1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk_cunit.h" 35 36 #include "common/lib/test_env.c" 37 #include "common/lib/ut_multithread.c" 38 #include "unit/lib/json_mock.c" 39 40 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */ 41 #undef SPDK_CONFIG_VTUNE 42 43 #include "bdev/bdev.c" 44 45 #define BDEV_UT_NUM_THREADS 3 46 47 DEFINE_STUB_V(spdk_scsi_nvme_translate, (const struct spdk_bdev_io *bdev_io, 48 int *sc, int *sk, int *asc, int *ascq)); 49 50 DEFINE_STUB(spdk_conf_find_section, struct spdk_conf_section *, (struct spdk_conf *cp, 51 const char *name), NULL); 52 DEFINE_STUB(spdk_conf_section_get_nmval, char *, 53 (struct spdk_conf_section *sp, const char *key, int idx1, int idx2), NULL); 54 DEFINE_STUB(spdk_conf_section_get_intval, int, (struct spdk_conf_section *sp, const char *key), -1); 55 56 struct spdk_trace_histories *g_trace_histories; 57 DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn)); 58 DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix)); 59 DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix)); 60 DEFINE_STUB_V(spdk_trace_register_description, (const char *name, const char *short_name, 61 uint16_t tpoint_id, uint8_t owner_type, 62 uint8_t object_type, uint8_t new_object, 63 uint8_t arg1_is_ptr, const char *arg1_name)); 64 DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id, 65 uint32_t size, uint64_t object_id, uint64_t arg1)); 66 67 struct ut_bdev { 68 struct spdk_bdev bdev; 69 void *io_target; 70 }; 71 72 struct ut_bdev_channel { 73 TAILQ_HEAD(, spdk_bdev_io) outstanding_io; 74 uint32_t outstanding_cnt; 75 uint32_t avail_cnt; 76 }; 77 78 int g_io_device; 79 struct ut_bdev g_bdev; 80 struct spdk_bdev_desc *g_desc; 81 bool g_teardown_done = false; 82 bool g_get_io_channel = true; 83 bool g_create_ch = true; 84 bool g_init_complete_called = false; 85 bool g_fini_start_called = true; 86 87 static int 88 stub_create_ch(void *io_device, void *ctx_buf) 89 { 90 struct ut_bdev_channel *ch = ctx_buf; 91 92 if (g_create_ch == false) { 93 return -1; 94 } 95 96 TAILQ_INIT(&ch->outstanding_io); 97 ch->outstanding_cnt = 0; 98 /* 99 * When avail gets to 0, the submit_request function will return ENOMEM. 100 * Most tests to not want ENOMEM to occur, so by default set this to a 101 * big value that won't get hit. The ENOMEM tests can then override this 102 * value to something much smaller to induce ENOMEM conditions. 103 */ 104 ch->avail_cnt = 2048; 105 return 0; 106 } 107 108 static void 109 stub_destroy_ch(void *io_device, void *ctx_buf) 110 { 111 } 112 113 static struct spdk_io_channel * 114 stub_get_io_channel(void *ctx) 115 { 116 struct ut_bdev *ut_bdev = ctx; 117 118 if (g_get_io_channel == true) { 119 return spdk_get_io_channel(ut_bdev->io_target); 120 } else { 121 return NULL; 122 } 123 } 124 125 static int 126 stub_destruct(void *ctx) 127 { 128 return 0; 129 } 130 131 static void 132 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io) 133 { 134 struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 135 136 if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) { 137 struct spdk_bdev_io *io; 138 139 while (!TAILQ_EMPTY(&ch->outstanding_io)) { 140 io = TAILQ_FIRST(&ch->outstanding_io); 141 TAILQ_REMOVE(&ch->outstanding_io, io, module_link); 142 ch->outstanding_cnt--; 143 spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_FAILED); 144 ch->avail_cnt++; 145 } 146 } 147 148 if (ch->avail_cnt > 0) { 149 TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link); 150 ch->outstanding_cnt++; 151 ch->avail_cnt--; 152 } else { 153 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_NOMEM); 154 } 155 } 156 157 static uint32_t 158 stub_complete_io(void *io_target, uint32_t num_to_complete) 159 { 160 struct spdk_io_channel *_ch = spdk_get_io_channel(io_target); 161 struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 162 struct spdk_bdev_io *io; 163 bool complete_all = (num_to_complete == 0); 164 uint32_t num_completed = 0; 165 166 while (complete_all || num_completed < num_to_complete) { 167 if (TAILQ_EMPTY(&ch->outstanding_io)) { 168 break; 169 } 170 io = TAILQ_FIRST(&ch->outstanding_io); 171 TAILQ_REMOVE(&ch->outstanding_io, io, module_link); 172 ch->outstanding_cnt--; 173 spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_SUCCESS); 174 ch->avail_cnt++; 175 num_completed++; 176 } 177 178 spdk_put_io_channel(_ch); 179 return num_completed; 180 } 181 182 static struct spdk_bdev_fn_table fn_table = { 183 .get_io_channel = stub_get_io_channel, 184 .destruct = stub_destruct, 185 .submit_request = stub_submit_request, 186 }; 187 188 static int 189 module_init(void) 190 { 191 return 0; 192 } 193 194 static void 195 module_fini(void) 196 { 197 } 198 199 static void 200 init_complete(void) 201 { 202 g_init_complete_called = true; 203 } 204 205 static void 206 fini_start(void) 207 { 208 g_fini_start_called = true; 209 } 210 211 struct spdk_bdev_module bdev_ut_if = { 212 .name = "bdev_ut", 213 .module_init = module_init, 214 .module_fini = module_fini, 215 .init_complete = init_complete, 216 .fini_start = fini_start, 217 }; 218 219 SPDK_BDEV_MODULE_REGISTER(&bdev_ut_if) 220 221 static void 222 register_bdev(struct ut_bdev *ut_bdev, char *name, void *io_target) 223 { 224 memset(ut_bdev, 0, sizeof(*ut_bdev)); 225 226 ut_bdev->io_target = io_target; 227 ut_bdev->bdev.ctxt = ut_bdev; 228 ut_bdev->bdev.name = name; 229 ut_bdev->bdev.fn_table = &fn_table; 230 ut_bdev->bdev.module = &bdev_ut_if; 231 ut_bdev->bdev.blocklen = 4096; 232 ut_bdev->bdev.blockcnt = 1024; 233 234 spdk_bdev_register(&ut_bdev->bdev); 235 } 236 237 static void 238 unregister_bdev(struct ut_bdev *ut_bdev) 239 { 240 /* Handle any deferred messages. */ 241 poll_threads(); 242 spdk_bdev_unregister(&ut_bdev->bdev, NULL, NULL); 243 } 244 245 static void 246 bdev_init_cb(void *done, int rc) 247 { 248 CU_ASSERT(rc == 0); 249 *(bool *)done = true; 250 } 251 252 static void 253 setup_test(void) 254 { 255 bool done = false; 256 257 allocate_threads(BDEV_UT_NUM_THREADS); 258 set_thread(0); 259 spdk_bdev_initialize(bdev_init_cb, &done); 260 spdk_io_device_register(&g_io_device, stub_create_ch, stub_destroy_ch, 261 sizeof(struct ut_bdev_channel), NULL); 262 register_bdev(&g_bdev, "ut_bdev", &g_io_device); 263 spdk_bdev_open(&g_bdev.bdev, true, NULL, NULL, &g_desc); 264 } 265 266 static void 267 finish_cb(void *cb_arg) 268 { 269 g_teardown_done = true; 270 } 271 272 static void 273 teardown_test(void) 274 { 275 set_thread(0); 276 g_teardown_done = false; 277 spdk_bdev_close(g_desc); 278 g_desc = NULL; 279 unregister_bdev(&g_bdev); 280 spdk_io_device_unregister(&g_io_device, NULL); 281 spdk_bdev_finish(finish_cb, NULL); 282 poll_threads(); 283 memset(&g_bdev, 0, sizeof(g_bdev)); 284 CU_ASSERT(g_teardown_done == true); 285 g_teardown_done = false; 286 free_threads(); 287 } 288 289 static uint32_t 290 bdev_io_tailq_cnt(bdev_io_tailq_t *tailq) 291 { 292 struct spdk_bdev_io *io; 293 uint32_t cnt = 0; 294 295 TAILQ_FOREACH(io, tailq, internal.link) { 296 cnt++; 297 } 298 299 return cnt; 300 } 301 302 static void 303 basic(void) 304 { 305 g_init_complete_called = false; 306 setup_test(); 307 CU_ASSERT(g_init_complete_called == true); 308 309 set_thread(0); 310 311 g_get_io_channel = false; 312 g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc); 313 CU_ASSERT(g_ut_threads[0].ch == NULL); 314 315 g_get_io_channel = true; 316 g_create_ch = false; 317 g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc); 318 CU_ASSERT(g_ut_threads[0].ch == NULL); 319 320 g_get_io_channel = true; 321 g_create_ch = true; 322 g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc); 323 CU_ASSERT(g_ut_threads[0].ch != NULL); 324 spdk_put_io_channel(g_ut_threads[0].ch); 325 326 g_fini_start_called = false; 327 teardown_test(); 328 CU_ASSERT(g_fini_start_called == true); 329 } 330 331 static void 332 _bdev_removed(void *done) 333 { 334 *(bool *)done = true; 335 } 336 337 static void 338 _bdev_unregistered(void *done, int rc) 339 { 340 CU_ASSERT(rc == 0); 341 *(bool *)done = true; 342 } 343 344 static void 345 unregister_and_close(void) 346 { 347 bool done, remove_notify; 348 struct spdk_bdev_desc *desc; 349 350 setup_test(); 351 set_thread(0); 352 353 /* setup_test() automatically opens the bdev, 354 * but this test needs to do that in a different 355 * way. */ 356 spdk_bdev_close(g_desc); 357 poll_threads(); 358 359 remove_notify = false; 360 spdk_bdev_open(&g_bdev.bdev, true, _bdev_removed, &remove_notify, &desc); 361 CU_ASSERT(remove_notify == false); 362 CU_ASSERT(desc != NULL); 363 364 /* There is an open descriptor on the device. Unregister it, 365 * which can't proceed until the descriptor is closed. */ 366 done = false; 367 spdk_bdev_unregister(&g_bdev.bdev, _bdev_unregistered, &done); 368 /* No polling has occurred, so neither of these should execute */ 369 CU_ASSERT(remove_notify == false); 370 CU_ASSERT(done == false); 371 372 /* Prior to the unregister completing, close the descriptor */ 373 spdk_bdev_close(desc); 374 375 /* Poll the threads to allow all events to be processed */ 376 poll_threads(); 377 378 /* Remove notify should not have been called because the 379 * descriptor is already closed. */ 380 CU_ASSERT(remove_notify == false); 381 382 /* The unregister should have completed */ 383 CU_ASSERT(done == true); 384 385 spdk_bdev_finish(finish_cb, NULL); 386 poll_threads(); 387 free_threads(); 388 } 389 390 static void 391 reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 392 { 393 bool *done = cb_arg; 394 395 CU_ASSERT(success == true); 396 *done = true; 397 spdk_bdev_free_io(bdev_io); 398 } 399 400 static void 401 put_channel_during_reset(void) 402 { 403 struct spdk_io_channel *io_ch; 404 bool done = false; 405 406 setup_test(); 407 408 set_thread(0); 409 io_ch = spdk_bdev_get_io_channel(g_desc); 410 CU_ASSERT(io_ch != NULL); 411 412 /* 413 * Start a reset, but then put the I/O channel before 414 * the deferred messages for the reset get a chance to 415 * execute. 416 */ 417 spdk_bdev_reset(g_desc, io_ch, reset_done, &done); 418 spdk_put_io_channel(io_ch); 419 poll_threads(); 420 stub_complete_io(g_bdev.io_target, 0); 421 422 teardown_test(); 423 } 424 425 static void 426 aborted_reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 427 { 428 enum spdk_bdev_io_status *status = cb_arg; 429 430 *status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED; 431 spdk_bdev_free_io(bdev_io); 432 } 433 434 static void 435 aborted_reset(void) 436 { 437 struct spdk_io_channel *io_ch[2]; 438 enum spdk_bdev_io_status status1 = SPDK_BDEV_IO_STATUS_PENDING, 439 status2 = SPDK_BDEV_IO_STATUS_PENDING; 440 441 setup_test(); 442 443 set_thread(0); 444 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 445 CU_ASSERT(io_ch[0] != NULL); 446 spdk_bdev_reset(g_desc, io_ch[0], aborted_reset_done, &status1); 447 poll_threads(); 448 CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL); 449 450 /* 451 * First reset has been submitted on ch0. Now submit a second 452 * reset on ch1 which will get queued since there is already a 453 * reset in progress. 454 */ 455 set_thread(1); 456 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 457 CU_ASSERT(io_ch[1] != NULL); 458 spdk_bdev_reset(g_desc, io_ch[1], aborted_reset_done, &status2); 459 poll_threads(); 460 CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL); 461 462 /* 463 * Now destroy ch1. This will abort the queued reset. Check that 464 * the second reset was completed with failed status. Also check 465 * that bdev->internal.reset_in_progress != NULL, since the 466 * original reset has not been completed yet. This ensures that 467 * the bdev code is correctly noticing that the failed reset is 468 * *not* the one that had been submitted to the bdev module. 469 */ 470 set_thread(1); 471 spdk_put_io_channel(io_ch[1]); 472 poll_threads(); 473 CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_FAILED); 474 CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL); 475 476 /* 477 * Now complete the first reset, verify that it completed with SUCCESS 478 * status and that bdev->internal.reset_in_progress is also set back to NULL. 479 */ 480 set_thread(0); 481 spdk_put_io_channel(io_ch[0]); 482 stub_complete_io(g_bdev.io_target, 0); 483 poll_threads(); 484 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS); 485 CU_ASSERT(g_bdev.bdev.internal.reset_in_progress == NULL); 486 487 teardown_test(); 488 } 489 490 static void 491 io_during_io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 492 { 493 enum spdk_bdev_io_status *status = cb_arg; 494 495 *status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED; 496 spdk_bdev_free_io(bdev_io); 497 } 498 499 static void 500 io_during_reset(void) 501 { 502 struct spdk_io_channel *io_ch[2]; 503 struct spdk_bdev_channel *bdev_ch[2]; 504 enum spdk_bdev_io_status status0, status1, status_reset; 505 int rc; 506 507 setup_test(); 508 509 /* 510 * First test normal case - submit an I/O on each of two channels (with no resets) 511 * and verify they complete successfully. 512 */ 513 set_thread(0); 514 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 515 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 516 CU_ASSERT(bdev_ch[0]->flags == 0); 517 status0 = SPDK_BDEV_IO_STATUS_PENDING; 518 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0); 519 CU_ASSERT(rc == 0); 520 521 set_thread(1); 522 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 523 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 524 CU_ASSERT(bdev_ch[1]->flags == 0); 525 status1 = SPDK_BDEV_IO_STATUS_PENDING; 526 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1); 527 CU_ASSERT(rc == 0); 528 529 poll_threads(); 530 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING); 531 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING); 532 533 set_thread(0); 534 stub_complete_io(g_bdev.io_target, 0); 535 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS); 536 537 set_thread(1); 538 stub_complete_io(g_bdev.io_target, 0); 539 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS); 540 541 /* 542 * Now submit a reset, and leave it pending while we submit I/O on two different 543 * channels. These I/O should be failed by the bdev layer since the reset is in 544 * progress. 545 */ 546 set_thread(0); 547 status_reset = SPDK_BDEV_IO_STATUS_PENDING; 548 rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &status_reset); 549 CU_ASSERT(rc == 0); 550 551 CU_ASSERT(bdev_ch[0]->flags == 0); 552 CU_ASSERT(bdev_ch[1]->flags == 0); 553 poll_threads(); 554 CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_RESET_IN_PROGRESS); 555 CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_RESET_IN_PROGRESS); 556 557 set_thread(0); 558 status0 = SPDK_BDEV_IO_STATUS_PENDING; 559 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0); 560 CU_ASSERT(rc == 0); 561 562 set_thread(1); 563 status1 = SPDK_BDEV_IO_STATUS_PENDING; 564 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1); 565 CU_ASSERT(rc == 0); 566 567 /* 568 * A reset is in progress so these read I/O should complete with failure. Note that we 569 * need to poll_threads() since I/O completed inline have their completion deferred. 570 */ 571 poll_threads(); 572 CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING); 573 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_FAILED); 574 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_FAILED); 575 576 /* 577 * Complete the reset 578 */ 579 set_thread(0); 580 stub_complete_io(g_bdev.io_target, 0); 581 582 /* 583 * Only poll thread 0. We should not get a completion. 584 */ 585 poll_thread(0); 586 CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING); 587 588 /* 589 * Poll both thread 0 and 1 so the messages can propagate and we 590 * get a completion. 591 */ 592 poll_threads(); 593 CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_SUCCESS); 594 595 spdk_put_io_channel(io_ch[0]); 596 set_thread(1); 597 spdk_put_io_channel(io_ch[1]); 598 poll_threads(); 599 600 teardown_test(); 601 } 602 603 static void 604 basic_qos(void) 605 { 606 struct spdk_io_channel *io_ch[2]; 607 struct spdk_bdev_channel *bdev_ch[2]; 608 struct spdk_bdev *bdev; 609 enum spdk_bdev_io_status status; 610 int rc; 611 612 setup_test(); 613 614 /* Enable QoS */ 615 bdev = &g_bdev.bdev; 616 bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos)); 617 SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL); 618 TAILQ_INIT(&bdev->internal.qos->queued); 619 /* 620 * Enable both IOPS and bandwidth rate limits. 621 * In this case, both rate limits will take equal effect. 622 */ 623 bdev->internal.qos->iops_rate_limit = 2000; /* 2 I/O per millisecond */ 624 bdev->internal.qos->byte_rate_limit = 8192000; /* 8K byte per millisecond with 4K block size */ 625 626 g_get_io_channel = true; 627 628 set_thread(0); 629 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 630 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 631 CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED); 632 633 set_thread(1); 634 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 635 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 636 CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED); 637 638 /* 639 * Send an I/O on thread 0, which is where the QoS thread is running. 640 */ 641 set_thread(0); 642 status = SPDK_BDEV_IO_STATUS_PENDING; 643 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status); 644 CU_ASSERT(rc == 0); 645 CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING); 646 poll_threads(); 647 stub_complete_io(g_bdev.io_target, 0); 648 poll_threads(); 649 CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS); 650 651 /* Send an I/O on thread 1. The QoS thread is not running here. */ 652 status = SPDK_BDEV_IO_STATUS_PENDING; 653 set_thread(1); 654 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status); 655 CU_ASSERT(rc == 0); 656 CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING); 657 poll_threads(); 658 /* Complete I/O on thread 1. This should not complete the I/O we submitted */ 659 stub_complete_io(g_bdev.io_target, 0); 660 poll_threads(); 661 CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING); 662 /* Now complete I/O on thread 0 */ 663 set_thread(0); 664 poll_threads(); 665 stub_complete_io(g_bdev.io_target, 0); 666 poll_threads(); 667 CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS); 668 669 /* Tear down the channels */ 670 set_thread(0); 671 spdk_put_io_channel(io_ch[0]); 672 set_thread(1); 673 spdk_put_io_channel(io_ch[1]); 674 poll_threads(); 675 set_thread(0); 676 677 /* Close the descriptor, which should stop the qos channel */ 678 spdk_bdev_close(g_desc); 679 poll_threads(); 680 CU_ASSERT(bdev->internal.qos->ch == NULL); 681 682 spdk_bdev_open(bdev, true, NULL, NULL, &g_desc); 683 684 /* Create the channels in reverse order. */ 685 set_thread(1); 686 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 687 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 688 CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED); 689 690 set_thread(0); 691 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 692 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 693 CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED); 694 695 /* Confirm that the qos thread is now thread 1 */ 696 CU_ASSERT(bdev->internal.qos->ch == bdev_ch[1]); 697 698 /* Tear down the channels */ 699 set_thread(0); 700 spdk_put_io_channel(io_ch[0]); 701 set_thread(1); 702 spdk_put_io_channel(io_ch[1]); 703 poll_threads(); 704 705 set_thread(0); 706 707 teardown_test(); 708 } 709 710 static void 711 io_during_qos_queue(void) 712 { 713 struct spdk_io_channel *io_ch[2]; 714 struct spdk_bdev_channel *bdev_ch[2]; 715 struct spdk_bdev *bdev; 716 enum spdk_bdev_io_status status0, status1; 717 int rc; 718 719 setup_test(); 720 reset_time(); 721 722 /* Enable QoS */ 723 bdev = &g_bdev.bdev; 724 bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos)); 725 SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL); 726 TAILQ_INIT(&bdev->internal.qos->queued); 727 /* 728 * Enable both IOPS and bandwidth rate limits. 729 * In this case, IOPS rate limit will take effect first. 730 */ 731 bdev->internal.qos->iops_rate_limit = 1000; /* 1000 I/O per second, or 1 per millisecond */ 732 bdev->internal.qos->byte_rate_limit = 8192000; /* 8K byte per millisecond with 4K block size */ 733 734 g_get_io_channel = true; 735 736 /* Create channels */ 737 set_thread(0); 738 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 739 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 740 CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED); 741 742 set_thread(1); 743 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 744 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 745 CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED); 746 747 /* Send two I/O */ 748 status1 = SPDK_BDEV_IO_STATUS_PENDING; 749 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1); 750 CU_ASSERT(rc == 0); 751 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING); 752 set_thread(0); 753 status0 = SPDK_BDEV_IO_STATUS_PENDING; 754 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0); 755 CU_ASSERT(rc == 0); 756 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING); 757 758 /* Complete any I/O that arrived at the disk */ 759 poll_threads(); 760 set_thread(1); 761 stub_complete_io(g_bdev.io_target, 0); 762 set_thread(0); 763 stub_complete_io(g_bdev.io_target, 0); 764 poll_threads(); 765 766 /* Only one of the I/O should complete. (logical XOR) */ 767 if (status0 == SPDK_BDEV_IO_STATUS_SUCCESS) { 768 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING); 769 } else { 770 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS); 771 } 772 773 /* Advance in time by a millisecond */ 774 increment_time(1000); 775 776 /* Complete more I/O */ 777 poll_threads(); 778 set_thread(1); 779 stub_complete_io(g_bdev.io_target, 0); 780 set_thread(0); 781 stub_complete_io(g_bdev.io_target, 0); 782 poll_threads(); 783 784 /* Now the second I/O should be done */ 785 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS); 786 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS); 787 788 /* Tear down the channels */ 789 set_thread(1); 790 spdk_put_io_channel(io_ch[1]); 791 set_thread(0); 792 spdk_put_io_channel(io_ch[0]); 793 poll_threads(); 794 795 teardown_test(); 796 } 797 798 static void 799 io_during_qos_reset(void) 800 { 801 struct spdk_io_channel *io_ch[2]; 802 struct spdk_bdev_channel *bdev_ch[2]; 803 struct spdk_bdev *bdev; 804 enum spdk_bdev_io_status status0, status1, reset_status; 805 int rc; 806 807 setup_test(); 808 reset_time(); 809 810 /* Enable QoS */ 811 bdev = &g_bdev.bdev; 812 bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos)); 813 SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL); 814 TAILQ_INIT(&bdev->internal.qos->queued); 815 /* 816 * Enable both IOPS and bandwidth rate limits. 817 * In this case, bandwidth rate limit will take effect first. 818 */ 819 bdev->internal.qos->iops_rate_limit = 2000; /* 2000 I/O per second, or 2 per millisecond */ 820 bdev->internal.qos->byte_rate_limit = 4096000; /* 4K byte per millisecond with 4K block size */ 821 822 g_get_io_channel = true; 823 824 /* Create channels */ 825 set_thread(0); 826 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 827 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 828 CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED); 829 830 set_thread(1); 831 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 832 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 833 CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED); 834 835 /* Send two I/O. One of these gets queued by QoS. The other is sitting at the disk. */ 836 status1 = SPDK_BDEV_IO_STATUS_PENDING; 837 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1); 838 CU_ASSERT(rc == 0); 839 set_thread(0); 840 status0 = SPDK_BDEV_IO_STATUS_PENDING; 841 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0); 842 CU_ASSERT(rc == 0); 843 844 poll_threads(); 845 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING); 846 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING); 847 848 /* Reset the bdev. */ 849 reset_status = SPDK_BDEV_IO_STATUS_PENDING; 850 rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &reset_status); 851 CU_ASSERT(rc == 0); 852 853 /* Complete any I/O that arrived at the disk */ 854 poll_threads(); 855 set_thread(1); 856 stub_complete_io(g_bdev.io_target, 0); 857 set_thread(0); 858 stub_complete_io(g_bdev.io_target, 0); 859 poll_threads(); 860 861 CU_ASSERT(reset_status == SPDK_BDEV_IO_STATUS_SUCCESS); 862 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_FAILED); 863 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_FAILED); 864 865 /* Tear down the channels */ 866 set_thread(1); 867 spdk_put_io_channel(io_ch[1]); 868 set_thread(0); 869 spdk_put_io_channel(io_ch[0]); 870 poll_threads(); 871 872 teardown_test(); 873 } 874 875 static void 876 enomem_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 877 { 878 enum spdk_bdev_io_status *status = cb_arg; 879 880 *status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED; 881 spdk_bdev_free_io(bdev_io); 882 } 883 884 static void 885 enomem(void) 886 { 887 struct spdk_io_channel *io_ch; 888 struct spdk_bdev_channel *bdev_ch; 889 struct spdk_bdev_shared_resource *shared_resource; 890 struct ut_bdev_channel *ut_ch; 891 const uint32_t IO_ARRAY_SIZE = 64; 892 const uint32_t AVAIL = 20; 893 enum spdk_bdev_io_status status[IO_ARRAY_SIZE], status_reset; 894 uint32_t nomem_cnt, i; 895 struct spdk_bdev_io *first_io; 896 int rc; 897 898 setup_test(); 899 900 set_thread(0); 901 io_ch = spdk_bdev_get_io_channel(g_desc); 902 bdev_ch = spdk_io_channel_get_ctx(io_ch); 903 shared_resource = bdev_ch->shared_resource; 904 ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel); 905 ut_ch->avail_cnt = AVAIL; 906 907 /* First submit a number of IOs equal to what the channel can support. */ 908 for (i = 0; i < AVAIL; i++) { 909 status[i] = SPDK_BDEV_IO_STATUS_PENDING; 910 rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]); 911 CU_ASSERT(rc == 0); 912 } 913 CU_ASSERT(TAILQ_EMPTY(&shared_resource->nomem_io)); 914 915 /* 916 * Next, submit one additional I/O. This one should fail with ENOMEM and then go onto 917 * the enomem_io list. 918 */ 919 status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING; 920 rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]); 921 CU_ASSERT(rc == 0); 922 SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&shared_resource->nomem_io)); 923 first_io = TAILQ_FIRST(&shared_resource->nomem_io); 924 925 /* 926 * Now submit a bunch more I/O. These should all fail with ENOMEM and get queued behind 927 * the first_io above. 928 */ 929 for (i = AVAIL + 1; i < IO_ARRAY_SIZE; i++) { 930 status[i] = SPDK_BDEV_IO_STATUS_PENDING; 931 rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]); 932 CU_ASSERT(rc == 0); 933 } 934 935 /* Assert that first_io is still at the head of the list. */ 936 CU_ASSERT(TAILQ_FIRST(&shared_resource->nomem_io) == first_io); 937 CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == (IO_ARRAY_SIZE - AVAIL)); 938 nomem_cnt = bdev_io_tailq_cnt(&shared_resource->nomem_io); 939 CU_ASSERT(shared_resource->nomem_threshold == (AVAIL - NOMEM_THRESHOLD_COUNT)); 940 941 /* 942 * Complete 1 I/O only. The key check here is bdev_io_tailq_cnt - this should not have 943 * changed since completing just 1 I/O should not trigger retrying the queued nomem_io 944 * list. 945 */ 946 stub_complete_io(g_bdev.io_target, 1); 947 CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == nomem_cnt); 948 949 /* 950 * Complete enough I/O to hit the nomem_theshold. This should trigger retrying nomem_io, 951 * and we should see I/O get resubmitted to the test bdev module. 952 */ 953 stub_complete_io(g_bdev.io_target, NOMEM_THRESHOLD_COUNT - 1); 954 CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) < nomem_cnt); 955 nomem_cnt = bdev_io_tailq_cnt(&shared_resource->nomem_io); 956 957 /* Complete 1 I/O only. This should not trigger retrying the queued nomem_io. */ 958 stub_complete_io(g_bdev.io_target, 1); 959 CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == nomem_cnt); 960 961 /* 962 * Send a reset and confirm that all I/O are completed, including the ones that 963 * were queued on the nomem_io list. 964 */ 965 status_reset = SPDK_BDEV_IO_STATUS_PENDING; 966 rc = spdk_bdev_reset(g_desc, io_ch, enomem_done, &status_reset); 967 poll_threads(); 968 CU_ASSERT(rc == 0); 969 /* This will complete the reset. */ 970 stub_complete_io(g_bdev.io_target, 0); 971 972 CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == 0); 973 CU_ASSERT(shared_resource->io_outstanding == 0); 974 975 spdk_put_io_channel(io_ch); 976 poll_threads(); 977 teardown_test(); 978 } 979 980 static void 981 enomem_multi_bdev(void) 982 { 983 struct spdk_io_channel *io_ch; 984 struct spdk_bdev_channel *bdev_ch; 985 struct spdk_bdev_shared_resource *shared_resource; 986 struct ut_bdev_channel *ut_ch; 987 const uint32_t IO_ARRAY_SIZE = 64; 988 const uint32_t AVAIL = 20; 989 enum spdk_bdev_io_status status[IO_ARRAY_SIZE]; 990 uint32_t i; 991 struct ut_bdev *second_bdev; 992 struct spdk_bdev_desc *second_desc = NULL; 993 struct spdk_bdev_channel *second_bdev_ch; 994 struct spdk_io_channel *second_ch; 995 int rc; 996 997 setup_test(); 998 999 /* Register second bdev with the same io_target */ 1000 second_bdev = calloc(1, sizeof(*second_bdev)); 1001 SPDK_CU_ASSERT_FATAL(second_bdev != NULL); 1002 register_bdev(second_bdev, "ut_bdev2", g_bdev.io_target); 1003 spdk_bdev_open(&second_bdev->bdev, true, NULL, NULL, &second_desc); 1004 SPDK_CU_ASSERT_FATAL(second_desc != NULL); 1005 1006 set_thread(0); 1007 io_ch = spdk_bdev_get_io_channel(g_desc); 1008 bdev_ch = spdk_io_channel_get_ctx(io_ch); 1009 shared_resource = bdev_ch->shared_resource; 1010 ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel); 1011 ut_ch->avail_cnt = AVAIL; 1012 1013 second_ch = spdk_bdev_get_io_channel(second_desc); 1014 second_bdev_ch = spdk_io_channel_get_ctx(second_ch); 1015 SPDK_CU_ASSERT_FATAL(shared_resource == second_bdev_ch->shared_resource); 1016 1017 /* Saturate io_target through bdev A. */ 1018 for (i = 0; i < AVAIL; i++) { 1019 status[i] = SPDK_BDEV_IO_STATUS_PENDING; 1020 rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]); 1021 CU_ASSERT(rc == 0); 1022 } 1023 CU_ASSERT(TAILQ_EMPTY(&shared_resource->nomem_io)); 1024 1025 /* 1026 * Now submit I/O through the second bdev. This should fail with ENOMEM 1027 * and then go onto the nomem_io list. 1028 */ 1029 status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING; 1030 rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]); 1031 CU_ASSERT(rc == 0); 1032 SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&shared_resource->nomem_io)); 1033 1034 /* Complete first bdev's I/O. This should retry sending second bdev's nomem_io */ 1035 stub_complete_io(g_bdev.io_target, AVAIL); 1036 1037 SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&shared_resource->nomem_io)); 1038 CU_ASSERT(shared_resource->io_outstanding == 1); 1039 1040 /* Now complete our retried I/O */ 1041 stub_complete_io(g_bdev.io_target, 1); 1042 SPDK_CU_ASSERT_FATAL(shared_resource->io_outstanding == 0); 1043 1044 spdk_put_io_channel(io_ch); 1045 spdk_put_io_channel(second_ch); 1046 spdk_bdev_close(second_desc); 1047 unregister_bdev(second_bdev); 1048 poll_threads(); 1049 free(second_bdev); 1050 teardown_test(); 1051 } 1052 1053 1054 static void 1055 enomem_multi_io_target(void) 1056 { 1057 struct spdk_io_channel *io_ch; 1058 struct spdk_bdev_channel *bdev_ch; 1059 struct ut_bdev_channel *ut_ch; 1060 const uint32_t IO_ARRAY_SIZE = 64; 1061 const uint32_t AVAIL = 20; 1062 enum spdk_bdev_io_status status[IO_ARRAY_SIZE]; 1063 uint32_t i; 1064 int new_io_device; 1065 struct ut_bdev *second_bdev; 1066 struct spdk_bdev_desc *second_desc = NULL; 1067 struct spdk_bdev_channel *second_bdev_ch; 1068 struct spdk_io_channel *second_ch; 1069 int rc; 1070 1071 setup_test(); 1072 1073 /* Create new io_target and a second bdev using it */ 1074 spdk_io_device_register(&new_io_device, stub_create_ch, stub_destroy_ch, 1075 sizeof(struct ut_bdev_channel), NULL); 1076 second_bdev = calloc(1, sizeof(*second_bdev)); 1077 SPDK_CU_ASSERT_FATAL(second_bdev != NULL); 1078 register_bdev(second_bdev, "ut_bdev2", &new_io_device); 1079 spdk_bdev_open(&second_bdev->bdev, true, NULL, NULL, &second_desc); 1080 SPDK_CU_ASSERT_FATAL(second_desc != NULL); 1081 1082 set_thread(0); 1083 io_ch = spdk_bdev_get_io_channel(g_desc); 1084 bdev_ch = spdk_io_channel_get_ctx(io_ch); 1085 ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel); 1086 ut_ch->avail_cnt = AVAIL; 1087 1088 /* Different io_target should imply a different shared_resource */ 1089 second_ch = spdk_bdev_get_io_channel(second_desc); 1090 second_bdev_ch = spdk_io_channel_get_ctx(second_ch); 1091 SPDK_CU_ASSERT_FATAL(bdev_ch->shared_resource != second_bdev_ch->shared_resource); 1092 1093 /* Saturate io_target through bdev A. */ 1094 for (i = 0; i < AVAIL; i++) { 1095 status[i] = SPDK_BDEV_IO_STATUS_PENDING; 1096 rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]); 1097 CU_ASSERT(rc == 0); 1098 } 1099 CU_ASSERT(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io)); 1100 1101 /* Issue one more I/O to fill ENOMEM list. */ 1102 status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING; 1103 rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]); 1104 CU_ASSERT(rc == 0); 1105 SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io)); 1106 1107 /* 1108 * Now submit I/O through the second bdev. This should go through and complete 1109 * successfully because we're using a different io_device underneath. 1110 */ 1111 status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING; 1112 rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]); 1113 CU_ASSERT(rc == 0); 1114 SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&second_bdev_ch->shared_resource->nomem_io)); 1115 stub_complete_io(second_bdev->io_target, 1); 1116 1117 /* Cleanup; Complete outstanding I/O. */ 1118 stub_complete_io(g_bdev.io_target, AVAIL); 1119 SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io)); 1120 /* Complete the ENOMEM I/O */ 1121 stub_complete_io(g_bdev.io_target, 1); 1122 CU_ASSERT(bdev_ch->shared_resource->io_outstanding == 0); 1123 1124 SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io)); 1125 CU_ASSERT(bdev_ch->shared_resource->io_outstanding == 0); 1126 spdk_put_io_channel(io_ch); 1127 spdk_put_io_channel(second_ch); 1128 spdk_bdev_close(second_desc); 1129 unregister_bdev(second_bdev); 1130 spdk_io_device_unregister(&new_io_device, NULL); 1131 poll_threads(); 1132 free(second_bdev); 1133 teardown_test(); 1134 } 1135 1136 static void 1137 qos_dynamic_enable_done(void *cb_arg, int status) 1138 { 1139 int *rc = cb_arg; 1140 *rc = status; 1141 } 1142 1143 static void 1144 qos_dynamic_enable(void) 1145 { 1146 struct spdk_io_channel *io_ch[2]; 1147 struct spdk_bdev_channel *bdev_ch[2]; 1148 struct spdk_bdev *bdev; 1149 enum spdk_bdev_io_status bdev_io_status[2]; 1150 int status, second_status, rc, i; 1151 1152 setup_test(); 1153 reset_time(); 1154 1155 bdev = &g_bdev.bdev; 1156 1157 g_get_io_channel = true; 1158 1159 /* Create channels */ 1160 set_thread(0); 1161 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 1162 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 1163 CU_ASSERT(bdev_ch[0]->flags == 0); 1164 1165 set_thread(1); 1166 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 1167 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 1168 CU_ASSERT(bdev_ch[1]->flags == 0); 1169 1170 set_thread(0); 1171 1172 /* Enable QoS */ 1173 status = -1; 1174 spdk_bdev_set_qos_limit_iops(bdev, 10000, qos_dynamic_enable_done, &status); 1175 poll_threads(); 1176 CU_ASSERT(status == 0); 1177 CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0); 1178 CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0); 1179 1180 /* 1181 * Submit and complete 10 I/O to fill the QoS allotment for this timeslice. 1182 * Additional I/O will then be queued. 1183 */ 1184 set_thread(0); 1185 for (i = 0; i < 10; i++) { 1186 bdev_io_status[0] = SPDK_BDEV_IO_STATUS_PENDING; 1187 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &bdev_io_status[0]); 1188 CU_ASSERT(rc == 0); 1189 CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_PENDING); 1190 poll_thread(0); 1191 stub_complete_io(g_bdev.io_target, 0); 1192 CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_SUCCESS); 1193 } 1194 1195 /* 1196 * Send two more I/O. These I/O will be queued since the current timeslice allotment has been 1197 * filled already. We want to test that when QoS is disabled that these two I/O: 1198 * 1) are not aborted 1199 * 2) are sent back to their original thread for resubmission 1200 */ 1201 bdev_io_status[0] = SPDK_BDEV_IO_STATUS_PENDING; 1202 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &bdev_io_status[0]); 1203 CU_ASSERT(rc == 0); 1204 CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_PENDING); 1205 set_thread(1); 1206 bdev_io_status[1] = SPDK_BDEV_IO_STATUS_PENDING; 1207 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &bdev_io_status[1]); 1208 CU_ASSERT(rc == 0); 1209 CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_PENDING); 1210 poll_threads(); 1211 1212 /* Disable QoS */ 1213 status = -1; 1214 spdk_bdev_set_qos_limit_iops(bdev, 0, qos_dynamic_enable_done, &status); 1215 poll_threads(); 1216 CU_ASSERT(status == 0); 1217 CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0); 1218 CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0); 1219 1220 /* 1221 * All I/O should have been resubmitted back on their original thread. Complete 1222 * all I/O on thread 0, and ensure that only the thread 0 I/O was completed. 1223 */ 1224 set_thread(0); 1225 stub_complete_io(g_bdev.io_target, 0); 1226 poll_threads(); 1227 CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_SUCCESS); 1228 CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_PENDING); 1229 1230 /* Now complete all I/O on thread 1 and ensure the thread 1 I/O was completed. */ 1231 set_thread(1); 1232 stub_complete_io(g_bdev.io_target, 0); 1233 poll_threads(); 1234 CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_SUCCESS); 1235 1236 /* Disable QoS again */ 1237 status = -1; 1238 spdk_bdev_set_qos_limit_iops(bdev, 0, qos_dynamic_enable_done, &status); 1239 poll_threads(); 1240 CU_ASSERT(status == 0); /* This should succeed */ 1241 CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0); 1242 CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0); 1243 1244 /* Enable QoS on thread 0 */ 1245 status = -1; 1246 spdk_bdev_set_qos_limit_iops(bdev, 10000, qos_dynamic_enable_done, &status); 1247 poll_threads(); 1248 CU_ASSERT(status == 0); 1249 CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0); 1250 CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0); 1251 1252 /* Disable QoS on thread 1 */ 1253 set_thread(1); 1254 status = -1; 1255 spdk_bdev_set_qos_limit_iops(bdev, 0, qos_dynamic_enable_done, &status); 1256 /* Don't poll yet. This should leave the channels with QoS enabled */ 1257 CU_ASSERT(status == -1); 1258 CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0); 1259 CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0); 1260 1261 /* Enable QoS. This should immediately fail because the previous disable QoS hasn't completed. */ 1262 second_status = 0; 1263 spdk_bdev_set_qos_limit_iops(bdev, 10000, qos_dynamic_enable_done, &second_status); 1264 poll_threads(); 1265 CU_ASSERT(status == 0); /* The disable should succeed */ 1266 CU_ASSERT(second_status < 0); /* The enable should fail */ 1267 CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0); 1268 CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0); 1269 1270 /* Enable QoS on thread 1. This should succeed now that the disable has completed. */ 1271 status = -1; 1272 spdk_bdev_set_qos_limit_iops(bdev, 10000, qos_dynamic_enable_done, &status); 1273 poll_threads(); 1274 CU_ASSERT(status == 0); 1275 CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0); 1276 CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0); 1277 1278 /* Tear down the channels */ 1279 set_thread(0); 1280 spdk_put_io_channel(io_ch[0]); 1281 set_thread(1); 1282 spdk_put_io_channel(io_ch[1]); 1283 poll_threads(); 1284 1285 set_thread(0); 1286 teardown_test(); 1287 } 1288 1289 int 1290 main(int argc, char **argv) 1291 { 1292 CU_pSuite suite = NULL; 1293 unsigned int num_failures; 1294 1295 if (CU_initialize_registry() != CUE_SUCCESS) { 1296 return CU_get_error(); 1297 } 1298 1299 suite = CU_add_suite("bdev", NULL, NULL); 1300 if (suite == NULL) { 1301 CU_cleanup_registry(); 1302 return CU_get_error(); 1303 } 1304 1305 if ( 1306 CU_add_test(suite, "basic", basic) == NULL || 1307 CU_add_test(suite, "unregister_and_close", unregister_and_close) == NULL || 1308 CU_add_test(suite, "basic_qos", basic_qos) == NULL || 1309 CU_add_test(suite, "put_channel_during_reset", put_channel_during_reset) == NULL || 1310 CU_add_test(suite, "aborted_reset", aborted_reset) == NULL || 1311 CU_add_test(suite, "io_during_reset", io_during_reset) == NULL || 1312 CU_add_test(suite, "io_during_qos_queue", io_during_qos_queue) == NULL || 1313 CU_add_test(suite, "io_during_qos_reset", io_during_qos_reset) == NULL || 1314 CU_add_test(suite, "enomem", enomem) == NULL || 1315 CU_add_test(suite, "enomem_multi_bdev", enomem_multi_bdev) == NULL || 1316 CU_add_test(suite, "enomem_multi_io_target", enomem_multi_io_target) == NULL || 1317 CU_add_test(suite, "qos_dynamic_enable", qos_dynamic_enable) == NULL 1318 ) { 1319 CU_cleanup_registry(); 1320 return CU_get_error(); 1321 } 1322 1323 CU_basic_set_mode(CU_BRM_VERBOSE); 1324 CU_basic_run_tests(); 1325 num_failures = CU_get_number_of_failures(); 1326 CU_cleanup_registry(); 1327 return num_failures; 1328 } 1329