1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk_cunit.h" 35 36 #include "common/lib/test_env.c" 37 #include "common/lib/ut_multithread.c" 38 #include "unit/lib/json_mock.c" 39 40 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */ 41 #undef SPDK_CONFIG_VTUNE 42 43 #include "bdev/bdev.c" 44 45 #define BDEV_UT_NUM_THREADS 3 46 47 DEFINE_STUB_V(spdk_scsi_nvme_translate, (const struct spdk_bdev_io *bdev_io, 48 int *sc, int *sk, int *asc, int *ascq)); 49 50 /* Return NULL to test hardcoded defaults. */ 51 struct spdk_conf_section * 52 spdk_conf_find_section(struct spdk_conf *cp, const char *name) 53 { 54 return NULL; 55 } 56 57 /* Return NULL to test hardcoded defaults. */ 58 char * 59 spdk_conf_section_get_nmval(struct spdk_conf_section *sp, const char *key, int idx1, int idx2) 60 { 61 return NULL; 62 } 63 64 struct ut_bdev { 65 struct spdk_bdev bdev; 66 void *io_target; 67 }; 68 69 struct ut_bdev_channel { 70 TAILQ_HEAD(, spdk_bdev_io) outstanding_io; 71 uint32_t outstanding_cnt; 72 uint32_t avail_cnt; 73 }; 74 75 int g_io_device; 76 struct ut_bdev g_bdev; 77 struct spdk_bdev_desc *g_desc; 78 bool g_teardown_done = false; 79 bool g_get_io_channel = true; 80 bool g_create_ch = true; 81 bool g_init_complete_called = false; 82 83 static int 84 stub_create_ch(void *io_device, void *ctx_buf) 85 { 86 struct ut_bdev_channel *ch = ctx_buf; 87 88 if (g_create_ch == false) { 89 return -1; 90 } 91 92 TAILQ_INIT(&ch->outstanding_io); 93 ch->outstanding_cnt = 0; 94 /* 95 * When avail gets to 0, the submit_request function will return ENOMEM. 96 * Most tests to not want ENOMEM to occur, so by default set this to a 97 * big value that won't get hit. The ENOMEM tests can then override this 98 * value to something much smaller to induce ENOMEM conditions. 99 */ 100 ch->avail_cnt = 2048; 101 return 0; 102 } 103 104 static void 105 stub_destroy_ch(void *io_device, void *ctx_buf) 106 { 107 } 108 109 static struct spdk_io_channel * 110 stub_get_io_channel(void *ctx) 111 { 112 struct ut_bdev *ut_bdev = ctx; 113 114 if (g_get_io_channel == true) { 115 return spdk_get_io_channel(ut_bdev->io_target); 116 } else { 117 return NULL; 118 } 119 } 120 121 static int 122 stub_destruct(void *ctx) 123 { 124 return 0; 125 } 126 127 static void 128 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io) 129 { 130 struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 131 132 if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) { 133 struct spdk_bdev_io *io; 134 135 while (!TAILQ_EMPTY(&ch->outstanding_io)) { 136 io = TAILQ_FIRST(&ch->outstanding_io); 137 TAILQ_REMOVE(&ch->outstanding_io, io, module_link); 138 ch->outstanding_cnt--; 139 spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_FAILED); 140 ch->avail_cnt++; 141 } 142 } 143 144 if (ch->avail_cnt > 0) { 145 TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link); 146 ch->outstanding_cnt++; 147 ch->avail_cnt--; 148 } else { 149 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_NOMEM); 150 } 151 } 152 153 static uint32_t 154 stub_complete_io(void *io_target, uint32_t num_to_complete) 155 { 156 struct spdk_io_channel *_ch = spdk_get_io_channel(io_target); 157 struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 158 struct spdk_bdev_io *io; 159 bool complete_all = (num_to_complete == 0); 160 uint32_t num_completed = 0; 161 162 while (complete_all || num_completed < num_to_complete) { 163 if (TAILQ_EMPTY(&ch->outstanding_io)) { 164 break; 165 } 166 io = TAILQ_FIRST(&ch->outstanding_io); 167 TAILQ_REMOVE(&ch->outstanding_io, io, module_link); 168 ch->outstanding_cnt--; 169 spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_SUCCESS); 170 ch->avail_cnt++; 171 num_completed++; 172 } 173 174 spdk_put_io_channel(_ch); 175 return num_completed; 176 } 177 178 static struct spdk_bdev_fn_table fn_table = { 179 .get_io_channel = stub_get_io_channel, 180 .destruct = stub_destruct, 181 .submit_request = stub_submit_request, 182 }; 183 184 static int 185 module_init(void) 186 { 187 return 0; 188 } 189 190 static void 191 module_fini(void) 192 { 193 } 194 195 static void 196 init_complete(void) 197 { 198 g_init_complete_called = true; 199 } 200 201 struct spdk_bdev_module bdev_ut_if = { 202 .name = "bdev_ut", 203 .module_init = module_init, 204 .module_fini = module_fini, 205 .init_complete = init_complete, 206 }; 207 208 SPDK_BDEV_MODULE_REGISTER(&bdev_ut_if) 209 210 static void 211 register_bdev(struct ut_bdev *ut_bdev, char *name, void *io_target) 212 { 213 memset(ut_bdev, 0, sizeof(*ut_bdev)); 214 215 ut_bdev->io_target = io_target; 216 ut_bdev->bdev.ctxt = ut_bdev; 217 ut_bdev->bdev.name = name; 218 ut_bdev->bdev.fn_table = &fn_table; 219 ut_bdev->bdev.module = &bdev_ut_if; 220 ut_bdev->bdev.blocklen = 4096; 221 ut_bdev->bdev.blockcnt = 1024; 222 223 spdk_bdev_register(&ut_bdev->bdev); 224 } 225 226 static void 227 unregister_bdev(struct ut_bdev *ut_bdev) 228 { 229 /* Handle any deferred messages. */ 230 poll_threads(); 231 spdk_bdev_unregister(&ut_bdev->bdev, NULL, NULL); 232 } 233 234 static void 235 bdev_init_cb(void *done, int rc) 236 { 237 CU_ASSERT(rc == 0); 238 *(bool *)done = true; 239 } 240 241 static void 242 setup_test(void) 243 { 244 bool done = false; 245 246 allocate_threads(BDEV_UT_NUM_THREADS); 247 spdk_bdev_initialize(bdev_init_cb, &done); 248 spdk_io_device_register(&g_io_device, stub_create_ch, stub_destroy_ch, 249 sizeof(struct ut_bdev_channel)); 250 register_bdev(&g_bdev, "ut_bdev", &g_io_device); 251 spdk_bdev_open(&g_bdev.bdev, true, NULL, NULL, &g_desc); 252 } 253 254 static void 255 finish_cb(void *cb_arg) 256 { 257 g_teardown_done = true; 258 } 259 260 static void 261 teardown_test(void) 262 { 263 g_teardown_done = false; 264 spdk_bdev_close(g_desc); 265 g_desc = NULL; 266 unregister_bdev(&g_bdev); 267 spdk_io_device_unregister(&g_io_device, NULL); 268 spdk_bdev_finish(finish_cb, NULL); 269 poll_threads(); 270 memset(&g_bdev, 0, sizeof(g_bdev)); 271 CU_ASSERT(g_teardown_done == true); 272 g_teardown_done = false; 273 free_threads(); 274 } 275 276 static uint32_t 277 bdev_io_tailq_cnt(bdev_io_tailq_t *tailq) 278 { 279 struct spdk_bdev_io *io; 280 uint32_t cnt = 0; 281 282 TAILQ_FOREACH(io, tailq, link) { 283 cnt++; 284 } 285 286 return cnt; 287 } 288 289 static void 290 basic(void) 291 { 292 g_init_complete_called = false; 293 setup_test(); 294 CU_ASSERT(g_init_complete_called == true); 295 296 set_thread(0); 297 298 g_get_io_channel = false; 299 g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc); 300 CU_ASSERT(g_ut_threads[0].ch == NULL); 301 302 g_get_io_channel = true; 303 g_create_ch = false; 304 g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc); 305 CU_ASSERT(g_ut_threads[0].ch == NULL); 306 307 g_get_io_channel = true; 308 g_create_ch = true; 309 g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc); 310 CU_ASSERT(g_ut_threads[0].ch != NULL); 311 spdk_put_io_channel(g_ut_threads[0].ch); 312 313 teardown_test(); 314 } 315 316 static int 317 poller_run_done(void *ctx) 318 { 319 bool *poller_run = ctx; 320 321 *poller_run = true; 322 323 return -1; 324 } 325 326 static int 327 poller_run_times_done(void *ctx) 328 { 329 int *poller_run_times = ctx; 330 331 (*poller_run_times)++; 332 333 return -1; 334 } 335 336 static void 337 basic_poller(void) 338 { 339 struct spdk_poller *poller = NULL; 340 bool poller_run = false; 341 int poller_run_times = 0; 342 343 setup_test(); 344 345 set_thread(0); 346 reset_time(); 347 /* Register a poller with no-wait time and test execution */ 348 poller = spdk_poller_register(poller_run_done, &poller_run, 0); 349 CU_ASSERT(poller != NULL); 350 351 poll_threads(); 352 CU_ASSERT(poller_run == true); 353 354 spdk_poller_unregister(&poller); 355 CU_ASSERT(poller == NULL); 356 357 /* Register a poller with 1000us wait time and test single execution */ 358 poller_run = false; 359 poller = spdk_poller_register(poller_run_done, &poller_run, 1000); 360 CU_ASSERT(poller != NULL); 361 362 poll_threads(); 363 CU_ASSERT(poller_run == false); 364 365 increment_time(1000); 366 poll_threads(); 367 CU_ASSERT(poller_run == true); 368 369 reset_time(); 370 poller_run = false; 371 poll_threads(); 372 CU_ASSERT(poller_run == false); 373 374 increment_time(1000); 375 poll_threads(); 376 CU_ASSERT(poller_run == true); 377 378 spdk_poller_unregister(&poller); 379 CU_ASSERT(poller == NULL); 380 381 reset_time(); 382 /* Register a poller with 1000us wait time and test multiple execution */ 383 poller = spdk_poller_register(poller_run_times_done, &poller_run_times, 1000); 384 CU_ASSERT(poller != NULL); 385 386 poll_threads(); 387 CU_ASSERT(poller_run_times == 0); 388 389 increment_time(1000); 390 poll_threads(); 391 CU_ASSERT(poller_run_times == 1); 392 393 poller_run_times = 0; 394 increment_time(2000); 395 poll_threads(); 396 CU_ASSERT(poller_run_times == 2); 397 398 spdk_poller_unregister(&poller); 399 CU_ASSERT(poller == NULL); 400 401 teardown_test(); 402 } 403 404 static void 405 reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 406 { 407 bool *done = cb_arg; 408 409 CU_ASSERT(success == true); 410 *done = true; 411 spdk_bdev_free_io(bdev_io); 412 } 413 414 static void 415 put_channel_during_reset(void) 416 { 417 struct spdk_io_channel *io_ch; 418 bool done = false; 419 420 setup_test(); 421 422 set_thread(0); 423 io_ch = spdk_bdev_get_io_channel(g_desc); 424 CU_ASSERT(io_ch != NULL); 425 426 /* 427 * Start a reset, but then put the I/O channel before 428 * the deferred messages for the reset get a chance to 429 * execute. 430 */ 431 spdk_bdev_reset(g_desc, io_ch, reset_done, &done); 432 spdk_put_io_channel(io_ch); 433 poll_threads(); 434 stub_complete_io(g_bdev.io_target, 0); 435 436 teardown_test(); 437 } 438 439 static void 440 aborted_reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 441 { 442 enum spdk_bdev_io_status *status = cb_arg; 443 444 *status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED; 445 spdk_bdev_free_io(bdev_io); 446 } 447 448 static void 449 aborted_reset(void) 450 { 451 struct spdk_io_channel *io_ch[2]; 452 enum spdk_bdev_io_status status1, status2; 453 454 setup_test(); 455 456 set_thread(0); 457 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 458 CU_ASSERT(io_ch[0] != NULL); 459 spdk_bdev_reset(g_desc, io_ch[0], aborted_reset_done, &status1); 460 poll_threads(); 461 CU_ASSERT(g_bdev.bdev.reset_in_progress != NULL); 462 463 /* 464 * First reset has been submitted on ch0. Now submit a second 465 * reset on ch1 which will get queued since there is already a 466 * reset in progress. 467 */ 468 set_thread(1); 469 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 470 CU_ASSERT(io_ch[1] != NULL); 471 spdk_bdev_reset(g_desc, io_ch[1], aborted_reset_done, &status2); 472 poll_threads(); 473 CU_ASSERT(g_bdev.bdev.reset_in_progress != NULL); 474 475 /* 476 * Now destroy ch1. This will abort the queued reset. Check that 477 * the second reset was completed with failed status. Also check 478 * that bdev->reset_in_progress != NULL, since the original reset 479 * has not been completed yet. This ensures that the bdev code is 480 * correctly noticing that the failed reset is *not* the one that 481 * had been submitted to the bdev module. 482 */ 483 set_thread(1); 484 spdk_put_io_channel(io_ch[1]); 485 poll_threads(); 486 CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_FAILED); 487 CU_ASSERT(g_bdev.bdev.reset_in_progress != NULL); 488 489 /* 490 * Now complete the first reset, verify that it completed with SUCCESS 491 * status and that bdev->reset_in_progress is also set back to NULL. 492 */ 493 set_thread(0); 494 spdk_put_io_channel(io_ch[0]); 495 stub_complete_io(g_bdev.io_target, 0); 496 poll_threads(); 497 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS); 498 CU_ASSERT(g_bdev.bdev.reset_in_progress == NULL); 499 500 teardown_test(); 501 } 502 503 static void 504 io_during_io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 505 { 506 enum spdk_bdev_io_status *status = cb_arg; 507 508 *status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED; 509 spdk_bdev_free_io(bdev_io); 510 } 511 512 static void 513 io_during_reset(void) 514 { 515 struct spdk_io_channel *io_ch[2]; 516 struct spdk_bdev_channel *bdev_ch[2]; 517 enum spdk_bdev_io_status status0, status1, status_reset; 518 int rc; 519 520 setup_test(); 521 522 /* 523 * First test normal case - submit an I/O on each of two channels (with no resets) 524 * and verify they complete successfully. 525 */ 526 set_thread(0); 527 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 528 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 529 CU_ASSERT(bdev_ch[0]->flags == 0); 530 status0 = SPDK_BDEV_IO_STATUS_PENDING; 531 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0); 532 CU_ASSERT(rc == 0); 533 534 set_thread(1); 535 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 536 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 537 CU_ASSERT(bdev_ch[1]->flags == 0); 538 status1 = SPDK_BDEV_IO_STATUS_PENDING; 539 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1); 540 CU_ASSERT(rc == 0); 541 542 poll_threads(); 543 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING); 544 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING); 545 546 set_thread(0); 547 stub_complete_io(g_bdev.io_target, 0); 548 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS); 549 550 set_thread(1); 551 stub_complete_io(g_bdev.io_target, 0); 552 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS); 553 554 /* 555 * Now submit a reset, and leave it pending while we submit I/O on two different 556 * channels. These I/O should be failed by the bdev layer since the reset is in 557 * progress. 558 */ 559 set_thread(0); 560 status_reset = SPDK_BDEV_IO_STATUS_PENDING; 561 rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &status_reset); 562 CU_ASSERT(rc == 0); 563 564 CU_ASSERT(bdev_ch[0]->flags == 0); 565 CU_ASSERT(bdev_ch[1]->flags == 0); 566 poll_threads(); 567 CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_RESET_IN_PROGRESS); 568 CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_RESET_IN_PROGRESS); 569 570 set_thread(0); 571 status0 = SPDK_BDEV_IO_STATUS_PENDING; 572 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0); 573 CU_ASSERT(rc == 0); 574 575 set_thread(1); 576 status1 = SPDK_BDEV_IO_STATUS_PENDING; 577 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1); 578 CU_ASSERT(rc == 0); 579 580 /* 581 * A reset is in progress so these read I/O should complete with failure. Note that we 582 * need to poll_threads() since I/O completed inline have their completion deferred. 583 */ 584 poll_threads(); 585 CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING); 586 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_FAILED); 587 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_FAILED); 588 589 /* 590 * Complete the reset 591 */ 592 set_thread(0); 593 stub_complete_io(g_bdev.io_target, 0); 594 595 /* 596 * Only poll thread 0. We should not get a completion. 597 */ 598 poll_thread(0); 599 CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING); 600 601 /* 602 * Poll both thread 0 and 1 so the messages can propagate and we 603 * get a completion. 604 */ 605 poll_threads(); 606 CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_SUCCESS); 607 608 spdk_put_io_channel(io_ch[0]); 609 set_thread(1); 610 spdk_put_io_channel(io_ch[1]); 611 poll_threads(); 612 613 teardown_test(); 614 } 615 616 static void 617 basic_qos(void) 618 { 619 struct spdk_io_channel *io_ch[3]; 620 struct spdk_bdev_channel *bdev_ch[3], *qos_bdev_ch; 621 struct spdk_bdev *bdev; 622 enum spdk_bdev_io_status status; 623 struct spdk_bdev_module_channel *module_ch; 624 int rc; 625 626 setup_test(); 627 628 /* 629 * First test normal case - submit an I/O on the channel (QoS not enabled) 630 * and verify it completes successfully. 631 */ 632 set_thread(0); 633 g_get_io_channel = false; 634 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 635 CU_ASSERT(io_ch[0] == NULL); 636 g_get_io_channel = true; 637 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 638 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 639 status = SPDK_BDEV_IO_STATUS_PENDING; 640 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status); 641 CU_ASSERT(rc == 0); 642 CU_ASSERT(bdev_ch[0]->flags == 0); 643 644 CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING); 645 646 set_thread(0); 647 stub_complete_io(g_bdev.io_target, 0); 648 CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS); 649 650 poll_threads(); 651 652 set_thread(1); 653 bdev = &g_bdev.bdev; 654 bdev->ios_per_sec = 2000; 655 g_get_io_channel = false; 656 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 657 CU_ASSERT(io_ch[1] == NULL); 658 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 659 qos_bdev_ch = bdev->qos_channel; 660 CU_ASSERT(qos_bdev_ch == NULL); 661 g_get_io_channel = true; 662 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 663 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 664 qos_bdev_ch = bdev->qos_channel; 665 CU_ASSERT(bdev->qos_channel->flags == BDEV_CH_QOS_ENABLED); 666 CU_ASSERT(qos_bdev_ch != NULL); 667 module_ch = qos_bdev_ch->module_ch; 668 CU_ASSERT(module_ch->io_outstanding == 0); 669 CU_ASSERT(g_ut_threads[1].thread == bdev->qos_thread); 670 671 /* 672 * Now sending one I/O on first channel 673 */ 674 set_thread(0); 675 status = SPDK_BDEV_IO_STATUS_PENDING; 676 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status); 677 CU_ASSERT(rc == 0); 678 679 poll_threads(); 680 CU_ASSERT(module_ch->io_outstanding == 1); 681 CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING); 682 683 /* 684 * IO is operated on thread_id(1) via the QoS thread 685 */ 686 set_thread(1); 687 stub_complete_io(g_bdev.io_target, 1); 688 689 poll_threads(); 690 CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS); 691 692 /* 693 * QoS thread is on thread 1. Put I/O channel on thread 1 first 694 * to trigger an async destruction of QoS bdev channel. 695 */ 696 set_thread(1); 697 spdk_put_io_channel(io_ch[0]); 698 set_thread(0); 699 spdk_put_io_channel(io_ch[1]); 700 701 /* 702 * Handle the messages on thread 1 first so that the QoS bdev 703 * channel destroy message from thread 0 handling will be active 704 * there. 705 */ 706 poll_thread(1); 707 poll_thread(0); 708 709 /* 710 * Create a new I/O channel when the async destruction of QoS 711 * bdev channel is on going. The expected result is the QoS bdev 712 * channel will be properly setup again. 713 */ 714 set_thread(2); 715 io_ch[2] = spdk_bdev_get_io_channel(g_desc); 716 bdev_ch[2] = spdk_io_channel_get_ctx(io_ch[2]); 717 718 poll_threads(); 719 720 qos_bdev_ch = bdev->qos_channel; 721 CU_ASSERT(qos_bdev_ch->flags == BDEV_CH_QOS_ENABLED); 722 CU_ASSERT(qos_bdev_ch != NULL); 723 module_ch = qos_bdev_ch->module_ch; 724 CU_ASSERT(module_ch->io_outstanding == 0); 725 CU_ASSERT(g_ut_threads[2].thread == bdev->qos_thread); 726 727 /* 728 * Destroy the last I/O channel so that the QoS bdev channel 729 * will be destroyed. 730 */ 731 set_thread(2); 732 spdk_put_io_channel(io_ch[2]); 733 734 poll_threads(); 735 736 teardown_test(); 737 } 738 739 static void 740 io_during_qos(void) 741 { 742 struct spdk_io_channel *io_ch[3]; 743 struct spdk_bdev_channel *bdev_ch[3], *qos_bdev_ch; 744 struct spdk_bdev *bdev; 745 enum spdk_bdev_io_status status0, status1; 746 struct spdk_bdev_module_channel *module_ch; 747 int rc; 748 749 setup_test(); 750 751 /* 752 * First test normal case - submit an I/O on each of two channels (QoS not enabled) 753 * and verify they complete successfully. 754 */ 755 set_thread(0); 756 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 757 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 758 status0 = SPDK_BDEV_IO_STATUS_PENDING; 759 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0); 760 CU_ASSERT(rc == 0); 761 CU_ASSERT(bdev_ch[0]->flags == 0); 762 763 set_thread(1); 764 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 765 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 766 status1 = SPDK_BDEV_IO_STATUS_PENDING; 767 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1); 768 CU_ASSERT(rc == 0); 769 CU_ASSERT(bdev_ch[1]->flags == 0); 770 771 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING); 772 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING); 773 774 set_thread(0); 775 stub_complete_io(g_bdev.io_target, 0); 776 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS); 777 778 set_thread(1); 779 stub_complete_io(g_bdev.io_target, 0); 780 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS); 781 782 poll_threads(); 783 784 set_thread(2); 785 bdev = &g_bdev.bdev; 786 /* 787 * 10 IOs allowed per millisecond 788 */ 789 bdev->ios_per_sec = 10000; 790 io_ch[2] = spdk_bdev_get_io_channel(g_desc); 791 bdev_ch[2] = spdk_io_channel_get_ctx(io_ch[2]); 792 qos_bdev_ch = bdev->qos_channel; 793 CU_ASSERT(bdev->qos_channel->flags == BDEV_CH_QOS_ENABLED); 794 CU_ASSERT(qos_bdev_ch != NULL); 795 module_ch = qos_bdev_ch->module_ch; 796 CU_ASSERT(module_ch->io_outstanding == 0); 797 798 /* 799 * Now sending some I/Os on different channels when QoS has been enabled 800 */ 801 set_thread(0); 802 status0 = SPDK_BDEV_IO_STATUS_PENDING; 803 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0); 804 CU_ASSERT(rc == 0); 805 806 set_thread(1); 807 status1 = SPDK_BDEV_IO_STATUS_PENDING; 808 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1); 809 CU_ASSERT(rc == 0); 810 811 poll_threads(); 812 CU_ASSERT(module_ch->io_outstanding == 2); 813 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING); 814 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING); 815 816 /* 817 * IOs are operated on thread_id(2) via the QoS thread 818 */ 819 set_thread(2); 820 stub_complete_io(g_bdev.io_target, 2); 821 822 poll_threads(); 823 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS); 824 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS); 825 826 set_thread(0); 827 spdk_put_io_channel(io_ch[0]); 828 set_thread(1); 829 spdk_put_io_channel(io_ch[1]); 830 set_thread(2); 831 spdk_put_io_channel(io_ch[2]); 832 833 poll_threads(); 834 835 teardown_test(); 836 } 837 838 static void 839 io_during_qos_queue(void) 840 { 841 struct spdk_io_channel *io_ch[3]; 842 struct spdk_bdev_channel *bdev_ch[3], *qos_bdev_ch; 843 struct spdk_bdev *bdev; 844 enum spdk_bdev_io_status status0, status1; 845 struct spdk_bdev_module_channel *module_ch; 846 int rc; 847 848 setup_test(); 849 reset_time(); 850 851 /* 852 * First test normal case - submit an I/O on each of two channels (QoS not enabled) 853 * and verify they complete successfully. 854 */ 855 set_thread(0); 856 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 857 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 858 status0 = SPDK_BDEV_IO_STATUS_PENDING; 859 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0); 860 CU_ASSERT(rc == 0); 861 CU_ASSERT(bdev_ch[0]->flags == 0); 862 863 set_thread(1); 864 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 865 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 866 status1 = SPDK_BDEV_IO_STATUS_PENDING; 867 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1); 868 CU_ASSERT(rc == 0); 869 CU_ASSERT(bdev_ch[1]->flags == 0); 870 871 poll_threads(); 872 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING); 873 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING); 874 875 set_thread(0); 876 stub_complete_io(g_bdev.io_target, 0); 877 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS); 878 879 set_thread(1); 880 stub_complete_io(g_bdev.io_target, 0); 881 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS); 882 883 poll_threads(); 884 885 set_thread(2); 886 bdev = bdev_ch[0]->bdev; 887 /* 888 * Only 1 IO allowed per millisecond. More IOs will be queued. 889 */ 890 bdev->ios_per_sec = 1000; 891 io_ch[2] = spdk_bdev_get_io_channel(g_desc); 892 bdev_ch[2] = spdk_io_channel_get_ctx(io_ch[2]); 893 qos_bdev_ch = bdev->qos_channel; 894 CU_ASSERT(bdev->qos_channel->flags == BDEV_CH_QOS_ENABLED); 895 CU_ASSERT(qos_bdev_ch != NULL); 896 module_ch = qos_bdev_ch->module_ch; 897 CU_ASSERT(module_ch->io_outstanding == 0); 898 899 /* 900 * Now sending some I/Os on different channels when QoS has been enabled 901 */ 902 set_thread(0); 903 status0 = SPDK_BDEV_IO_STATUS_PENDING; 904 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0); 905 CU_ASSERT(rc == 0); 906 907 set_thread(1); 908 status1 = SPDK_BDEV_IO_STATUS_PENDING; 909 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1); 910 CU_ASSERT(rc == 0); 911 912 /* 913 * Poll the QoS thread to send the allowed I/O down 914 */ 915 poll_threads(); 916 CU_ASSERT(module_ch->io_outstanding == 1); 917 CU_ASSERT(bdev_io_tailq_cnt(&qos_bdev_ch->qos_io) == 1); 918 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING); 919 920 /* 921 * Increase the time and poll the QoS thread to run the periodical poller 922 */ 923 increment_time(1000); 924 poll_threads(); 925 CU_ASSERT(module_ch->io_outstanding == 2); 926 CU_ASSERT(bdev_io_tailq_cnt(&qos_bdev_ch->qos_io) == 0); 927 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING); 928 929 /* 930 * IOs are handled on the thread(2) as the master thread 931 */ 932 set_thread(2); 933 stub_complete_io(g_bdev.io_target, 0); 934 spdk_put_io_channel(io_ch[0]); 935 spdk_put_io_channel(io_ch[1]); 936 spdk_put_io_channel(io_ch[2]); 937 938 poll_threads(); 939 940 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS); 941 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS); 942 943 teardown_test(); 944 } 945 946 static void 947 io_during_qos_reset(void) 948 { 949 struct spdk_io_channel *io_ch[3]; 950 struct spdk_bdev_channel *bdev_ch[3], *qos_bdev_ch; 951 struct spdk_bdev *bdev; 952 enum spdk_bdev_io_status status0, status1, status_reset; 953 struct spdk_bdev_module_channel *module_ch; 954 int rc; 955 956 setup_test(); 957 958 /* 959 * First test normal case - submit an I/O on each of two channels (QoS disabled and no reset) 960 * and verify they complete successfully. 961 */ 962 set_thread(0); 963 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 964 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 965 status0 = SPDK_BDEV_IO_STATUS_PENDING; 966 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0); 967 CU_ASSERT(rc == 0); 968 CU_ASSERT(bdev_ch[0]->flags == 0); 969 970 set_thread(1); 971 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 972 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 973 status1 = SPDK_BDEV_IO_STATUS_PENDING; 974 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1); 975 CU_ASSERT(rc == 0); 976 CU_ASSERT(bdev_ch[1]->flags == 0); 977 978 poll_threads(); 979 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING); 980 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING); 981 982 set_thread(0); 983 stub_complete_io(g_bdev.io_target, 0); 984 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS); 985 986 set_thread(1); 987 stub_complete_io(g_bdev.io_target, 0); 988 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS); 989 990 /* 991 * Enable QoS on the bdev 992 */ 993 set_thread(2); 994 bdev = bdev_ch[0]->bdev; 995 bdev->ios_per_sec = 2000; 996 io_ch[2] = spdk_bdev_get_io_channel(g_desc); 997 bdev_ch[2] = spdk_io_channel_get_ctx(io_ch[2]); 998 qos_bdev_ch = bdev->qos_channel; 999 module_ch = qos_bdev_ch->module_ch; 1000 CU_ASSERT(bdev->qos_channel->flags == BDEV_CH_QOS_ENABLED); 1001 CU_ASSERT(qos_bdev_ch != NULL); 1002 CU_ASSERT(module_ch != NULL); 1003 1004 /* 1005 * Now submit a reset, and leave it pending while we submit I/O on two different 1006 * channels. These I/O should be failed by the bdev layer since the reset is in 1007 * progress. 1008 */ 1009 set_thread(0); 1010 status_reset = SPDK_BDEV_IO_STATUS_PENDING; 1011 rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &status_reset); 1012 CU_ASSERT(rc == 0); 1013 1014 CU_ASSERT(bdev_ch[0]->flags == 0); 1015 CU_ASSERT(bdev_ch[1]->flags == 0); 1016 CU_ASSERT(bdev_ch[2]->flags == 0); 1017 CU_ASSERT(qos_bdev_ch->flags & BDEV_CH_QOS_ENABLED); 1018 poll_threads(); 1019 CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_RESET_IN_PROGRESS); 1020 CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_RESET_IN_PROGRESS); 1021 CU_ASSERT(bdev_ch[2]->flags == BDEV_CH_RESET_IN_PROGRESS); 1022 CU_ASSERT(qos_bdev_ch->flags & BDEV_CH_RESET_IN_PROGRESS); 1023 1024 set_thread(0); 1025 status0 = SPDK_BDEV_IO_STATUS_PENDING; 1026 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0); 1027 CU_ASSERT(rc == 0); 1028 1029 set_thread(1); 1030 status1 = SPDK_BDEV_IO_STATUS_PENDING; 1031 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1); 1032 CU_ASSERT(rc == 0); 1033 1034 /* 1035 * A reset is in progress so these read I/O should complete with failure when QoS has been 1036 * enabled. Note that we need to poll_threads() since I/O completed inline have their 1037 * completion deferred. 1038 */ 1039 poll_threads(); 1040 CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING); 1041 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_FAILED); 1042 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_FAILED); 1043 1044 set_thread(0); 1045 stub_complete_io(g_bdev.io_target, 0); 1046 spdk_put_io_channel(io_ch[0]); 1047 set_thread(1); 1048 stub_complete_io(g_bdev.io_target, 0); 1049 spdk_put_io_channel(io_ch[1]); 1050 set_thread(2); 1051 stub_complete_io(g_bdev.io_target, 0); 1052 spdk_put_io_channel(io_ch[2]); 1053 poll_threads(); 1054 CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_SUCCESS); 1055 1056 teardown_test(); 1057 } 1058 1059 static void 1060 enomem_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 1061 { 1062 enum spdk_bdev_io_status *status = cb_arg; 1063 1064 *status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED; 1065 spdk_bdev_free_io(bdev_io); 1066 } 1067 1068 static void 1069 enomem(void) 1070 { 1071 struct spdk_io_channel *io_ch; 1072 struct spdk_bdev_channel *bdev_ch; 1073 struct spdk_bdev_module_channel *module_ch; 1074 struct ut_bdev_channel *ut_ch; 1075 const uint32_t IO_ARRAY_SIZE = 64; 1076 const uint32_t AVAIL = 20; 1077 enum spdk_bdev_io_status status[IO_ARRAY_SIZE], status_reset; 1078 uint32_t nomem_cnt, i; 1079 struct spdk_bdev_io *first_io; 1080 int rc; 1081 1082 setup_test(); 1083 1084 set_thread(0); 1085 io_ch = spdk_bdev_get_io_channel(g_desc); 1086 bdev_ch = spdk_io_channel_get_ctx(io_ch); 1087 module_ch = bdev_ch->module_ch; 1088 ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel); 1089 ut_ch->avail_cnt = AVAIL; 1090 1091 /* First submit a number of IOs equal to what the channel can support. */ 1092 for (i = 0; i < AVAIL; i++) { 1093 status[i] = SPDK_BDEV_IO_STATUS_PENDING; 1094 rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]); 1095 CU_ASSERT(rc == 0); 1096 } 1097 CU_ASSERT(TAILQ_EMPTY(&module_ch->nomem_io)); 1098 1099 /* 1100 * Next, submit one additional I/O. This one should fail with ENOMEM and then go onto 1101 * the enomem_io list. 1102 */ 1103 status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING; 1104 rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]); 1105 CU_ASSERT(rc == 0); 1106 SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&module_ch->nomem_io)); 1107 first_io = TAILQ_FIRST(&module_ch->nomem_io); 1108 1109 /* 1110 * Now submit a bunch more I/O. These should all fail with ENOMEM and get queued behind 1111 * the first_io above. 1112 */ 1113 for (i = AVAIL + 1; i < IO_ARRAY_SIZE; i++) { 1114 status[i] = SPDK_BDEV_IO_STATUS_PENDING; 1115 rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]); 1116 CU_ASSERT(rc == 0); 1117 } 1118 1119 /* Assert that first_io is still at the head of the list. */ 1120 CU_ASSERT(TAILQ_FIRST(&module_ch->nomem_io) == first_io); 1121 CU_ASSERT(bdev_io_tailq_cnt(&module_ch->nomem_io) == (IO_ARRAY_SIZE - AVAIL)); 1122 nomem_cnt = bdev_io_tailq_cnt(&module_ch->nomem_io); 1123 CU_ASSERT(module_ch->nomem_threshold == (AVAIL - NOMEM_THRESHOLD_COUNT)); 1124 1125 /* 1126 * Complete 1 I/O only. The key check here is bdev_io_tailq_cnt - this should not have 1127 * changed since completing just 1 I/O should not trigger retrying the queued nomem_io 1128 * list. 1129 */ 1130 stub_complete_io(g_bdev.io_target, 1); 1131 CU_ASSERT(bdev_io_tailq_cnt(&module_ch->nomem_io) == nomem_cnt); 1132 1133 /* 1134 * Complete enough I/O to hit the nomem_theshold. This should trigger retrying nomem_io, 1135 * and we should see I/O get resubmitted to the test bdev module. 1136 */ 1137 stub_complete_io(g_bdev.io_target, NOMEM_THRESHOLD_COUNT - 1); 1138 CU_ASSERT(bdev_io_tailq_cnt(&module_ch->nomem_io) < nomem_cnt); 1139 nomem_cnt = bdev_io_tailq_cnt(&module_ch->nomem_io); 1140 1141 /* Complete 1 I/O only. This should not trigger retrying the queued nomem_io. */ 1142 stub_complete_io(g_bdev.io_target, 1); 1143 CU_ASSERT(bdev_io_tailq_cnt(&module_ch->nomem_io) == nomem_cnt); 1144 1145 /* 1146 * Send a reset and confirm that all I/O are completed, including the ones that 1147 * were queued on the nomem_io list. 1148 */ 1149 status_reset = SPDK_BDEV_IO_STATUS_PENDING; 1150 rc = spdk_bdev_reset(g_desc, io_ch, enomem_done, &status_reset); 1151 poll_threads(); 1152 CU_ASSERT(rc == 0); 1153 /* This will complete the reset. */ 1154 stub_complete_io(g_bdev.io_target, 0); 1155 1156 CU_ASSERT(bdev_io_tailq_cnt(&module_ch->nomem_io) == 0); 1157 CU_ASSERT(module_ch->io_outstanding == 0); 1158 1159 spdk_put_io_channel(io_ch); 1160 poll_threads(); 1161 teardown_test(); 1162 } 1163 1164 static void 1165 enomem_multi_bdev(void) 1166 { 1167 struct spdk_io_channel *io_ch; 1168 struct spdk_bdev_channel *bdev_ch; 1169 struct spdk_bdev_module_channel *module_ch; 1170 struct ut_bdev_channel *ut_ch; 1171 const uint32_t IO_ARRAY_SIZE = 64; 1172 const uint32_t AVAIL = 20; 1173 enum spdk_bdev_io_status status[IO_ARRAY_SIZE]; 1174 uint32_t i; 1175 struct ut_bdev *second_bdev; 1176 struct spdk_bdev_desc *second_desc; 1177 struct spdk_bdev_channel *second_bdev_ch; 1178 struct spdk_io_channel *second_ch; 1179 int rc; 1180 1181 setup_test(); 1182 1183 /* Register second bdev with the same io_target */ 1184 second_bdev = calloc(1, sizeof(*second_bdev)); 1185 SPDK_CU_ASSERT_FATAL(second_bdev != NULL); 1186 register_bdev(second_bdev, "ut_bdev2", g_bdev.io_target); 1187 spdk_bdev_open(&second_bdev->bdev, true, NULL, NULL, &second_desc); 1188 1189 set_thread(0); 1190 io_ch = spdk_bdev_get_io_channel(g_desc); 1191 bdev_ch = spdk_io_channel_get_ctx(io_ch); 1192 module_ch = bdev_ch->module_ch; 1193 ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel); 1194 ut_ch->avail_cnt = AVAIL; 1195 1196 second_ch = spdk_bdev_get_io_channel(second_desc); 1197 second_bdev_ch = spdk_io_channel_get_ctx(second_ch); 1198 SPDK_CU_ASSERT_FATAL(module_ch == second_bdev_ch->module_ch); 1199 1200 /* Saturate io_target through bdev A. */ 1201 for (i = 0; i < AVAIL; i++) { 1202 status[i] = SPDK_BDEV_IO_STATUS_PENDING; 1203 rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]); 1204 CU_ASSERT(rc == 0); 1205 } 1206 CU_ASSERT(TAILQ_EMPTY(&module_ch->nomem_io)); 1207 1208 /* 1209 * Now submit I/O through the second bdev. This should fail with ENOMEM 1210 * and then go onto the nomem_io list. 1211 */ 1212 status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING; 1213 rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]); 1214 CU_ASSERT(rc == 0); 1215 SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&module_ch->nomem_io)); 1216 1217 /* Complete first bdev's I/O. This should retry sending second bdev's nomem_io */ 1218 stub_complete_io(g_bdev.io_target, AVAIL); 1219 1220 SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&module_ch->nomem_io)); 1221 CU_ASSERT(module_ch->io_outstanding == 1); 1222 1223 /* Now complete our retried I/O */ 1224 stub_complete_io(g_bdev.io_target, 1); 1225 SPDK_CU_ASSERT_FATAL(module_ch->io_outstanding == 0); 1226 1227 spdk_put_io_channel(io_ch); 1228 spdk_put_io_channel(second_ch); 1229 spdk_bdev_close(second_desc); 1230 unregister_bdev(second_bdev); 1231 poll_threads(); 1232 free(second_bdev); 1233 teardown_test(); 1234 } 1235 1236 int 1237 main(int argc, char **argv) 1238 { 1239 CU_pSuite suite = NULL; 1240 unsigned int num_failures; 1241 1242 if (CU_initialize_registry() != CUE_SUCCESS) { 1243 return CU_get_error(); 1244 } 1245 1246 suite = CU_add_suite("bdev", NULL, NULL); 1247 if (suite == NULL) { 1248 CU_cleanup_registry(); 1249 return CU_get_error(); 1250 } 1251 1252 if ( 1253 CU_add_test(suite, "basic", basic) == NULL || 1254 CU_add_test(suite, "basic_poller", basic_poller) == NULL || 1255 CU_add_test(suite, "basic_qos", basic_qos) == NULL || 1256 CU_add_test(suite, "put_channel_during_reset", put_channel_during_reset) == NULL || 1257 CU_add_test(suite, "aborted_reset", aborted_reset) == NULL || 1258 CU_add_test(suite, "io_during_reset", io_during_reset) == NULL || 1259 CU_add_test(suite, "io_during_qos", io_during_qos) == NULL || 1260 CU_add_test(suite, "io_during_qos_queue", io_during_qos_queue) == NULL || 1261 CU_add_test(suite, "io_during_qos_reset", io_during_qos_reset) == NULL || 1262 CU_add_test(suite, "enomem", enomem) == NULL || 1263 CU_add_test(suite, "enomem_multi_bdev", enomem_multi_bdev) == NULL 1264 ) { 1265 CU_cleanup_registry(); 1266 return CU_get_error(); 1267 } 1268 1269 CU_basic_set_mode(CU_BRM_VERBOSE); 1270 CU_basic_run_tests(); 1271 num_failures = CU_get_number_of_failures(); 1272 CU_cleanup_registry(); 1273 return num_failures; 1274 } 1275