xref: /spdk/test/unit/lib/bdev/mt/bdev.c/bdev_ut.c (revision 8fb123553a690dca615baec02990aa0dc2c655d0)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk_cunit.h"
35 
36 #include "common/lib/ut_multithread.c"
37 #include "unit/lib/json_mock.c"
38 
39 #include "spdk/config.h"
40 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
41 #undef SPDK_CONFIG_VTUNE
42 
43 #include "bdev/bdev.c"
44 
45 #define BDEV_UT_NUM_THREADS 3
46 
47 DEFINE_STUB_V(spdk_scsi_nvme_translate, (const struct spdk_bdev_io *bdev_io,
48 		int *sc, int *sk, int *asc, int *ascq));
49 
50 DEFINE_STUB(spdk_conf_find_section, struct spdk_conf_section *, (struct spdk_conf *cp,
51 		const char *name), NULL);
52 DEFINE_STUB(spdk_conf_section_get_nmval, char *,
53 	    (struct spdk_conf_section *sp, const char *key, int idx1, int idx2), NULL);
54 DEFINE_STUB(spdk_conf_section_get_intval, int, (struct spdk_conf_section *sp, const char *key), -1);
55 
56 struct spdk_trace_histories *g_trace_histories;
57 DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
58 DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix));
59 DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
60 DEFINE_STUB_V(spdk_trace_register_description, (const char *name, const char *short_name,
61 		uint16_t tpoint_id, uint8_t owner_type,
62 		uint8_t object_type, uint8_t new_object,
63 		uint8_t arg1_is_ptr, const char *arg1_name));
64 DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
65 				   uint32_t size, uint64_t object_id, uint64_t arg1));
66 
67 struct ut_bdev {
68 	struct spdk_bdev	bdev;
69 	void			*io_target;
70 };
71 
72 struct ut_bdev_channel {
73 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
74 	uint32_t			outstanding_cnt;
75 	uint32_t			avail_cnt;
76 };
77 
78 int g_io_device;
79 struct ut_bdev g_bdev;
80 struct spdk_bdev_desc *g_desc;
81 bool g_teardown_done = false;
82 bool g_get_io_channel = true;
83 bool g_create_ch = true;
84 bool g_init_complete_called = false;
85 bool g_fini_start_called = true;
86 
87 static int
88 stub_create_ch(void *io_device, void *ctx_buf)
89 {
90 	struct ut_bdev_channel *ch = ctx_buf;
91 
92 	if (g_create_ch == false) {
93 		return -1;
94 	}
95 
96 	TAILQ_INIT(&ch->outstanding_io);
97 	ch->outstanding_cnt = 0;
98 	/*
99 	 * When avail gets to 0, the submit_request function will return ENOMEM.
100 	 *  Most tests to not want ENOMEM to occur, so by default set this to a
101 	 *  big value that won't get hit.  The ENOMEM tests can then override this
102 	 *  value to something much smaller to induce ENOMEM conditions.
103 	 */
104 	ch->avail_cnt = 2048;
105 	return 0;
106 }
107 
108 static void
109 stub_destroy_ch(void *io_device, void *ctx_buf)
110 {
111 }
112 
113 static struct spdk_io_channel *
114 stub_get_io_channel(void *ctx)
115 {
116 	struct ut_bdev *ut_bdev = ctx;
117 
118 	if (g_get_io_channel == true) {
119 		return spdk_get_io_channel(ut_bdev->io_target);
120 	} else {
121 		return NULL;
122 	}
123 }
124 
125 static int
126 stub_destruct(void *ctx)
127 {
128 	return 0;
129 }
130 
131 static void
132 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
133 {
134 	struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
135 
136 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) {
137 		struct spdk_bdev_io *io;
138 
139 		while (!TAILQ_EMPTY(&ch->outstanding_io)) {
140 			io = TAILQ_FIRST(&ch->outstanding_io);
141 			TAILQ_REMOVE(&ch->outstanding_io, io, module_link);
142 			ch->outstanding_cnt--;
143 			spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_FAILED);
144 			ch->avail_cnt++;
145 		}
146 	}
147 
148 	if (ch->avail_cnt > 0) {
149 		TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
150 		ch->outstanding_cnt++;
151 		ch->avail_cnt--;
152 	} else {
153 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_NOMEM);
154 	}
155 }
156 
157 static uint32_t
158 stub_complete_io(void *io_target, uint32_t num_to_complete)
159 {
160 	struct spdk_io_channel *_ch = spdk_get_io_channel(io_target);
161 	struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
162 	struct spdk_bdev_io *io;
163 	bool complete_all = (num_to_complete == 0);
164 	uint32_t num_completed = 0;
165 
166 	while (complete_all || num_completed < num_to_complete) {
167 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
168 			break;
169 		}
170 		io = TAILQ_FIRST(&ch->outstanding_io);
171 		TAILQ_REMOVE(&ch->outstanding_io, io, module_link);
172 		ch->outstanding_cnt--;
173 		spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_SUCCESS);
174 		ch->avail_cnt++;
175 		num_completed++;
176 	}
177 
178 	spdk_put_io_channel(_ch);
179 	return num_completed;
180 }
181 
182 static struct spdk_bdev_fn_table fn_table = {
183 	.get_io_channel =	stub_get_io_channel,
184 	.destruct =		stub_destruct,
185 	.submit_request =	stub_submit_request,
186 };
187 
188 static int
189 module_init(void)
190 {
191 	return 0;
192 }
193 
194 static void
195 module_fini(void)
196 {
197 }
198 
199 static void
200 init_complete(void)
201 {
202 	g_init_complete_called = true;
203 }
204 
205 static void
206 fini_start(void)
207 {
208 	g_fini_start_called = true;
209 }
210 
211 struct spdk_bdev_module bdev_ut_if = {
212 	.name = "bdev_ut",
213 	.module_init = module_init,
214 	.module_fini = module_fini,
215 	.init_complete = init_complete,
216 	.fini_start = fini_start,
217 };
218 
219 SPDK_BDEV_MODULE_REGISTER(&bdev_ut_if)
220 
221 static void
222 register_bdev(struct ut_bdev *ut_bdev, char *name, void *io_target)
223 {
224 	memset(ut_bdev, 0, sizeof(*ut_bdev));
225 
226 	ut_bdev->io_target = io_target;
227 	ut_bdev->bdev.ctxt = ut_bdev;
228 	ut_bdev->bdev.name = name;
229 	ut_bdev->bdev.fn_table = &fn_table;
230 	ut_bdev->bdev.module = &bdev_ut_if;
231 	ut_bdev->bdev.blocklen = 4096;
232 	ut_bdev->bdev.blockcnt = 1024;
233 
234 	spdk_bdev_register(&ut_bdev->bdev);
235 }
236 
237 static void
238 unregister_bdev(struct ut_bdev *ut_bdev)
239 {
240 	/* Handle any deferred messages. */
241 	poll_threads();
242 	spdk_bdev_unregister(&ut_bdev->bdev, NULL, NULL);
243 }
244 
245 static void
246 bdev_init_cb(void *done, int rc)
247 {
248 	CU_ASSERT(rc == 0);
249 	*(bool *)done = true;
250 }
251 
252 static void
253 setup_test(void)
254 {
255 	bool done = false;
256 
257 	allocate_threads(BDEV_UT_NUM_THREADS);
258 	set_thread(0);
259 	spdk_bdev_initialize(bdev_init_cb, &done);
260 	spdk_io_device_register(&g_io_device, stub_create_ch, stub_destroy_ch,
261 				sizeof(struct ut_bdev_channel), NULL);
262 	register_bdev(&g_bdev, "ut_bdev", &g_io_device);
263 	spdk_bdev_open(&g_bdev.bdev, true, NULL, NULL, &g_desc);
264 }
265 
266 static void
267 finish_cb(void *cb_arg)
268 {
269 	g_teardown_done = true;
270 }
271 
272 static void
273 teardown_test(void)
274 {
275 	set_thread(0);
276 	g_teardown_done = false;
277 	spdk_bdev_close(g_desc);
278 	g_desc = NULL;
279 	unregister_bdev(&g_bdev);
280 	spdk_io_device_unregister(&g_io_device, NULL);
281 	spdk_bdev_finish(finish_cb, NULL);
282 	poll_threads();
283 	memset(&g_bdev, 0, sizeof(g_bdev));
284 	CU_ASSERT(g_teardown_done == true);
285 	g_teardown_done = false;
286 	free_threads();
287 }
288 
289 static uint32_t
290 bdev_io_tailq_cnt(bdev_io_tailq_t *tailq)
291 {
292 	struct spdk_bdev_io *io;
293 	uint32_t cnt = 0;
294 
295 	TAILQ_FOREACH(io, tailq, internal.link) {
296 		cnt++;
297 	}
298 
299 	return cnt;
300 }
301 
302 static void
303 basic(void)
304 {
305 	g_init_complete_called = false;
306 	setup_test();
307 	CU_ASSERT(g_init_complete_called == true);
308 
309 	set_thread(0);
310 
311 	g_get_io_channel = false;
312 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
313 	CU_ASSERT(g_ut_threads[0].ch == NULL);
314 
315 	g_get_io_channel = true;
316 	g_create_ch = false;
317 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
318 	CU_ASSERT(g_ut_threads[0].ch == NULL);
319 
320 	g_get_io_channel = true;
321 	g_create_ch = true;
322 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
323 	CU_ASSERT(g_ut_threads[0].ch != NULL);
324 	spdk_put_io_channel(g_ut_threads[0].ch);
325 
326 	g_fini_start_called = false;
327 	teardown_test();
328 	CU_ASSERT(g_fini_start_called == true);
329 }
330 
331 static void
332 _bdev_removed(void *done)
333 {
334 	*(bool *)done = true;
335 }
336 
337 static void
338 _bdev_unregistered(void *done, int rc)
339 {
340 	CU_ASSERT(rc == 0);
341 	*(bool *)done = true;
342 }
343 
344 static void
345 unregister_and_close(void)
346 {
347 	bool done, remove_notify;
348 	struct spdk_bdev_desc *desc;
349 
350 	setup_test();
351 	set_thread(0);
352 
353 	/* setup_test() automatically opens the bdev,
354 	 * but this test needs to do that in a different
355 	 * way. */
356 	spdk_bdev_close(g_desc);
357 	poll_threads();
358 
359 	remove_notify = false;
360 	spdk_bdev_open(&g_bdev.bdev, true, _bdev_removed, &remove_notify, &desc);
361 	CU_ASSERT(remove_notify == false);
362 	CU_ASSERT(desc != NULL);
363 
364 	/* There is an open descriptor on the device. Unregister it,
365 	 * which can't proceed until the descriptor is closed. */
366 	done = false;
367 	spdk_bdev_unregister(&g_bdev.bdev, _bdev_unregistered, &done);
368 	/* No polling has occurred, so neither of these should execute */
369 	CU_ASSERT(remove_notify == false);
370 	CU_ASSERT(done == false);
371 
372 	/* Prior to the unregister completing, close the descriptor */
373 	spdk_bdev_close(desc);
374 
375 	/* Poll the threads to allow all events to be processed */
376 	poll_threads();
377 
378 	/* Remove notify should not have been called because the
379 	 * descriptor is already closed. */
380 	CU_ASSERT(remove_notify == false);
381 
382 	/* The unregister should have completed */
383 	CU_ASSERT(done == true);
384 
385 	spdk_bdev_finish(finish_cb, NULL);
386 	poll_threads();
387 	free_threads();
388 }
389 
390 static void
391 reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
392 {
393 	bool *done = cb_arg;
394 
395 	CU_ASSERT(success == true);
396 	*done = true;
397 	spdk_bdev_free_io(bdev_io);
398 }
399 
400 static void
401 put_channel_during_reset(void)
402 {
403 	struct spdk_io_channel *io_ch;
404 	bool done = false;
405 
406 	setup_test();
407 
408 	set_thread(0);
409 	io_ch = spdk_bdev_get_io_channel(g_desc);
410 	CU_ASSERT(io_ch != NULL);
411 
412 	/*
413 	 * Start a reset, but then put the I/O channel before
414 	 *  the deferred messages for the reset get a chance to
415 	 *  execute.
416 	 */
417 	spdk_bdev_reset(g_desc, io_ch, reset_done, &done);
418 	spdk_put_io_channel(io_ch);
419 	poll_threads();
420 	stub_complete_io(g_bdev.io_target, 0);
421 
422 	teardown_test();
423 }
424 
425 static void
426 aborted_reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
427 {
428 	enum spdk_bdev_io_status *status = cb_arg;
429 
430 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
431 	spdk_bdev_free_io(bdev_io);
432 }
433 
434 static void
435 aborted_reset(void)
436 {
437 	struct spdk_io_channel *io_ch[2];
438 	enum spdk_bdev_io_status status1 = SPDK_BDEV_IO_STATUS_PENDING,
439 				 status2 = SPDK_BDEV_IO_STATUS_PENDING;
440 
441 	setup_test();
442 
443 	set_thread(0);
444 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
445 	CU_ASSERT(io_ch[0] != NULL);
446 	spdk_bdev_reset(g_desc, io_ch[0], aborted_reset_done, &status1);
447 	poll_threads();
448 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL);
449 
450 	/*
451 	 * First reset has been submitted on ch0.  Now submit a second
452 	 *  reset on ch1 which will get queued since there is already a
453 	 *  reset in progress.
454 	 */
455 	set_thread(1);
456 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
457 	CU_ASSERT(io_ch[1] != NULL);
458 	spdk_bdev_reset(g_desc, io_ch[1], aborted_reset_done, &status2);
459 	poll_threads();
460 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL);
461 
462 	/*
463 	 * Now destroy ch1.  This will abort the queued reset.  Check that
464 	 *  the second reset was completed with failed status.  Also check
465 	 *  that bdev->internal.reset_in_progress != NULL, since the
466 	 *  original reset has not been completed yet.  This ensures that
467 	 *  the bdev code is correctly noticing that the failed reset is
468 	 *  *not* the one that had been submitted to the bdev module.
469 	 */
470 	set_thread(1);
471 	spdk_put_io_channel(io_ch[1]);
472 	poll_threads();
473 	CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_FAILED);
474 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL);
475 
476 	/*
477 	 * Now complete the first reset, verify that it completed with SUCCESS
478 	 *  status and that bdev->internal.reset_in_progress is also set back to NULL.
479 	 */
480 	set_thread(0);
481 	spdk_put_io_channel(io_ch[0]);
482 	stub_complete_io(g_bdev.io_target, 0);
483 	poll_threads();
484 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
485 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress == NULL);
486 
487 	teardown_test();
488 }
489 
490 static void
491 io_during_io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
492 {
493 	enum spdk_bdev_io_status *status = cb_arg;
494 
495 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
496 	spdk_bdev_free_io(bdev_io);
497 }
498 
499 static void
500 io_during_reset(void)
501 {
502 	struct spdk_io_channel *io_ch[2];
503 	struct spdk_bdev_channel *bdev_ch[2];
504 	enum spdk_bdev_io_status status0, status1, status_reset;
505 	int rc;
506 
507 	setup_test();
508 
509 	/*
510 	 * First test normal case - submit an I/O on each of two channels (with no resets)
511 	 *  and verify they complete successfully.
512 	 */
513 	set_thread(0);
514 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
515 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
516 	CU_ASSERT(bdev_ch[0]->flags == 0);
517 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
518 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
519 	CU_ASSERT(rc == 0);
520 
521 	set_thread(1);
522 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
523 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
524 	CU_ASSERT(bdev_ch[1]->flags == 0);
525 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
526 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
527 	CU_ASSERT(rc == 0);
528 
529 	poll_threads();
530 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
531 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
532 
533 	set_thread(0);
534 	stub_complete_io(g_bdev.io_target, 0);
535 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS);
536 
537 	set_thread(1);
538 	stub_complete_io(g_bdev.io_target, 0);
539 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
540 
541 	/*
542 	 * Now submit a reset, and leave it pending while we submit I/O on two different
543 	 *  channels.  These I/O should be failed by the bdev layer since the reset is in
544 	 *  progress.
545 	 */
546 	set_thread(0);
547 	status_reset = SPDK_BDEV_IO_STATUS_PENDING;
548 	rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &status_reset);
549 	CU_ASSERT(rc == 0);
550 
551 	CU_ASSERT(bdev_ch[0]->flags == 0);
552 	CU_ASSERT(bdev_ch[1]->flags == 0);
553 	poll_threads();
554 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_RESET_IN_PROGRESS);
555 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_RESET_IN_PROGRESS);
556 
557 	set_thread(0);
558 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
559 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
560 	CU_ASSERT(rc == 0);
561 
562 	set_thread(1);
563 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
564 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
565 	CU_ASSERT(rc == 0);
566 
567 	/*
568 	 * A reset is in progress so these read I/O should complete with failure.  Note that we
569 	 *  need to poll_threads() since I/O completed inline have their completion deferred.
570 	 */
571 	poll_threads();
572 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
573 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_FAILED);
574 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_FAILED);
575 
576 	/*
577 	 * Complete the reset
578 	 */
579 	set_thread(0);
580 	stub_complete_io(g_bdev.io_target, 0);
581 
582 	/*
583 	 * Only poll thread 0. We should not get a completion.
584 	 */
585 	poll_thread(0);
586 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
587 
588 	/*
589 	 * Poll both thread 0 and 1 so the messages can propagate and we
590 	 * get a completion.
591 	 */
592 	poll_threads();
593 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_SUCCESS);
594 
595 	spdk_put_io_channel(io_ch[0]);
596 	set_thread(1);
597 	spdk_put_io_channel(io_ch[1]);
598 	poll_threads();
599 
600 	teardown_test();
601 }
602 
603 static void
604 basic_qos(void)
605 {
606 	struct spdk_io_channel *io_ch[2];
607 	struct spdk_bdev_channel *bdev_ch[2];
608 	struct spdk_bdev *bdev;
609 	enum spdk_bdev_io_status status;
610 	int rc;
611 
612 	setup_test();
613 
614 	/* Enable QoS */
615 	bdev = &g_bdev.bdev;
616 	bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
617 	SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL);
618 	TAILQ_INIT(&bdev->internal.qos->queued);
619 	/*
620 	 * Enable both IOPS and bandwidth rate limits.
621 	 * In this case, both rate limits will take equal effect.
622 	 */
623 	/* 2000 I/O per second, or 2 per millisecond */
624 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 2000;
625 	/* 8K byte per millisecond with 4K block size */
626 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 8192000;
627 
628 	g_get_io_channel = true;
629 
630 	set_thread(0);
631 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
632 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
633 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
634 
635 	set_thread(1);
636 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
637 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
638 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
639 
640 	/*
641 	 * Send an I/O on thread 0, which is where the QoS thread is running.
642 	 */
643 	set_thread(0);
644 	status = SPDK_BDEV_IO_STATUS_PENDING;
645 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status);
646 	CU_ASSERT(rc == 0);
647 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
648 	poll_threads();
649 	stub_complete_io(g_bdev.io_target, 0);
650 	poll_threads();
651 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS);
652 
653 	/* Send an I/O on thread 1. The QoS thread is not running here. */
654 	status = SPDK_BDEV_IO_STATUS_PENDING;
655 	set_thread(1);
656 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status);
657 	CU_ASSERT(rc == 0);
658 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
659 	poll_threads();
660 	/* Complete I/O on thread 1. This should not complete the I/O we submitted */
661 	stub_complete_io(g_bdev.io_target, 0);
662 	poll_threads();
663 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
664 	/* Now complete I/O on thread 0 */
665 	set_thread(0);
666 	poll_threads();
667 	stub_complete_io(g_bdev.io_target, 0);
668 	poll_threads();
669 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS);
670 
671 	/* Tear down the channels */
672 	set_thread(0);
673 	spdk_put_io_channel(io_ch[0]);
674 	set_thread(1);
675 	spdk_put_io_channel(io_ch[1]);
676 	poll_threads();
677 	set_thread(0);
678 
679 	/* Close the descriptor, which should stop the qos channel */
680 	spdk_bdev_close(g_desc);
681 	poll_threads();
682 	CU_ASSERT(bdev->internal.qos->ch == NULL);
683 
684 	spdk_bdev_open(bdev, true, NULL, NULL, &g_desc);
685 
686 	/* Create the channels in reverse order. */
687 	set_thread(1);
688 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
689 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
690 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
691 
692 	set_thread(0);
693 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
694 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
695 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
696 
697 	/* Confirm that the qos thread is now thread 1 */
698 	CU_ASSERT(bdev->internal.qos->ch == bdev_ch[1]);
699 
700 	/* Tear down the channels */
701 	set_thread(0);
702 	spdk_put_io_channel(io_ch[0]);
703 	set_thread(1);
704 	spdk_put_io_channel(io_ch[1]);
705 	poll_threads();
706 
707 	set_thread(0);
708 
709 	teardown_test();
710 }
711 
712 static void
713 io_during_qos_queue(void)
714 {
715 	struct spdk_io_channel *io_ch[2];
716 	struct spdk_bdev_channel *bdev_ch[2];
717 	struct spdk_bdev *bdev;
718 	enum spdk_bdev_io_status status0, status1;
719 	int rc;
720 
721 	setup_test();
722 	MOCK_SET(spdk_get_ticks, 0);
723 
724 	/* Enable QoS */
725 	bdev = &g_bdev.bdev;
726 	bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
727 	SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL);
728 	TAILQ_INIT(&bdev->internal.qos->queued);
729 	/*
730 	 * Enable both IOPS and bandwidth rate limits.
731 	 * In this case, IOPS rate limit will take effect first.
732 	 */
733 	/* 1000 I/O per second, or 1 per millisecond */
734 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 1000;
735 	/* 8K byte per millisecond with 4K block size */
736 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 8192000;
737 
738 	g_get_io_channel = true;
739 
740 	/* Create channels */
741 	set_thread(0);
742 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
743 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
744 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
745 
746 	set_thread(1);
747 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
748 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
749 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
750 
751 	/* Send two I/O */
752 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
753 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
754 	CU_ASSERT(rc == 0);
755 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
756 	set_thread(0);
757 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
758 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
759 	CU_ASSERT(rc == 0);
760 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
761 
762 	/* Complete any I/O that arrived at the disk */
763 	poll_threads();
764 	set_thread(1);
765 	stub_complete_io(g_bdev.io_target, 0);
766 	set_thread(0);
767 	stub_complete_io(g_bdev.io_target, 0);
768 	poll_threads();
769 
770 	/* Only one of the I/O should complete. (logical XOR) */
771 	if (status0 == SPDK_BDEV_IO_STATUS_SUCCESS) {
772 		CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
773 	} else {
774 		CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
775 	}
776 
777 	/* Advance in time by a millisecond */
778 	spdk_delay_us(1000);
779 
780 	/* Complete more I/O */
781 	poll_threads();
782 	set_thread(1);
783 	stub_complete_io(g_bdev.io_target, 0);
784 	set_thread(0);
785 	stub_complete_io(g_bdev.io_target, 0);
786 	poll_threads();
787 
788 	/* Now the second I/O should be done */
789 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS);
790 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
791 
792 	/* Tear down the channels */
793 	set_thread(1);
794 	spdk_put_io_channel(io_ch[1]);
795 	set_thread(0);
796 	spdk_put_io_channel(io_ch[0]);
797 	poll_threads();
798 
799 	teardown_test();
800 }
801 
802 static void
803 io_during_qos_reset(void)
804 {
805 	struct spdk_io_channel *io_ch[2];
806 	struct spdk_bdev_channel *bdev_ch[2];
807 	struct spdk_bdev *bdev;
808 	enum spdk_bdev_io_status status0, status1, reset_status;
809 	int rc;
810 
811 	setup_test();
812 	MOCK_SET(spdk_get_ticks, 0);
813 
814 	/* Enable QoS */
815 	bdev = &g_bdev.bdev;
816 	bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
817 	SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL);
818 	TAILQ_INIT(&bdev->internal.qos->queued);
819 	/*
820 	 * Enable both IOPS and bandwidth rate limits.
821 	 * In this case, bandwidth rate limit will take effect first.
822 	 */
823 	/* 2000 I/O per second, or 2 per millisecond */
824 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 2000;
825 	/* 4K byte per millisecond with 4K block size */
826 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 4096000;
827 
828 	g_get_io_channel = true;
829 
830 	/* Create channels */
831 	set_thread(0);
832 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
833 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
834 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
835 
836 	set_thread(1);
837 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
838 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
839 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
840 
841 	/* Send two I/O. One of these gets queued by QoS. The other is sitting at the disk. */
842 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
843 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
844 	CU_ASSERT(rc == 0);
845 	set_thread(0);
846 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
847 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
848 	CU_ASSERT(rc == 0);
849 
850 	poll_threads();
851 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
852 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
853 
854 	/* Reset the bdev. */
855 	reset_status = SPDK_BDEV_IO_STATUS_PENDING;
856 	rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &reset_status);
857 	CU_ASSERT(rc == 0);
858 
859 	/* Complete any I/O that arrived at the disk */
860 	poll_threads();
861 	set_thread(1);
862 	stub_complete_io(g_bdev.io_target, 0);
863 	set_thread(0);
864 	stub_complete_io(g_bdev.io_target, 0);
865 	poll_threads();
866 
867 	CU_ASSERT(reset_status == SPDK_BDEV_IO_STATUS_SUCCESS);
868 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_FAILED);
869 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_FAILED);
870 
871 	/* Tear down the channels */
872 	set_thread(1);
873 	spdk_put_io_channel(io_ch[1]);
874 	set_thread(0);
875 	spdk_put_io_channel(io_ch[0]);
876 	poll_threads();
877 
878 	teardown_test();
879 }
880 
881 static void
882 enomem_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
883 {
884 	enum spdk_bdev_io_status *status = cb_arg;
885 
886 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
887 	spdk_bdev_free_io(bdev_io);
888 }
889 
890 static void
891 enomem(void)
892 {
893 	struct spdk_io_channel *io_ch;
894 	struct spdk_bdev_channel *bdev_ch;
895 	struct spdk_bdev_shared_resource *shared_resource;
896 	struct ut_bdev_channel *ut_ch;
897 	const uint32_t IO_ARRAY_SIZE = 64;
898 	const uint32_t AVAIL = 20;
899 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE], status_reset;
900 	uint32_t nomem_cnt, i;
901 	struct spdk_bdev_io *first_io;
902 	int rc;
903 
904 	setup_test();
905 
906 	set_thread(0);
907 	io_ch = spdk_bdev_get_io_channel(g_desc);
908 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
909 	shared_resource = bdev_ch->shared_resource;
910 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
911 	ut_ch->avail_cnt = AVAIL;
912 
913 	/* First submit a number of IOs equal to what the channel can support. */
914 	for (i = 0; i < AVAIL; i++) {
915 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
916 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
917 		CU_ASSERT(rc == 0);
918 	}
919 	CU_ASSERT(TAILQ_EMPTY(&shared_resource->nomem_io));
920 
921 	/*
922 	 * Next, submit one additional I/O.  This one should fail with ENOMEM and then go onto
923 	 *  the enomem_io list.
924 	 */
925 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
926 	rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
927 	CU_ASSERT(rc == 0);
928 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&shared_resource->nomem_io));
929 	first_io = TAILQ_FIRST(&shared_resource->nomem_io);
930 
931 	/*
932 	 * Now submit a bunch more I/O.  These should all fail with ENOMEM and get queued behind
933 	 *  the first_io above.
934 	 */
935 	for (i = AVAIL + 1; i < IO_ARRAY_SIZE; i++) {
936 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
937 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
938 		CU_ASSERT(rc == 0);
939 	}
940 
941 	/* Assert that first_io is still at the head of the list. */
942 	CU_ASSERT(TAILQ_FIRST(&shared_resource->nomem_io) == first_io);
943 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == (IO_ARRAY_SIZE - AVAIL));
944 	nomem_cnt = bdev_io_tailq_cnt(&shared_resource->nomem_io);
945 	CU_ASSERT(shared_resource->nomem_threshold == (AVAIL - NOMEM_THRESHOLD_COUNT));
946 
947 	/*
948 	 * Complete 1 I/O only.  The key check here is bdev_io_tailq_cnt - this should not have
949 	 *  changed since completing just 1 I/O should not trigger retrying the queued nomem_io
950 	 *  list.
951 	 */
952 	stub_complete_io(g_bdev.io_target, 1);
953 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == nomem_cnt);
954 
955 	/*
956 	 * Complete enough I/O to hit the nomem_theshold.  This should trigger retrying nomem_io,
957 	 *  and we should see I/O get resubmitted to the test bdev module.
958 	 */
959 	stub_complete_io(g_bdev.io_target, NOMEM_THRESHOLD_COUNT - 1);
960 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) < nomem_cnt);
961 	nomem_cnt = bdev_io_tailq_cnt(&shared_resource->nomem_io);
962 
963 	/* Complete 1 I/O only.  This should not trigger retrying the queued nomem_io. */
964 	stub_complete_io(g_bdev.io_target, 1);
965 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == nomem_cnt);
966 
967 	/*
968 	 * Send a reset and confirm that all I/O are completed, including the ones that
969 	 *  were queued on the nomem_io list.
970 	 */
971 	status_reset = SPDK_BDEV_IO_STATUS_PENDING;
972 	rc = spdk_bdev_reset(g_desc, io_ch, enomem_done, &status_reset);
973 	poll_threads();
974 	CU_ASSERT(rc == 0);
975 	/* This will complete the reset. */
976 	stub_complete_io(g_bdev.io_target, 0);
977 
978 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == 0);
979 	CU_ASSERT(shared_resource->io_outstanding == 0);
980 
981 	spdk_put_io_channel(io_ch);
982 	poll_threads();
983 	teardown_test();
984 }
985 
986 static void
987 enomem_multi_bdev(void)
988 {
989 	struct spdk_io_channel *io_ch;
990 	struct spdk_bdev_channel *bdev_ch;
991 	struct spdk_bdev_shared_resource *shared_resource;
992 	struct ut_bdev_channel *ut_ch;
993 	const uint32_t IO_ARRAY_SIZE = 64;
994 	const uint32_t AVAIL = 20;
995 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE];
996 	uint32_t i;
997 	struct ut_bdev *second_bdev;
998 	struct spdk_bdev_desc *second_desc = NULL;
999 	struct spdk_bdev_channel *second_bdev_ch;
1000 	struct spdk_io_channel *second_ch;
1001 	int rc;
1002 
1003 	setup_test();
1004 
1005 	/* Register second bdev with the same io_target  */
1006 	second_bdev = calloc(1, sizeof(*second_bdev));
1007 	SPDK_CU_ASSERT_FATAL(second_bdev != NULL);
1008 	register_bdev(second_bdev, "ut_bdev2", g_bdev.io_target);
1009 	spdk_bdev_open(&second_bdev->bdev, true, NULL, NULL, &second_desc);
1010 	SPDK_CU_ASSERT_FATAL(second_desc != NULL);
1011 
1012 	set_thread(0);
1013 	io_ch = spdk_bdev_get_io_channel(g_desc);
1014 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
1015 	shared_resource = bdev_ch->shared_resource;
1016 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
1017 	ut_ch->avail_cnt = AVAIL;
1018 
1019 	second_ch = spdk_bdev_get_io_channel(second_desc);
1020 	second_bdev_ch = spdk_io_channel_get_ctx(second_ch);
1021 	SPDK_CU_ASSERT_FATAL(shared_resource == second_bdev_ch->shared_resource);
1022 
1023 	/* Saturate io_target through bdev A. */
1024 	for (i = 0; i < AVAIL; i++) {
1025 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
1026 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
1027 		CU_ASSERT(rc == 0);
1028 	}
1029 	CU_ASSERT(TAILQ_EMPTY(&shared_resource->nomem_io));
1030 
1031 	/*
1032 	 * Now submit I/O through the second bdev. This should fail with ENOMEM
1033 	 * and then go onto the nomem_io list.
1034 	 */
1035 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
1036 	rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
1037 	CU_ASSERT(rc == 0);
1038 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&shared_resource->nomem_io));
1039 
1040 	/* Complete first bdev's I/O. This should retry sending second bdev's nomem_io */
1041 	stub_complete_io(g_bdev.io_target, AVAIL);
1042 
1043 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&shared_resource->nomem_io));
1044 	CU_ASSERT(shared_resource->io_outstanding == 1);
1045 
1046 	/* Now complete our retried I/O  */
1047 	stub_complete_io(g_bdev.io_target, 1);
1048 	SPDK_CU_ASSERT_FATAL(shared_resource->io_outstanding == 0);
1049 
1050 	spdk_put_io_channel(io_ch);
1051 	spdk_put_io_channel(second_ch);
1052 	spdk_bdev_close(second_desc);
1053 	unregister_bdev(second_bdev);
1054 	poll_threads();
1055 	free(second_bdev);
1056 	teardown_test();
1057 }
1058 
1059 
1060 static void
1061 enomem_multi_io_target(void)
1062 {
1063 	struct spdk_io_channel *io_ch;
1064 	struct spdk_bdev_channel *bdev_ch;
1065 	struct ut_bdev_channel *ut_ch;
1066 	const uint32_t IO_ARRAY_SIZE = 64;
1067 	const uint32_t AVAIL = 20;
1068 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE];
1069 	uint32_t i;
1070 	int new_io_device;
1071 	struct ut_bdev *second_bdev;
1072 	struct spdk_bdev_desc *second_desc = NULL;
1073 	struct spdk_bdev_channel *second_bdev_ch;
1074 	struct spdk_io_channel *second_ch;
1075 	int rc;
1076 
1077 	setup_test();
1078 
1079 	/* Create new io_target and a second bdev using it */
1080 	spdk_io_device_register(&new_io_device, stub_create_ch, stub_destroy_ch,
1081 				sizeof(struct ut_bdev_channel), NULL);
1082 	second_bdev = calloc(1, sizeof(*second_bdev));
1083 	SPDK_CU_ASSERT_FATAL(second_bdev != NULL);
1084 	register_bdev(second_bdev, "ut_bdev2", &new_io_device);
1085 	spdk_bdev_open(&second_bdev->bdev, true, NULL, NULL, &second_desc);
1086 	SPDK_CU_ASSERT_FATAL(second_desc != NULL);
1087 
1088 	set_thread(0);
1089 	io_ch = spdk_bdev_get_io_channel(g_desc);
1090 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
1091 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
1092 	ut_ch->avail_cnt = AVAIL;
1093 
1094 	/* Different io_target should imply a different shared_resource */
1095 	second_ch = spdk_bdev_get_io_channel(second_desc);
1096 	second_bdev_ch = spdk_io_channel_get_ctx(second_ch);
1097 	SPDK_CU_ASSERT_FATAL(bdev_ch->shared_resource != second_bdev_ch->shared_resource);
1098 
1099 	/* Saturate io_target through bdev A. */
1100 	for (i = 0; i < AVAIL; i++) {
1101 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
1102 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
1103 		CU_ASSERT(rc == 0);
1104 	}
1105 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
1106 
1107 	/* Issue one more I/O to fill ENOMEM list. */
1108 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
1109 	rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
1110 	CU_ASSERT(rc == 0);
1111 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
1112 
1113 	/*
1114 	 * Now submit I/O through the second bdev. This should go through and complete
1115 	 * successfully because we're using a different io_device underneath.
1116 	 */
1117 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
1118 	rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
1119 	CU_ASSERT(rc == 0);
1120 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&second_bdev_ch->shared_resource->nomem_io));
1121 	stub_complete_io(second_bdev->io_target, 1);
1122 
1123 	/* Cleanup; Complete outstanding I/O. */
1124 	stub_complete_io(g_bdev.io_target, AVAIL);
1125 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
1126 	/* Complete the ENOMEM I/O */
1127 	stub_complete_io(g_bdev.io_target, 1);
1128 	CU_ASSERT(bdev_ch->shared_resource->io_outstanding == 0);
1129 
1130 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
1131 	CU_ASSERT(bdev_ch->shared_resource->io_outstanding == 0);
1132 	spdk_put_io_channel(io_ch);
1133 	spdk_put_io_channel(second_ch);
1134 	spdk_bdev_close(second_desc);
1135 	unregister_bdev(second_bdev);
1136 	spdk_io_device_unregister(&new_io_device, NULL);
1137 	poll_threads();
1138 	free(second_bdev);
1139 	teardown_test();
1140 }
1141 
1142 static void
1143 qos_dynamic_enable_done(void *cb_arg, int status)
1144 {
1145 	int *rc = cb_arg;
1146 	*rc = status;
1147 }
1148 
1149 static void
1150 qos_dynamic_enable(void)
1151 {
1152 	struct spdk_io_channel *io_ch[2];
1153 	struct spdk_bdev_channel *bdev_ch[2];
1154 	struct spdk_bdev *bdev;
1155 	enum spdk_bdev_io_status bdev_io_status[2];
1156 	uint64_t limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES] = {};
1157 	int status, second_status, rc, i;
1158 
1159 	setup_test();
1160 	MOCK_SET(spdk_get_ticks, 0);
1161 
1162 	for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
1163 		limits[i] = UINT64_MAX;
1164 	}
1165 
1166 	bdev = &g_bdev.bdev;
1167 
1168 	g_get_io_channel = true;
1169 
1170 	/* Create channels */
1171 	set_thread(0);
1172 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
1173 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
1174 	CU_ASSERT(bdev_ch[0]->flags == 0);
1175 
1176 	set_thread(1);
1177 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
1178 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
1179 	CU_ASSERT(bdev_ch[1]->flags == 0);
1180 
1181 	set_thread(0);
1182 
1183 	/*
1184 	 * Enable QoS: IOPS and byte per second rate limits.
1185 	 * More than 10 I/Os allowed per timeslice.
1186 	 */
1187 	status = -1;
1188 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000;
1189 	limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 100;
1190 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1191 	poll_threads();
1192 	CU_ASSERT(status == 0);
1193 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1194 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1195 
1196 	/*
1197 	 * Submit and complete 10 I/O to fill the QoS allotment for this timeslice.
1198 	 * Additional I/O will then be queued.
1199 	 */
1200 	set_thread(0);
1201 	for (i = 0; i < 10; i++) {
1202 		bdev_io_status[0] = SPDK_BDEV_IO_STATUS_PENDING;
1203 		rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &bdev_io_status[0]);
1204 		CU_ASSERT(rc == 0);
1205 		CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_PENDING);
1206 		poll_thread(0);
1207 		stub_complete_io(g_bdev.io_target, 0);
1208 		CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_SUCCESS);
1209 	}
1210 
1211 	/*
1212 	 * Send two more I/O.  These I/O will be queued since the current timeslice allotment has been
1213 	 * filled already.  We want to test that when QoS is disabled that these two I/O:
1214 	 *  1) are not aborted
1215 	 *  2) are sent back to their original thread for resubmission
1216 	 */
1217 	bdev_io_status[0] = SPDK_BDEV_IO_STATUS_PENDING;
1218 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &bdev_io_status[0]);
1219 	CU_ASSERT(rc == 0);
1220 	CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_PENDING);
1221 	set_thread(1);
1222 	bdev_io_status[1] = SPDK_BDEV_IO_STATUS_PENDING;
1223 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &bdev_io_status[1]);
1224 	CU_ASSERT(rc == 0);
1225 	CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_PENDING);
1226 	poll_threads();
1227 
1228 	/* Disable QoS: IOPS rate limit */
1229 	status = -1;
1230 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0;
1231 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1232 	poll_threads();
1233 	CU_ASSERT(status == 0);
1234 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1235 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1236 
1237 	/* Disable QoS: Byte per second rate limit */
1238 	status = -1;
1239 	limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 0;
1240 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1241 	poll_threads();
1242 	CU_ASSERT(status == 0);
1243 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0);
1244 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0);
1245 
1246 	/*
1247 	 * All I/O should have been resubmitted back on their original thread.  Complete
1248 	 *  all I/O on thread 0, and ensure that only the thread 0 I/O was completed.
1249 	 */
1250 	set_thread(0);
1251 	stub_complete_io(g_bdev.io_target, 0);
1252 	poll_threads();
1253 	CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_SUCCESS);
1254 	CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_PENDING);
1255 
1256 	/* Now complete all I/O on thread 1 and ensure the thread 1 I/O was completed. */
1257 	set_thread(1);
1258 	stub_complete_io(g_bdev.io_target, 0);
1259 	poll_threads();
1260 	CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_SUCCESS);
1261 
1262 	/* Disable QoS again */
1263 	status = -1;
1264 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0;
1265 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1266 	poll_threads();
1267 	CU_ASSERT(status == 0); /* This should succeed */
1268 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0);
1269 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0);
1270 
1271 	/* Enable QoS on thread 0 */
1272 	status = -1;
1273 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000;
1274 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1275 	poll_threads();
1276 	CU_ASSERT(status == 0);
1277 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1278 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1279 
1280 	/* Disable QoS on thread 1 */
1281 	set_thread(1);
1282 	status = -1;
1283 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0;
1284 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1285 	/* Don't poll yet. This should leave the channels with QoS enabled */
1286 	CU_ASSERT(status == -1);
1287 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1288 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1289 
1290 	/* Enable QoS. This should immediately fail because the previous disable QoS hasn't completed. */
1291 	second_status = 0;
1292 	limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 10;
1293 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &second_status);
1294 	poll_threads();
1295 	CU_ASSERT(status == 0); /* The disable should succeed */
1296 	CU_ASSERT(second_status < 0); /* The enable should fail */
1297 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0);
1298 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0);
1299 
1300 	/* Enable QoS on thread 1. This should succeed now that the disable has completed. */
1301 	status = -1;
1302 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000;
1303 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1304 	poll_threads();
1305 	CU_ASSERT(status == 0);
1306 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1307 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1308 
1309 	/* Tear down the channels */
1310 	set_thread(0);
1311 	spdk_put_io_channel(io_ch[0]);
1312 	set_thread(1);
1313 	spdk_put_io_channel(io_ch[1]);
1314 	poll_threads();
1315 
1316 	set_thread(0);
1317 	teardown_test();
1318 }
1319 
1320 int
1321 main(int argc, char **argv)
1322 {
1323 	CU_pSuite	suite = NULL;
1324 	unsigned int	num_failures;
1325 
1326 	if (CU_initialize_registry() != CUE_SUCCESS) {
1327 		return CU_get_error();
1328 	}
1329 
1330 	suite = CU_add_suite("bdev", NULL, NULL);
1331 	if (suite == NULL) {
1332 		CU_cleanup_registry();
1333 		return CU_get_error();
1334 	}
1335 
1336 	if (
1337 		CU_add_test(suite, "basic", basic) == NULL ||
1338 		CU_add_test(suite, "unregister_and_close", unregister_and_close) == NULL ||
1339 		CU_add_test(suite, "basic_qos", basic_qos) == NULL ||
1340 		CU_add_test(suite, "put_channel_during_reset", put_channel_during_reset) == NULL ||
1341 		CU_add_test(suite, "aborted_reset", aborted_reset) == NULL ||
1342 		CU_add_test(suite, "io_during_reset", io_during_reset) == NULL ||
1343 		CU_add_test(suite, "io_during_qos_queue", io_during_qos_queue) == NULL ||
1344 		CU_add_test(suite, "io_during_qos_reset", io_during_qos_reset) == NULL ||
1345 		CU_add_test(suite, "enomem", enomem) == NULL ||
1346 		CU_add_test(suite, "enomem_multi_bdev", enomem_multi_bdev) == NULL ||
1347 		CU_add_test(suite, "enomem_multi_io_target", enomem_multi_io_target) == NULL ||
1348 		CU_add_test(suite, "qos_dynamic_enable", qos_dynamic_enable) == NULL
1349 	) {
1350 		CU_cleanup_registry();
1351 		return CU_get_error();
1352 	}
1353 
1354 	CU_basic_set_mode(CU_BRM_VERBOSE);
1355 	CU_basic_run_tests();
1356 	num_failures = CU_get_number_of_failures();
1357 	CU_cleanup_registry();
1358 	return num_failures;
1359 }
1360