xref: /spdk/test/unit/lib/bdev/mt/bdev.c/bdev_ut.c (revision 66fc591ff7b1188e86b720feee0610a4b1f4fbe6)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk_cunit.h"
35 
36 #include "lib/test_env.c"
37 #include "lib/ut_multithread.c"
38 
39 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
40 #undef SPDK_CONFIG_VTUNE
41 
42 #include "bdev/bdev.c"
43 
44 #define BDEV_UT_NUM_THREADS 3
45 
46 DEFINE_STUB_V(spdk_scsi_nvme_translate, (const struct spdk_bdev_io *bdev_io,
47 		int *sc, int *sk, int *asc, int *ascq));
48 
49 struct ut_bdev {
50 	struct spdk_bdev	bdev;
51 	void			*io_target;
52 };
53 
54 struct ut_bdev_channel {
55 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
56 	uint32_t			outstanding_cnt;
57 	uint32_t			avail_cnt;
58 };
59 
60 int g_io_device;
61 struct ut_bdev g_bdev;
62 struct spdk_bdev_desc *g_desc;
63 bool g_teardown_done = false;
64 bool g_get_io_channel = true;
65 bool g_create_ch = true;
66 
67 static int
68 stub_create_ch(void *io_device, void *ctx_buf)
69 {
70 	struct ut_bdev_channel *ch = ctx_buf;
71 
72 	if (g_create_ch == false) {
73 		return -1;
74 	}
75 
76 	TAILQ_INIT(&ch->outstanding_io);
77 	ch->outstanding_cnt = 0;
78 	/*
79 	 * When avail gets to 0, the submit_request function will return ENOMEM.
80 	 *  Most tests to not want ENOMEM to occur, so by default set this to a
81 	 *  big value that won't get hit.  The ENOMEM tests can then override this
82 	 *  value to something much smaller to induce ENOMEM conditions.
83 	 */
84 	ch->avail_cnt = 2048;
85 	return 0;
86 }
87 
88 static void
89 stub_destroy_ch(void *io_device, void *ctx_buf)
90 {
91 }
92 
93 static struct spdk_io_channel *
94 stub_get_io_channel(void *ctx)
95 {
96 	struct ut_bdev *ut_bdev = ctx;
97 
98 	if (g_get_io_channel == true) {
99 		return spdk_get_io_channel(ut_bdev->io_target);
100 	} else {
101 		return NULL;
102 	}
103 }
104 
105 static int
106 stub_destruct(void *ctx)
107 {
108 	return 0;
109 }
110 
111 static void
112 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
113 {
114 	struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
115 
116 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) {
117 		struct spdk_bdev_io *io;
118 
119 		while (!TAILQ_EMPTY(&ch->outstanding_io)) {
120 			io = TAILQ_FIRST(&ch->outstanding_io);
121 			TAILQ_REMOVE(&ch->outstanding_io, io, module_link);
122 			ch->outstanding_cnt--;
123 			spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_FAILED);
124 			ch->avail_cnt++;
125 		}
126 	}
127 
128 	if (ch->avail_cnt > 0) {
129 		TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
130 		ch->outstanding_cnt++;
131 		ch->avail_cnt--;
132 	} else {
133 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_NOMEM);
134 	}
135 }
136 
137 static uint32_t
138 stub_complete_io(void *io_target, uint32_t num_to_complete)
139 {
140 	struct spdk_io_channel *_ch = spdk_get_io_channel(io_target);
141 	struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
142 	struct spdk_bdev_io *io;
143 	bool complete_all = (num_to_complete == 0);
144 	uint32_t num_completed = 0;
145 
146 	while (complete_all || num_completed < num_to_complete) {
147 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
148 			break;
149 		}
150 		io = TAILQ_FIRST(&ch->outstanding_io);
151 		TAILQ_REMOVE(&ch->outstanding_io, io, module_link);
152 		ch->outstanding_cnt--;
153 		spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_SUCCESS);
154 		ch->avail_cnt++;
155 		num_completed++;
156 	}
157 
158 	spdk_put_io_channel(_ch);
159 	return num_completed;
160 }
161 
162 static struct spdk_bdev_fn_table fn_table = {
163 	.get_io_channel =	stub_get_io_channel,
164 	.destruct =		stub_destruct,
165 	.submit_request =	stub_submit_request,
166 };
167 
168 static int
169 module_init(void)
170 {
171 	return 0;
172 }
173 
174 static void
175 module_fini(void)
176 {
177 }
178 
179 SPDK_BDEV_MODULE_REGISTER(bdev_ut, module_init, module_fini, NULL, NULL, NULL)
180 
181 static void
182 register_bdev(struct ut_bdev *ut_bdev, char *name, void *io_target)
183 {
184 	memset(ut_bdev, 0, sizeof(*ut_bdev));
185 
186 	ut_bdev->io_target = io_target;
187 	ut_bdev->bdev.ctxt = ut_bdev;
188 	ut_bdev->bdev.name = name;
189 	ut_bdev->bdev.fn_table = &fn_table;
190 	ut_bdev->bdev.module = SPDK_GET_BDEV_MODULE(bdev_ut);
191 	ut_bdev->bdev.blocklen = 4096;
192 	ut_bdev->bdev.blockcnt = 1024;
193 
194 	spdk_bdev_register(&ut_bdev->bdev);
195 }
196 
197 static void
198 unregister_bdev(struct ut_bdev *ut_bdev)
199 {
200 	/* Handle any deferred messages. */
201 	poll_threads();
202 	spdk_bdev_unregister(&ut_bdev->bdev, NULL, NULL);
203 	memset(ut_bdev, 0, sizeof(*ut_bdev));
204 }
205 
206 static void
207 bdev_init_cb(void *done, int rc)
208 {
209 	CU_ASSERT(rc == 0);
210 	*(bool *)done = true;
211 }
212 
213 static void
214 setup_test(void)
215 {
216 	bool done = false;
217 
218 	allocate_threads(BDEV_UT_NUM_THREADS);
219 	spdk_bdev_initialize(bdev_init_cb, &done);
220 	spdk_io_device_register(&g_io_device, stub_create_ch, stub_destroy_ch,
221 				sizeof(struct ut_bdev_channel));
222 	register_bdev(&g_bdev, "ut_bdev", &g_io_device);
223 	spdk_bdev_open(&g_bdev.bdev, true, NULL, NULL, &g_desc);
224 }
225 
226 static void
227 finish_cb(void *cb_arg)
228 {
229 	g_teardown_done = true;
230 }
231 
232 static void
233 teardown_test(void)
234 {
235 	g_teardown_done = false;
236 	spdk_bdev_close(g_desc);
237 	g_desc = NULL;
238 	unregister_bdev(&g_bdev);
239 	spdk_io_device_unregister(&g_io_device, NULL);
240 	spdk_bdev_finish(finish_cb, NULL);
241 	poll_threads();
242 	CU_ASSERT(g_teardown_done == true);
243 	g_teardown_done = false;
244 	free_threads();
245 }
246 
247 static void
248 basic(void)
249 {
250 	setup_test();
251 
252 	set_thread(0);
253 
254 	g_get_io_channel = false;
255 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
256 	CU_ASSERT(g_ut_threads[0].ch == NULL);
257 
258 	g_get_io_channel = true;
259 	g_create_ch = false;
260 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
261 	CU_ASSERT(g_ut_threads[0].ch == NULL);
262 
263 	g_get_io_channel = true;
264 	g_create_ch = true;
265 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
266 	CU_ASSERT(g_ut_threads[0].ch != NULL);
267 	spdk_put_io_channel(g_ut_threads[0].ch);
268 
269 	teardown_test();
270 }
271 
272 static void
273 poller_run_done(void *ctx)
274 {
275 	bool	*poller_run = ctx;
276 
277 	*poller_run = true;
278 }
279 
280 static void
281 poller_run_times_done(void *ctx)
282 {
283 	int	*poller_run_times = ctx;
284 
285 	(*poller_run_times)++;
286 }
287 
288 static void
289 basic_poller(void)
290 {
291 	struct spdk_poller	*poller = NULL;
292 	bool			poller_run = false;
293 	int			poller_run_times = 0;
294 
295 	setup_test();
296 
297 	set_thread(0);
298 	reset_time();
299 	/* Register a poller with no-wait time and test execution */
300 	poller = spdk_poller_register(poller_run_done, &poller_run, 0);
301 	CU_ASSERT(poller != NULL);
302 
303 	poll_threads();
304 	CU_ASSERT(poller_run == true);
305 
306 	spdk_poller_unregister(&poller);
307 	CU_ASSERT(poller == NULL);
308 
309 	/* Register a poller with 1000us wait time and test single execution */
310 	poller_run = false;
311 	poller = spdk_poller_register(poller_run_done, &poller_run, 1000);
312 	CU_ASSERT(poller != NULL);
313 
314 	poll_threads();
315 	CU_ASSERT(poller_run == false);
316 
317 	increment_time(1000);
318 	poll_threads();
319 	CU_ASSERT(poller_run == true);
320 
321 	reset_time();
322 	poller_run = false;
323 	poll_threads();
324 	CU_ASSERT(poller_run == false);
325 
326 	increment_time(1000);
327 	poll_threads();
328 	CU_ASSERT(poller_run == true);
329 
330 	spdk_poller_unregister(&poller);
331 	CU_ASSERT(poller == NULL);
332 
333 	reset_time();
334 	/* Register a poller with 1000us wait time and test multiple execution */
335 	poller = spdk_poller_register(poller_run_times_done, &poller_run_times, 1000);
336 	CU_ASSERT(poller != NULL);
337 
338 	poll_threads();
339 	CU_ASSERT(poller_run_times == 0);
340 
341 	increment_time(1000);
342 	poll_threads();
343 	CU_ASSERT(poller_run_times == 1);
344 
345 	poller_run_times = 0;
346 	increment_time(2000);
347 	poll_threads();
348 	CU_ASSERT(poller_run_times == 2);
349 
350 	spdk_poller_unregister(&poller);
351 	CU_ASSERT(poller == NULL);
352 
353 	teardown_test();
354 }
355 
356 static void
357 reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
358 {
359 	bool *done = cb_arg;
360 
361 	CU_ASSERT(success == true);
362 	*done = true;
363 	spdk_bdev_free_io(bdev_io);
364 }
365 
366 static void
367 put_channel_during_reset(void)
368 {
369 	struct spdk_io_channel *io_ch;
370 	bool done = false;
371 
372 	setup_test();
373 
374 	set_thread(0);
375 	io_ch = spdk_bdev_get_io_channel(g_desc);
376 	CU_ASSERT(io_ch != NULL);
377 
378 	/*
379 	 * Start a reset, but then put the I/O channel before
380 	 *  the deferred messages for the reset get a chance to
381 	 *  execute.
382 	 */
383 	spdk_bdev_reset(g_desc, io_ch, reset_done, &done);
384 	spdk_put_io_channel(io_ch);
385 	poll_threads();
386 	stub_complete_io(g_bdev.io_target, 0);
387 
388 	teardown_test();
389 }
390 
391 static void
392 aborted_reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
393 {
394 	enum spdk_bdev_io_status *status = cb_arg;
395 
396 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
397 	spdk_bdev_free_io(bdev_io);
398 }
399 
400 static void
401 aborted_reset(void)
402 {
403 	struct spdk_io_channel *io_ch[2];
404 	enum spdk_bdev_io_status status1, status2;
405 
406 	setup_test();
407 
408 	set_thread(0);
409 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
410 	CU_ASSERT(io_ch[0] != NULL);
411 	spdk_bdev_reset(g_desc, io_ch[0], aborted_reset_done, &status1);
412 	poll_threads();
413 	CU_ASSERT(g_bdev.bdev.reset_in_progress != NULL);
414 
415 	/*
416 	 * First reset has been submitted on ch0.  Now submit a second
417 	 *  reset on ch1 which will get queued since there is already a
418 	 *  reset in progress.
419 	 */
420 	set_thread(1);
421 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
422 	CU_ASSERT(io_ch[1] != NULL);
423 	spdk_bdev_reset(g_desc, io_ch[1], aborted_reset_done, &status2);
424 	poll_threads();
425 	CU_ASSERT(g_bdev.bdev.reset_in_progress != NULL);
426 
427 	/*
428 	 * Now destroy ch1.  This will abort the queued reset.  Check that
429 	 *  the second reset was completed with failed status.  Also check
430 	 *  that bdev->reset_in_progress != NULL, since the original reset
431 	 *  has not been completed yet.  This ensures that the bdev code is
432 	 *  correctly noticing that the failed reset is *not* the one that
433 	 *  had been submitted to the bdev module.
434 	 */
435 	set_thread(1);
436 	spdk_put_io_channel(io_ch[1]);
437 	poll_threads();
438 	CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_FAILED);
439 	CU_ASSERT(g_bdev.bdev.reset_in_progress != NULL);
440 
441 	/*
442 	 * Now complete the first reset, verify that it completed with SUCCESS
443 	 *  status and that bdev->reset_in_progress is also set back to NULL.
444 	 */
445 	set_thread(0);
446 	spdk_put_io_channel(io_ch[0]);
447 	stub_complete_io(g_bdev.io_target, 0);
448 	poll_threads();
449 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
450 	CU_ASSERT(g_bdev.bdev.reset_in_progress == NULL);
451 
452 	teardown_test();
453 }
454 
455 static void
456 io_during_reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
457 {
458 	enum spdk_bdev_io_status *status = cb_arg;
459 
460 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
461 	spdk_bdev_free_io(bdev_io);
462 }
463 
464 static void
465 io_during_reset(void)
466 {
467 	struct spdk_io_channel *io_ch[2];
468 	struct spdk_bdev_channel *bdev_ch[2];
469 	enum spdk_bdev_io_status status0, status1, status_reset;
470 	int rc;
471 
472 	setup_test();
473 
474 	/*
475 	 * First test normal case - submit an I/O on each of two channels (with no resets)
476 	 *  and verify they complete successfully.
477 	 */
478 	set_thread(0);
479 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
480 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
481 	CU_ASSERT(bdev_ch[0]->flags == 0);
482 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
483 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_reset_done, &status0);
484 	CU_ASSERT(rc == 0);
485 
486 	set_thread(1);
487 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
488 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
489 	CU_ASSERT(bdev_ch[1]->flags == 0);
490 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
491 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_reset_done, &status1);
492 	CU_ASSERT(rc == 0);
493 
494 	poll_threads();
495 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
496 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
497 
498 	set_thread(0);
499 	stub_complete_io(g_bdev.io_target, 0);
500 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS);
501 
502 	set_thread(1);
503 	stub_complete_io(g_bdev.io_target, 0);
504 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
505 
506 	/*
507 	 * Now submit a reset, and leave it pending while we submit I/O on two different
508 	 *  channels.  These I/O should be failed by the bdev layer since the reset is in
509 	 *  progress.
510 	 */
511 	set_thread(0);
512 	status_reset = SPDK_BDEV_IO_STATUS_PENDING;
513 	rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_reset_done, &status_reset);
514 	CU_ASSERT(rc == 0);
515 
516 	CU_ASSERT(bdev_ch[0]->flags == 0);
517 	CU_ASSERT(bdev_ch[1]->flags == 0);
518 	poll_threads();
519 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_RESET_IN_PROGRESS);
520 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_RESET_IN_PROGRESS);
521 
522 	set_thread(0);
523 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
524 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_reset_done, &status0);
525 	CU_ASSERT(rc == 0);
526 
527 	set_thread(1);
528 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
529 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_reset_done, &status1);
530 	CU_ASSERT(rc == 0);
531 
532 	/*
533 	 * A reset is in progress so these read I/O should complete with failure.  Note that we
534 	 *  need to poll_threads() since I/O completed inline have their completion deferred.
535 	 */
536 	poll_threads();
537 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
538 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_FAILED);
539 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_FAILED);
540 
541 	/*
542 	 * Complete the reset
543 	 */
544 	set_thread(0);
545 	stub_complete_io(g_bdev.io_target, 0);
546 
547 	/*
548 	 * Only poll thread 0. We should not get a completion.
549 	 */
550 	poll_thread(0);
551 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
552 
553 	/*
554 	 * Poll both thread 0 and 1 so the messages can propagate and we
555 	 * get a completion.
556 	 */
557 	poll_threads();
558 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_SUCCESS);
559 
560 	spdk_put_io_channel(io_ch[0]);
561 	set_thread(1);
562 	spdk_put_io_channel(io_ch[1]);
563 	poll_threads();
564 
565 	teardown_test();
566 }
567 
568 static void
569 enomem_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
570 {
571 	enum spdk_bdev_io_status *status = cb_arg;
572 
573 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
574 	spdk_bdev_free_io(bdev_io);
575 }
576 
577 static uint32_t
578 bdev_io_tailq_cnt(bdev_io_tailq_t *tailq)
579 {
580 	struct spdk_bdev_io *io;
581 	uint32_t cnt = 0;
582 
583 	TAILQ_FOREACH(io, tailq, link) {
584 		cnt++;
585 	}
586 
587 	return cnt;
588 }
589 
590 static void
591 enomem(void)
592 {
593 	struct spdk_io_channel *io_ch;
594 	struct spdk_bdev_channel *bdev_ch;
595 	struct spdk_bdev_module_channel *module_ch;
596 	struct ut_bdev_channel *ut_ch;
597 	const uint32_t IO_ARRAY_SIZE = 64;
598 	const uint32_t AVAIL = 20;
599 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE], status_reset;
600 	uint32_t nomem_cnt, i;
601 	struct spdk_bdev_io *first_io;
602 	int rc;
603 
604 	setup_test();
605 
606 	set_thread(0);
607 	io_ch = spdk_bdev_get_io_channel(g_desc);
608 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
609 	module_ch = bdev_ch->module_ch;
610 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
611 	ut_ch->avail_cnt = AVAIL;
612 
613 	/* First submit a number of IOs equal to what the channel can support. */
614 	for (i = 0; i < AVAIL; i++) {
615 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
616 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
617 		CU_ASSERT(rc == 0);
618 	}
619 	CU_ASSERT(TAILQ_EMPTY(&module_ch->nomem_io));
620 
621 	/*
622 	 * Next, submit one additional I/O.  This one should fail with ENOMEM and then go onto
623 	 *  the enomem_io list.
624 	 */
625 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
626 	rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
627 	CU_ASSERT(rc == 0);
628 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&module_ch->nomem_io));
629 	first_io = TAILQ_FIRST(&module_ch->nomem_io);
630 
631 	/*
632 	 * Now submit a bunch more I/O.  These should all fail with ENOMEM and get queued behind
633 	 *  the first_io above.
634 	 */
635 	for (i = AVAIL + 1; i < IO_ARRAY_SIZE; i++) {
636 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
637 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
638 		CU_ASSERT(rc == 0);
639 	}
640 
641 	/* Assert that first_io is still at the head of the list. */
642 	CU_ASSERT(TAILQ_FIRST(&module_ch->nomem_io) == first_io);
643 	CU_ASSERT(bdev_io_tailq_cnt(&module_ch->nomem_io) == (IO_ARRAY_SIZE - AVAIL));
644 	nomem_cnt = bdev_io_tailq_cnt(&module_ch->nomem_io);
645 	CU_ASSERT(module_ch->nomem_threshold == (AVAIL - NOMEM_THRESHOLD_COUNT));
646 
647 	/*
648 	 * Complete 1 I/O only.  The key check here is bdev_io_tailq_cnt - this should not have
649 	 *  changed since completing just 1 I/O should not trigger retrying the queued nomem_io
650 	 *  list.
651 	 */
652 	stub_complete_io(g_bdev.io_target, 1);
653 	CU_ASSERT(bdev_io_tailq_cnt(&module_ch->nomem_io) == nomem_cnt);
654 
655 	/*
656 	 * Complete enough I/O to hit the nomem_theshold.  This should trigger retrying nomem_io,
657 	 *  and we should see I/O get resubmitted to the test bdev module.
658 	 */
659 	stub_complete_io(g_bdev.io_target, NOMEM_THRESHOLD_COUNT - 1);
660 	CU_ASSERT(bdev_io_tailq_cnt(&module_ch->nomem_io) < nomem_cnt);
661 	nomem_cnt = bdev_io_tailq_cnt(&module_ch->nomem_io);
662 
663 	/* Complete 1 I/O only.  This should not trigger retrying the queued nomem_io. */
664 	stub_complete_io(g_bdev.io_target, 1);
665 	CU_ASSERT(bdev_io_tailq_cnt(&module_ch->nomem_io) == nomem_cnt);
666 
667 	/*
668 	 * Send a reset and confirm that all I/O are completed, including the ones that
669 	 *  were queued on the nomem_io list.
670 	 */
671 	status_reset = SPDK_BDEV_IO_STATUS_PENDING;
672 	rc = spdk_bdev_reset(g_desc, io_ch, enomem_done, &status_reset);
673 	poll_threads();
674 	CU_ASSERT(rc == 0);
675 	/* This will complete the reset. */
676 	stub_complete_io(g_bdev.io_target, 0);
677 
678 	CU_ASSERT(bdev_io_tailq_cnt(&module_ch->nomem_io) == 0);
679 	CU_ASSERT(module_ch->io_outstanding == 0);
680 
681 	spdk_put_io_channel(io_ch);
682 	poll_threads();
683 	teardown_test();
684 }
685 
686 static void
687 enomem_multi_bdev(void)
688 {
689 	struct spdk_io_channel *io_ch;
690 	struct spdk_bdev_channel *bdev_ch;
691 	struct spdk_bdev_module_channel *module_ch;
692 	struct ut_bdev_channel *ut_ch;
693 	const uint32_t IO_ARRAY_SIZE = 64;
694 	const uint32_t AVAIL = 20;
695 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE];
696 	uint32_t i;
697 	struct ut_bdev *second_bdev;
698 	struct spdk_bdev_desc *second_desc;
699 	struct spdk_bdev_channel *second_bdev_ch;
700 	struct spdk_io_channel *second_ch;
701 	int rc;
702 
703 	setup_test();
704 
705 	/* Register second bdev with the same io_target  */
706 	second_bdev = calloc(1, sizeof(*second_bdev));
707 	SPDK_CU_ASSERT_FATAL(second_bdev != NULL);
708 	register_bdev(second_bdev, "ut_bdev2", g_bdev.io_target);
709 	spdk_bdev_open(&second_bdev->bdev, true, NULL, NULL, &second_desc);
710 
711 	set_thread(0);
712 	io_ch = spdk_bdev_get_io_channel(g_desc);
713 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
714 	module_ch = bdev_ch->module_ch;
715 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
716 	ut_ch->avail_cnt = AVAIL;
717 
718 	second_ch = spdk_bdev_get_io_channel(second_desc);
719 	second_bdev_ch = spdk_io_channel_get_ctx(second_ch);
720 	SPDK_CU_ASSERT_FATAL(module_ch == second_bdev_ch->module_ch);
721 
722 	/* Saturate io_target through bdev A. */
723 	for (i = 0; i < AVAIL; i++) {
724 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
725 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
726 		CU_ASSERT(rc == 0);
727 	}
728 	CU_ASSERT(TAILQ_EMPTY(&module_ch->nomem_io));
729 
730 	/*
731 	 * Now submit I/O through the second bdev. This should fail with ENOMEM
732 	 * and then go onto the nomem_io list.
733 	 */
734 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
735 	rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
736 	CU_ASSERT(rc == 0);
737 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&module_ch->nomem_io));
738 
739 	/* Complete first bdev's I/O. This should retry sending second bdev's nomem_io */
740 	stub_complete_io(g_bdev.io_target, AVAIL);
741 
742 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&module_ch->nomem_io));
743 	CU_ASSERT(module_ch->io_outstanding == 1);
744 
745 	/* Now complete our retried I/O  */
746 	stub_complete_io(g_bdev.io_target, 1);
747 	SPDK_CU_ASSERT_FATAL(module_ch->io_outstanding == 0);
748 
749 	spdk_put_io_channel(io_ch);
750 	spdk_put_io_channel(second_ch);
751 	spdk_bdev_close(second_desc);
752 	unregister_bdev(second_bdev);
753 	free(second_bdev);
754 	poll_threads();
755 	teardown_test();
756 }
757 
758 int
759 main(int argc, char **argv)
760 {
761 	CU_pSuite	suite = NULL;
762 	unsigned int	num_failures;
763 
764 	if (CU_initialize_registry() != CUE_SUCCESS) {
765 		return CU_get_error();
766 	}
767 
768 	suite = CU_add_suite("bdev", NULL, NULL);
769 	if (suite == NULL) {
770 		CU_cleanup_registry();
771 		return CU_get_error();
772 	}
773 
774 	if (
775 		CU_add_test(suite, "basic", basic) == NULL ||
776 		CU_add_test(suite, "basic_poller", basic_poller) == NULL ||
777 		CU_add_test(suite, "put_channel_during_reset", put_channel_during_reset) == NULL ||
778 		CU_add_test(suite, "aborted_reset", aborted_reset) == NULL ||
779 		CU_add_test(suite, "io_during_reset", io_during_reset) == NULL ||
780 		CU_add_test(suite, "enomem", enomem) == NULL ||
781 		CU_add_test(suite, "enomem_multi_bdev", enomem_multi_bdev) == NULL
782 	) {
783 		CU_cleanup_registry();
784 		return CU_get_error();
785 	}
786 
787 	CU_basic_set_mode(CU_BRM_VERBOSE);
788 	CU_basic_run_tests();
789 	num_failures = CU_get_number_of_failures();
790 	CU_cleanup_registry();
791 	return num_failures;
792 }
793