xref: /spdk/test/unit/lib/bdev/mt/bdev.c/bdev_ut.c (revision 552e21cce6cccbf833ed9109827e08337377d7ce)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk_cunit.h"
35 
36 #include "common/lib/ut_multithread.c"
37 #include "unit/lib/json_mock.c"
38 
39 #include "spdk/config.h"
40 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
41 #undef SPDK_CONFIG_VTUNE
42 
43 #include "bdev/bdev.c"
44 
45 #define BDEV_UT_NUM_THREADS 3
46 
47 DEFINE_STUB(spdk_conf_find_section, struct spdk_conf_section *, (struct spdk_conf *cp,
48 		const char *name), NULL);
49 DEFINE_STUB(spdk_conf_section_get_nmval, char *,
50 	    (struct spdk_conf_section *sp, const char *key, int idx1, int idx2), NULL);
51 DEFINE_STUB(spdk_conf_section_get_intval, int, (struct spdk_conf_section *sp, const char *key), -1);
52 
53 struct spdk_trace_histories *g_trace_histories;
54 DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
55 DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix));
56 DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
57 DEFINE_STUB_V(spdk_trace_register_description, (const char *name, const char *short_name,
58 		uint16_t tpoint_id, uint8_t owner_type,
59 		uint8_t object_type, uint8_t new_object,
60 		uint8_t arg1_is_ptr, const char *arg1_name));
61 DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
62 				   uint32_t size, uint64_t object_id, uint64_t arg1));
63 
64 struct ut_bdev {
65 	struct spdk_bdev	bdev;
66 	void			*io_target;
67 };
68 
69 struct ut_bdev_channel {
70 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
71 	uint32_t			outstanding_cnt;
72 	uint32_t			avail_cnt;
73 };
74 
75 int g_io_device;
76 struct ut_bdev g_bdev;
77 struct spdk_bdev_desc *g_desc;
78 bool g_teardown_done = false;
79 bool g_get_io_channel = true;
80 bool g_create_ch = true;
81 bool g_init_complete_called = false;
82 bool g_fini_start_called = true;
83 int g_status = 0;
84 int g_count = 0;
85 struct spdk_histogram_data *g_histogram = NULL;
86 
87 static int
88 stub_create_ch(void *io_device, void *ctx_buf)
89 {
90 	struct ut_bdev_channel *ch = ctx_buf;
91 
92 	if (g_create_ch == false) {
93 		return -1;
94 	}
95 
96 	TAILQ_INIT(&ch->outstanding_io);
97 	ch->outstanding_cnt = 0;
98 	/*
99 	 * When avail gets to 0, the submit_request function will return ENOMEM.
100 	 *  Most tests to not want ENOMEM to occur, so by default set this to a
101 	 *  big value that won't get hit.  The ENOMEM tests can then override this
102 	 *  value to something much smaller to induce ENOMEM conditions.
103 	 */
104 	ch->avail_cnt = 2048;
105 	return 0;
106 }
107 
108 static void
109 stub_destroy_ch(void *io_device, void *ctx_buf)
110 {
111 }
112 
113 static struct spdk_io_channel *
114 stub_get_io_channel(void *ctx)
115 {
116 	struct ut_bdev *ut_bdev = ctx;
117 
118 	if (g_get_io_channel == true) {
119 		return spdk_get_io_channel(ut_bdev->io_target);
120 	} else {
121 		return NULL;
122 	}
123 }
124 
125 static int
126 stub_destruct(void *ctx)
127 {
128 	return 0;
129 }
130 
131 static void
132 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
133 {
134 	struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
135 
136 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) {
137 		struct spdk_bdev_io *io;
138 
139 		while (!TAILQ_EMPTY(&ch->outstanding_io)) {
140 			io = TAILQ_FIRST(&ch->outstanding_io);
141 			TAILQ_REMOVE(&ch->outstanding_io, io, module_link);
142 			ch->outstanding_cnt--;
143 			spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_FAILED);
144 			ch->avail_cnt++;
145 		}
146 	}
147 
148 	if (ch->avail_cnt > 0) {
149 		TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
150 		ch->outstanding_cnt++;
151 		ch->avail_cnt--;
152 	} else {
153 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_NOMEM);
154 	}
155 }
156 
157 static uint32_t
158 stub_complete_io(void *io_target, uint32_t num_to_complete)
159 {
160 	struct spdk_io_channel *_ch = spdk_get_io_channel(io_target);
161 	struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
162 	struct spdk_bdev_io *io;
163 	bool complete_all = (num_to_complete == 0);
164 	uint32_t num_completed = 0;
165 
166 	while (complete_all || num_completed < num_to_complete) {
167 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
168 			break;
169 		}
170 		io = TAILQ_FIRST(&ch->outstanding_io);
171 		TAILQ_REMOVE(&ch->outstanding_io, io, module_link);
172 		ch->outstanding_cnt--;
173 		spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_SUCCESS);
174 		ch->avail_cnt++;
175 		num_completed++;
176 	}
177 
178 	spdk_put_io_channel(_ch);
179 	return num_completed;
180 }
181 
182 static struct spdk_bdev_fn_table fn_table = {
183 	.get_io_channel =	stub_get_io_channel,
184 	.destruct =		stub_destruct,
185 	.submit_request =	stub_submit_request,
186 };
187 
188 static int
189 module_init(void)
190 {
191 	return 0;
192 }
193 
194 static void
195 module_fini(void)
196 {
197 }
198 
199 static void
200 init_complete(void)
201 {
202 	g_init_complete_called = true;
203 }
204 
205 static void
206 fini_start(void)
207 {
208 	g_fini_start_called = true;
209 }
210 
211 struct spdk_bdev_module bdev_ut_if = {
212 	.name = "bdev_ut",
213 	.module_init = module_init,
214 	.module_fini = module_fini,
215 	.init_complete = init_complete,
216 	.fini_start = fini_start,
217 };
218 
219 SPDK_BDEV_MODULE_REGISTER(&bdev_ut_if)
220 
221 static void
222 register_bdev(struct ut_bdev *ut_bdev, char *name, void *io_target)
223 {
224 	memset(ut_bdev, 0, sizeof(*ut_bdev));
225 
226 	ut_bdev->io_target = io_target;
227 	ut_bdev->bdev.ctxt = ut_bdev;
228 	ut_bdev->bdev.name = name;
229 	ut_bdev->bdev.fn_table = &fn_table;
230 	ut_bdev->bdev.module = &bdev_ut_if;
231 	ut_bdev->bdev.blocklen = 4096;
232 	ut_bdev->bdev.blockcnt = 1024;
233 
234 	spdk_bdev_register(&ut_bdev->bdev);
235 }
236 
237 static void
238 unregister_bdev(struct ut_bdev *ut_bdev)
239 {
240 	/* Handle any deferred messages. */
241 	poll_threads();
242 	spdk_bdev_unregister(&ut_bdev->bdev, NULL, NULL);
243 }
244 
245 static void
246 bdev_init_cb(void *done, int rc)
247 {
248 	CU_ASSERT(rc == 0);
249 	*(bool *)done = true;
250 }
251 
252 static void
253 setup_test(void)
254 {
255 	bool done = false;
256 
257 	allocate_threads(BDEV_UT_NUM_THREADS);
258 	set_thread(0);
259 	spdk_bdev_initialize(bdev_init_cb, &done);
260 	spdk_io_device_register(&g_io_device, stub_create_ch, stub_destroy_ch,
261 				sizeof(struct ut_bdev_channel), NULL);
262 	register_bdev(&g_bdev, "ut_bdev", &g_io_device);
263 	spdk_bdev_open(&g_bdev.bdev, true, NULL, NULL, &g_desc);
264 }
265 
266 static void
267 finish_cb(void *cb_arg)
268 {
269 	g_teardown_done = true;
270 }
271 
272 static void
273 teardown_test(void)
274 {
275 	set_thread(0);
276 	g_teardown_done = false;
277 	spdk_bdev_close(g_desc);
278 	g_desc = NULL;
279 	unregister_bdev(&g_bdev);
280 	spdk_io_device_unregister(&g_io_device, NULL);
281 	spdk_bdev_finish(finish_cb, NULL);
282 	poll_threads();
283 	memset(&g_bdev, 0, sizeof(g_bdev));
284 	CU_ASSERT(g_teardown_done == true);
285 	g_teardown_done = false;
286 	free_threads();
287 }
288 
289 static uint32_t
290 bdev_io_tailq_cnt(bdev_io_tailq_t *tailq)
291 {
292 	struct spdk_bdev_io *io;
293 	uint32_t cnt = 0;
294 
295 	TAILQ_FOREACH(io, tailq, internal.link) {
296 		cnt++;
297 	}
298 
299 	return cnt;
300 }
301 
302 static void
303 basic(void)
304 {
305 	g_init_complete_called = false;
306 	setup_test();
307 	CU_ASSERT(g_init_complete_called == true);
308 
309 	set_thread(0);
310 
311 	g_get_io_channel = false;
312 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
313 	CU_ASSERT(g_ut_threads[0].ch == NULL);
314 
315 	g_get_io_channel = true;
316 	g_create_ch = false;
317 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
318 	CU_ASSERT(g_ut_threads[0].ch == NULL);
319 
320 	g_get_io_channel = true;
321 	g_create_ch = true;
322 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
323 	CU_ASSERT(g_ut_threads[0].ch != NULL);
324 	spdk_put_io_channel(g_ut_threads[0].ch);
325 
326 	g_fini_start_called = false;
327 	teardown_test();
328 	CU_ASSERT(g_fini_start_called == true);
329 }
330 
331 static void
332 _bdev_removed(void *done)
333 {
334 	*(bool *)done = true;
335 }
336 
337 static void
338 _bdev_unregistered(void *done, int rc)
339 {
340 	CU_ASSERT(rc == 0);
341 	*(bool *)done = true;
342 }
343 
344 static void
345 unregister_and_close(void)
346 {
347 	bool done, remove_notify;
348 	struct spdk_bdev_desc *desc;
349 
350 	setup_test();
351 	set_thread(0);
352 
353 	/* setup_test() automatically opens the bdev,
354 	 * but this test needs to do that in a different
355 	 * way. */
356 	spdk_bdev_close(g_desc);
357 	poll_threads();
358 
359 	remove_notify = false;
360 	spdk_bdev_open(&g_bdev.bdev, true, _bdev_removed, &remove_notify, &desc);
361 	CU_ASSERT(remove_notify == false);
362 	CU_ASSERT(desc != NULL);
363 
364 	/* There is an open descriptor on the device. Unregister it,
365 	 * which can't proceed until the descriptor is closed. */
366 	done = false;
367 	spdk_bdev_unregister(&g_bdev.bdev, _bdev_unregistered, &done);
368 	/* No polling has occurred, so neither of these should execute */
369 	CU_ASSERT(remove_notify == false);
370 	CU_ASSERT(done == false);
371 
372 	/* Prior to the unregister completing, close the descriptor */
373 	spdk_bdev_close(desc);
374 
375 	/* Poll the threads to allow all events to be processed */
376 	poll_threads();
377 
378 	/* Remove notify should not have been called because the
379 	 * descriptor is already closed. */
380 	CU_ASSERT(remove_notify == false);
381 
382 	/* The unregister should have completed */
383 	CU_ASSERT(done == true);
384 
385 	spdk_bdev_finish(finish_cb, NULL);
386 	poll_threads();
387 	free_threads();
388 }
389 
390 static void
391 reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
392 {
393 	bool *done = cb_arg;
394 
395 	CU_ASSERT(success == true);
396 	*done = true;
397 	spdk_bdev_free_io(bdev_io);
398 }
399 
400 static void
401 put_channel_during_reset(void)
402 {
403 	struct spdk_io_channel *io_ch;
404 	bool done = false;
405 
406 	setup_test();
407 
408 	set_thread(0);
409 	io_ch = spdk_bdev_get_io_channel(g_desc);
410 	CU_ASSERT(io_ch != NULL);
411 
412 	/*
413 	 * Start a reset, but then put the I/O channel before
414 	 *  the deferred messages for the reset get a chance to
415 	 *  execute.
416 	 */
417 	spdk_bdev_reset(g_desc, io_ch, reset_done, &done);
418 	spdk_put_io_channel(io_ch);
419 	poll_threads();
420 	stub_complete_io(g_bdev.io_target, 0);
421 
422 	teardown_test();
423 }
424 
425 static void
426 aborted_reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
427 {
428 	enum spdk_bdev_io_status *status = cb_arg;
429 
430 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
431 	spdk_bdev_free_io(bdev_io);
432 }
433 
434 static void
435 aborted_reset(void)
436 {
437 	struct spdk_io_channel *io_ch[2];
438 	enum spdk_bdev_io_status status1 = SPDK_BDEV_IO_STATUS_PENDING,
439 				 status2 = SPDK_BDEV_IO_STATUS_PENDING;
440 
441 	setup_test();
442 
443 	set_thread(0);
444 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
445 	CU_ASSERT(io_ch[0] != NULL);
446 	spdk_bdev_reset(g_desc, io_ch[0], aborted_reset_done, &status1);
447 	poll_threads();
448 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL);
449 
450 	/*
451 	 * First reset has been submitted on ch0.  Now submit a second
452 	 *  reset on ch1 which will get queued since there is already a
453 	 *  reset in progress.
454 	 */
455 	set_thread(1);
456 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
457 	CU_ASSERT(io_ch[1] != NULL);
458 	spdk_bdev_reset(g_desc, io_ch[1], aborted_reset_done, &status2);
459 	poll_threads();
460 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL);
461 
462 	/*
463 	 * Now destroy ch1.  This will abort the queued reset.  Check that
464 	 *  the second reset was completed with failed status.  Also check
465 	 *  that bdev->internal.reset_in_progress != NULL, since the
466 	 *  original reset has not been completed yet.  This ensures that
467 	 *  the bdev code is correctly noticing that the failed reset is
468 	 *  *not* the one that had been submitted to the bdev module.
469 	 */
470 	set_thread(1);
471 	spdk_put_io_channel(io_ch[1]);
472 	poll_threads();
473 	CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_FAILED);
474 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL);
475 
476 	/*
477 	 * Now complete the first reset, verify that it completed with SUCCESS
478 	 *  status and that bdev->internal.reset_in_progress is also set back to NULL.
479 	 */
480 	set_thread(0);
481 	spdk_put_io_channel(io_ch[0]);
482 	stub_complete_io(g_bdev.io_target, 0);
483 	poll_threads();
484 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
485 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress == NULL);
486 
487 	teardown_test();
488 }
489 
490 static void
491 io_during_io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
492 {
493 	enum spdk_bdev_io_status *status = cb_arg;
494 
495 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
496 	spdk_bdev_free_io(bdev_io);
497 }
498 
499 static void
500 io_during_reset(void)
501 {
502 	struct spdk_io_channel *io_ch[2];
503 	struct spdk_bdev_channel *bdev_ch[2];
504 	enum spdk_bdev_io_status status0, status1, status_reset;
505 	int rc;
506 
507 	setup_test();
508 
509 	/*
510 	 * First test normal case - submit an I/O on each of two channels (with no resets)
511 	 *  and verify they complete successfully.
512 	 */
513 	set_thread(0);
514 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
515 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
516 	CU_ASSERT(bdev_ch[0]->flags == 0);
517 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
518 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
519 	CU_ASSERT(rc == 0);
520 
521 	set_thread(1);
522 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
523 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
524 	CU_ASSERT(bdev_ch[1]->flags == 0);
525 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
526 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
527 	CU_ASSERT(rc == 0);
528 
529 	poll_threads();
530 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
531 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
532 
533 	set_thread(0);
534 	stub_complete_io(g_bdev.io_target, 0);
535 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS);
536 
537 	set_thread(1);
538 	stub_complete_io(g_bdev.io_target, 0);
539 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
540 
541 	/*
542 	 * Now submit a reset, and leave it pending while we submit I/O on two different
543 	 *  channels.  These I/O should be failed by the bdev layer since the reset is in
544 	 *  progress.
545 	 */
546 	set_thread(0);
547 	status_reset = SPDK_BDEV_IO_STATUS_PENDING;
548 	rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &status_reset);
549 	CU_ASSERT(rc == 0);
550 
551 	CU_ASSERT(bdev_ch[0]->flags == 0);
552 	CU_ASSERT(bdev_ch[1]->flags == 0);
553 	poll_threads();
554 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_RESET_IN_PROGRESS);
555 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_RESET_IN_PROGRESS);
556 
557 	set_thread(0);
558 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
559 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
560 	CU_ASSERT(rc == 0);
561 
562 	set_thread(1);
563 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
564 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
565 	CU_ASSERT(rc == 0);
566 
567 	/*
568 	 * A reset is in progress so these read I/O should complete with failure.  Note that we
569 	 *  need to poll_threads() since I/O completed inline have their completion deferred.
570 	 */
571 	poll_threads();
572 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
573 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_FAILED);
574 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_FAILED);
575 
576 	/*
577 	 * Complete the reset
578 	 */
579 	set_thread(0);
580 	stub_complete_io(g_bdev.io_target, 0);
581 
582 	/*
583 	 * Only poll thread 0. We should not get a completion.
584 	 */
585 	poll_thread(0);
586 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
587 
588 	/*
589 	 * Poll both thread 0 and 1 so the messages can propagate and we
590 	 * get a completion.
591 	 */
592 	poll_threads();
593 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_SUCCESS);
594 
595 	spdk_put_io_channel(io_ch[0]);
596 	set_thread(1);
597 	spdk_put_io_channel(io_ch[1]);
598 	poll_threads();
599 
600 	teardown_test();
601 }
602 
603 static void
604 basic_qos(void)
605 {
606 	struct spdk_io_channel *io_ch[2];
607 	struct spdk_bdev_channel *bdev_ch[2];
608 	struct spdk_bdev *bdev;
609 	enum spdk_bdev_io_status status;
610 	int rc;
611 
612 	setup_test();
613 
614 	/* Enable QoS */
615 	bdev = &g_bdev.bdev;
616 	bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
617 	SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL);
618 	TAILQ_INIT(&bdev->internal.qos->queued);
619 	/*
620 	 * Enable read/write IOPS, read only byte per second and
621 	 * read/write byte per second rate limits.
622 	 * In this case, all rate limits will take equal effect.
623 	 */
624 	/* 2000 read/write I/O per second, or 2 per millisecond */
625 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 2000;
626 	/* 8K read/write byte per millisecond with 4K block size */
627 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 8192000;
628 	/* 8K read only byte per millisecond with 4K block size */
629 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT].limit = 8192000;
630 
631 	g_get_io_channel = true;
632 
633 	set_thread(0);
634 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
635 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
636 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
637 
638 	set_thread(1);
639 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
640 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
641 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
642 
643 	/*
644 	 * Send an I/O on thread 0, which is where the QoS thread is running.
645 	 */
646 	set_thread(0);
647 	status = SPDK_BDEV_IO_STATUS_PENDING;
648 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status);
649 	CU_ASSERT(rc == 0);
650 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
651 	poll_threads();
652 	stub_complete_io(g_bdev.io_target, 0);
653 	poll_threads();
654 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS);
655 
656 	/* Send an I/O on thread 1. The QoS thread is not running here. */
657 	status = SPDK_BDEV_IO_STATUS_PENDING;
658 	set_thread(1);
659 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status);
660 	CU_ASSERT(rc == 0);
661 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
662 	poll_threads();
663 	/* Complete I/O on thread 1. This should not complete the I/O we submitted */
664 	stub_complete_io(g_bdev.io_target, 0);
665 	poll_threads();
666 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
667 	/* Now complete I/O on thread 0 */
668 	set_thread(0);
669 	poll_threads();
670 	stub_complete_io(g_bdev.io_target, 0);
671 	poll_threads();
672 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS);
673 
674 	/* Tear down the channels */
675 	set_thread(0);
676 	spdk_put_io_channel(io_ch[0]);
677 	set_thread(1);
678 	spdk_put_io_channel(io_ch[1]);
679 	poll_threads();
680 	set_thread(0);
681 
682 	/* Close the descriptor, which should stop the qos channel */
683 	spdk_bdev_close(g_desc);
684 	poll_threads();
685 	CU_ASSERT(bdev->internal.qos->ch == NULL);
686 
687 	spdk_bdev_open(bdev, true, NULL, NULL, &g_desc);
688 
689 	/* Create the channels in reverse order. */
690 	set_thread(1);
691 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
692 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
693 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
694 
695 	set_thread(0);
696 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
697 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
698 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
699 
700 	/* Confirm that the qos thread is now thread 1 */
701 	CU_ASSERT(bdev->internal.qos->ch == bdev_ch[1]);
702 
703 	/* Tear down the channels */
704 	set_thread(0);
705 	spdk_put_io_channel(io_ch[0]);
706 	set_thread(1);
707 	spdk_put_io_channel(io_ch[1]);
708 	poll_threads();
709 
710 	set_thread(0);
711 
712 	teardown_test();
713 }
714 
715 static void
716 io_during_qos_queue(void)
717 {
718 	struct spdk_io_channel *io_ch[2];
719 	struct spdk_bdev_channel *bdev_ch[2];
720 	struct spdk_bdev *bdev;
721 	enum spdk_bdev_io_status status0, status1, status2;
722 	int rc;
723 
724 	setup_test();
725 	MOCK_SET(spdk_get_ticks, 0);
726 
727 	/* Enable QoS */
728 	bdev = &g_bdev.bdev;
729 	bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
730 	SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL);
731 	TAILQ_INIT(&bdev->internal.qos->queued);
732 	/*
733 	 * Enable read/write IOPS, read only byte per sec, write only
734 	 * byte per sec and read/write byte per sec rate limits.
735 	 * In this case, both read only and write only byte per sec
736 	 * rate limit will take effect.
737 	 */
738 	/* 4000 read/write I/O per second, or 4 per millisecond */
739 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 4000;
740 	/* 8K byte per millisecond with 4K block size */
741 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 8192000;
742 	/* 4K byte per millisecond with 4K block size */
743 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT].limit = 4096000;
744 	/* 4K byte per millisecond with 4K block size */
745 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT].limit = 4096000;
746 
747 	g_get_io_channel = true;
748 
749 	/* Create channels */
750 	set_thread(0);
751 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
752 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
753 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
754 
755 	set_thread(1);
756 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
757 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
758 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
759 
760 	/* Send two read I/Os */
761 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
762 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
763 	CU_ASSERT(rc == 0);
764 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
765 	set_thread(0);
766 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
767 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
768 	CU_ASSERT(rc == 0);
769 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
770 	/* Send one write I/O */
771 	status2 = SPDK_BDEV_IO_STATUS_PENDING;
772 	rc = spdk_bdev_write_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status2);
773 	CU_ASSERT(rc == 0);
774 	CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_PENDING);
775 
776 	/* Complete any I/O that arrived at the disk */
777 	poll_threads();
778 	set_thread(1);
779 	stub_complete_io(g_bdev.io_target, 0);
780 	set_thread(0);
781 	stub_complete_io(g_bdev.io_target, 0);
782 	poll_threads();
783 
784 	/* Only one of the two read I/Os should complete. (logical XOR) */
785 	if (status0 == SPDK_BDEV_IO_STATUS_SUCCESS) {
786 		CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
787 	} else {
788 		CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
789 	}
790 	/* The write I/O should complete. */
791 	CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_SUCCESS);
792 
793 	/* Advance in time by a millisecond */
794 	spdk_delay_us(1000);
795 
796 	/* Complete more I/O */
797 	poll_threads();
798 	set_thread(1);
799 	stub_complete_io(g_bdev.io_target, 0);
800 	set_thread(0);
801 	stub_complete_io(g_bdev.io_target, 0);
802 	poll_threads();
803 
804 	/* Now the second read I/O should be done */
805 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS);
806 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
807 
808 	/* Tear down the channels */
809 	set_thread(1);
810 	spdk_put_io_channel(io_ch[1]);
811 	set_thread(0);
812 	spdk_put_io_channel(io_ch[0]);
813 	poll_threads();
814 
815 	teardown_test();
816 }
817 
818 static void
819 io_during_qos_reset(void)
820 {
821 	struct spdk_io_channel *io_ch[2];
822 	struct spdk_bdev_channel *bdev_ch[2];
823 	struct spdk_bdev *bdev;
824 	enum spdk_bdev_io_status status0, status1, reset_status;
825 	int rc;
826 
827 	setup_test();
828 	MOCK_SET(spdk_get_ticks, 0);
829 
830 	/* Enable QoS */
831 	bdev = &g_bdev.bdev;
832 	bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
833 	SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL);
834 	TAILQ_INIT(&bdev->internal.qos->queued);
835 	/*
836 	 * Enable read/write IOPS, write only byte per sec and
837 	 * read/write byte per second rate limits.
838 	 * In this case, read/write byte per second rate limit will
839 	 * take effect first.
840 	 */
841 	/* 2000 read/write I/O per second, or 2 per millisecond */
842 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 2000;
843 	/* 4K byte per millisecond with 4K block size */
844 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 4096000;
845 	/* 8K byte per millisecond with 4K block size */
846 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT].limit = 8192000;
847 
848 	g_get_io_channel = true;
849 
850 	/* Create channels */
851 	set_thread(0);
852 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
853 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
854 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
855 
856 	set_thread(1);
857 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
858 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
859 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
860 
861 	/* Send two I/O. One of these gets queued by QoS. The other is sitting at the disk. */
862 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
863 	rc = spdk_bdev_write_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
864 	CU_ASSERT(rc == 0);
865 	set_thread(0);
866 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
867 	rc = spdk_bdev_write_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
868 	CU_ASSERT(rc == 0);
869 
870 	poll_threads();
871 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
872 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
873 
874 	/* Reset the bdev. */
875 	reset_status = SPDK_BDEV_IO_STATUS_PENDING;
876 	rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &reset_status);
877 	CU_ASSERT(rc == 0);
878 
879 	/* Complete any I/O that arrived at the disk */
880 	poll_threads();
881 	set_thread(1);
882 	stub_complete_io(g_bdev.io_target, 0);
883 	set_thread(0);
884 	stub_complete_io(g_bdev.io_target, 0);
885 	poll_threads();
886 
887 	CU_ASSERT(reset_status == SPDK_BDEV_IO_STATUS_SUCCESS);
888 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_FAILED);
889 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_FAILED);
890 
891 	/* Tear down the channels */
892 	set_thread(1);
893 	spdk_put_io_channel(io_ch[1]);
894 	set_thread(0);
895 	spdk_put_io_channel(io_ch[0]);
896 	poll_threads();
897 
898 	teardown_test();
899 }
900 
901 static void
902 enomem_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
903 {
904 	enum spdk_bdev_io_status *status = cb_arg;
905 
906 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
907 	spdk_bdev_free_io(bdev_io);
908 }
909 
910 static void
911 enomem(void)
912 {
913 	struct spdk_io_channel *io_ch;
914 	struct spdk_bdev_channel *bdev_ch;
915 	struct spdk_bdev_shared_resource *shared_resource;
916 	struct ut_bdev_channel *ut_ch;
917 	const uint32_t IO_ARRAY_SIZE = 64;
918 	const uint32_t AVAIL = 20;
919 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE], status_reset;
920 	uint32_t nomem_cnt, i;
921 	struct spdk_bdev_io *first_io;
922 	int rc;
923 
924 	setup_test();
925 
926 	set_thread(0);
927 	io_ch = spdk_bdev_get_io_channel(g_desc);
928 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
929 	shared_resource = bdev_ch->shared_resource;
930 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
931 	ut_ch->avail_cnt = AVAIL;
932 
933 	/* First submit a number of IOs equal to what the channel can support. */
934 	for (i = 0; i < AVAIL; i++) {
935 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
936 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
937 		CU_ASSERT(rc == 0);
938 	}
939 	CU_ASSERT(TAILQ_EMPTY(&shared_resource->nomem_io));
940 
941 	/*
942 	 * Next, submit one additional I/O.  This one should fail with ENOMEM and then go onto
943 	 *  the enomem_io list.
944 	 */
945 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
946 	rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
947 	CU_ASSERT(rc == 0);
948 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&shared_resource->nomem_io));
949 	first_io = TAILQ_FIRST(&shared_resource->nomem_io);
950 
951 	/*
952 	 * Now submit a bunch more I/O.  These should all fail with ENOMEM and get queued behind
953 	 *  the first_io above.
954 	 */
955 	for (i = AVAIL + 1; i < IO_ARRAY_SIZE; i++) {
956 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
957 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
958 		CU_ASSERT(rc == 0);
959 	}
960 
961 	/* Assert that first_io is still at the head of the list. */
962 	CU_ASSERT(TAILQ_FIRST(&shared_resource->nomem_io) == first_io);
963 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == (IO_ARRAY_SIZE - AVAIL));
964 	nomem_cnt = bdev_io_tailq_cnt(&shared_resource->nomem_io);
965 	CU_ASSERT(shared_resource->nomem_threshold == (AVAIL - NOMEM_THRESHOLD_COUNT));
966 
967 	/*
968 	 * Complete 1 I/O only.  The key check here is bdev_io_tailq_cnt - this should not have
969 	 *  changed since completing just 1 I/O should not trigger retrying the queued nomem_io
970 	 *  list.
971 	 */
972 	stub_complete_io(g_bdev.io_target, 1);
973 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == nomem_cnt);
974 
975 	/*
976 	 * Complete enough I/O to hit the nomem_theshold.  This should trigger retrying nomem_io,
977 	 *  and we should see I/O get resubmitted to the test bdev module.
978 	 */
979 	stub_complete_io(g_bdev.io_target, NOMEM_THRESHOLD_COUNT - 1);
980 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) < nomem_cnt);
981 	nomem_cnt = bdev_io_tailq_cnt(&shared_resource->nomem_io);
982 
983 	/* Complete 1 I/O only.  This should not trigger retrying the queued nomem_io. */
984 	stub_complete_io(g_bdev.io_target, 1);
985 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == nomem_cnt);
986 
987 	/*
988 	 * Send a reset and confirm that all I/O are completed, including the ones that
989 	 *  were queued on the nomem_io list.
990 	 */
991 	status_reset = SPDK_BDEV_IO_STATUS_PENDING;
992 	rc = spdk_bdev_reset(g_desc, io_ch, enomem_done, &status_reset);
993 	poll_threads();
994 	CU_ASSERT(rc == 0);
995 	/* This will complete the reset. */
996 	stub_complete_io(g_bdev.io_target, 0);
997 
998 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == 0);
999 	CU_ASSERT(shared_resource->io_outstanding == 0);
1000 
1001 	spdk_put_io_channel(io_ch);
1002 	poll_threads();
1003 	teardown_test();
1004 }
1005 
1006 static void
1007 enomem_multi_bdev(void)
1008 {
1009 	struct spdk_io_channel *io_ch;
1010 	struct spdk_bdev_channel *bdev_ch;
1011 	struct spdk_bdev_shared_resource *shared_resource;
1012 	struct ut_bdev_channel *ut_ch;
1013 	const uint32_t IO_ARRAY_SIZE = 64;
1014 	const uint32_t AVAIL = 20;
1015 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE];
1016 	uint32_t i;
1017 	struct ut_bdev *second_bdev;
1018 	struct spdk_bdev_desc *second_desc = NULL;
1019 	struct spdk_bdev_channel *second_bdev_ch;
1020 	struct spdk_io_channel *second_ch;
1021 	int rc;
1022 
1023 	setup_test();
1024 
1025 	/* Register second bdev with the same io_target  */
1026 	second_bdev = calloc(1, sizeof(*second_bdev));
1027 	SPDK_CU_ASSERT_FATAL(second_bdev != NULL);
1028 	register_bdev(second_bdev, "ut_bdev2", g_bdev.io_target);
1029 	spdk_bdev_open(&second_bdev->bdev, true, NULL, NULL, &second_desc);
1030 	SPDK_CU_ASSERT_FATAL(second_desc != NULL);
1031 
1032 	set_thread(0);
1033 	io_ch = spdk_bdev_get_io_channel(g_desc);
1034 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
1035 	shared_resource = bdev_ch->shared_resource;
1036 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
1037 	ut_ch->avail_cnt = AVAIL;
1038 
1039 	second_ch = spdk_bdev_get_io_channel(second_desc);
1040 	second_bdev_ch = spdk_io_channel_get_ctx(second_ch);
1041 	SPDK_CU_ASSERT_FATAL(shared_resource == second_bdev_ch->shared_resource);
1042 
1043 	/* Saturate io_target through bdev A. */
1044 	for (i = 0; i < AVAIL; i++) {
1045 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
1046 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
1047 		CU_ASSERT(rc == 0);
1048 	}
1049 	CU_ASSERT(TAILQ_EMPTY(&shared_resource->nomem_io));
1050 
1051 	/*
1052 	 * Now submit I/O through the second bdev. This should fail with ENOMEM
1053 	 * and then go onto the nomem_io list.
1054 	 */
1055 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
1056 	rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
1057 	CU_ASSERT(rc == 0);
1058 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&shared_resource->nomem_io));
1059 
1060 	/* Complete first bdev's I/O. This should retry sending second bdev's nomem_io */
1061 	stub_complete_io(g_bdev.io_target, AVAIL);
1062 
1063 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&shared_resource->nomem_io));
1064 	CU_ASSERT(shared_resource->io_outstanding == 1);
1065 
1066 	/* Now complete our retried I/O  */
1067 	stub_complete_io(g_bdev.io_target, 1);
1068 	SPDK_CU_ASSERT_FATAL(shared_resource->io_outstanding == 0);
1069 
1070 	spdk_put_io_channel(io_ch);
1071 	spdk_put_io_channel(second_ch);
1072 	spdk_bdev_close(second_desc);
1073 	unregister_bdev(second_bdev);
1074 	poll_threads();
1075 	free(second_bdev);
1076 	teardown_test();
1077 }
1078 
1079 
1080 static void
1081 enomem_multi_io_target(void)
1082 {
1083 	struct spdk_io_channel *io_ch;
1084 	struct spdk_bdev_channel *bdev_ch;
1085 	struct ut_bdev_channel *ut_ch;
1086 	const uint32_t IO_ARRAY_SIZE = 64;
1087 	const uint32_t AVAIL = 20;
1088 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE];
1089 	uint32_t i;
1090 	int new_io_device;
1091 	struct ut_bdev *second_bdev;
1092 	struct spdk_bdev_desc *second_desc = NULL;
1093 	struct spdk_bdev_channel *second_bdev_ch;
1094 	struct spdk_io_channel *second_ch;
1095 	int rc;
1096 
1097 	setup_test();
1098 
1099 	/* Create new io_target and a second bdev using it */
1100 	spdk_io_device_register(&new_io_device, stub_create_ch, stub_destroy_ch,
1101 				sizeof(struct ut_bdev_channel), NULL);
1102 	second_bdev = calloc(1, sizeof(*second_bdev));
1103 	SPDK_CU_ASSERT_FATAL(second_bdev != NULL);
1104 	register_bdev(second_bdev, "ut_bdev2", &new_io_device);
1105 	spdk_bdev_open(&second_bdev->bdev, true, NULL, NULL, &second_desc);
1106 	SPDK_CU_ASSERT_FATAL(second_desc != NULL);
1107 
1108 	set_thread(0);
1109 	io_ch = spdk_bdev_get_io_channel(g_desc);
1110 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
1111 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
1112 	ut_ch->avail_cnt = AVAIL;
1113 
1114 	/* Different io_target should imply a different shared_resource */
1115 	second_ch = spdk_bdev_get_io_channel(second_desc);
1116 	second_bdev_ch = spdk_io_channel_get_ctx(second_ch);
1117 	SPDK_CU_ASSERT_FATAL(bdev_ch->shared_resource != second_bdev_ch->shared_resource);
1118 
1119 	/* Saturate io_target through bdev A. */
1120 	for (i = 0; i < AVAIL; i++) {
1121 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
1122 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
1123 		CU_ASSERT(rc == 0);
1124 	}
1125 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
1126 
1127 	/* Issue one more I/O to fill ENOMEM list. */
1128 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
1129 	rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
1130 	CU_ASSERT(rc == 0);
1131 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
1132 
1133 	/*
1134 	 * Now submit I/O through the second bdev. This should go through and complete
1135 	 * successfully because we're using a different io_device underneath.
1136 	 */
1137 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
1138 	rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
1139 	CU_ASSERT(rc == 0);
1140 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&second_bdev_ch->shared_resource->nomem_io));
1141 	stub_complete_io(second_bdev->io_target, 1);
1142 
1143 	/* Cleanup; Complete outstanding I/O. */
1144 	stub_complete_io(g_bdev.io_target, AVAIL);
1145 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
1146 	/* Complete the ENOMEM I/O */
1147 	stub_complete_io(g_bdev.io_target, 1);
1148 	CU_ASSERT(bdev_ch->shared_resource->io_outstanding == 0);
1149 
1150 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
1151 	CU_ASSERT(bdev_ch->shared_resource->io_outstanding == 0);
1152 	spdk_put_io_channel(io_ch);
1153 	spdk_put_io_channel(second_ch);
1154 	spdk_bdev_close(second_desc);
1155 	unregister_bdev(second_bdev);
1156 	spdk_io_device_unregister(&new_io_device, NULL);
1157 	poll_threads();
1158 	free(second_bdev);
1159 	teardown_test();
1160 }
1161 
1162 static void
1163 qos_dynamic_enable_done(void *cb_arg, int status)
1164 {
1165 	int *rc = cb_arg;
1166 	*rc = status;
1167 }
1168 
1169 static void
1170 qos_dynamic_enable(void)
1171 {
1172 	struct spdk_io_channel *io_ch[2];
1173 	struct spdk_bdev_channel *bdev_ch[2];
1174 	struct spdk_bdev *bdev;
1175 	enum spdk_bdev_io_status bdev_io_status[2];
1176 	uint64_t limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES] = {};
1177 	int status, second_status, rc, i;
1178 
1179 	setup_test();
1180 	MOCK_SET(spdk_get_ticks, 0);
1181 
1182 	for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
1183 		limits[i] = UINT64_MAX;
1184 	}
1185 
1186 	bdev = &g_bdev.bdev;
1187 
1188 	g_get_io_channel = true;
1189 
1190 	/* Create channels */
1191 	set_thread(0);
1192 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
1193 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
1194 	CU_ASSERT(bdev_ch[0]->flags == 0);
1195 
1196 	set_thread(1);
1197 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
1198 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
1199 	CU_ASSERT(bdev_ch[1]->flags == 0);
1200 
1201 	set_thread(0);
1202 
1203 	/*
1204 	 * Enable QoS: Read/Write IOPS, Read/Write byte,
1205 	 * Read only byte and Write only byte per second
1206 	 * rate limits.
1207 	 * More than 10 I/Os allowed per timeslice.
1208 	 */
1209 	status = -1;
1210 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000;
1211 	limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 100;
1212 	limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT] = 100;
1213 	limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT] = 10;
1214 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1215 	poll_threads();
1216 	CU_ASSERT(status == 0);
1217 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1218 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1219 
1220 	/*
1221 	 * Submit and complete 10 I/O to fill the QoS allotment for this timeslice.
1222 	 * Additional I/O will then be queued.
1223 	 */
1224 	set_thread(0);
1225 	for (i = 0; i < 10; i++) {
1226 		bdev_io_status[0] = SPDK_BDEV_IO_STATUS_PENDING;
1227 		rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &bdev_io_status[0]);
1228 		CU_ASSERT(rc == 0);
1229 		CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_PENDING);
1230 		poll_thread(0);
1231 		stub_complete_io(g_bdev.io_target, 0);
1232 		CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_SUCCESS);
1233 	}
1234 
1235 	/*
1236 	 * Send two more I/O.  These I/O will be queued since the current timeslice allotment has been
1237 	 * filled already.  We want to test that when QoS is disabled that these two I/O:
1238 	 *  1) are not aborted
1239 	 *  2) are sent back to their original thread for resubmission
1240 	 */
1241 	bdev_io_status[0] = SPDK_BDEV_IO_STATUS_PENDING;
1242 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &bdev_io_status[0]);
1243 	CU_ASSERT(rc == 0);
1244 	CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_PENDING);
1245 	set_thread(1);
1246 	bdev_io_status[1] = SPDK_BDEV_IO_STATUS_PENDING;
1247 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &bdev_io_status[1]);
1248 	CU_ASSERT(rc == 0);
1249 	CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_PENDING);
1250 	poll_threads();
1251 
1252 	/*
1253 	 * Disable QoS: Read/Write IOPS, Read/Write byte,
1254 	 * Read only byte rate limits
1255 	 */
1256 	status = -1;
1257 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0;
1258 	limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 0;
1259 	limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT] = 0;
1260 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1261 	poll_threads();
1262 	CU_ASSERT(status == 0);
1263 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1264 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1265 
1266 	/* Disable QoS: Write only Byte per second rate limit */
1267 	status = -1;
1268 	limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT] = 0;
1269 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1270 	poll_threads();
1271 	CU_ASSERT(status == 0);
1272 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0);
1273 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0);
1274 
1275 	/*
1276 	 * All I/O should have been resubmitted back on their original thread.  Complete
1277 	 *  all I/O on thread 0, and ensure that only the thread 0 I/O was completed.
1278 	 */
1279 	set_thread(0);
1280 	stub_complete_io(g_bdev.io_target, 0);
1281 	poll_threads();
1282 	CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_SUCCESS);
1283 	CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_PENDING);
1284 
1285 	/* Now complete all I/O on thread 1 and ensure the thread 1 I/O was completed. */
1286 	set_thread(1);
1287 	stub_complete_io(g_bdev.io_target, 0);
1288 	poll_threads();
1289 	CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_SUCCESS);
1290 
1291 	/* Disable QoS again */
1292 	status = -1;
1293 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0;
1294 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1295 	poll_threads();
1296 	CU_ASSERT(status == 0); /* This should succeed */
1297 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0);
1298 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0);
1299 
1300 	/* Enable QoS on thread 0 */
1301 	status = -1;
1302 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000;
1303 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1304 	poll_threads();
1305 	CU_ASSERT(status == 0);
1306 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1307 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1308 
1309 	/* Disable QoS on thread 1 */
1310 	set_thread(1);
1311 	status = -1;
1312 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0;
1313 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1314 	/* Don't poll yet. This should leave the channels with QoS enabled */
1315 	CU_ASSERT(status == -1);
1316 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1317 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1318 
1319 	/* Enable QoS. This should immediately fail because the previous disable QoS hasn't completed. */
1320 	second_status = 0;
1321 	limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 10;
1322 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &second_status);
1323 	poll_threads();
1324 	CU_ASSERT(status == 0); /* The disable should succeed */
1325 	CU_ASSERT(second_status < 0); /* The enable should fail */
1326 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0);
1327 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0);
1328 
1329 	/* Enable QoS on thread 1. This should succeed now that the disable has completed. */
1330 	status = -1;
1331 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000;
1332 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1333 	poll_threads();
1334 	CU_ASSERT(status == 0);
1335 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1336 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1337 
1338 	/* Tear down the channels */
1339 	set_thread(0);
1340 	spdk_put_io_channel(io_ch[0]);
1341 	set_thread(1);
1342 	spdk_put_io_channel(io_ch[1]);
1343 	poll_threads();
1344 
1345 	set_thread(0);
1346 	teardown_test();
1347 }
1348 
1349 static void
1350 histogram_status_cb(void *cb_arg, int status)
1351 {
1352 	g_status = status;
1353 }
1354 
1355 static void
1356 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
1357 {
1358 	g_status = status;
1359 	g_histogram = histogram;
1360 }
1361 
1362 static void
1363 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
1364 		   uint64_t total, uint64_t so_far)
1365 {
1366 	g_count += count;
1367 }
1368 
1369 static void
1370 bdev_histograms_mt(void)
1371 {
1372 	struct spdk_io_channel *ch[2];
1373 	struct spdk_histogram_data *histogram;
1374 	uint8_t buf[4096];
1375 	int status = false;
1376 	int rc;
1377 
1378 
1379 	setup_test();
1380 
1381 	set_thread(0);
1382 	ch[0] = spdk_bdev_get_io_channel(g_desc);
1383 	CU_ASSERT(ch[0] != NULL);
1384 
1385 	set_thread(1);
1386 	ch[1] = spdk_bdev_get_io_channel(g_desc);
1387 	CU_ASSERT(ch[1] != NULL);
1388 
1389 
1390 	/* Enable histogram */
1391 	spdk_bdev_histogram_enable(&g_bdev.bdev, histogram_status_cb, NULL, true);
1392 	poll_threads();
1393 	CU_ASSERT(g_status == 0);
1394 	CU_ASSERT(g_bdev.bdev.internal.histogram_enabled == true);
1395 
1396 	/* Allocate histogram */
1397 	histogram = spdk_histogram_data_alloc();
1398 
1399 	/* Check if histogram is zeroed */
1400 	spdk_bdev_histogram_get(&g_bdev.bdev, histogram, histogram_data_cb, NULL);
1401 	poll_threads();
1402 	CU_ASSERT(g_status == 0);
1403 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
1404 
1405 	g_count = 0;
1406 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
1407 
1408 	CU_ASSERT(g_count == 0);
1409 
1410 	set_thread(0);
1411 	rc = spdk_bdev_write_blocks(g_desc, ch[0], &buf, 0, 1, io_during_io_done, &status);
1412 	CU_ASSERT(rc == 0);
1413 
1414 	spdk_delay_us(10);
1415 	stub_complete_io(g_bdev.io_target, 1);
1416 	poll_threads();
1417 	CU_ASSERT(status == true);
1418 
1419 
1420 	set_thread(1);
1421 	rc = spdk_bdev_read_blocks(g_desc, ch[1], &buf, 0, 1, io_during_io_done, &status);
1422 	CU_ASSERT(rc == 0);
1423 
1424 	spdk_delay_us(10);
1425 	stub_complete_io(g_bdev.io_target, 1);
1426 	poll_threads();
1427 	CU_ASSERT(status == true);
1428 
1429 	set_thread(0);
1430 
1431 	/* Check if histogram gathered data from all I/O channels */
1432 	spdk_bdev_histogram_get(&g_bdev.bdev, histogram, histogram_data_cb, NULL);
1433 	poll_threads();
1434 	CU_ASSERT(g_status == 0);
1435 	CU_ASSERT(g_bdev.bdev.internal.histogram_enabled == true);
1436 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
1437 
1438 	g_count = 0;
1439 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
1440 	CU_ASSERT(g_count == 2);
1441 
1442 	/* Disable histogram */
1443 	spdk_bdev_histogram_enable(&g_bdev.bdev, histogram_status_cb, NULL, false);
1444 	poll_threads();
1445 	CU_ASSERT(g_status == 0);
1446 	CU_ASSERT(g_bdev.bdev.internal.histogram_enabled == false);
1447 
1448 	spdk_histogram_data_free(g_histogram);
1449 }
1450 
1451 int
1452 main(int argc, char **argv)
1453 {
1454 	CU_pSuite	suite = NULL;
1455 	unsigned int	num_failures;
1456 
1457 	if (CU_initialize_registry() != CUE_SUCCESS) {
1458 		return CU_get_error();
1459 	}
1460 
1461 	suite = CU_add_suite("bdev", NULL, NULL);
1462 	if (suite == NULL) {
1463 		CU_cleanup_registry();
1464 		return CU_get_error();
1465 	}
1466 
1467 	if (
1468 		CU_add_test(suite, "basic", basic) == NULL ||
1469 		CU_add_test(suite, "unregister_and_close", unregister_and_close) == NULL ||
1470 		CU_add_test(suite, "basic_qos", basic_qos) == NULL ||
1471 		CU_add_test(suite, "put_channel_during_reset", put_channel_during_reset) == NULL ||
1472 		CU_add_test(suite, "aborted_reset", aborted_reset) == NULL ||
1473 		CU_add_test(suite, "io_during_reset", io_during_reset) == NULL ||
1474 		CU_add_test(suite, "io_during_qos_queue", io_during_qos_queue) == NULL ||
1475 		CU_add_test(suite, "io_during_qos_reset", io_during_qos_reset) == NULL ||
1476 		CU_add_test(suite, "enomem", enomem) == NULL ||
1477 		CU_add_test(suite, "enomem_multi_bdev", enomem_multi_bdev) == NULL ||
1478 		CU_add_test(suite, "enomem_multi_io_target", enomem_multi_io_target) == NULL ||
1479 		CU_add_test(suite, "qos_dynamic_enable", qos_dynamic_enable) == NULL ||
1480 		CU_add_test(suite, "bdev_histograms_mt", bdev_histograms_mt) == NULL
1481 	) {
1482 		CU_cleanup_registry();
1483 		return CU_get_error();
1484 	}
1485 
1486 	CU_basic_set_mode(CU_BRM_VERBOSE);
1487 	CU_basic_run_tests();
1488 	num_failures = CU_get_number_of_failures();
1489 	CU_cleanup_registry();
1490 	return num_failures;
1491 }
1492