size);
322 	CU_ASSERT(data.wr.num_sge == 1);
323 	CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
324 
325 	/* part 2: 2 segments, each with 1 wr containing 8 sge_elements */
326 	reset_nvmf_rdma_request(&rdma_req);
327 	sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
328 	for (i = 0; i < 2; i++) {
329 		sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
330 		sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
331 		sgl_desc[i].keyed.length = rtransport.transport.opts.io_unit_size * 8;
332 		sgl_desc[i].address = 0x4000 + i * 8 * rtransport.transport.opts.io_unit_size;
333 		sgl_desc[i].keyed.key = 0x44;
334 	}
335 
336 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
337 
338 	CU_ASSERT(rc == 0);
339 	CU_ASSERT(rdma_req.req.data_from_pool == true);
340 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 16);
341 	CU_ASSERT(rdma_req.req.iovcnt == 16);
342 	CU_ASSERT(rdma_req.data.wr.num_sge == 8);
343 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
344 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
345 	CU_ASSERT(rdma_req.data.wr.next == &data.wr);
346 	CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
347 	CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size * 8);
348 	CU_ASSERT(data.wr.num_sge == 8);
349 	CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
350 
351 	/* part 3: 2 segments, one very large, one very small */
352 	reset_nvmf_rdma_request(&rdma_req);
353 	for (i = 0; i < 2; i++) {
354 		sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
355 		sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
356 		sgl_desc[i].keyed.key = 0x44;
357 	}
358 
359 	sgl_desc[0].keyed.length = rtransport.transport.opts.io_unit_size * 15 +
360 				   rtransport.transport.opts.io_unit_size / 2;
361 	sgl_desc[0].address = 0x4000;
362 	sgl_desc[1].keyed.length = rtransport.transport.opts.io_unit_size / 2;
363 	sgl_desc[1].address = 0x4000 + rtransport.transport.opts.io_unit_size * 15 +
364 			      rtransport.transport.opts.io_unit_size / 2;
365 
366 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
367 
368 	CU_ASSERT(rc == 0);
369 	CU_ASSERT(rdma_req.req.data_from_pool == true);
370 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 16);
371 	CU_ASSERT(rdma_req.req.iovcnt == 16);
372 	CU_ASSERT(rdma_req.data.wr.num_sge == 16);
373 	for (i = 0; i < 15; i++) {
374 		CU_ASSERT(rdma_req.data.sgl[i].length == rtransport.transport.opts.io_unit_size);
375 	}
376 	CU_ASSERT(rdma_req.data.sgl[15].length == rtransport.transport.opts.io_unit_size / 2);
377 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
378 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
379 	CU_ASSERT(rdma_req.data.wr.next == &data.wr);
380 	CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
381 	CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size * 15 +
382 		  rtransport.transport.opts.io_unit_size / 2);
383 	CU_ASSERT(data.sgl[0].length == rtransport.transport.opts.io_unit_size / 2);
384 	CU_ASSERT(data.wr.num_sge == 1);
385 	CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
386 
387 	/* part 4: 2 SGL descriptors, each length is transport buffer / 2
388 	 * 1 transport buffers should be allocated */
389 	reset_nvmf_rdma_request(&rdma_req);
390 	sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
391 	sgl_length = rtransport.transport.opts.io_unit_size / 2;
392 	for (i = 0; i < 2; i++) {
393 		sgl_desc[i].keyed.length = sgl_length;
394 		sgl_desc[i].address = 0x4000 + i * sgl_length;
395 	}
396 
397 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
398 
399 	CU_ASSERT(rc == 0);
400 	CU_ASSERT(rdma_req.req.data_from_pool == true);
401 	CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size);
402 	CU_ASSERT(rdma_req.req.iovcnt == 1);
403 
404 	CU_ASSERT(rdma_req.data.sgl[0].length == sgl_length);
405 	/* We mocked mempool_get to return address of data variable. Mempool is used
406 	 * to get both additional WRs and data buffers, so data points to &data */
407 	CU_ASSERT(rdma_req.data.sgl[0].addr == (uint64_t)&data);
408 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
409 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
410 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
411 	CU_ASSERT(rdma_req.data.wr.next == &data.wr);
412 
413 	CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
414 	CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + sgl_length);
415 	CU_ASSERT(data.sgl[0].length == sgl_length);
416 	CU_ASSERT(data.sgl[0].addr == (uint64_t)&data + sgl_length);
417 	CU_ASSERT(data.wr.num_sge == 1);
418 
419 	MOCK_CLEAR(spdk_mempool_get);
420 	MOCK_CLEAR(spdk_iobuf_get);
421 
422 	reset_nvmf_rdma_request(&rdma_req);
423 }
424 
425 static struct spdk_nvmf_rdma_recv *
426 create_recv(struct spdk_nvmf_rdma_qpair *rqpair, enum spdk_nvme_nvm_opcode opc)
427 {
428 	struct spdk_nvmf_rdma_recv *rdma_recv;
429 	union nvmf_h2c_msg *cmd;
430 	struct spdk_nvme_sgl_descriptor *sgl;
431 
432 	rdma_recv = calloc(1, sizeof(*rdma_recv));
433 	rdma_recv->qpair = rqpair;
434 	cmd = calloc(1, sizeof(*cmd));
435 	rdma_recv->sgl[0].addr = (uintptr_t)cmd;
436 	cmd->nvme_cmd.opc = opc;
437 	sgl = &cmd->nvme_cmd.dptr.sgl1;
438 	sgl->keyed.key = 0xEEEE;
439 	sgl->address = 0xFFFF;
440 	sgl->keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
441 	sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
442 	sgl->keyed.length = 1;
443 
444 	return rdma_recv;
445 }
446 
447 static void
448 free_recv(struct spdk_nvmf_rdma_recv *rdma_recv)
449 {
450 	free((void *)rdma_recv->sgl[0].addr);
451 	free(rdma_recv);
452 }
453 
454 static struct spdk_nvmf_rdma_request *
455 create_req(struct spdk_nvmf_rdma_qpair *rqpair,
456 	   struct spdk_nvmf_rdma_recv *rdma_recv)
457 {
458 	struct spdk_nvmf_rdma_request *rdma_req;
459 	union nvmf_c2h_msg *cpl;
460 
461 	rdma_req = calloc(1, sizeof(*rdma_req));
462 	rdma_req->recv = rdma_recv;
463 	rdma_req->req.qpair = &rqpair->qpair;
464 	rdma_req->state = RDMA_REQUEST_STATE_NEW;
465 	rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data_wr;
466 	rdma_req->data.wr.sg_list = rdma_req->data.sgl;
467 	cpl = calloc(1, sizeof(*cpl));
468 	rdma_req->rsp.sgl[0].addr = (uintptr_t)cpl;
469 	rdma_req->req.rsp = cpl;
470 
471 	return rdma_req;
472 }
473 
474 static void
475 free_req(struct spdk_nvmf_rdma_request *rdma_req)
476 {
477 	free((void *)rdma_req->rsp.sgl[0].addr);
478 	free(rdma_req);
479 }
480 
481 static void
482 qpair_reset(struct spdk_nvmf_rdma_qpair *rqpair,
483 	    struct spdk_nvmf_rdma_poller *poller,
484 	    struct spdk_nvmf_rdma_device *device,
485 	    struct spdk_nvmf_rdma_resources *resources,
486 	    struct spdk_nvmf_transport *transport)
487 {
488 	memset(rqpair, 0, sizeof(*rqpair));
489 	STAILQ_INIT(&rqpair->pending_rdma_write_queue);
490 	STAILQ_INIT(&rqpair->pending_rdma_read_queue);
491 	rqpair->poller = poller;
492 	rqpair->device = device;
493 	rqpair->resources = resources;
494 	rqpair->qpair.qid = 1;
495 	rqpair->ibv_state = IBV_QPS_RTS;
496 	rqpair->qpair.state = SPDK_NVMF_QPAIR_ACTIVE;
497 	rqpair->max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
498 	rqpair->max_send_depth = 16;
499 	rqpair->max_read_depth = 16;
500 	rqpair->qpair.transport = transport;
501 }
502 
503 static void
504 poller_reset(struct spdk_nvmf_rdma_poller *poller,
505 	     struct spdk_nvmf_rdma_poll_group *group)
506 {
507 	memset(poller, 0, sizeof(*poller));
508 	STAILQ_INIT(&poller->qpairs_pending_recv);
509 	STAILQ_INIT(&poller->qpairs_pending_send);
510 	poller->group = group;
511 }
512 
513 static void
514 test_spdk_nvmf_rdma_request_process(void)
515 {
516 	struct spdk_nvmf_rdma_transport rtransport = {};
517 	struct spdk_nvmf_rdma_poll_group group = {};
518 	struct spdk_nvmf_rdma_poller poller = {};
519 	struct spdk_nvmf_rdma_device device = {};
520 	struct spdk_nvmf_rdma_resources resources = {};
521 	struct spdk_nvmf_rdma_qpair rqpair = {};
522 	struct spdk_nvmf_rdma_recv *rdma_recv;
523 	struct spdk_nvmf_rdma_request *rdma_req;
524 	struct spdk_iobuf_channel ch = {};
525 	bool progress;
526 
527 	group.group.buf_cache = &ch;
528 
529 	STAILQ_INIT(&group.group.pending_buf_queue);
530 	poller_reset(&poller, &group);
531 	qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
532 
533 	rtransport.transport.opts = g_rdma_ut_transport_opts;
534 	rtransport.data_wr_pool = spdk_mempool_create("test_wr_pool", 128,
535 				  sizeof(struct spdk_nvmf_rdma_request_data),
536 				  0, 0);
537 	MOCK_CLEAR(spdk_iobuf_get);
538 
539 	device.attr.device_cap_flags = 0;
540 	device.map = (void *)0x0;
541 
542 	/* Test 1: single SGL READ request */
543 	rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_READ);
544 	rdma_req = create_req(&rqpair, rdma_recv);
545 	rqpair.current_recv_depth = 1;
546 	/* NEW -> EXECUTING */
547 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
548 	CU_ASSERT(progress == true);
549 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING);
550 	CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST);
551 	/* EXECUTED -> TRANSFERRING_C2H */
552 	rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
553 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
554 	CU_ASSERT(progress == true);
555 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
556 	CU_ASSERT(rdma_req->recv == NULL);
557 	/* COMPLETED -> FREE */
558 	rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
559 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
560 	CU_ASSERT(progress == true);
561 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE);
562 
563 	free_recv(rdma_recv);
564 	free_req(rdma_req);
565 	poller_reset(&poller, &group);
566 	qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
567 
568 	/* Test 2: single SGL WRITE request */
569 	rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
570 	rdma_req = create_req(&rqpair, rdma_recv);
571 	rqpair.current_recv_depth = 1;
572 	/* NEW -> TRANSFERRING_H2C */
573 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
574 	CU_ASSERT(progress == true);
575 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
576 	CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
577 	STAILQ_INIT(&poller.qpairs_pending_send);
578 	/* READY_TO_EXECUTE -> EXECUTING */
579 	rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
580 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
581 	CU_ASSERT(progress == true);
582 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING);
583 	/* EXECUTED -> COMPLETING */
584 	rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
585 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
586 	CU_ASSERT(progress == true);
587 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_COMPLETING);
588 	CU_ASSERT(rdma_req->recv == NULL);
589 	/* COMPLETED -> FREE */
590 	rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
591 	progress = nvmf_rdma_request_process(&rtransport, rdma_req);
592 	CU_ASSERT(progress == true);
593 	CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE);
594 
595 	free_recv(rdma_recv);
596 	free_req(rdma_req);
597 	poller_reset(&poller, &group);
598 	qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
599 
600 	/* Test 3: WRITE+WRITE ibv_send batching */
601 	{
602 		struct spdk_nvmf_rdma_recv *recv1, *recv2;
603 		struct spdk_nvmf_rdma_request *req1, *req2;
604 		recv1 = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
605 		req1 = create_req(&rqpair, recv1);
606 		recv2 = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
607 		req2 = create_req(&rqpair, recv2);
608 
609 		/* WRITE 1: NEW -> TRANSFERRING_H2C */
610 		rqpair.current_recv_depth = 1;
611 		nvmf_rdma_request_process(&rtransport, req1);
612 		CU_ASSERT(req1->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
613 
614 		/* WRITE 2: NEW -> TRANSFERRING_H2C */
615 		rqpair.current_recv_depth = 2;
616 		nvmf_rdma_request_process(&rtransport, req2);
617 		CU_ASSERT(req2->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
618 
619 		STAILQ_INIT(&poller.qpairs_pending_send);
620 
621 		/* WRITE 1 completes before WRITE 2 has finished RDMA reading */
622 		/* WRITE 1: READY_TO_EXECUTE -> EXECUTING */
623 		req1->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
624 		nvmf_rdma_request_process(&rtransport, req1);
625 		CU_ASSERT(req1->state == RDMA_REQUEST_STATE_EXECUTING);
626 		/* WRITE 1: EXECUTED -> COMPLETING */
627 		req1->state = RDMA_REQUEST_STATE_EXECUTED;
628 		nvmf_rdma_request_process(&rtransport, req1);
629 		CU_ASSERT(req1->state == RDMA_REQUEST_STATE_COMPLETING);
630 		STAILQ_INIT(&poller.qpairs_pending_send);
631 		/* WRITE 1: COMPLETED -> FREE */
632 		req1->state = RDMA_REQUEST_STATE_COMPLETED;
633 		nvmf_rdma_request_process(&rtransport, req1);
634 		CU_ASSERT(req1->state == RDMA_REQUEST_STATE_FREE);
635 
636 		/* Now WRITE 2 has finished reading and completes */
637 		/* WRITE 2: COMPLETED -> FREE */
638 		/* WRITE 2: READY_TO_EXECUTE -> EXECUTING */
639 		req2->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
640 		nvmf_rdma_request_process(&rtransport, req2);
641 		CU_ASSERT(req2->state == RDMA_REQUEST_STATE_EXECUTING);
642 		/* WRITE 1: EXECUTED -> COMPLETING */
643 		req2->state = RDMA_REQUEST_STATE_EXECUTED;
644 		nvmf_rdma_request_process(&rtransport, req2);
645 		CU_ASSERT(req2->state == RDMA_REQUEST_STATE_COMPLETING);
646 		STAILQ_INIT(&poller.qpairs_pending_send);
647 		/* WRITE 1: COMPLETED -> FREE */
648 		req2->state = RDMA_REQUEST_STATE_COMPLETED;
649 		nvmf_rdma_request_process(&rtransport, req2);
650 		CU_ASSERT(req2->state == RDMA_REQUEST_STATE_FREE);
651 
652 		free_recv(recv1);
653 		free_req(req1);
654 		free_recv(recv2);
655 		free_req(req2);
656 		poller_reset(&poller, &group);
657 		qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
658 	}
659 
660 	/* Test 4, invalid command, check xfer type */
661 	{
662 		struct spdk_nvmf_rdma_recv *rdma_recv_inv;
663 		struct spdk_nvmf_rdma_request *rdma_req_inv;
664 		/* construct an opcode that specifies BIDIRECTIONAL transfer */
665 		uint8_t opc = 0x10 | SPDK_NVME_DATA_BIDIRECTIONAL;
666 
667 		rdma_recv_inv = create_recv(&rqpair, opc);
668 		rdma_req_inv = create_req(&rqpair, rdma_recv_inv);
669 
670 		/* NEW -> RDMA_REQUEST_STATE_COMPLETING */
671 		rqpair.current_recv_depth = 1;
672 		progress = nvmf_rdma_request_process(&rtransport, rdma_req_inv);
673 		CU_ASSERT(progress == true);
674 		CU_ASSERT(rdma_req_inv->state == RDMA_REQUEST_STATE_COMPLETING);
675 		CU_ASSERT(rdma_req_inv->req.rsp->nvme_cpl.status.sct == SPDK_NVME_SCT_GENERIC);
676 		CU_ASSERT(rdma_req_inv->req.rsp->nvme_cpl.status.sc == SPDK_NVME_SC_INVALID_OPCODE);
677 
678 		/* RDMA_REQUEST_STATE_COMPLETED -> FREE */
679 		rdma_req_inv->state = RDMA_REQUEST_STATE_COMPLETED;
680 		nvmf_rdma_request_process(&rtransport, rdma_req_inv);
681 		CU_ASSERT(rdma_req_inv->state == RDMA_REQUEST_STATE_FREE);
682 
683 		free_recv(rdma_recv_inv);
684 		free_req(rdma_req_inv);
685 		poller_reset(&poller, &group);
686 		qpair_reset(&rqpair, &poller, &device, &resources, &rtransport.transport);
687 	}
688 
689 	spdk_mempool_free(rtransport.data_wr_pool);
690 }
691 
692 #define TEST_GROUPS_COUNT 5
693 static void
694 test_nvmf_rdma_get_optimal_poll_group(void)
695 {
696 	struct spdk_nvmf_rdma_transport rtransport = {};
697 	struct spdk_nvmf_transport *transport = &rtransport.transport;
698 	struct spdk_nvmf_rdma_qpair rqpair = {};
699 	struct spdk_nvmf_transport_poll_group *groups[TEST_GROUPS_COUNT];
700 	struct spdk_nvmf_rdma_poll_group *rgroups[TEST_GROUPS_COUNT];
701 	struct spdk_nvmf_transport_poll_group *result;
702 	struct spdk_nvmf_poll_group group = {};
703 	uint32_t i;
704 
705 	rqpair.qpair.transport = transport;
706 	TAILQ_INIT(&rtransport.poll_groups);
707 
708 	for (i = 0; i < TEST_GROUPS_COUNT; i++) {
709 		groups[i] = nvmf_rdma_poll_group_create(transport, NULL);
710 		CU_ASSERT(groups[i] != NULL);
711 		groups[i]->group = &group;
712 		rgroups[i] = SPDK_CONTAINEROF(groups[i], struct spdk_nvmf_rdma_poll_group, group);
713 		groups[i]->transport = transport;
714 	}
715 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[0]);
716 	CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[0]);
717 
718 	/* Emulate connection of %TEST_GROUPS_COUNT% initiators - each creates 1 admin and 1 io qp */
719 	for (i = 0; i < TEST_GROUPS_COUNT; i++) {
720 		rqpair.qpair.qid = 0;
721 		result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
722 		CU_ASSERT(result == groups[i]);
723 		CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
724 		CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[i]);
725 
726 		rqpair.qpair.qid = 1;
727 		result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
728 		CU_ASSERT(result == groups[i]);
729 		CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
730 		CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
731 	}
732 	/* wrap around, admin/io pg point to the first pg
733 	   Destroy all poll groups except of the last one */
734 	for (i = 0; i < TEST_GROUPS_COUNT - 1; i++) {
735 		nvmf_rdma_poll_group_destroy(groups[i]);
736 		CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[i + 1]);
737 		CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[i + 1]);
738 	}
739 
740 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
741 	CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
742 
743 	/* Check that pointers to the next admin/io poll groups are not changed */
744 	rqpair.qpair.qid = 0;
745 	result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
746 	CU_ASSERT(result == groups[TEST_GROUPS_COUNT - 1]);
747 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
748 	CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
749 
750 	rqpair.qpair.qid = 1;
751 	result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
752 	CU_ASSERT(result == groups[TEST_GROUPS_COUNT - 1]);
753 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
754 	CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
755 
756 	/* Remove the last poll group, check that pointers are NULL */
757 	nvmf_rdma_poll_group_destroy(groups[TEST_GROUPS_COUNT - 1]);
758 	CU_ASSERT(rtransport.conn_sched.next_admin_pg == NULL);
759 	CU_ASSERT(rtransport.conn_sched.next_io_pg == NULL);
760 
761 	/* Request optimal poll group, result must be NULL */
762 	rqpair.qpair.qid = 0;
763 	result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
764 	CU_ASSERT(result == NULL);
765 
766 	rqpair.qpair.qid = 1;
767 	result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
768 	CU_ASSERT(result == NULL);
769 }
770 #undef TEST_GROUPS_COUNT
771 
772 static void
773 test_spdk_nvmf_rdma_request_parse_sgl_with_md(void)
774 {
775 	struct spdk_nvmf_rdma_transport rtransport;
776 	struct spdk_nvmf_rdma_device device;
777 	struct spdk_nvmf_rdma_request rdma_req = {};
778 	struct spdk_nvmf_rdma_recv recv;
779 	struct spdk_nvmf_rdma_poll_group group;
780 	struct spdk_nvmf_rdma_qpair rqpair;
781 	struct spdk_nvmf_rdma_poller poller;
782 	union nvmf_c2h_msg cpl;
783 	union nvmf_h2c_msg cmd;
784 	struct spdk_nvme_sgl_descriptor *sgl;
785 	struct spdk_nvme_sgl_descriptor sgl_desc[SPDK_NVMF_MAX_SGL_ENTRIES] = {{0}};
786 	char data_buffer[8192];
787 	struct spdk_nvmf_rdma_request_data *data = (struct spdk_nvmf_rdma_request_data *)data_buffer;
788 	char data2_buffer[8192];
789 	struct spdk_nvmf_rdma_request_data *data2 = (struct spdk_nvmf_rdma_request_data *)data2_buffer;
790 	const uint32_t data_bs = 512;
791 	const uint32_t md_size = 8;
792 	int rc, i;
793 	struct spdk_dif_ctx_init_ext_opts dif_opts;
794 
795 	MOCK_CLEAR(spdk_mempool_get);
796 	MOCK_CLEAR(spdk_iobuf_get);
797 
798 	data->wr.sg_list = data->sgl;
799 	group.group.transport = &rtransport.transport;
800 	poller.group = &group;
801 	rqpair.poller = &poller;
802 	rqpair.max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
803 
804 	sgl = &cmd.nvme_cmd.dptr.sgl1;
805 	rdma_req.recv = &recv;
806 	rdma_req.req.cmd = &cmd;
807 	rdma_req.req.rsp = &cpl;
808 	rdma_req.data.wr.sg_list = rdma_req.data.sgl;
809 	rdma_req.req.qpair = &rqpair.qpair;
810 	rdma_req.req.xfer = SPDK_NVME_DATA_CONTROLLER_TO_HOST;
811 
812 	rtransport.transport.opts = g_rdma_ut_transport_opts;
813 	rtransport.data_wr_pool = NULL;
814 
815 	device.attr.device_cap_flags = 0;
816 	device.map = NULL;
817 	sgl->keyed.key = 0xEEEE;
818 	sgl->address = 0xFFFF;
819 	rdma_req.recv->buf = (void *)0xDDDD;
820 
821 	/* Test 1: sgl type: keyed data block subtype: address */
822 	sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
823 	sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
824 
825 	/* Part 1: simple I/O, one SGL smaller than the transport io unit size, block size 512 */
826 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
827 	reset_nvmf_rdma_request(&rdma_req);
828 	dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format);
829 	dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16;
830 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
831 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
832 			  0, 0, 0, 0, 0, &dif_opts);
833 	rdma_req.req.dif_enabled = true;
834 	rtransport.transport.opts.io_unit_size = data_bs * 8;
835 	rdma_req.req.qpair->transport = &rtransport.transport;
836 	sgl->keyed.length = data_bs * 4;
837 
838 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
839 
840 	CU_ASSERT(rc == 0);
841 	CU_ASSERT(rdma_req.req.data_from_pool == true);
842 	CU_ASSERT(rdma_req.req.length == data_bs * 4);
843 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
844 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
845 	CU_ASSERT(rdma_req.req.iovcnt == 1);
846 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
847 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
848 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
849 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
850 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
851 
852 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
853 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rdma_req.req.length);
854 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
855 
856 	/* Part 2: simple I/O, one SGL equal to io unit size, io_unit_size is not aligned with md_size,
857 		block size 512 */
858 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
859 	reset_nvmf_rdma_request(&rdma_req);
860 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
861 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
862 			  0, 0, 0, 0, 0, &dif_opts);
863 	rdma_req.req.dif_enabled = true;
864 	rtransport.transport.opts.io_unit_size = data_bs * 4;
865 	sgl->keyed.length = data_bs * 4;
866 
867 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
868 
869 	CU_ASSERT(rc == 0);
870 	CU_ASSERT(rdma_req.req.data_from_pool == true);
871 	CU_ASSERT(rdma_req.req.length == data_bs * 4);
872 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
873 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
874 	CU_ASSERT(rdma_req.req.iovcnt == 2);
875 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
876 	CU_ASSERT(rdma_req.data.wr.num_sge == 5);
877 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
878 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
879 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
880 
881 	for (i = 0; i < 3; ++i) {
882 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
883 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
884 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
885 	}
886 	CU_ASSERT(rdma_req.data.wr.sg_list[3].addr == 0x2000 + 3 * (data_bs + md_size));
887 	CU_ASSERT(rdma_req.data.wr.sg_list[3].length == 488);
888 	CU_ASSERT(rdma_req.data.wr.sg_list[3].lkey == RDMA_UT_LKEY);
889 
890 	/* 2nd buffer consumed */
891 	CU_ASSERT(rdma_req.data.wr.sg_list[4].addr == 0x2000);
892 	CU_ASSERT(rdma_req.data.wr.sg_list[4].length == 24);
893 	CU_ASSERT(rdma_req.data.wr.sg_list[4].lkey == RDMA_UT_LKEY);
894 
895 	/* Part 3: simple I/O, one SGL equal io unit size, io_unit_size is equal to block size 512 bytes */
896 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
897 	reset_nvmf_rdma_request(&rdma_req);
898 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
899 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
900 			  0, 0, 0, 0, 0, &dif_opts);
901 	rdma_req.req.dif_enabled = true;
902 	rtransport.transport.opts.io_unit_size = data_bs;
903 	sgl->keyed.length = data_bs;
904 
905 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
906 
907 	CU_ASSERT(rc == 0);
908 	CU_ASSERT(rdma_req.req.data_from_pool == true);
909 	CU_ASSERT(rdma_req.req.length == data_bs);
910 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
911 	CU_ASSERT(rdma_req.req.dif.elba_length == data_bs + md_size);
912 	CU_ASSERT(rdma_req.req.iovcnt == 2);
913 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
914 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
915 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
916 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
917 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
918 
919 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
920 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == data_bs);
921 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
922 
923 	CU_ASSERT(rdma_req.req.iovcnt == 2);
924 	CU_ASSERT(rdma_req.req.iov[0].iov_base == (void *)((unsigned long)0x2000));
925 	CU_ASSERT(rdma_req.req.iov[0].iov_len == data_bs);
926 	/* 2nd buffer consumed for metadata */
927 	CU_ASSERT(rdma_req.req.iov[1].iov_base == (void *)((unsigned long)0x2000));
928 	CU_ASSERT(rdma_req.req.iov[1].iov_len == md_size);
929 
930 	/* Part 4: simple I/O, one SGL equal io unit size, io_unit_size is aligned with md_size,
931 	   block size 512 */
932 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
933 	reset_nvmf_rdma_request(&rdma_req);
934 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
935 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
936 			  0, 0, 0, 0, 0, &dif_opts);
937 	rdma_req.req.dif_enabled = true;
938 	rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 4;
939 	sgl->keyed.length = data_bs * 4;
940 
941 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
942 
943 	CU_ASSERT(rc == 0);
944 	CU_ASSERT(rdma_req.req.data_from_pool == true);
945 	CU_ASSERT(rdma_req.req.length == data_bs * 4);
946 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
947 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
948 	CU_ASSERT(rdma_req.req.iovcnt == 1);
949 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
950 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
951 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
952 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
953 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
954 
955 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
956 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rdma_req.req.length);
957 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
958 
959 	/* Part 5: simple I/O, one SGL equal to 2x io unit size, io_unit_size is aligned with md_size,
960 	   block size 512 */
961 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
962 	reset_nvmf_rdma_request(&rdma_req);
963 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
964 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
965 			  0, 0, 0, 0, 0, &dif_opts);
966 	rdma_req.req.dif_enabled = true;
967 	rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 2;
968 	sgl->keyed.length = data_bs * 4;
969 
970 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
971 
972 	CU_ASSERT(rc == 0);
973 	CU_ASSERT(rdma_req.req.data_from_pool == true);
974 	CU_ASSERT(rdma_req.req.length == data_bs * 4);
975 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
976 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
977 	CU_ASSERT(rdma_req.req.iovcnt == 2);
978 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
979 	CU_ASSERT(rdma_req.data.wr.num_sge == 2);
980 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
981 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
982 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
983 
984 	for (i = 0; i < 2; ++i) {
985 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
986 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs * 2);
987 	}
988 
989 	/* Part 6: simple I/O, one SGL larger than the transport io unit size, io_unit_size is not aligned to md_size,
990 	   block size 512 */
991 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
992 	reset_nvmf_rdma_request(&rdma_req);
993 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
994 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
995 			  0, 0, 0, 0, 0, &dif_opts);
996 	rdma_req.req.dif_enabled = true;
997 	rtransport.transport.opts.io_unit_size = data_bs * 4;
998 	sgl->keyed.length = data_bs * 6;
999 
1000 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1001 
1002 	CU_ASSERT(rc == 0);
1003 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1004 	CU_ASSERT(rdma_req.req.length == data_bs * 6);
1005 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1006 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 6);
1007 	CU_ASSERT(rdma_req.req.iovcnt == 2);
1008 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
1009 	CU_ASSERT(rdma_req.data.wr.num_sge == 7);
1010 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1011 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1012 	CU_ASSERT((uint64_t)rdma_req.req.iov[0].iov_base == 0x2000);
1013 
1014 	for (i = 0; i < 3; ++i) {
1015 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
1016 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
1017 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
1018 	}
1019 	CU_ASSERT(rdma_req.data.wr.sg_list[3].addr == 0x2000 + 3 * (data_bs + md_size));
1020 	CU_ASSERT(rdma_req.data.wr.sg_list[3].length == 488);
1021 	CU_ASSERT(rdma_req.data.wr.sg_list[3].lkey == RDMA_UT_LKEY);
1022 
1023 	/* 2nd IO buffer consumed */
1024 	CU_ASSERT(rdma_req.data.wr.sg_list[4].addr == 0x2000);
1025 	CU_ASSERT(rdma_req.data.wr.sg_list[4].length == 24);
1026 	CU_ASSERT(rdma_req.data.wr.sg_list[4].lkey == RDMA_UT_LKEY);
1027 
1028 	CU_ASSERT(rdma_req.data.wr.sg_list[5].addr == 0x2000 + 24 + md_size);
1029 	CU_ASSERT(rdma_req.data.wr.sg_list[5].length == 512);
1030 	CU_ASSERT(rdma_req.data.wr.sg_list[5].lkey == RDMA_UT_LKEY);
1031 
1032 	CU_ASSERT(rdma_req.data.wr.sg_list[6].addr == 0x2000 + 24 + 512 + md_size * 2);
1033 	CU_ASSERT(rdma_req.data.wr.sg_list[6].length == 512);
1034 	CU_ASSERT(rdma_req.data.wr.sg_list[6].lkey == RDMA_UT_LKEY);
1035 
1036 	/* Part 7: simple I/O, number of SGL entries exceeds the number of entries
1037 	   one WR can hold. Additional WR is chained */
1038 	MOCK_SET(spdk_iobuf_get, data2_buffer);
1039 	MOCK_SET(spdk_mempool_get, data2_buffer);
1040 	reset_nvmf_rdma_request(&rdma_req);
1041 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1042 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
1043 			  0, 0, 0, 0, 0, &dif_opts);
1044 	rdma_req.req.dif_enabled = true;
1045 	rtransport.transport.opts.io_unit_size = data_bs * 16;
1046 	sgl->keyed.length = data_bs * 16;
1047 
1048 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1049 
1050 	CU_ASSERT(rc == 0);
1051 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1052 	CU_ASSERT(rdma_req.req.length == data_bs * 16);
1053 	CU_ASSERT(rdma_req.req.iovcnt == 2);
1054 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1055 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 16);
1056 	CU_ASSERT(rdma_req.req.iov[0].iov_base == data2_buffer);
1057 	CU_ASSERT(rdma_req.data.wr.num_sge == 16);
1058 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1059 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1060 
1061 	for (i = 0; i < 15; ++i) {
1062 		CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (uintptr_t)data2_buffer + i * (data_bs + md_size));
1063 		CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
1064 		CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
1065 	}
1066 
1067 	/* 8192 - (512 + 8) * 15 = 392 */
1068 	CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (uintptr_t)data2_buffer + i * (data_bs + md_size));
1069 	CU_ASSERT(rdma_req.data.wr.sg_list[i].length == 392);
1070 	CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == RDMA_UT_LKEY);
1071 
1072 	/* additional wr from pool */
1073 	CU_ASSERT(rdma_req.data.wr.next == (void *)&data2->wr);
1074 	CU_ASSERT(rdma_req.data.wr.next->num_sge == 1);
1075 	CU_ASSERT(rdma_req.data.wr.next->next == &rdma_req.rsp.wr);
1076 	/* 2nd IO buffer */
1077 	CU_ASSERT(data2->wr.sg_list[0].addr == (uintptr_t)data2_buffer);
1078 	CU_ASSERT(data2->wr.sg_list[0].length == 120);
1079 	CU_ASSERT(data2->wr.sg_list[0].lkey == RDMA_UT_LKEY);
1080 
1081 	/* Part 8: simple I/O, data with metadata do not fit to 1 io_buffer */
1082 	MOCK_SET(spdk_iobuf_get, (void *)0x2000);
1083 	reset_nvmf_rdma_request(&rdma_req);
1084 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1085 			  SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
1086 			  0, 0, 0, 0, 0, &dif_opts);
1087 	rdma_req.req.dif_enabled = true;
1088 	rtransport.transport.opts.io_unit_size = 516;
1089 	sgl->keyed.length = data_bs * 2;
1090 
1091 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1092 
1093 	CU_ASSERT(rc == 0);
1094 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1095 	CU_ASSERT(rdma_req.req.length == data_bs * 2);
1096 	CU_ASSERT(rdma_req.req.iovcnt == 3);
1097 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1098 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 2);
1099 	CU_ASSERT(rdma_req.req.iov[0].iov_base == (void *)0x2000);
1100 	CU_ASSERT(rdma_req.data.wr.num_sge == 2);
1101 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
1102 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
1103 
1104 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
1105 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == 512);
1106 	CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == RDMA_UT_LKEY);
1107 
1108 	/* 2nd IO buffer consumed, offset 4 bytes due to part of the metadata
1109 	  is located at the beginning of that buffer */
1110 	CU_ASSERT(rdma_req.data.wr.sg_list[1].addr == 0x2000 + 4);
1111 	CU_ASSERT(rdma_req.data.wr.sg_list[1].length == 512);
1112 	CU_ASSERT(rdma_req.data.wr.sg_list[1].lkey == RDMA_UT_LKEY);
1113 
1114 	/* Test 2: Multi SGL */
1115 	sgl->generic.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
1116 	sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
1117 	sgl->address = 0;
1118 	rdma_req.recv->buf = (void *)&sgl_desc;
1119 	MOCK_SET(spdk_mempool_get, data_buffer);
1120 	MOCK_SET(spdk_iobuf_get, data_buffer);
1121 
1122 	/* part 1: 2 segments each with 1 wr. io_unit_size is aligned with data_bs + md_size */
1123 	reset_nvmf_rdma_request(&rdma_req);
1124 	spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
1125 			  SPDK_DIF_TYPE1,
1126 			  SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
1127 			  0, 0, 0, 0, 0, &dif_opts);
1128 	rdma_req.req.dif_enabled = true;
1129 	rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 4;
1130 	sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
1131 
1132 	for (i = 0; i < 2; i++) {
1133 		sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
1134 		sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
1135 		sgl_desc[i].keyed.length = data_bs * 4;
1136 		sgl_desc[i].address = 0x4000 + i * data_bs * 4;
1137 		sgl_desc[i].keyed.key = 0x44;
1138 	}
1139 
1140 	rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
1141 
1142 	CU_ASSERT(rc == 0);
1143 	CU_ASSERT(rdma_req.req.data_from_pool == true);
1144 	CU_ASSERT(rdma_req.req.length == data_bs * 4 * 2);
1145 	CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
1146 	CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4 * 2);
1147 	CU_ASSERT(rdma_req.data.wr.num_sge == 1);
1148 	CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == (uintptr_t)(data_buffer));
1149 	CU_ASSERT(rdma_req.data.wr.sg_list[0].length == data_bs * 4);
1150 
1151 	CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
1152 	CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
1153 	CU_ASSERT(rdma_req.data.wr.next == &data->wr);
1154 	CU_ASSERT(data->wr.wr.rdma.rkey == 0x44);
1155 	CU_ASSERT(data->wr.wr.rdma.remote_addr == 0x4000 + data_bs * 4);
1156 	CU_ASSERT(data->wr.num_sge == 1);
1157 	CU_ASSERT(data->wr.sg_list[0].addr == (uintptr_t)(data_buffer));
1158 	CU_ASSERT(data->wr.sg_list[0].length == data_bs * 4);
1159 
1160 	CU_ASSERT(data->wr.next == &rdma_req.rsp.wr);
1161 	reset_nvmf_rdma_request(&rdma_req);
1162 }
1163 
1164 static void
1165 test_nvmf_rdma_opts_init(void)
1166 {
1167 	struct spdk_nvmf_transport_opts	opts = {};
1168 
1169 	nvmf_rdma_opts_init(&opts);
1170 	CU_ASSERT(opts.max_queue_depth == SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH);
1171 	CU_ASSERT(opts.max_qpairs_per_ctrlr ==	SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR);
1172 	CU_ASSERT(opts.in_capsule_data_size ==	SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE);
1173 	CU_ASSERT(opts.max_io_size == SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE);
1174 	CU_ASSERT(opts.io_unit_size == SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
1175 	CU_ASSERT(opts.max_aq_depth == SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH);
1176 	CU_ASSERT(opts.num_shared_buffers == SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS);
1177 	CU_ASSERT(opts.buf_cache_size == SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE);
1178 	CU_ASSERT(opts.dif_insert_or_strip == SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP);
1179 	CU_ASSERT(opts.abort_timeout_sec == SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC);
1180 	CU_ASSERT(opts.transport_specific == NULL);
1181 }
1182 
1183 static void
1184 test_nvmf_rdma_request_free_data(void)
1185 {
1186 	struct spdk_nvmf_rdma_request rdma_req = {};
1187 	struct spdk_nvmf_rdma_transport rtransport = {};
1188 	struct spdk_nvmf_rdma_request_data *next_request_data = NULL;
1189 
1190 	MOCK_CLEAR(spdk_mempool_get);
1191 	rtransport.data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
1192 				  SPDK_NVMF_MAX_SGL_ENTRIES,
1193 				  sizeof(struct spdk_nvmf_rdma_request_data),
1194 				  SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
1195 				  SPDK_ENV_SOCKET_ID_ANY);
1196 	next_request_data = spdk_mempool_get(rtransport.data_wr_pool);
1197 	SPDK_CU_ASSERT_FATAL(((struct test_mempool *)rtransport.data_wr_pool)->count ==
1198 			     SPDK_NVMF_MAX_SGL_ENTRIES - 1);
1199 	next_request_data->wr.wr_id = (uint64_t)&rdma_req.data_wr;
1200 	next_request_data->wr.num_sge = 2;
1201 	next_request_data->wr.next = NULL;
1202 	rdma_req.data.wr.next = &next_request_data->wr;
1203 	rdma_req.data.wr.wr_id = (uint64_t)&rdma_req.data_wr;
1204 	rdma_req.data.wr.num_sge = 2;
1205 	rdma_req.transfer_wr = &rdma_req.data.wr;
1206 
1207 	nvmf_rdma_request_free_data(&rdma_req, &rtransport);
1208 	/* Check if next_request_data put into memory pool */
1209 	CU_ASSERT(((struct test_mempool *)rtransport.data_wr_pool)->count == SPDK_NVMF_MAX_SGL_ENTRIES);
1210 	CU_ASSERT(rdma_req.data.wr.num_sge == 0);
1211 
1212 	spdk_mempool_free(rtransport.data_wr_pool);
1213 }
1214 
1215 static void
1216 test_nvmf_rdma_update_ibv_state(void)
1217 {
1218 	struct spdk_nvmf_rdma_qpair rqpair = {};
1219 	struct spdk_rdma_qp rdma_qp = {};
1220 	struct ibv_qp qp = {};
1221 	int rc = 0;
1222 
1223 	rqpair.rdma_qp = &rdma_qp;
1224 
1225 	/* Case 1: Failed to get updated RDMA queue pair state */
1226 	rqpair.ibv_state = IBV_QPS_INIT;
1227 	rqpair.rdma_qp->qp = NULL;
1228 
1229 	rc = nvmf_rdma_update_ibv_state(&rqpair);
1230 	CU_ASSERT(rc == IBV_QPS_ERR + 1);
1231 
1232 	/* Case 2: Bad state updated */
1233 	rqpair.rdma_qp->qp = &qp;
1234 	qp.state = IBV_QPS_ERR;
1235 	rc = nvmf_rdma_update_ibv_state(&rqpair);
1236 	CU_ASSERT(rqpair.ibv_state == 10);
1237 	CU_ASSERT(rc == IBV_QPS_ERR + 1);
1238 
1239 	/* Case 3: Pass */
1240 	qp.state = IBV_QPS_INIT;
1241 	rc = nvmf_rdma_update_ibv_state(&rqpair);
1242 	CU_ASSERT(rqpair.ibv_state == IBV_QPS_INIT);
1243 	CU_ASSERT(rc == IBV_QPS_INIT);
1244 }
1245 
1246 static void
1247 test_nvmf_rdma_resources_create(void)
1248 {
1249 	static struct spdk_nvmf_rdma_resources *rdma_resource;
1250 	struct spdk_nvmf_rdma_resource_opts opts = {};
1251 	struct spdk_nvmf_rdma_qpair qpair = {};
1252 	struct spdk_nvmf_rdma_recv *recv = NULL;
1253 	struct spdk_nvmf_rdma_request *req = NULL;
1254 	const int DEPTH = 128;
1255 
1256 	opts.max_queue_depth = DEPTH;
1257 	opts.in_capsule_data_size = 4096;
1258 	opts.shared = true;
1259 	opts.qpair = &qpair;
1260 
1261 	rdma_resource = nvmf_rdma_resources_create(&opts);
1262 	CU_ASSERT(rdma_resource != NULL);
1263 	/* Just check first and last entry */
1264 	recv = &rdma_resource->recvs[0];
1265 	req = &rdma_resource->reqs[0];
1266 	CU_ASSERT(recv->rdma_wr.type == RDMA_WR_TYPE_RECV);
1267 	CU_ASSERT((uintptr_t)recv->buf == (uintptr_t)(rdma_resource->bufs));
1268 	CU_ASSERT(recv->sgl[0].addr == (uintptr_t)&rdma_resource->cmds[0]);
1269 	CU_ASSERT(recv->sgl[0].length == sizeof(rdma_resource->cmds[0]));
1270 	CU_ASSERT(recv->sgl[0].lkey == RDMA_UT_LKEY);
1271 	CU_ASSERT(recv->wr.num_sge == 2);
1272 	CU_ASSERT(recv->wr.wr_id == (uintptr_t)&rdma_resource->recvs[0].rdma_wr);
1273 	CU_ASSERT(recv->wr.sg_list == rdma_resource->recvs[0].sgl);
1274 	CU_ASSERT(req->req.rsp == &rdma_resource->cpls[0]);
1275 	CU_ASSERT(req->rsp.sgl[0].addr == (uintptr_t)&rdma_resource->cpls[0]);
1276 	CU_ASSERT(req->rsp.sgl[0].length == sizeof(rdma_resource->cpls[0]));
1277 	CU_ASSERT(req->rsp.sgl[0].lkey == RDMA_UT_LKEY);
1278 	CU_ASSERT(req->rsp_wr.type == RDMA_WR_TYPE_SEND);
1279 	CU_ASSERT(req->rsp.wr.wr_id == (uintptr_t)&rdma_resource->reqs[0].rsp_wr);
1280 	CU_ASSERT(req->rsp.wr.next == NULL);
1281 	CU_ASSERT(req->rsp.wr.opcode == IBV_WR_SEND);
1282 	CU_ASSERT(req->rsp.wr.send_flags == IBV_SEND_SIGNALED);
1283 	CU_ASSERT(req->rsp.wr.sg_list == rdma_resource->reqs[0].rsp.sgl);
1284 	CU_ASSERT(req->rsp.wr.num_sge == NVMF_DEFAULT_RSP_SGE);
1285 	CU_ASSERT(req->data_wr.type == RDMA_WR_TYPE_DATA);
1286 	CU_ASSERT(req->data.wr.wr_id == (uintptr_t)&rdma_resource->reqs[0].data_wr);
1287 	CU_ASSERT(req->data.wr.next == NULL);
1288 	CU_ASSERT(req->data.wr.send_flags == IBV_SEND_SIGNALED);
1289 	CU_ASSERT(req->data.wr.sg_list == rdma_resource->reqs[0].data.sgl);
1290 	CU_ASSERT(req->data.wr.num_sge == SPDK_NVMF_MAX_SGL_ENTRIES);
1291 	CU_ASSERT(req->state == RDMA_REQUEST_STATE_FREE);
1292 
1293 	recv = &rdma_resource->recvs[DEPTH - 1];
1294 	req = &rdma_resource->reqs[DEPTH - 1];
1295 	CU_ASSERT(recv->rdma_wr.type == RDMA_WR_TYPE_RECV);
1296 	CU_ASSERT((uintptr_t)recv->buf == (uintptr_t)(rdma_resource->bufs +
1297 			(DEPTH - 1) * 4096));
1298 	CU_ASSERT(recv->sgl[0].addr == (uintptr_t)&rdma_resource->cmds[DEPTH - 1]);
1299 	CU_ASSERT(recv->sgl[0].length == sizeof(rdma_resource->cmds[DEPTH - 1]));
1300 	CU_ASSERT(recv->sgl[0].lkey == RDMA_UT_LKEY);
1301 	CU_ASSERT(recv->wr.num_sge == 2);
1302 	CU_ASSERT(recv->wr.wr_id == (uintptr_t)&rdma_resource->recvs[DEPTH - 1].rdma_wr);
1303 	CU_ASSERT(recv->wr.sg_list == rdma_resource->recvs[DEPTH - 1].sgl);
1304 	CU_ASSERT(req->req.rsp == &rdma_resource->cpls[DEPTH - 1]);
1305 	CU_ASSERT(req->rsp.sgl[0].addr == (uintptr_t)&rdma_resource->cpls[DEPTH - 1]);
1306 	CU_ASSERT(req->rsp.sgl[0].length == sizeof(rdma_resource->cpls[DEPTH - 1]));
1307 	CU_ASSERT(req->rsp.sgl[0].lkey == RDMA_UT_LKEY);
1308 	CU_ASSERT(req->rsp_wr.type == RDMA_WR_TYPE_SEND);
1309 	CU_ASSERT(req->rsp.wr.wr_id == (uintptr_t)&req->rsp_wr);
1310 	CU_ASSERT(req->rsp.wr.next == NULL);
1311 	CU_ASSERT(req->rsp.wr.opcode == IBV_WR_SEND);
1312 	CU_ASSERT(req->rsp.wr.send_flags == IBV_SEND_SIGNALED);
1313 	CU_ASSERT(req->rsp.wr.sg_list == rdma_resource->reqs[DEPTH - 1].rsp.sgl);
1314 	CU_ASSERT(req->rsp.wr.num_sge == NVMF_DEFAULT_RSP_SGE);
1315 	CU_ASSERT(req->data_wr.type == RDMA_WR_TYPE_DATA);
1316 	CU_ASSERT(req->data.wr.wr_id == (uintptr_t)&req->data_wr);
1317 	CU_ASSERT(req->data.wr.next == NULL);
1318 	CU_ASSERT(req->data.wr.send_flags == IBV_SEND_SIGNALED);
1319 	CU_ASSERT(req->data.wr.sg_list == rdma_resource->reqs[DEPTH - 1].data.sgl);
1320 	CU_ASSERT(req->data.wr.num_sge == SPDK_NVMF_MAX_SGL_ENTRIES);
1321 	CU_ASSERT(req->state == RDMA_REQUEST_STATE_FREE);
1322 
1323 	nvmf_rdma_resources_destroy(rdma_resource);
1324 }
1325 
1326 static void
1327 test_nvmf_rdma_qpair_compare(void)
1328 {
1329 	struct spdk_nvmf_rdma_qpair rqpair1 = {}, rqpair2 = {};
1330 
1331 	rqpair1.qp_num = 0;
1332 	rqpair2.qp_num = UINT32_MAX;
1333 
1334 	CU_ASSERT(nvmf_rdma_qpair_compare(&rqpair1, &rqpair2) < 0);
1335 	CU_ASSERT(nvmf_rdma_qpair_compare(&rqpair2, &rqpair1) > 0);
1336 }
1337 
1338 static void
1339 test_nvmf_rdma_resize_cq(void)
1340 {
1341 	int rc = -1;
1342 	int tnum_wr = 0;
1343 	int tnum_cqe = 0;
1344 	struct spdk_nvmf_rdma_qpair rqpair = {};
1345 	struct spdk_nvmf_rdma_poller rpoller = {};
1346 	struct spdk_nvmf_rdma_device rdevice = {};
1347 	struct ibv_context ircontext = {};
1348 	struct ibv_device idevice = {};
1349 
1350 	rdevice.context = &ircontext;
1351 	rqpair.poller = &rpoller;
1352 	ircontext.device = &idevice;
1353 
1354 	/* Test1: Current capacity support required size. */
1355 	rpoller.required_num_wr = 10;
1356 	rpoller.num_cqe = 20;
1357 	rqpair.max_queue_depth = 2;
1358 	tnum_wr = rpoller.required_num_wr;
1359 	tnum_cqe = rpoller.num_cqe;
1360 
1361 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1362 	CU_ASSERT(rc == 0);
1363 	CU_ASSERT(rpoller.required_num_wr == 10 + MAX_WR_PER_QP(rqpair.max_queue_depth));
1364 	CU_ASSERT(rpoller.required_num_wr > tnum_wr);
1365 	CU_ASSERT(rpoller.num_cqe == tnum_cqe);
1366 
1367 	/* Test2: iWARP doesn't support CQ resize. */
1368 	tnum_wr = rpoller.required_num_wr;
1369 	tnum_cqe = rpoller.num_cqe;
1370 	idevice.transport_type = IBV_TRANSPORT_IWARP;
1371 
1372 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1373 	CU_ASSERT(rc == -1);
1374 	CU_ASSERT(rpoller.required_num_wr == tnum_wr);
1375 	CU_ASSERT(rpoller.num_cqe == tnum_cqe);
1376 
1377 
1378 	/* Test3: RDMA CQE requirement exceeds device max_cqe limitation. */
1379 	tnum_wr = rpoller.required_num_wr;
1380 	tnum_cqe = rpoller.num_cqe;
1381 	idevice.transport_type = IBV_TRANSPORT_UNKNOWN;
1382 	rdevice.attr.max_cqe = 3;
1383 
1384 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1385 	CU_ASSERT(rc == -1);
1386 	CU_ASSERT(rpoller.required_num_wr == tnum_wr);
1387 	CU_ASSERT(rpoller.num_cqe == tnum_cqe);
1388 
1389 	/* Test4: RDMA CQ resize failed. */
1390 	tnum_wr = rpoller.required_num_wr;
1391 	tnum_cqe = rpoller.num_cqe;
1392 	idevice.transport_type = IBV_TRANSPORT_IB;
1393 	rdevice.attr.max_cqe = 30;
1394 	MOCK_SET(ibv_resize_cq, -1);
1395 
1396 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1397 	CU_ASSERT(rc == -1);
1398 	CU_ASSERT(rpoller.required_num_wr == tnum_wr);
1399 	CU_ASSERT(rpoller.num_cqe == tnum_cqe);
1400 
1401 	/* Test5: RDMA CQ resize success. rsize = MIN(MAX(num_cqe * 2, required_num_wr), device->attr.max_cqe). */
1402 	tnum_wr = rpoller.required_num_wr;
1403 	tnum_cqe = rpoller.num_cqe;
1404 	MOCK_SET(ibv_resize_cq, 0);
1405 
1406 	rc = nvmf_rdma_resize_cq(&rqpair, &rdevice);
1407 	CU_ASSERT(rc == 0);
1408 	CU_ASSERT(rpoller.num_cqe = 30);
1409 	CU_ASSERT(rpoller.required_num_wr == 18 + MAX_WR_PER_QP(rqpair.max_queue_depth));
1410 	CU_ASSERT(rpoller.required_num_wr > tnum_wr);
1411 	CU_ASSERT(rpoller.num_cqe > tnum_cqe);
1412 }
1413 
1414 int
1415 main(int argc, char **argv)
1416 {
1417 	CU_pSuite	suite = NULL;
1418 	unsigned int	num_failures;
1419 
1420 	CU_initialize_registry();
1421 
1422 	suite = CU_add_suite("nvmf", NULL, NULL);
1423 
1424 	CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_parse_sgl);
1425 	CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_process);
1426 	CU_ADD_TEST(suite, test_nvmf_rdma_get_optimal_poll_group);
1427 	CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_parse_sgl_with_md);
1428 	CU_ADD_TEST(suite, test_nvmf_rdma_opts_init);
1429 	CU_ADD_TEST(suite, test_nvmf_rdma_request_free_data);
1430 	CU_ADD_TEST(suite, test_nvmf_rdma_update_ibv_state);
1431 	CU_ADD_TEST(suite, test_nvmf_rdma_resources_create);
1432 	CU_ADD_TEST(suite, test_nvmf_rdma_qpair_compare);
1433 	CU_ADD_TEST(suite, test_nvmf_rdma_resize_cq);
1434 
1435 	num_failures = spdk_ut_run_tests(argc, argv, NULL);
1436 	CU_cleanup_registry();
1437 	return num_failures;
1438 }
1439