xref: /spdk/test/unit/lib/bdev/mt/bdev.c/bdev_ut.c (revision 45a053c5777494f4e8ce4bc1191c9de3920377f7)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2017 Intel Corporation.
3  *   Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES.
4  *   All rights reserved.
5  */
6 
7 #include "spdk_internal/cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 #define BDEV_UT_NUM_THREADS 3
19 
20 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
21 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
22 DEFINE_STUB_V(spdk_scsi_nvme_translate, (const struct spdk_bdev_io *bdev_io, int *sc, int *sk,
23 		int *asc, int *ascq));
24 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
25 	    "test_domain");
26 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
27 	    (struct spdk_memory_domain *domain), 0);
28 DEFINE_STUB_V(spdk_accel_sequence_finish,
29 	      (struct spdk_accel_sequence *seq, spdk_accel_completion_cb cb_fn, void *cb_arg));
30 DEFINE_STUB_V(spdk_accel_sequence_abort, (struct spdk_accel_sequence *seq));
31 DEFINE_STUB_V(spdk_accel_sequence_reverse, (struct spdk_accel_sequence *seq));
32 DEFINE_STUB(spdk_accel_append_copy, int,
33 	    (struct spdk_accel_sequence **seq, struct spdk_io_channel *ch, struct iovec *dst_iovs,
34 	     uint32_t dst_iovcnt, struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
35 	     struct iovec *src_iovs, uint32_t src_iovcnt, struct spdk_memory_domain *src_domain,
36 	     void *src_domain_ctx, int flags, spdk_accel_step_cb cb_fn, void *cb_arg), 0);
37 DEFINE_STUB(spdk_accel_get_memory_domain, struct spdk_memory_domain *, (void), NULL);
38 
39 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
40 int
41 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
42 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
43 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
44 {
45 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
46 
47 	cpl_cb(cpl_cb_arg, 0);
48 	return 0;
49 }
50 
51 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
52 int
53 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
54 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
55 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
56 {
57 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
58 
59 	cpl_cb(cpl_cb_arg, 0);
60 	return 0;
61 }
62 
63 static int g_accel_io_device;
64 
65 struct spdk_io_channel *
66 spdk_accel_get_io_channel(void)
67 {
68 	return spdk_get_io_channel(&g_accel_io_device);
69 }
70 
71 struct ut_bdev {
72 	struct spdk_bdev	bdev;
73 	void			*io_target;
74 };
75 
76 struct ut_bdev_channel {
77 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
78 	uint32_t			outstanding_cnt;
79 	uint32_t			avail_cnt;
80 	struct spdk_thread		*thread;
81 	TAILQ_ENTRY(ut_bdev_channel)	link;
82 };
83 
84 int g_io_device;
85 struct ut_bdev g_bdev;
86 struct spdk_bdev_desc *g_desc;
87 bool g_teardown_done = false;
88 bool g_get_io_channel = true;
89 bool g_create_ch = true;
90 bool g_init_complete_called = false;
91 bool g_fini_start_called = true;
92 int g_status = 0;
93 int g_count = 0;
94 struct spdk_histogram_data *g_histogram = NULL;
95 TAILQ_HEAD(, ut_bdev_channel) g_ut_channels;
96 
97 static int
98 ut_accel_ch_create_cb(void *io_device, void *ctx)
99 {
100 	return 0;
101 }
102 
103 static void
104 ut_accel_ch_destroy_cb(void *io_device, void *ctx)
105 {
106 }
107 
108 static int
109 stub_create_ch(void *io_device, void *ctx_buf)
110 {
111 	struct ut_bdev_channel *ch = ctx_buf;
112 
113 	if (g_create_ch == false) {
114 		return -1;
115 	}
116 
117 	TAILQ_INIT(&ch->outstanding_io);
118 	ch->outstanding_cnt = 0;
119 	/*
120 	 * When avail gets to 0, the submit_request function will return ENOMEM.
121 	 *  Most tests to not want ENOMEM to occur, so by default set this to a
122 	 *  big value that won't get hit.  The ENOMEM tests can then override this
123 	 *  value to something much smaller to induce ENOMEM conditions.
124 	 */
125 	ch->avail_cnt = 2048;
126 	ch->thread = spdk_get_thread();
127 
128 	TAILQ_INSERT_TAIL(&g_ut_channels, ch, link);
129 
130 	return 0;
131 }
132 
133 static void
134 stub_destroy_ch(void *io_device, void *ctx_buf)
135 {
136 	struct ut_bdev_channel *ch = ctx_buf;
137 
138 	TAILQ_REMOVE(&g_ut_channels, ch, link);
139 }
140 
141 static struct spdk_io_channel *
142 stub_get_io_channel(void *ctx)
143 {
144 	struct ut_bdev *ut_bdev = ctx;
145 
146 	if (g_get_io_channel == true) {
147 		return spdk_get_io_channel(ut_bdev->io_target);
148 	} else {
149 		return NULL;
150 	}
151 }
152 
153 static int
154 stub_destruct(void *ctx)
155 {
156 	return 0;
157 }
158 
159 static void
160 stub_reset_channel(void *ctx)
161 {
162 	struct ut_bdev_channel *ch = ctx;
163 	struct spdk_bdev_io *io;
164 
165 	while (!TAILQ_EMPTY(&ch->outstanding_io)) {
166 		io = TAILQ_FIRST(&ch->outstanding_io);
167 		TAILQ_REMOVE(&ch->outstanding_io, io, module_link);
168 		ch->outstanding_cnt--;
169 		spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_ABORTED);
170 		ch->avail_cnt++;
171 	}
172 }
173 
174 static void
175 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
176 {
177 	struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch), *tmp_ch;
178 	struct spdk_bdev_io *io;
179 
180 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) {
181 		TAILQ_FOREACH(tmp_ch, &g_ut_channels, link) {
182 			if (spdk_get_thread() == tmp_ch->thread) {
183 				stub_reset_channel(tmp_ch);
184 			} else {
185 				spdk_thread_send_msg(tmp_ch->thread, stub_reset_channel, tmp_ch);
186 			}
187 		}
188 	} else if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
189 		TAILQ_FOREACH(io, &ch->outstanding_io, module_link) {
190 			if (io == bdev_io->u.abort.bio_to_abort) {
191 				TAILQ_REMOVE(&ch->outstanding_io, io, module_link);
192 				ch->outstanding_cnt--;
193 				spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_ABORTED);
194 				ch->avail_cnt++;
195 
196 				spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
197 				return;
198 			}
199 		}
200 
201 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
202 		return;
203 	}
204 
205 	if (ch->avail_cnt > 0) {
206 		TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
207 		ch->outstanding_cnt++;
208 		ch->avail_cnt--;
209 	} else {
210 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_NOMEM);
211 	}
212 }
213 
214 static uint32_t
215 stub_complete_io(void *io_target, uint32_t num_to_complete)
216 {
217 	struct spdk_io_channel *_ch = spdk_get_io_channel(io_target);
218 	struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
219 	struct spdk_bdev_io *io;
220 	bool complete_all = (num_to_complete == 0);
221 	uint32_t num_completed = 0;
222 
223 	while (complete_all || num_completed < num_to_complete) {
224 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
225 			break;
226 		}
227 		io = TAILQ_FIRST(&ch->outstanding_io);
228 		TAILQ_REMOVE(&ch->outstanding_io, io, module_link);
229 		ch->outstanding_cnt--;
230 		spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_SUCCESS);
231 		ch->avail_cnt++;
232 		num_completed++;
233 	}
234 	spdk_put_io_channel(_ch);
235 	return num_completed;
236 }
237 
238 static bool
239 stub_io_type_supported(void *ctx, enum spdk_bdev_io_type type)
240 {
241 	return true;
242 }
243 
244 static struct spdk_bdev_fn_table fn_table = {
245 	.get_io_channel =	stub_get_io_channel,
246 	.destruct =		stub_destruct,
247 	.submit_request =	stub_submit_request,
248 	.io_type_supported =	stub_io_type_supported,
249 };
250 
251 struct spdk_bdev_module bdev_ut_if;
252 
253 static int
254 module_init(void)
255 {
256 	spdk_bdev_module_init_done(&bdev_ut_if);
257 	return 0;
258 }
259 
260 static void
261 module_fini(void)
262 {
263 }
264 
265 static void
266 init_complete(void)
267 {
268 	g_init_complete_called = true;
269 }
270 
271 static void
272 fini_start(void)
273 {
274 	g_fini_start_called = true;
275 }
276 
277 struct spdk_bdev_module bdev_ut_if = {
278 	.name = "bdev_ut",
279 	.module_init = module_init,
280 	.module_fini = module_fini,
281 	.async_init = true,
282 	.init_complete = init_complete,
283 	.fini_start = fini_start,
284 };
285 
286 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
287 
288 static void
289 register_bdev(struct ut_bdev *ut_bdev, char *name, void *io_target)
290 {
291 	memset(ut_bdev, 0, sizeof(*ut_bdev));
292 
293 	ut_bdev->io_target = io_target;
294 	ut_bdev->bdev.ctxt = ut_bdev;
295 	ut_bdev->bdev.name = name;
296 	ut_bdev->bdev.fn_table = &fn_table;
297 	ut_bdev->bdev.module = &bdev_ut_if;
298 	ut_bdev->bdev.blocklen = 4096;
299 	ut_bdev->bdev.blockcnt = 1024;
300 
301 	spdk_bdev_register(&ut_bdev->bdev);
302 }
303 
304 static void
305 unregister_bdev(struct ut_bdev *ut_bdev)
306 {
307 	/* Handle any deferred messages. */
308 	poll_threads();
309 	spdk_bdev_unregister(&ut_bdev->bdev, NULL, NULL);
310 	/* Handle the async bdev unregister. */
311 	poll_threads();
312 }
313 
314 static void
315 bdev_init_cb(void *done, int rc)
316 {
317 	CU_ASSERT(rc == 0);
318 	*(bool *)done = true;
319 }
320 
321 static void
322 _bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev,
323 	       void *event_ctx)
324 {
325 	switch (type) {
326 	case SPDK_BDEV_EVENT_REMOVE:
327 		if (event_ctx != NULL) {
328 			*(bool *)event_ctx = true;
329 		}
330 		break;
331 	case SPDK_BDEV_EVENT_RESIZE:
332 		if (event_ctx != NULL) {
333 			*(int *)event_ctx += 1;
334 		}
335 		break;
336 	default:
337 		CU_ASSERT(false);
338 		break;
339 	}
340 }
341 
342 static void
343 setup_test(void)
344 {
345 	bool done = false;
346 	int rc;
347 
348 	TAILQ_INIT(&g_ut_channels);
349 
350 	allocate_cores(BDEV_UT_NUM_THREADS);
351 	allocate_threads(BDEV_UT_NUM_THREADS);
352 	set_thread(0);
353 
354 	rc = spdk_iobuf_initialize();
355 	CU_ASSERT(rc == 0);
356 	spdk_bdev_initialize(bdev_init_cb, &done);
357 	spdk_io_device_register(&g_io_device, stub_create_ch, stub_destroy_ch,
358 				sizeof(struct ut_bdev_channel), NULL);
359 	spdk_io_device_register(&g_accel_io_device, ut_accel_ch_create_cb,
360 				ut_accel_ch_destroy_cb, 0, NULL);
361 	register_bdev(&g_bdev, "ut_bdev", &g_io_device);
362 	spdk_bdev_open_ext("ut_bdev", true, _bdev_event_cb, NULL, &g_desc);
363 }
364 
365 static void
366 finish_cb(void *cb_arg)
367 {
368 	g_teardown_done = true;
369 }
370 
371 static void
372 teardown_test(void)
373 {
374 	set_thread(0);
375 	g_teardown_done = false;
376 	spdk_bdev_close(g_desc);
377 	g_desc = NULL;
378 	unregister_bdev(&g_bdev);
379 	spdk_io_device_unregister(&g_io_device, NULL);
380 	spdk_bdev_finish(finish_cb, NULL);
381 	spdk_io_device_unregister(&g_accel_io_device, NULL);
382 	spdk_iobuf_finish(finish_cb, NULL);
383 	poll_threads();
384 	memset(&g_bdev, 0, sizeof(g_bdev));
385 	CU_ASSERT(g_teardown_done == true);
386 	g_teardown_done = false;
387 	free_threads();
388 	free_cores();
389 	CU_ASSERT(TAILQ_EMPTY(&g_ut_channels))
390 }
391 
392 static uint32_t
393 bdev_io_tailq_cnt(bdev_io_tailq_t *tailq)
394 {
395 	struct spdk_bdev_io *io;
396 	uint32_t cnt = 0;
397 
398 	TAILQ_FOREACH(io, tailq, internal.link) {
399 		cnt++;
400 	}
401 
402 	return cnt;
403 }
404 
405 static void
406 basic(void)
407 {
408 	g_init_complete_called = false;
409 	setup_test();
410 	CU_ASSERT(g_init_complete_called == true);
411 
412 	set_thread(0);
413 
414 	g_get_io_channel = false;
415 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
416 	CU_ASSERT(g_ut_threads[0].ch == NULL);
417 
418 	g_get_io_channel = true;
419 	g_create_ch = false;
420 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
421 	CU_ASSERT(g_ut_threads[0].ch == NULL);
422 
423 	g_get_io_channel = true;
424 	g_create_ch = true;
425 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
426 	CU_ASSERT(g_ut_threads[0].ch != NULL);
427 	spdk_put_io_channel(g_ut_threads[0].ch);
428 
429 	g_fini_start_called = false;
430 	teardown_test();
431 	CU_ASSERT(g_fini_start_called == true);
432 }
433 
434 static void
435 _bdev_unregistered(void *done, int rc)
436 {
437 	CU_ASSERT(rc == 0);
438 	*(bool *)done = true;
439 }
440 
441 static void
442 unregister_and_close(void)
443 {
444 	bool done, remove_notify;
445 	struct spdk_bdev_desc *desc = NULL;
446 
447 	setup_test();
448 	set_thread(0);
449 
450 	/* setup_test() automatically opens the bdev,
451 	 * but this test needs to do that in a different
452 	 * way. */
453 	spdk_bdev_close(g_desc);
454 	poll_threads();
455 
456 	/* Try hotremoving a bdev with descriptors which don't provide
457 	 * any context to the notification callback */
458 	spdk_bdev_open_ext("ut_bdev", true, _bdev_event_cb, NULL, &desc);
459 	SPDK_CU_ASSERT_FATAL(desc != NULL);
460 
461 	/* There is an open descriptor on the device. Unregister it,
462 	 * which can't proceed until the descriptor is closed. */
463 	done = false;
464 	spdk_bdev_unregister(&g_bdev.bdev, _bdev_unregistered, &done);
465 
466 	/* Poll the threads to allow all events to be processed */
467 	poll_threads();
468 
469 	/* Make sure the bdev was not unregistered. We still have a
470 	 * descriptor open */
471 	CU_ASSERT(done == false);
472 
473 	spdk_bdev_close(desc);
474 	poll_threads();
475 	desc = NULL;
476 
477 	/* The unregister should have completed */
478 	CU_ASSERT(done == true);
479 
480 
481 	/* Register the bdev again */
482 	register_bdev(&g_bdev, "ut_bdev", &g_io_device);
483 
484 	remove_notify = false;
485 	spdk_bdev_open_ext("ut_bdev", true, _bdev_event_cb, &remove_notify, &desc);
486 	SPDK_CU_ASSERT_FATAL(desc != NULL);
487 	CU_ASSERT(remove_notify == false);
488 
489 	/* There is an open descriptor on the device. Unregister it,
490 	 * which can't proceed until the descriptor is closed. */
491 	done = false;
492 	spdk_bdev_unregister(&g_bdev.bdev, _bdev_unregistered, &done);
493 	/* No polling has occurred, so neither of these should execute */
494 	CU_ASSERT(remove_notify == false);
495 	CU_ASSERT(done == false);
496 
497 	/* Prior to the unregister completing, close the descriptor */
498 	spdk_bdev_close(desc);
499 
500 	/* Poll the threads to allow all events to be processed */
501 	poll_threads();
502 
503 	/* Remove notify should not have been called because the
504 	 * descriptor is already closed. */
505 	CU_ASSERT(remove_notify == false);
506 
507 	/* The unregister should have completed */
508 	CU_ASSERT(done == true);
509 
510 	/* Restore the original g_bdev so that we can use teardown_test(). */
511 	register_bdev(&g_bdev, "ut_bdev", &g_io_device);
512 	spdk_bdev_open_ext("ut_bdev", true, _bdev_event_cb, NULL, &g_desc);
513 	teardown_test();
514 }
515 
516 static void
517 unregister_and_close_different_threads(void)
518 {
519 	bool done;
520 	struct spdk_bdev_desc *desc = NULL;
521 
522 	setup_test();
523 	set_thread(0);
524 
525 	/* setup_test() automatically opens the bdev,
526 	 * but this test needs to do that in a different
527 	 * way. */
528 	spdk_bdev_close(g_desc);
529 	poll_threads();
530 
531 	set_thread(1);
532 	spdk_bdev_open_ext("ut_bdev", true, _bdev_event_cb, NULL, &desc);
533 	SPDK_CU_ASSERT_FATAL(desc != NULL);
534 	done = false;
535 
536 	set_thread(0);
537 	spdk_bdev_unregister(&g_bdev.bdev, _bdev_unregistered, &done);
538 
539 	/* Poll the threads to allow all events to be processed */
540 	poll_threads();
541 
542 	/* Make sure the bdev was not unregistered. We still have a
543 	 * descriptor open */
544 	CU_ASSERT(done == false);
545 
546 	/* Close the descriptor on thread 1.  Poll the thread and confirm the
547 	 * unregister did not complete, since it was unregistered on thread 0.
548 	 */
549 	set_thread(1);
550 	spdk_bdev_close(desc);
551 	poll_thread(1);
552 	CU_ASSERT(done == false);
553 
554 	/* Now poll thread 0 and confirm the unregister completed. */
555 	set_thread(0);
556 	poll_thread(0);
557 	CU_ASSERT(done == true);
558 
559 	/* Restore the original g_bdev so that we can use teardown_test(). */
560 	register_bdev(&g_bdev, "ut_bdev", &g_io_device);
561 	spdk_bdev_open_ext("ut_bdev", true, _bdev_event_cb, NULL, &g_desc);
562 	teardown_test();
563 }
564 
565 static void
566 reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
567 {
568 	bool *done = cb_arg;
569 
570 	CU_ASSERT(success == true);
571 	*done = true;
572 	spdk_bdev_free_io(bdev_io);
573 }
574 
575 static void
576 put_channel_during_reset(void)
577 {
578 	struct spdk_io_channel *io_ch;
579 	bool done = false;
580 
581 	setup_test();
582 
583 	set_thread(0);
584 	io_ch = spdk_bdev_get_io_channel(g_desc);
585 	CU_ASSERT(io_ch != NULL);
586 
587 	/*
588 	 * Start a reset, but then put the I/O channel before
589 	 *  the deferred messages for the reset get a chance to
590 	 *  execute.
591 	 */
592 	spdk_bdev_reset(g_desc, io_ch, reset_done, &done);
593 	spdk_put_io_channel(io_ch);
594 	poll_threads();
595 	stub_complete_io(g_bdev.io_target, 0);
596 
597 	teardown_test();
598 }
599 
600 static void
601 aborted_reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
602 {
603 	enum spdk_bdev_io_status *status = cb_arg;
604 
605 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
606 	spdk_bdev_free_io(bdev_io);
607 }
608 
609 static void io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
610 
611 static void
612 aborted_reset(void)
613 {
614 	struct spdk_io_channel *io_ch[2];
615 	enum spdk_bdev_io_status status1 = SPDK_BDEV_IO_STATUS_PENDING,
616 				 status2 = SPDK_BDEV_IO_STATUS_PENDING;
617 
618 	setup_test();
619 
620 	set_thread(0);
621 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
622 	CU_ASSERT(io_ch[0] != NULL);
623 	spdk_bdev_reset(g_desc, io_ch[0], aborted_reset_done, &status1);
624 	poll_threads();
625 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL);
626 
627 	/*
628 	 * First reset has been submitted on ch0.  Now submit a second
629 	 *  reset on ch1 which will get queued since there is already a
630 	 *  reset in progress.
631 	 */
632 	set_thread(1);
633 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
634 	CU_ASSERT(io_ch[1] != NULL);
635 	spdk_bdev_reset(g_desc, io_ch[1], aborted_reset_done, &status2);
636 	poll_threads();
637 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL);
638 
639 	/*
640 	 * Now destroy ch1.  This will abort the queued reset.  Check that
641 	 *  the second reset was completed with failed status.  Also check
642 	 *  that bdev->internal.reset_in_progress != NULL, since the
643 	 *  original reset has not been completed yet.  This ensures that
644 	 *  the bdev code is correctly noticing that the failed reset is
645 	 *  *not* the one that had been submitted to the bdev module.
646 	 */
647 	set_thread(1);
648 	spdk_put_io_channel(io_ch[1]);
649 	poll_threads();
650 	CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_FAILED);
651 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL);
652 
653 	/*
654 	 * Now complete the first reset, verify that it completed with SUCCESS
655 	 *  status and that bdev->internal.reset_in_progress is also set back to NULL.
656 	 */
657 	set_thread(0);
658 	spdk_put_io_channel(io_ch[0]);
659 	stub_complete_io(g_bdev.io_target, 0);
660 	poll_threads();
661 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
662 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress == NULL);
663 
664 	teardown_test();
665 }
666 
667 static void
668 aborted_reset_no_outstanding_io(void)
669 {
670 	struct spdk_io_channel *io_ch[2];
671 	struct spdk_bdev_channel *bdev_ch[2];
672 	struct spdk_bdev *bdev[2];
673 	enum spdk_bdev_io_status status1 = SPDK_BDEV_IO_STATUS_PENDING,
674 				 status2 = SPDK_BDEV_IO_STATUS_PENDING;
675 
676 	setup_test();
677 
678 	/*
679 	 * This time we test the reset without any outstanding IO
680 	 * present on the bdev channel, so both resets should finish
681 	 * immediately.
682 	 */
683 
684 	set_thread(0);
685 	/* Set reset_io_drain_timeout to allow bdev
686 	 * reset to stay pending until we call abort. */
687 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
688 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
689 	bdev[0] = bdev_ch[0]->bdev;
690 	bdev[0]->reset_io_drain_timeout = SPDK_BDEV_RESET_IO_DRAIN_RECOMMENDED_VALUE;
691 	CU_ASSERT(io_ch[0] != NULL);
692 	spdk_bdev_reset(g_desc, io_ch[0], aborted_reset_done, &status1);
693 	poll_threads();
694 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress == NULL);
695 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
696 	spdk_put_io_channel(io_ch[0]);
697 
698 	set_thread(1);
699 	/* Set reset_io_drain_timeout to allow bdev
700 	 * reset to stay pending until we call abort. */
701 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
702 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
703 	bdev[1] = bdev_ch[1]->bdev;
704 	bdev[1]->reset_io_drain_timeout = SPDK_BDEV_RESET_IO_DRAIN_RECOMMENDED_VALUE;
705 	CU_ASSERT(io_ch[1] != NULL);
706 	spdk_bdev_reset(g_desc, io_ch[1], aborted_reset_done, &status2);
707 	poll_threads();
708 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress == NULL);
709 	CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_SUCCESS);
710 	spdk_put_io_channel(io_ch[1]);
711 
712 	stub_complete_io(g_bdev.io_target, 0);
713 	poll_threads();
714 
715 	teardown_test();
716 }
717 
718 
719 static void
720 io_during_io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
721 {
722 	enum spdk_bdev_io_status *status = cb_arg;
723 
724 	*status = bdev_io->internal.status;
725 	spdk_bdev_free_io(bdev_io);
726 }
727 
728 static void
729 io_during_reset(void)
730 {
731 	struct spdk_io_channel *io_ch[2];
732 	struct spdk_bdev_channel *bdev_ch[2];
733 	enum spdk_bdev_io_status status0, status1, status_reset;
734 	int rc;
735 
736 	setup_test();
737 
738 	/*
739 	 * First test normal case - submit an I/O on each of two channels (with no resets)
740 	 *  and verify they complete successfully.
741 	 */
742 	set_thread(0);
743 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
744 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
745 	CU_ASSERT(bdev_ch[0]->flags == 0);
746 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
747 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
748 	CU_ASSERT(rc == 0);
749 
750 	set_thread(1);
751 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
752 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
753 	CU_ASSERT(bdev_ch[1]->flags == 0);
754 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
755 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
756 	CU_ASSERT(rc == 0);
757 
758 	poll_threads();
759 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
760 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
761 
762 	set_thread(0);
763 	stub_complete_io(g_bdev.io_target, 0);
764 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS);
765 
766 	set_thread(1);
767 	stub_complete_io(g_bdev.io_target, 0);
768 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
769 
770 	/*
771 	 * Now submit a reset, and leave it pending while we submit I/O on two different
772 	 *  channels.  These I/O should be failed by the bdev layer since the reset is in
773 	 *  progress.
774 	 */
775 	set_thread(0);
776 	status_reset = SPDK_BDEV_IO_STATUS_PENDING;
777 	rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &status_reset);
778 	CU_ASSERT(rc == 0);
779 
780 	CU_ASSERT(bdev_ch[0]->flags == 0);
781 	CU_ASSERT(bdev_ch[1]->flags == 0);
782 	poll_threads();
783 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_RESET_IN_PROGRESS);
784 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_RESET_IN_PROGRESS);
785 
786 	set_thread(0);
787 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
788 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
789 	CU_ASSERT(rc == 0);
790 
791 	set_thread(1);
792 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
793 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
794 	CU_ASSERT(rc == 0);
795 
796 	/*
797 	 * A reset is in progress so these read I/O should complete with aborted.  Note that we
798 	 *  need to poll_threads() since I/O completed inline have their completion deferred.
799 	 */
800 	poll_threads();
801 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
802 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_ABORTED);
803 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_ABORTED);
804 
805 	/*
806 	 * Complete the reset
807 	 */
808 	set_thread(0);
809 	stub_complete_io(g_bdev.io_target, 0);
810 
811 	/*
812 	 * Only poll thread 0. We should not get a completion.
813 	 */
814 	poll_thread(0);
815 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
816 
817 	/*
818 	 * Poll both thread 0 and 1 so the messages can propagate and we
819 	 * get a completion.
820 	 */
821 	poll_threads();
822 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_SUCCESS);
823 
824 	spdk_put_io_channel(io_ch[0]);
825 	set_thread(1);
826 	spdk_put_io_channel(io_ch[1]);
827 	poll_threads();
828 
829 	teardown_test();
830 }
831 
832 static uint32_t
833 count_queued_resets(void *io_target)
834 {
835 	struct spdk_io_channel *_ch = spdk_get_io_channel(io_target);
836 	struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
837 	struct spdk_bdev_io *io;
838 	uint32_t submitted_resets = 0;
839 
840 	TAILQ_FOREACH(io, &ch->outstanding_io, module_link) {
841 		if (io->type == SPDK_BDEV_IO_TYPE_RESET) {
842 			submitted_resets++;
843 		}
844 	}
845 
846 	spdk_put_io_channel(_ch);
847 
848 	return submitted_resets;
849 }
850 
851 static void
852 reset_completions(void)
853 {
854 	struct spdk_io_channel *io_ch;
855 	struct spdk_bdev_channel *bdev_ch;
856 	struct spdk_bdev *bdev;
857 	enum spdk_bdev_io_status status0, status_reset;
858 	int rc, iter;
859 
860 	setup_test();
861 
862 	/* This test covers four test cases:
863 	 * 1) reset_io_drain_timeout of a bdev is greater than 0
864 	 * 2) No outstandind IO are present on any bdev channel
865 	 * 3) Outstanding IO finish during bdev reset
866 	 * 4) Outstanding IO do not finish before reset is done waiting
867 	 *    for them.
868 	 *
869 	 * Above conditions mainly affect the timing of bdev reset completion
870 	 * and whether a reset should be skipped via spdk_bdev_io_complete()
871 	 * or sent down to the underlying bdev module via bdev_io_submit_reset(). */
872 
873 	/* Test preparation */
874 	set_thread(0);
875 	io_ch = spdk_bdev_get_io_channel(g_desc);
876 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
877 	CU_ASSERT(bdev_ch->flags == 0);
878 
879 
880 	/* Test case 1) reset_io_drain_timeout set to 0. Reset should be sent down immediately. */
881 	bdev = &g_bdev.bdev;
882 	bdev->reset_io_drain_timeout = 0;
883 
884 	status_reset = SPDK_BDEV_IO_STATUS_PENDING;
885 	rc = spdk_bdev_reset(g_desc, io_ch, io_during_io_done, &status_reset);
886 	CU_ASSERT(rc == 0);
887 	poll_threads();
888 	CU_ASSERT(count_queued_resets(g_bdev.io_target) == 1);
889 
890 	/* Call reset completion inside bdev module. */
891 	stub_complete_io(g_bdev.io_target, 0);
892 	poll_threads();
893 	CU_ASSERT(count_queued_resets(g_bdev.io_target) == 0);
894 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_SUCCESS);
895 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress == NULL);
896 
897 
898 	/* Test case 2) no outstanding IO are present. Reset should perform one iteration over
899 	* channels and then be skipped. */
900 	bdev->reset_io_drain_timeout = SPDK_BDEV_RESET_IO_DRAIN_RECOMMENDED_VALUE;
901 	status_reset = SPDK_BDEV_IO_STATUS_PENDING;
902 
903 	rc = spdk_bdev_reset(g_desc, io_ch, io_during_io_done, &status_reset);
904 	CU_ASSERT(rc == 0);
905 	poll_threads();
906 	/* Reset was never submitted to the bdev module. */
907 	CU_ASSERT(count_queued_resets(g_bdev.io_target) == 0);
908 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_SUCCESS);
909 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress == NULL);
910 
911 
912 	/* Test case 3) outstanding IO finish during bdev reset procedure. Reset should initiate
913 	* wait poller to check for IO completions every second, until reset_io_drain_timeout is
914 	* reached, but finish earlier than this threshold. */
915 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
916 	status_reset = SPDK_BDEV_IO_STATUS_PENDING;
917 	rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, io_during_io_done, &status0);
918 	CU_ASSERT(rc == 0);
919 
920 	rc = spdk_bdev_reset(g_desc, io_ch, io_during_io_done, &status_reset);
921 	CU_ASSERT(rc == 0);
922 	poll_threads();
923 	/* The reset just started and should not have been submitted yet. */
924 	CU_ASSERT(count_queued_resets(g_bdev.io_target) == 0);
925 
926 	poll_threads();
927 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
928 	/* Let the poller wait for about half the time then complete outstanding IO. */
929 	for (iter = 0; iter < 2; iter++) {
930 		/* Reset is still processing and not submitted at this point. */
931 		CU_ASSERT(count_queued_resets(g_bdev.io_target) == 0);
932 		spdk_delay_us(1000 * 1000);
933 		poll_threads();
934 		poll_threads();
935 	}
936 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
937 	stub_complete_io(g_bdev.io_target, 0);
938 	poll_threads();
939 	spdk_delay_us(BDEV_RESET_CHECK_OUTSTANDING_IO_PERIOD);
940 	poll_threads();
941 	poll_threads();
942 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_SUCCESS);
943 	/* Sending reset to the bdev module has been skipped. */
944 	CU_ASSERT(count_queued_resets(g_bdev.io_target) == 0);
945 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress == NULL);
946 
947 
948 	/* Test case 4) outstanding IO are still present after reset_io_drain_timeout
949 	* seconds have passed. */
950 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
951 	status_reset = SPDK_BDEV_IO_STATUS_PENDING;
952 	rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, io_during_io_done, &status0);
953 	CU_ASSERT(rc == 0);
954 
955 	rc = spdk_bdev_reset(g_desc, io_ch, io_during_io_done, &status_reset);
956 	CU_ASSERT(rc == 0);
957 	poll_threads();
958 	/* The reset just started and should not have been submitted yet. */
959 	CU_ASSERT(count_queued_resets(g_bdev.io_target) == 0);
960 
961 	poll_threads();
962 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
963 	/* Let the poller wait for reset_io_drain_timeout seconds. */
964 	for (iter = 0; iter < bdev->reset_io_drain_timeout; iter++) {
965 		CU_ASSERT(count_queued_resets(g_bdev.io_target) == 0);
966 		spdk_delay_us(BDEV_RESET_CHECK_OUTSTANDING_IO_PERIOD);
967 		poll_threads();
968 		poll_threads();
969 	}
970 
971 	/* After timing out, the reset should have been sent to the module. */
972 	CU_ASSERT(count_queued_resets(g_bdev.io_target) == 1);
973 	/* Complete reset submitted to the module and the read IO. */
974 	stub_complete_io(g_bdev.io_target, 0);
975 	poll_threads();
976 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_SUCCESS);
977 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress == NULL);
978 
979 
980 	/* Destroy the channel and end the test. */
981 	spdk_put_io_channel(io_ch);
982 	poll_threads();
983 
984 	teardown_test();
985 }
986 
987 
988 static void
989 basic_qos(void)
990 {
991 	struct spdk_io_channel *io_ch[2];
992 	struct spdk_bdev_channel *bdev_ch[2];
993 	struct spdk_bdev *bdev;
994 	enum spdk_bdev_io_status status, abort_status;
995 	int rc;
996 
997 	setup_test();
998 
999 	/* Enable QoS */
1000 	bdev = &g_bdev.bdev;
1001 	bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
1002 	SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL);
1003 	/*
1004 	 * Enable read/write IOPS, read only byte per second and
1005 	 * read/write byte per second rate limits.
1006 	 * In this case, all rate limits will take equal effect.
1007 	 */
1008 	/* 2000 read/write I/O per second, or 2 per millisecond */
1009 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 2000;
1010 	/* 8K read/write byte per millisecond with 4K block size */
1011 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 8192000;
1012 	/* 8K read only byte per millisecond with 4K block size */
1013 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT].limit = 8192000;
1014 
1015 	g_get_io_channel = true;
1016 
1017 	set_thread(0);
1018 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
1019 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
1020 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
1021 
1022 	set_thread(1);
1023 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
1024 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
1025 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
1026 
1027 	/*
1028 	 * Send an I/O on thread 0, which is where the QoS thread is running.
1029 	 */
1030 	set_thread(0);
1031 	status = SPDK_BDEV_IO_STATUS_PENDING;
1032 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status);
1033 	CU_ASSERT(rc == 0);
1034 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
1035 	poll_threads();
1036 	stub_complete_io(g_bdev.io_target, 0);
1037 	poll_threads();
1038 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS);
1039 
1040 	/* Send an I/O on thread 1. The QoS thread is not running here. */
1041 	status = SPDK_BDEV_IO_STATUS_PENDING;
1042 	set_thread(1);
1043 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status);
1044 	CU_ASSERT(rc == 0);
1045 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
1046 	poll_threads();
1047 	/* Complete I/O on thread 0. This should not complete the I/O we submitted. */
1048 	set_thread(0);
1049 	stub_complete_io(g_bdev.io_target, 0);
1050 	poll_threads();
1051 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
1052 	/* Now complete I/O on original thread 1. */
1053 	set_thread(1);
1054 	poll_threads();
1055 	stub_complete_io(g_bdev.io_target, 0);
1056 	poll_threads();
1057 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS);
1058 
1059 	/* Reset rate limit for the next test cases. */
1060 	spdk_delay_us(SPDK_BDEV_QOS_TIMESLICE_IN_USEC);
1061 	poll_threads();
1062 
1063 	/*
1064 	 * Test abort request when QoS is enabled.
1065 	 */
1066 
1067 	/* Send an I/O on thread 0, which is where the QoS thread is running. */
1068 	set_thread(0);
1069 	status = SPDK_BDEV_IO_STATUS_PENDING;
1070 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status);
1071 	CU_ASSERT(rc == 0);
1072 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
1073 	/* Send an abort to the I/O on the same thread. */
1074 	abort_status = SPDK_BDEV_IO_STATUS_PENDING;
1075 	rc = spdk_bdev_abort(g_desc, io_ch[0], &status, io_during_io_done, &abort_status);
1076 	CU_ASSERT(rc == 0);
1077 	CU_ASSERT(abort_status == SPDK_BDEV_IO_STATUS_PENDING);
1078 	poll_threads();
1079 	CU_ASSERT(abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1080 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_ABORTED);
1081 
1082 	/* Send an I/O on thread 1. The QoS thread is not running here. */
1083 	status = SPDK_BDEV_IO_STATUS_PENDING;
1084 	set_thread(1);
1085 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status);
1086 	CU_ASSERT(rc == 0);
1087 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
1088 	poll_threads();
1089 	/* Send an abort to the I/O on the same thread. */
1090 	abort_status = SPDK_BDEV_IO_STATUS_PENDING;
1091 	rc = spdk_bdev_abort(g_desc, io_ch[1], &status, io_during_io_done, &abort_status);
1092 	CU_ASSERT(rc == 0);
1093 	CU_ASSERT(abort_status == SPDK_BDEV_IO_STATUS_PENDING);
1094 	poll_threads();
1095 	/* Complete the I/O with failure and the abort with success on thread 1. */
1096 	CU_ASSERT(abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1097 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_ABORTED);
1098 
1099 	set_thread(0);
1100 
1101 	/*
1102 	 * Close the descriptor only, which should stop the qos channel as
1103 	 * the last descriptor removed.
1104 	 */
1105 	spdk_bdev_close(g_desc);
1106 	poll_threads();
1107 	CU_ASSERT(bdev->internal.qos->ch == NULL);
1108 
1109 	/*
1110 	 * Open the bdev again which shall setup the qos channel as the
1111 	 * channels are valid.
1112 	 */
1113 	spdk_bdev_open_ext("ut_bdev", true, _bdev_event_cb, NULL, &g_desc);
1114 	poll_threads();
1115 	CU_ASSERT(bdev->internal.qos->ch != NULL);
1116 
1117 	/* Tear down the channels */
1118 	set_thread(0);
1119 	spdk_put_io_channel(io_ch[0]);
1120 	set_thread(1);
1121 	spdk_put_io_channel(io_ch[1]);
1122 	poll_threads();
1123 	set_thread(0);
1124 
1125 	/* Close the descriptor, which should stop the qos channel */
1126 	spdk_bdev_close(g_desc);
1127 	poll_threads();
1128 	CU_ASSERT(bdev->internal.qos->ch == NULL);
1129 
1130 	/* Open the bdev again, no qos channel setup without valid channels. */
1131 	spdk_bdev_open_ext("ut_bdev", true, _bdev_event_cb, NULL, &g_desc);
1132 	poll_threads();
1133 	CU_ASSERT(bdev->internal.qos->ch == NULL);
1134 
1135 	/* Create the channels in reverse order. */
1136 	set_thread(1);
1137 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
1138 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
1139 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
1140 
1141 	set_thread(0);
1142 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
1143 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
1144 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
1145 
1146 	/* Confirm that the qos thread is now thread 1 */
1147 	CU_ASSERT(bdev->internal.qos->ch == bdev_ch[1]);
1148 
1149 	/* Tear down the channels */
1150 	set_thread(0);
1151 	spdk_put_io_channel(io_ch[0]);
1152 	set_thread(1);
1153 	spdk_put_io_channel(io_ch[1]);
1154 	poll_threads();
1155 
1156 	set_thread(0);
1157 
1158 	teardown_test();
1159 }
1160 
1161 static void
1162 io_during_qos_queue(void)
1163 {
1164 	struct spdk_io_channel *io_ch[2];
1165 	struct spdk_bdev_channel *bdev_ch[2];
1166 	struct spdk_bdev *bdev;
1167 	enum spdk_bdev_io_status status0, status1, status2;
1168 	int rc;
1169 
1170 	setup_test();
1171 	MOCK_SET(spdk_get_ticks, 0);
1172 
1173 	/* Enable QoS */
1174 	bdev = &g_bdev.bdev;
1175 	bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
1176 	SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL);
1177 
1178 	/*
1179 	 * Enable read/write IOPS, read only byte per sec, write only
1180 	 * byte per sec and read/write byte per sec rate limits.
1181 	 * In this case, both read only and write only byte per sec
1182 	 * rate limit will take effect.
1183 	 */
1184 	/* 4000 read/write I/O per second, or 4 per millisecond */
1185 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 4000;
1186 	/* 8K byte per millisecond with 4K block size */
1187 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 8192000;
1188 	/* 4K byte per millisecond with 4K block size */
1189 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT].limit = 4096000;
1190 	/* 4K byte per millisecond with 4K block size */
1191 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT].limit = 4096000;
1192 
1193 	g_get_io_channel = true;
1194 
1195 	/* Create channels */
1196 	set_thread(0);
1197 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
1198 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
1199 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
1200 
1201 	set_thread(1);
1202 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
1203 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
1204 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
1205 
1206 	/* Send two read I/Os */
1207 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
1208 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
1209 	CU_ASSERT(rc == 0);
1210 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
1211 	set_thread(0);
1212 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
1213 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
1214 	CU_ASSERT(rc == 0);
1215 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
1216 	/* Send one write I/O */
1217 	status2 = SPDK_BDEV_IO_STATUS_PENDING;
1218 	rc = spdk_bdev_write_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status2);
1219 	CU_ASSERT(rc == 0);
1220 	CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_PENDING);
1221 
1222 	/* Complete any I/O that arrived at the disk */
1223 	poll_threads();
1224 	set_thread(1);
1225 	stub_complete_io(g_bdev.io_target, 0);
1226 	set_thread(0);
1227 	stub_complete_io(g_bdev.io_target, 0);
1228 	poll_threads();
1229 
1230 	/* Only one of the two read I/Os should complete. (logical XOR) */
1231 	if (status0 == SPDK_BDEV_IO_STATUS_SUCCESS) {
1232 		CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
1233 	} else {
1234 		CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
1235 	}
1236 	/* The write I/O should complete. */
1237 	CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_SUCCESS);
1238 
1239 	/* Advance in time by a millisecond */
1240 	spdk_delay_us(1000);
1241 
1242 	/* Complete more I/O */
1243 	poll_threads();
1244 	set_thread(1);
1245 	stub_complete_io(g_bdev.io_target, 0);
1246 	set_thread(0);
1247 	stub_complete_io(g_bdev.io_target, 0);
1248 	poll_threads();
1249 
1250 	/* Now the second read I/O should be done */
1251 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS);
1252 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
1253 
1254 	/* Tear down the channels */
1255 	set_thread(1);
1256 	spdk_put_io_channel(io_ch[1]);
1257 	set_thread(0);
1258 	spdk_put_io_channel(io_ch[0]);
1259 	poll_threads();
1260 
1261 	teardown_test();
1262 }
1263 
1264 static void
1265 io_during_qos_reset(void)
1266 {
1267 	struct spdk_io_channel *io_ch[2];
1268 	struct spdk_bdev_channel *bdev_ch[2];
1269 	struct spdk_bdev *bdev;
1270 	enum spdk_bdev_io_status status0, status1, reset_status;
1271 	int rc;
1272 
1273 	setup_test();
1274 	MOCK_SET(spdk_get_ticks, 0);
1275 
1276 	/* Enable QoS */
1277 	bdev = &g_bdev.bdev;
1278 	bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
1279 	SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL);
1280 
1281 	/*
1282 	 * Enable read/write IOPS, write only byte per sec and
1283 	 * read/write byte per second rate limits.
1284 	 * In this case, read/write byte per second rate limit will
1285 	 * take effect first.
1286 	 */
1287 	/* 2000 read/write I/O per second, or 2 per millisecond */
1288 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 2000;
1289 	/* 4K byte per millisecond with 4K block size */
1290 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 4096000;
1291 	/* 8K byte per millisecond with 4K block size */
1292 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT].limit = 8192000;
1293 
1294 	g_get_io_channel = true;
1295 
1296 	/* Create channels */
1297 	set_thread(0);
1298 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
1299 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
1300 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
1301 
1302 	set_thread(1);
1303 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
1304 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
1305 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
1306 
1307 	/* Send two I/O. One of these gets queued by QoS. The other is sitting at the disk. */
1308 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
1309 	rc = spdk_bdev_write_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
1310 	CU_ASSERT(rc == 0);
1311 	set_thread(0);
1312 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
1313 	rc = spdk_bdev_write_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
1314 	CU_ASSERT(rc == 0);
1315 
1316 	poll_threads();
1317 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
1318 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
1319 
1320 	/* Reset the bdev. */
1321 	reset_status = SPDK_BDEV_IO_STATUS_PENDING;
1322 	rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &reset_status);
1323 	CU_ASSERT(rc == 0);
1324 
1325 	/* Complete any I/O that arrived at the disk */
1326 	poll_threads();
1327 	set_thread(1);
1328 	stub_complete_io(g_bdev.io_target, 0);
1329 	set_thread(0);
1330 	stub_complete_io(g_bdev.io_target, 0);
1331 	poll_threads();
1332 
1333 	CU_ASSERT(reset_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1334 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_ABORTED);
1335 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_ABORTED);
1336 
1337 	/* Tear down the channels */
1338 	set_thread(1);
1339 	spdk_put_io_channel(io_ch[1]);
1340 	set_thread(0);
1341 	spdk_put_io_channel(io_ch[0]);
1342 	poll_threads();
1343 
1344 	teardown_test();
1345 }
1346 
1347 static void
1348 enomem_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1349 {
1350 	enum spdk_bdev_io_status *status = cb_arg;
1351 
1352 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
1353 	spdk_bdev_free_io(bdev_io);
1354 }
1355 
1356 static void
1357 enomem(void)
1358 {
1359 	struct spdk_io_channel *io_ch;
1360 	struct spdk_bdev_channel *bdev_ch;
1361 	struct spdk_bdev_shared_resource *shared_resource;
1362 	struct ut_bdev_channel *ut_ch;
1363 	const uint32_t IO_ARRAY_SIZE = 64;
1364 	const uint32_t AVAIL = 20;
1365 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE], status_reset;
1366 	uint32_t nomem_cnt, i;
1367 	struct spdk_bdev_io *first_io;
1368 	int rc;
1369 
1370 	setup_test();
1371 
1372 	set_thread(0);
1373 	io_ch = spdk_bdev_get_io_channel(g_desc);
1374 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
1375 	shared_resource = bdev_ch->shared_resource;
1376 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
1377 	ut_ch->avail_cnt = AVAIL;
1378 
1379 	/* First submit a number of IOs equal to what the channel can support. */
1380 	for (i = 0; i < AVAIL; i++) {
1381 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
1382 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
1383 		CU_ASSERT(rc == 0);
1384 	}
1385 	CU_ASSERT(TAILQ_EMPTY(&shared_resource->nomem_io));
1386 
1387 	/*
1388 	 * Next, submit one additional I/O.  This one should fail with ENOMEM and then go onto
1389 	 *  the enomem_io list.
1390 	 */
1391 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
1392 	rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
1393 	CU_ASSERT(rc == 0);
1394 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&shared_resource->nomem_io));
1395 	first_io = TAILQ_FIRST(&shared_resource->nomem_io);
1396 
1397 	/*
1398 	 * Now submit a bunch more I/O.  These should all fail with ENOMEM and get queued behind
1399 	 *  the first_io above.
1400 	 */
1401 	for (i = AVAIL + 1; i < IO_ARRAY_SIZE; i++) {
1402 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
1403 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
1404 		CU_ASSERT(rc == 0);
1405 	}
1406 
1407 	/* Assert that first_io is still at the head of the list. */
1408 	CU_ASSERT(TAILQ_FIRST(&shared_resource->nomem_io) == first_io);
1409 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == (IO_ARRAY_SIZE - AVAIL));
1410 	nomem_cnt = bdev_io_tailq_cnt(&shared_resource->nomem_io);
1411 	CU_ASSERT(shared_resource->nomem_threshold == (AVAIL - NOMEM_THRESHOLD_COUNT));
1412 
1413 	/*
1414 	 * Complete 1 I/O only.  The key check here is bdev_io_tailq_cnt - this should not have
1415 	 *  changed since completing just 1 I/O should not trigger retrying the queued nomem_io
1416 	 *  list.
1417 	 */
1418 	stub_complete_io(g_bdev.io_target, 1);
1419 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == nomem_cnt);
1420 
1421 	/*
1422 	 * Complete enough I/O to hit the nomem_threshold.  This should trigger retrying nomem_io,
1423 	 *  and we should see I/O get resubmitted to the test bdev module.
1424 	 */
1425 	stub_complete_io(g_bdev.io_target, NOMEM_THRESHOLD_COUNT - 1);
1426 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) < nomem_cnt);
1427 	nomem_cnt = bdev_io_tailq_cnt(&shared_resource->nomem_io);
1428 
1429 	/* Complete 1 I/O only.  This should not trigger retrying the queued nomem_io. */
1430 	stub_complete_io(g_bdev.io_target, 1);
1431 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == nomem_cnt);
1432 
1433 	/*
1434 	 * Send a reset and confirm that all I/O are completed, including the ones that
1435 	 *  were queued on the nomem_io list.
1436 	 */
1437 	status_reset = SPDK_BDEV_IO_STATUS_PENDING;
1438 	rc = spdk_bdev_reset(g_desc, io_ch, enomem_done, &status_reset);
1439 	poll_threads();
1440 	CU_ASSERT(rc == 0);
1441 	/* This will complete the reset. */
1442 	stub_complete_io(g_bdev.io_target, 0);
1443 
1444 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == 0);
1445 	CU_ASSERT(shared_resource->io_outstanding == 0);
1446 
1447 	spdk_put_io_channel(io_ch);
1448 	poll_threads();
1449 	teardown_test();
1450 }
1451 
1452 static void
1453 enomem_multi_bdev(void)
1454 {
1455 	struct spdk_io_channel *io_ch;
1456 	struct spdk_bdev_channel *bdev_ch;
1457 	struct spdk_bdev_shared_resource *shared_resource;
1458 	struct ut_bdev_channel *ut_ch;
1459 	const uint32_t IO_ARRAY_SIZE = 64;
1460 	const uint32_t AVAIL = 20;
1461 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE];
1462 	uint32_t i;
1463 	struct ut_bdev *second_bdev;
1464 	struct spdk_bdev_desc *second_desc = NULL;
1465 	struct spdk_bdev_channel *second_bdev_ch;
1466 	struct spdk_io_channel *second_ch;
1467 	int rc;
1468 
1469 	setup_test();
1470 
1471 	/* Register second bdev with the same io_target  */
1472 	second_bdev = calloc(1, sizeof(*second_bdev));
1473 	SPDK_CU_ASSERT_FATAL(second_bdev != NULL);
1474 	register_bdev(second_bdev, "ut_bdev2", g_bdev.io_target);
1475 	spdk_bdev_open_ext("ut_bdev2", true, _bdev_event_cb, NULL, &second_desc);
1476 	SPDK_CU_ASSERT_FATAL(second_desc != NULL);
1477 
1478 	set_thread(0);
1479 	io_ch = spdk_bdev_get_io_channel(g_desc);
1480 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
1481 	shared_resource = bdev_ch->shared_resource;
1482 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
1483 	ut_ch->avail_cnt = AVAIL;
1484 
1485 	second_ch = spdk_bdev_get_io_channel(second_desc);
1486 	second_bdev_ch = spdk_io_channel_get_ctx(second_ch);
1487 	SPDK_CU_ASSERT_FATAL(shared_resource == second_bdev_ch->shared_resource);
1488 
1489 	/* Saturate io_target through bdev A. */
1490 	for (i = 0; i < AVAIL; i++) {
1491 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
1492 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
1493 		CU_ASSERT(rc == 0);
1494 	}
1495 	CU_ASSERT(TAILQ_EMPTY(&shared_resource->nomem_io));
1496 
1497 	/*
1498 	 * Now submit I/O through the second bdev. This should fail with ENOMEM
1499 	 * and then go onto the nomem_io list.
1500 	 */
1501 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
1502 	rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
1503 	CU_ASSERT(rc == 0);
1504 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&shared_resource->nomem_io));
1505 
1506 	/* Complete first bdev's I/O. This should retry sending second bdev's nomem_io */
1507 	stub_complete_io(g_bdev.io_target, AVAIL);
1508 
1509 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&shared_resource->nomem_io));
1510 	CU_ASSERT(shared_resource->io_outstanding == 1);
1511 
1512 	/* Now complete our retried I/O  */
1513 	stub_complete_io(g_bdev.io_target, 1);
1514 	SPDK_CU_ASSERT_FATAL(shared_resource->io_outstanding == 0);
1515 
1516 	spdk_put_io_channel(io_ch);
1517 	spdk_put_io_channel(second_ch);
1518 	spdk_bdev_close(second_desc);
1519 	unregister_bdev(second_bdev);
1520 	poll_threads();
1521 	free(second_bdev);
1522 	teardown_test();
1523 }
1524 
1525 static void
1526 enomem_multi_bdev_unregister(void)
1527 {
1528 	struct spdk_io_channel *io_ch;
1529 	struct spdk_bdev_channel *bdev_ch;
1530 	struct spdk_bdev_shared_resource *shared_resource;
1531 	struct ut_bdev_channel *ut_ch;
1532 	const uint32_t IO_ARRAY_SIZE = 64;
1533 	const uint32_t AVAIL = 20;
1534 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE];
1535 	uint32_t i;
1536 	int rc;
1537 
1538 	setup_test();
1539 
1540 	set_thread(0);
1541 	io_ch = spdk_bdev_get_io_channel(g_desc);
1542 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
1543 	shared_resource = bdev_ch->shared_resource;
1544 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
1545 	ut_ch->avail_cnt = AVAIL;
1546 
1547 	/* Saturate io_target through the bdev. */
1548 	for (i = 0; i < AVAIL; i++) {
1549 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
1550 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
1551 		CU_ASSERT(rc == 0);
1552 	}
1553 	CU_ASSERT(TAILQ_EMPTY(&shared_resource->nomem_io));
1554 
1555 	/*
1556 	 * Now submit I/O through the bdev. This should fail with ENOMEM
1557 	 * and then go onto the nomem_io list.
1558 	 */
1559 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
1560 	rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
1561 	CU_ASSERT(rc == 0);
1562 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&shared_resource->nomem_io));
1563 
1564 	/* Unregister the bdev to abort the IOs from nomem_io queue. */
1565 	unregister_bdev(&g_bdev);
1566 	CU_ASSERT(status[AVAIL] == SPDK_BDEV_IO_STATUS_FAILED);
1567 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&shared_resource->nomem_io));
1568 	SPDK_CU_ASSERT_FATAL(shared_resource->io_outstanding == AVAIL);
1569 
1570 	/* Complete the bdev's I/O. */
1571 	stub_complete_io(g_bdev.io_target, AVAIL);
1572 	SPDK_CU_ASSERT_FATAL(shared_resource->io_outstanding == 0);
1573 
1574 	spdk_put_io_channel(io_ch);
1575 	poll_threads();
1576 	teardown_test();
1577 }
1578 
1579 static void
1580 enomem_multi_io_target(void)
1581 {
1582 	struct spdk_io_channel *io_ch;
1583 	struct spdk_bdev_channel *bdev_ch;
1584 	struct ut_bdev_channel *ut_ch;
1585 	const uint32_t IO_ARRAY_SIZE = 64;
1586 	const uint32_t AVAIL = 20;
1587 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE];
1588 	uint32_t i;
1589 	int new_io_device;
1590 	struct ut_bdev *second_bdev;
1591 	struct spdk_bdev_desc *second_desc = NULL;
1592 	struct spdk_bdev_channel *second_bdev_ch;
1593 	struct spdk_io_channel *second_ch;
1594 	int rc;
1595 
1596 	setup_test();
1597 
1598 	/* Create new io_target and a second bdev using it */
1599 	spdk_io_device_register(&new_io_device, stub_create_ch, stub_destroy_ch,
1600 				sizeof(struct ut_bdev_channel), NULL);
1601 	second_bdev = calloc(1, sizeof(*second_bdev));
1602 	SPDK_CU_ASSERT_FATAL(second_bdev != NULL);
1603 	register_bdev(second_bdev, "ut_bdev2", &new_io_device);
1604 	spdk_bdev_open_ext("ut_bdev2", true, _bdev_event_cb, NULL, &second_desc);
1605 	SPDK_CU_ASSERT_FATAL(second_desc != NULL);
1606 
1607 	set_thread(0);
1608 	io_ch = spdk_bdev_get_io_channel(g_desc);
1609 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
1610 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
1611 	ut_ch->avail_cnt = AVAIL;
1612 
1613 	/* Different io_target should imply a different shared_resource */
1614 	second_ch = spdk_bdev_get_io_channel(second_desc);
1615 	second_bdev_ch = spdk_io_channel_get_ctx(second_ch);
1616 	SPDK_CU_ASSERT_FATAL(bdev_ch->shared_resource != second_bdev_ch->shared_resource);
1617 
1618 	/* Saturate io_target through bdev A. */
1619 	for (i = 0; i < AVAIL; i++) {
1620 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
1621 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
1622 		CU_ASSERT(rc == 0);
1623 	}
1624 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
1625 
1626 	/* Issue one more I/O to fill ENOMEM list. */
1627 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
1628 	rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
1629 	CU_ASSERT(rc == 0);
1630 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
1631 
1632 	/*
1633 	 * Now submit I/O through the second bdev. This should go through and complete
1634 	 * successfully because we're using a different io_device underneath.
1635 	 */
1636 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
1637 	rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
1638 	CU_ASSERT(rc == 0);
1639 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&second_bdev_ch->shared_resource->nomem_io));
1640 	stub_complete_io(second_bdev->io_target, 1);
1641 
1642 	/* Cleanup; Complete outstanding I/O. */
1643 	stub_complete_io(g_bdev.io_target, AVAIL);
1644 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
1645 	/* Complete the ENOMEM I/O */
1646 	stub_complete_io(g_bdev.io_target, 1);
1647 	CU_ASSERT(bdev_ch->shared_resource->io_outstanding == 0);
1648 
1649 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
1650 	CU_ASSERT(bdev_ch->shared_resource->io_outstanding == 0);
1651 	spdk_put_io_channel(io_ch);
1652 	spdk_put_io_channel(second_ch);
1653 	spdk_bdev_close(second_desc);
1654 	unregister_bdev(second_bdev);
1655 	spdk_io_device_unregister(&new_io_device, NULL);
1656 	poll_threads();
1657 	free(second_bdev);
1658 	teardown_test();
1659 }
1660 
1661 static void
1662 qos_dynamic_enable_done(void *cb_arg, int status)
1663 {
1664 	int *rc = cb_arg;
1665 	*rc = status;
1666 }
1667 
1668 static void
1669 qos_dynamic_enable(void)
1670 {
1671 	struct spdk_io_channel *io_ch[2];
1672 	struct spdk_bdev_channel *bdev_ch[2];
1673 	struct spdk_bdev *bdev;
1674 	enum spdk_bdev_io_status bdev_io_status[2];
1675 	uint64_t limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES] = {};
1676 	int status, second_status, rc, i;
1677 
1678 	setup_test();
1679 	MOCK_SET(spdk_get_ticks, 0);
1680 
1681 	for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
1682 		limits[i] = UINT64_MAX;
1683 	}
1684 
1685 	bdev = &g_bdev.bdev;
1686 
1687 	g_get_io_channel = true;
1688 
1689 	/* Create channels */
1690 	set_thread(0);
1691 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
1692 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
1693 	CU_ASSERT(bdev_ch[0]->flags == 0);
1694 
1695 	set_thread(1);
1696 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
1697 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
1698 	CU_ASSERT(bdev_ch[1]->flags == 0);
1699 
1700 	set_thread(0);
1701 
1702 	/*
1703 	 * Enable QoS: Read/Write IOPS, Read/Write byte,
1704 	 * Read only byte and Write only byte per second
1705 	 * rate limits.
1706 	 * More than 10 I/Os allowed per timeslice.
1707 	 */
1708 	status = -1;
1709 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000;
1710 	limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 100;
1711 	limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT] = 100;
1712 	limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT] = 10;
1713 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1714 	poll_threads();
1715 	CU_ASSERT(status == 0);
1716 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1717 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1718 
1719 	/*
1720 	 * Submit and complete 10 I/O to fill the QoS allotment for this timeslice.
1721 	 * Additional I/O will then be queued.
1722 	 */
1723 	set_thread(0);
1724 	for (i = 0; i < 10; i++) {
1725 		bdev_io_status[0] = SPDK_BDEV_IO_STATUS_PENDING;
1726 		rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &bdev_io_status[0]);
1727 		CU_ASSERT(rc == 0);
1728 		CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_PENDING);
1729 		poll_thread(0);
1730 		stub_complete_io(g_bdev.io_target, 0);
1731 		CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_SUCCESS);
1732 	}
1733 
1734 	/*
1735 	 * Send two more I/O.  These I/O will be queued since the current timeslice allotment has been
1736 	 * filled already.  We want to test that when QoS is disabled that these two I/O:
1737 	 *  1) are not aborted
1738 	 *  2) are sent back to their original thread for resubmission
1739 	 */
1740 	bdev_io_status[0] = SPDK_BDEV_IO_STATUS_PENDING;
1741 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &bdev_io_status[0]);
1742 	CU_ASSERT(rc == 0);
1743 	CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_PENDING);
1744 	set_thread(1);
1745 	bdev_io_status[1] = SPDK_BDEV_IO_STATUS_PENDING;
1746 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &bdev_io_status[1]);
1747 	CU_ASSERT(rc == 0);
1748 	CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_PENDING);
1749 	poll_threads();
1750 
1751 	/*
1752 	 * Disable QoS: Read/Write IOPS, Read/Write byte,
1753 	 * Read only byte rate limits
1754 	 */
1755 	status = -1;
1756 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0;
1757 	limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 0;
1758 	limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT] = 0;
1759 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1760 	poll_threads();
1761 	CU_ASSERT(status == 0);
1762 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1763 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1764 
1765 	/* Disable QoS: Write only Byte per second rate limit */
1766 	status = -1;
1767 	limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT] = 0;
1768 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1769 	poll_threads();
1770 	CU_ASSERT(status == 0);
1771 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0);
1772 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0);
1773 
1774 	/*
1775 	 * All I/O should have been resubmitted back on their original thread.  Complete
1776 	 *  all I/O on thread 0, and ensure that only the thread 0 I/O was completed.
1777 	 */
1778 	set_thread(0);
1779 	stub_complete_io(g_bdev.io_target, 0);
1780 	poll_threads();
1781 	CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_SUCCESS);
1782 	CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_PENDING);
1783 
1784 	/* Now complete all I/O on thread 1 and ensure the thread 1 I/O was completed. */
1785 	set_thread(1);
1786 	stub_complete_io(g_bdev.io_target, 0);
1787 	poll_threads();
1788 	CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_SUCCESS);
1789 
1790 	/* Disable QoS again */
1791 	status = -1;
1792 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0;
1793 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1794 	poll_threads();
1795 	CU_ASSERT(status == 0); /* This should succeed */
1796 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0);
1797 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0);
1798 
1799 	/* Enable QoS on thread 0 */
1800 	status = -1;
1801 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000;
1802 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1803 	poll_threads();
1804 	CU_ASSERT(status == 0);
1805 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1806 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1807 
1808 	/* Disable QoS on thread 1 */
1809 	set_thread(1);
1810 	status = -1;
1811 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0;
1812 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1813 	/* Don't poll yet. This should leave the channels with QoS enabled */
1814 	CU_ASSERT(status == -1);
1815 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1816 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1817 
1818 	/* Enable QoS. This should immediately fail because the previous disable QoS hasn't completed. */
1819 	second_status = 0;
1820 	limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 10;
1821 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &second_status);
1822 	poll_threads();
1823 	CU_ASSERT(status == 0); /* The disable should succeed */
1824 	CU_ASSERT(second_status < 0); /* The enable should fail */
1825 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0);
1826 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0);
1827 
1828 	/* Enable QoS on thread 1. This should succeed now that the disable has completed. */
1829 	status = -1;
1830 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000;
1831 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1832 	poll_threads();
1833 	CU_ASSERT(status == 0);
1834 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1835 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1836 
1837 	/* Tear down the channels */
1838 	set_thread(0);
1839 	spdk_put_io_channel(io_ch[0]);
1840 	set_thread(1);
1841 	spdk_put_io_channel(io_ch[1]);
1842 	poll_threads();
1843 
1844 	set_thread(0);
1845 	teardown_test();
1846 }
1847 
1848 static void
1849 histogram_status_cb(void *cb_arg, int status)
1850 {
1851 	g_status = status;
1852 }
1853 
1854 static void
1855 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
1856 {
1857 	g_status = status;
1858 	g_histogram = histogram;
1859 }
1860 
1861 static void
1862 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
1863 		   uint64_t total, uint64_t so_far)
1864 {
1865 	g_count += count;
1866 }
1867 
1868 static void
1869 bdev_histograms_mt(void)
1870 {
1871 	struct spdk_io_channel *ch[2];
1872 	struct spdk_histogram_data *histogram;
1873 	uint8_t buf[4096];
1874 	int status = false;
1875 	int rc;
1876 
1877 
1878 	setup_test();
1879 
1880 	set_thread(0);
1881 	ch[0] = spdk_bdev_get_io_channel(g_desc);
1882 	CU_ASSERT(ch[0] != NULL);
1883 
1884 	set_thread(1);
1885 	ch[1] = spdk_bdev_get_io_channel(g_desc);
1886 	CU_ASSERT(ch[1] != NULL);
1887 
1888 
1889 	/* Enable histogram */
1890 	spdk_bdev_histogram_enable(&g_bdev.bdev, histogram_status_cb, NULL, true);
1891 	poll_threads();
1892 	CU_ASSERT(g_status == 0);
1893 	CU_ASSERT(g_bdev.bdev.internal.histogram_enabled == true);
1894 
1895 	/* Allocate histogram */
1896 	histogram = spdk_histogram_data_alloc();
1897 
1898 	/* Check if histogram is zeroed */
1899 	spdk_bdev_histogram_get(&g_bdev.bdev, histogram, histogram_data_cb, NULL);
1900 	poll_threads();
1901 	CU_ASSERT(g_status == 0);
1902 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
1903 
1904 	g_count = 0;
1905 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
1906 
1907 	CU_ASSERT(g_count == 0);
1908 
1909 	set_thread(0);
1910 	rc = spdk_bdev_write_blocks(g_desc, ch[0], &buf, 0, 1, io_during_io_done, &status);
1911 	CU_ASSERT(rc == 0);
1912 
1913 	spdk_delay_us(10);
1914 	stub_complete_io(g_bdev.io_target, 1);
1915 	poll_threads();
1916 	CU_ASSERT(status == true);
1917 
1918 
1919 	set_thread(1);
1920 	rc = spdk_bdev_read_blocks(g_desc, ch[1], &buf, 0, 1, io_during_io_done, &status);
1921 	CU_ASSERT(rc == 0);
1922 
1923 	spdk_delay_us(10);
1924 	stub_complete_io(g_bdev.io_target, 1);
1925 	poll_threads();
1926 	CU_ASSERT(status == true);
1927 
1928 	set_thread(0);
1929 
1930 	/* Check if histogram gathered data from all I/O channels */
1931 	spdk_bdev_histogram_get(&g_bdev.bdev, histogram, histogram_data_cb, NULL);
1932 	poll_threads();
1933 	CU_ASSERT(g_status == 0);
1934 	CU_ASSERT(g_bdev.bdev.internal.histogram_enabled == true);
1935 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
1936 
1937 	g_count = 0;
1938 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
1939 	CU_ASSERT(g_count == 2);
1940 
1941 	/* Disable histogram */
1942 	spdk_bdev_histogram_enable(&g_bdev.bdev, histogram_status_cb, NULL, false);
1943 	poll_threads();
1944 	CU_ASSERT(g_status == 0);
1945 	CU_ASSERT(g_bdev.bdev.internal.histogram_enabled == false);
1946 
1947 	spdk_histogram_data_free(histogram);
1948 
1949 	/* Tear down the channels */
1950 	set_thread(0);
1951 	spdk_put_io_channel(ch[0]);
1952 	set_thread(1);
1953 	spdk_put_io_channel(ch[1]);
1954 	poll_threads();
1955 	set_thread(0);
1956 	teardown_test();
1957 
1958 }
1959 
1960 struct timeout_io_cb_arg {
1961 	struct iovec iov;
1962 	uint8_t type;
1963 };
1964 
1965 static int
1966 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
1967 {
1968 	struct spdk_bdev_io *bdev_io;
1969 	int n = 0;
1970 
1971 	if (!ch) {
1972 		return -1;
1973 	}
1974 
1975 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
1976 		n++;
1977 	}
1978 
1979 	return n;
1980 }
1981 
1982 static void
1983 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
1984 {
1985 	struct timeout_io_cb_arg *ctx = cb_arg;
1986 
1987 	ctx->type = bdev_io->type;
1988 	ctx->iov.iov_base = bdev_io->iov.iov_base;
1989 	ctx->iov.iov_len = bdev_io->iov.iov_len;
1990 }
1991 
1992 static bool g_io_done;
1993 
1994 static void
1995 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1996 {
1997 	g_io_done = true;
1998 	spdk_bdev_free_io(bdev_io);
1999 }
2000 
2001 static void
2002 bdev_set_io_timeout_mt(void)
2003 {
2004 	struct spdk_io_channel *ch[3];
2005 	struct spdk_bdev_channel *bdev_ch[3];
2006 	struct timeout_io_cb_arg cb_arg;
2007 
2008 	setup_test();
2009 
2010 	g_bdev.bdev.optimal_io_boundary = 16;
2011 	g_bdev.bdev.split_on_optimal_io_boundary = true;
2012 
2013 	set_thread(0);
2014 	ch[0] = spdk_bdev_get_io_channel(g_desc);
2015 	CU_ASSERT(ch[0] != NULL);
2016 
2017 	set_thread(1);
2018 	ch[1] = spdk_bdev_get_io_channel(g_desc);
2019 	CU_ASSERT(ch[1] != NULL);
2020 
2021 	set_thread(2);
2022 	ch[2] = spdk_bdev_get_io_channel(g_desc);
2023 	CU_ASSERT(ch[2] != NULL);
2024 
2025 	/* Multi-thread mode
2026 	 * 1, Check the poller was registered successfully
2027 	 * 2, Check the timeout IO and ensure the IO was the submitted by user
2028 	 * 3, Check the link int the bdev_ch works right.
2029 	 * 4, Close desc and put io channel during the timeout poller is polling
2030 	 */
2031 
2032 	/* In desc thread set the timeout */
2033 	set_thread(0);
2034 	CU_ASSERT(spdk_bdev_set_timeout(g_desc, 5, bdev_channel_io_timeout_cb, &cb_arg) == 0);
2035 	CU_ASSERT(g_desc->io_timeout_poller != NULL);
2036 	CU_ASSERT(g_desc->cb_fn == bdev_channel_io_timeout_cb);
2037 	CU_ASSERT(g_desc->cb_arg == &cb_arg);
2038 
2039 	/* check the IO submitted list and timeout handler */
2040 	CU_ASSERT(spdk_bdev_read_blocks(g_desc, ch[0], (void *)0x2000, 0, 1, io_done, NULL) == 0);
2041 	bdev_ch[0] = spdk_io_channel_get_ctx(ch[0]);
2042 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch[0]) == 1);
2043 
2044 	set_thread(1);
2045 	CU_ASSERT(spdk_bdev_write_blocks(g_desc, ch[1], (void *)0x1000, 0, 1, io_done, NULL) == 0);
2046 	bdev_ch[1] = spdk_io_channel_get_ctx(ch[1]);
2047 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch[1]) == 1);
2048 
2049 	/* Now test that a single-vector command is split correctly.
2050 	 * Offset 14, length 8, payload 0xF000
2051 	 *  Child - Offset 14, length 2, payload 0xF000
2052 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2053 	 *
2054 	 * Set up the expected values before calling spdk_bdev_read_blocks
2055 	 */
2056 	set_thread(2);
2057 	CU_ASSERT(spdk_bdev_read_blocks(g_desc, ch[2], (void *)0xF000, 14, 8, io_done, NULL) == 0);
2058 	bdev_ch[2] = spdk_io_channel_get_ctx(ch[2]);
2059 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch[2]) == 3);
2060 
2061 	set_thread(0);
2062 	memset(&cb_arg, 0, sizeof(cb_arg));
2063 	spdk_delay_us(3 * spdk_get_ticks_hz());
2064 	poll_threads();
2065 	CU_ASSERT(cb_arg.type == 0);
2066 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
2067 	CU_ASSERT(cb_arg.iov.iov_len == 0);
2068 
2069 	/* Now the time reach the limit */
2070 	spdk_delay_us(3 * spdk_get_ticks_hz());
2071 	poll_thread(0);
2072 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_READ);
2073 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x2000);
2074 	CU_ASSERT(cb_arg.iov.iov_len == 1 * g_bdev.bdev.blocklen);
2075 	stub_complete_io(g_bdev.io_target, 1);
2076 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch[0]) == 0);
2077 
2078 	memset(&cb_arg, 0, sizeof(cb_arg));
2079 	set_thread(1);
2080 	poll_thread(1);
2081 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
2082 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
2083 	CU_ASSERT(cb_arg.iov.iov_len == 1 * g_bdev.bdev.blocklen);
2084 	stub_complete_io(g_bdev.io_target, 1);
2085 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch[1]) == 0);
2086 
2087 	memset(&cb_arg, 0, sizeof(cb_arg));
2088 	set_thread(2);
2089 	poll_thread(2);
2090 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_READ);
2091 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
2092 	CU_ASSERT(cb_arg.iov.iov_len == 8 * g_bdev.bdev.blocklen);
2093 	stub_complete_io(g_bdev.io_target, 1);
2094 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch[2]) == 2);
2095 	stub_complete_io(g_bdev.io_target, 1);
2096 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch[2]) == 0);
2097 
2098 	/* Run poll_timeout_done() it means complete the timeout poller */
2099 	set_thread(0);
2100 	poll_thread(0);
2101 	CU_ASSERT(g_desc->refs == 0);
2102 	CU_ASSERT(spdk_bdev_read_blocks(g_desc, ch[0], (void *)0x1000, 0, 1, io_done, NULL) == 0);
2103 	set_thread(1);
2104 	CU_ASSERT(spdk_bdev_write_blocks(g_desc, ch[1], (void *)0x2000, 0, 2, io_done, NULL) == 0);
2105 	set_thread(2);
2106 	CU_ASSERT(spdk_bdev_read_blocks(g_desc, ch[2], (void *)0x3000, 0, 3, io_done, NULL) == 0);
2107 
2108 	/* Trigger timeout poller to run again, desc->refs is incremented.
2109 	 * In thread 0 we destroy the io channel before timeout poller runs.
2110 	 * Timeout callback is not called on thread 0.
2111 	 */
2112 	spdk_delay_us(6 * spdk_get_ticks_hz());
2113 	memset(&cb_arg, 0, sizeof(cb_arg));
2114 	set_thread(0);
2115 	stub_complete_io(g_bdev.io_target, 1);
2116 	spdk_put_io_channel(ch[0]);
2117 	poll_thread(0);
2118 	CU_ASSERT(g_desc->refs == 1)
2119 	CU_ASSERT(cb_arg.type == 0);
2120 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
2121 	CU_ASSERT(cb_arg.iov.iov_len == 0);
2122 
2123 	/* In thread 1 timeout poller runs then we destroy the io channel
2124 	 * Timeout callback is called on thread 1.
2125 	 */
2126 	memset(&cb_arg, 0, sizeof(cb_arg));
2127 	set_thread(1);
2128 	poll_thread(1);
2129 	stub_complete_io(g_bdev.io_target, 1);
2130 	spdk_put_io_channel(ch[1]);
2131 	poll_thread(1);
2132 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
2133 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x2000);
2134 	CU_ASSERT(cb_arg.iov.iov_len == 2 * g_bdev.bdev.blocklen);
2135 
2136 	/* Close the desc.
2137 	 * Unregister the timeout poller first.
2138 	 * Then decrement desc->refs but it's not zero yet so desc is not freed.
2139 	 */
2140 	set_thread(0);
2141 	spdk_bdev_close(g_desc);
2142 	CU_ASSERT(g_desc->refs == 1);
2143 	CU_ASSERT(g_desc->io_timeout_poller == NULL);
2144 
2145 	/* Timeout poller runs on thread 2 then we destroy the io channel.
2146 	 * Desc is closed so we would exit the timeout poller directly.
2147 	 * timeout callback is not called on thread 2.
2148 	 */
2149 	memset(&cb_arg, 0, sizeof(cb_arg));
2150 	set_thread(2);
2151 	poll_thread(2);
2152 	stub_complete_io(g_bdev.io_target, 1);
2153 	spdk_put_io_channel(ch[2]);
2154 	poll_thread(2);
2155 	CU_ASSERT(cb_arg.type == 0);
2156 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
2157 	CU_ASSERT(cb_arg.iov.iov_len == 0);
2158 
2159 	set_thread(0);
2160 	poll_thread(0);
2161 	g_teardown_done = false;
2162 	unregister_bdev(&g_bdev);
2163 	spdk_io_device_unregister(&g_io_device, NULL);
2164 	spdk_bdev_finish(finish_cb, NULL);
2165 	spdk_iobuf_finish(finish_cb, NULL);
2166 	poll_threads();
2167 	memset(&g_bdev, 0, sizeof(g_bdev));
2168 	CU_ASSERT(g_teardown_done == true);
2169 	g_teardown_done = false;
2170 	free_threads();
2171 	free_cores();
2172 }
2173 
2174 static bool g_io_done2;
2175 static bool g_lock_lba_range_done;
2176 static bool g_unlock_lba_range_done;
2177 
2178 static void
2179 io_done2(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
2180 {
2181 	g_io_done2 = true;
2182 	spdk_bdev_free_io(bdev_io);
2183 }
2184 
2185 static void
2186 lock_lba_range_done(struct lba_range *range, void *ctx, int status)
2187 {
2188 	g_lock_lba_range_done = true;
2189 }
2190 
2191 static void
2192 unlock_lba_range_done(struct lba_range *range, void *ctx, int status)
2193 {
2194 	g_unlock_lba_range_done = true;
2195 }
2196 
2197 static uint32_t
2198 stub_channel_outstanding_cnt(void *io_target)
2199 {
2200 	struct spdk_io_channel *_ch = spdk_get_io_channel(io_target);
2201 	struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
2202 	uint32_t outstanding_cnt;
2203 
2204 	outstanding_cnt = ch->outstanding_cnt;
2205 
2206 	spdk_put_io_channel(_ch);
2207 	return outstanding_cnt;
2208 }
2209 
2210 static void
2211 lock_lba_range_then_submit_io(void)
2212 {
2213 	struct spdk_bdev_desc *desc = NULL;
2214 	void *io_target;
2215 	struct spdk_io_channel *io_ch[3];
2216 	struct spdk_bdev_channel *bdev_ch[3];
2217 	struct lba_range *range;
2218 	char buf[4096];
2219 	int ctx0, ctx1, ctx2;
2220 	int rc;
2221 
2222 	setup_test();
2223 
2224 	io_target = g_bdev.io_target;
2225 	desc = g_desc;
2226 
2227 	set_thread(0);
2228 	io_ch[0] = spdk_bdev_get_io_channel(desc);
2229 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
2230 	CU_ASSERT(io_ch[0] != NULL);
2231 
2232 	set_thread(1);
2233 	io_ch[1] = spdk_bdev_get_io_channel(desc);
2234 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
2235 	CU_ASSERT(io_ch[1] != NULL);
2236 
2237 	set_thread(0);
2238 	g_lock_lba_range_done = false;
2239 	rc = bdev_lock_lba_range(desc, io_ch[0], 20, 10, lock_lba_range_done, &ctx0);
2240 	CU_ASSERT(rc == 0);
2241 	poll_threads();
2242 
2243 	/* The lock should immediately become valid, since there are no outstanding
2244 	 * write I/O.
2245 	 */
2246 	CU_ASSERT(g_lock_lba_range_done == true);
2247 	range = TAILQ_FIRST(&bdev_ch[0]->locked_ranges);
2248 	SPDK_CU_ASSERT_FATAL(range != NULL);
2249 	CU_ASSERT(range->offset == 20);
2250 	CU_ASSERT(range->length == 10);
2251 	CU_ASSERT(range->owner_ch == bdev_ch[0]);
2252 
2253 	g_io_done = false;
2254 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch[0]->io_locked));
2255 	rc = spdk_bdev_read_blocks(desc, io_ch[0], buf, 20, 1, io_done, &ctx0);
2256 	CU_ASSERT(rc == 0);
2257 	CU_ASSERT(stub_channel_outstanding_cnt(io_target) == 1);
2258 
2259 	stub_complete_io(io_target, 1);
2260 	poll_threads();
2261 	CU_ASSERT(g_io_done == true);
2262 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch[0]->io_locked));
2263 
2264 	/* Try a write I/O.  This should actually be allowed to execute, since the channel
2265 	 * holding the lock is submitting the write I/O.
2266 	 */
2267 	g_io_done = false;
2268 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch[0]->io_locked));
2269 	rc = spdk_bdev_write_blocks(desc, io_ch[0], buf, 20, 1, io_done, &ctx0);
2270 	CU_ASSERT(rc == 0);
2271 	CU_ASSERT(stub_channel_outstanding_cnt(io_target) == 1);
2272 
2273 	stub_complete_io(io_target, 1);
2274 	poll_threads();
2275 	CU_ASSERT(g_io_done == true);
2276 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch[0]->io_locked));
2277 
2278 	/* Try a write I/O.  This should get queued in the io_locked tailq. */
2279 	set_thread(1);
2280 	g_io_done = false;
2281 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch[1]->io_locked));
2282 	rc = spdk_bdev_write_blocks(desc, io_ch[1], buf, 20, 1, io_done, &ctx1);
2283 	CU_ASSERT(rc == 0);
2284 	poll_threads();
2285 	CU_ASSERT(stub_channel_outstanding_cnt(io_target) == 0);
2286 	CU_ASSERT(!TAILQ_EMPTY(&bdev_ch[1]->io_locked));
2287 	CU_ASSERT(g_io_done == false);
2288 
2289 	/* Try to unlock the lba range using thread 1's io_ch.  This should fail. */
2290 	rc = bdev_unlock_lba_range(desc, io_ch[1], 20, 10, unlock_lba_range_done, &ctx1);
2291 	CU_ASSERT(rc == -EINVAL);
2292 
2293 	/* Now create a new channel and submit a write I/O with it.  This should also be queued.
2294 	 * The new channel should inherit the active locks from the bdev's internal list.
2295 	 */
2296 	set_thread(2);
2297 	io_ch[2] = spdk_bdev_get_io_channel(desc);
2298 	bdev_ch[2] = spdk_io_channel_get_ctx(io_ch[2]);
2299 	CU_ASSERT(io_ch[2] != NULL);
2300 
2301 	g_io_done2 = false;
2302 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch[2]->io_locked));
2303 	rc = spdk_bdev_write_blocks(desc, io_ch[2], buf, 22, 2, io_done2, &ctx2);
2304 	CU_ASSERT(rc == 0);
2305 	poll_threads();
2306 	CU_ASSERT(stub_channel_outstanding_cnt(io_target) == 0);
2307 	CU_ASSERT(!TAILQ_EMPTY(&bdev_ch[2]->io_locked));
2308 	CU_ASSERT(g_io_done2 == false);
2309 
2310 	set_thread(0);
2311 	rc = bdev_unlock_lba_range(desc, io_ch[0], 20, 10, unlock_lba_range_done, &ctx0);
2312 	CU_ASSERT(rc == 0);
2313 	poll_threads();
2314 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch[0]->locked_ranges));
2315 
2316 	/* The LBA range is unlocked, so the write IOs should now have started execution. */
2317 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch[1]->io_locked));
2318 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch[2]->io_locked));
2319 
2320 	set_thread(1);
2321 	CU_ASSERT(stub_channel_outstanding_cnt(io_target) == 1);
2322 	stub_complete_io(io_target, 1);
2323 	set_thread(2);
2324 	CU_ASSERT(stub_channel_outstanding_cnt(io_target) == 1);
2325 	stub_complete_io(io_target, 1);
2326 
2327 	poll_threads();
2328 	CU_ASSERT(g_io_done == true);
2329 	CU_ASSERT(g_io_done2 == true);
2330 
2331 	/* Tear down the channels */
2332 	set_thread(0);
2333 	spdk_put_io_channel(io_ch[0]);
2334 	set_thread(1);
2335 	spdk_put_io_channel(io_ch[1]);
2336 	set_thread(2);
2337 	spdk_put_io_channel(io_ch[2]);
2338 	poll_threads();
2339 	set_thread(0);
2340 	teardown_test();
2341 }
2342 
2343 /* spdk_bdev_reset() freezes and unfreezes I/O channels by using spdk_for_each_channel().
2344  * spdk_bdev_unregister() calls spdk_io_device_unregister() in the end. However
2345  * spdk_io_device_unregister() fails if it is called while executing spdk_for_each_channel().
2346  * Hence, in this case, spdk_io_device_unregister() is deferred until spdk_bdev_reset()
2347  * completes. Test this behavior.
2348  */
2349 static void
2350 unregister_during_reset(void)
2351 {
2352 	struct spdk_io_channel *io_ch[2];
2353 	bool done_reset = false, done_unregister = false;
2354 	int rc;
2355 
2356 	setup_test();
2357 	set_thread(0);
2358 
2359 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
2360 	SPDK_CU_ASSERT_FATAL(io_ch[0] != NULL);
2361 
2362 	set_thread(1);
2363 
2364 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
2365 	SPDK_CU_ASSERT_FATAL(io_ch[1] != NULL);
2366 
2367 	set_thread(0);
2368 
2369 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress == NULL);
2370 
2371 	rc = spdk_bdev_reset(g_desc, io_ch[0], reset_done, &done_reset);
2372 	CU_ASSERT(rc == 0);
2373 
2374 	set_thread(0);
2375 
2376 	poll_thread_times(0, 1);
2377 
2378 	spdk_bdev_close(g_desc);
2379 	spdk_bdev_unregister(&g_bdev.bdev, _bdev_unregistered, &done_unregister);
2380 
2381 	CU_ASSERT(done_reset == false);
2382 	CU_ASSERT(done_unregister == false);
2383 
2384 	poll_threads();
2385 
2386 	stub_complete_io(g_bdev.io_target, 0);
2387 
2388 	poll_threads();
2389 
2390 	CU_ASSERT(done_reset == true);
2391 	CU_ASSERT(done_unregister == false);
2392 
2393 	spdk_put_io_channel(io_ch[0]);
2394 
2395 	set_thread(1);
2396 
2397 	spdk_put_io_channel(io_ch[1]);
2398 
2399 	poll_threads();
2400 
2401 	CU_ASSERT(done_unregister == true);
2402 
2403 	/* Restore the original g_bdev so that we can use teardown_test(). */
2404 	set_thread(0);
2405 	register_bdev(&g_bdev, "ut_bdev", &g_io_device);
2406 	spdk_bdev_open_ext("ut_bdev", true, _bdev_event_cb, NULL, &g_desc);
2407 	teardown_test();
2408 }
2409 
2410 static void
2411 bdev_init_wt_cb(void *done, int rc)
2412 {
2413 }
2414 
2415 static int
2416 wrong_thread_setup(void)
2417 {
2418 	allocate_cores(1);
2419 	allocate_threads(2);
2420 	set_thread(0);
2421 
2422 	spdk_io_device_register(&g_accel_io_device, ut_accel_ch_create_cb,
2423 				ut_accel_ch_destroy_cb, 0, NULL);
2424 	spdk_bdev_initialize(bdev_init_wt_cb, NULL);
2425 	spdk_io_device_register(&g_io_device, stub_create_ch, stub_destroy_ch,
2426 				sizeof(struct ut_bdev_channel), NULL);
2427 
2428 	set_thread(1);
2429 
2430 	return 0;
2431 }
2432 
2433 static int
2434 wrong_thread_teardown(void)
2435 {
2436 	int rc = 0;
2437 
2438 	set_thread(0);
2439 
2440 	g_teardown_done = false;
2441 	spdk_io_device_unregister(&g_io_device, NULL);
2442 	spdk_bdev_finish(finish_cb, NULL);
2443 	poll_threads();
2444 	memset(&g_bdev, 0, sizeof(g_bdev));
2445 	if (!g_teardown_done) {
2446 		fprintf(stderr, "%s:%d %s: teardown not done\n", __FILE__, __LINE__, __func__);
2447 		rc = -1;
2448 	}
2449 	g_teardown_done = false;
2450 
2451 	spdk_io_device_unregister(&g_accel_io_device, NULL);
2452 	free_threads();
2453 	free_cores();
2454 
2455 	return rc;
2456 }
2457 
2458 static void
2459 _bdev_unregistered_wt(void *ctx, int rc)
2460 {
2461 	struct spdk_thread **threadp = ctx;
2462 
2463 	*threadp = spdk_get_thread();
2464 }
2465 
2466 static void
2467 spdk_bdev_register_wt(void)
2468 {
2469 	struct spdk_bdev bdev = { 0 };
2470 	int rc;
2471 	struct spdk_thread *unreg_thread;
2472 
2473 	bdev.name = "wt_bdev";
2474 	bdev.fn_table = &fn_table;
2475 	bdev.module = &bdev_ut_if;
2476 	bdev.blocklen = 4096;
2477 	bdev.blockcnt = 1024;
2478 
2479 	/* Can register only on app thread */
2480 	rc = spdk_bdev_register(&bdev);
2481 	CU_ASSERT(rc == -EINVAL);
2482 
2483 	/* Can unregister on any thread */
2484 	set_thread(0);
2485 	rc = spdk_bdev_register(&bdev);
2486 	CU_ASSERT(rc == 0);
2487 	set_thread(1);
2488 	unreg_thread = NULL;
2489 	spdk_bdev_unregister(&bdev, _bdev_unregistered_wt, &unreg_thread);
2490 	poll_threads();
2491 	CU_ASSERT(unreg_thread == spdk_get_thread());
2492 
2493 	/* Can unregister by name on any thread */
2494 	set_thread(0);
2495 	rc = spdk_bdev_register(&bdev);
2496 	CU_ASSERT(rc == 0);
2497 	set_thread(1);
2498 	unreg_thread = NULL;
2499 	rc = spdk_bdev_unregister_by_name(bdev.name, bdev.module, _bdev_unregistered_wt,
2500 					  &unreg_thread);
2501 	CU_ASSERT(rc == 0);
2502 	poll_threads();
2503 	CU_ASSERT(unreg_thread == spdk_get_thread());
2504 }
2505 
2506 static void
2507 wait_for_examine_cb(void *arg)
2508 {
2509 	struct spdk_thread **thread = arg;
2510 
2511 	*thread = spdk_get_thread();
2512 }
2513 
2514 static void
2515 spdk_bdev_examine_wt(void)
2516 {
2517 	int rc;
2518 	bool save_auto_examine = g_bdev_opts.bdev_auto_examine;
2519 	struct spdk_thread *thread;
2520 
2521 	g_bdev_opts.bdev_auto_examine = false;
2522 
2523 	set_thread(0);
2524 	register_bdev(&g_bdev, "ut_bdev_wt", &g_io_device);
2525 	CU_ASSERT(spdk_bdev_get_by_name("ut_bdev_wt") != NULL);
2526 	set_thread(1);
2527 
2528 	/* Can examine only on the app thread */
2529 	rc = spdk_bdev_examine("ut_bdev_wt");
2530 	CU_ASSERT(rc == -EINVAL);
2531 	unregister_bdev(&g_bdev);
2532 	CU_ASSERT(spdk_bdev_get_by_name("ut_bdev_wt") == NULL);
2533 
2534 	/* Can wait for examine on app thread, callback called on app thread. */
2535 	set_thread(0);
2536 	register_bdev(&g_bdev, "ut_bdev_wt", &g_io_device);
2537 	CU_ASSERT(spdk_bdev_get_by_name("ut_bdev_wt") != NULL);
2538 	thread = NULL;
2539 	rc = spdk_bdev_wait_for_examine(wait_for_examine_cb, &thread);
2540 	CU_ASSERT(rc == 0);
2541 	poll_threads();
2542 	CU_ASSERT(thread == spdk_get_thread());
2543 	unregister_bdev(&g_bdev);
2544 	CU_ASSERT(spdk_bdev_get_by_name("ut_bdev_wt") == NULL);
2545 
2546 	/* Can wait for examine on non-app thread, callback called on same thread. */
2547 	set_thread(0);
2548 	register_bdev(&g_bdev, "ut_bdev_wt", &g_io_device);
2549 	CU_ASSERT(spdk_bdev_get_by_name("ut_bdev_wt") != NULL);
2550 	thread = NULL;
2551 	rc = spdk_bdev_wait_for_examine(wait_for_examine_cb, &thread);
2552 	CU_ASSERT(rc == 0);
2553 	poll_threads();
2554 	CU_ASSERT(thread == spdk_get_thread());
2555 	unregister_bdev(&g_bdev);
2556 	CU_ASSERT(spdk_bdev_get_by_name("ut_bdev_wt") == NULL);
2557 
2558 	unregister_bdev(&g_bdev);
2559 	g_bdev_opts.bdev_auto_examine = save_auto_examine;
2560 }
2561 
2562 static void
2563 event_notify_and_close(void)
2564 {
2565 	int resize_notify_count = 0;
2566 	struct spdk_bdev_desc *desc = NULL;
2567 	struct spdk_bdev *bdev;
2568 	int rc;
2569 
2570 	setup_test();
2571 	set_thread(0);
2572 
2573 	/* setup_test() automatically opens the bdev, but this test needs to do
2574 	 * that in a different way. */
2575 	spdk_bdev_close(g_desc);
2576 	poll_threads();
2577 
2578 	set_thread(1);
2579 
2580 	rc = spdk_bdev_open_ext("ut_bdev", true, _bdev_event_cb, &resize_notify_count, &desc);
2581 	CU_ASSERT(rc == 0);
2582 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2583 
2584 	bdev = spdk_bdev_desc_get_bdev(desc);
2585 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
2586 
2587 	/* Test a normal case that a resize event is notified. */
2588 	set_thread(0);
2589 
2590 	rc = spdk_bdev_notify_blockcnt_change(bdev, 1024 * 2);
2591 	CU_ASSERT(rc == 0);
2592 	CU_ASSERT(bdev->blockcnt == 1024 * 2);
2593 	CU_ASSERT(desc->refs == 1);
2594 	CU_ASSERT(resize_notify_count == 0);
2595 
2596 	poll_threads();
2597 
2598 	CU_ASSERT(desc->refs == 0);
2599 	CU_ASSERT(resize_notify_count == 1);
2600 
2601 	/* Test a complex case if the bdev is closed after two event_notify messages are sent,
2602 	 * then both event_notify messages are discarded and the desc is freed.
2603 	 */
2604 	rc = spdk_bdev_notify_blockcnt_change(bdev, 1024 * 3);
2605 	CU_ASSERT(rc == 0);
2606 	CU_ASSERT(bdev->blockcnt == 1024 * 3);
2607 	CU_ASSERT(desc->refs == 1);
2608 	CU_ASSERT(resize_notify_count == 1);
2609 
2610 	rc = spdk_bdev_notify_blockcnt_change(bdev, 1024 * 4);
2611 	CU_ASSERT(rc == 0);
2612 	CU_ASSERT(bdev->blockcnt == 1024 * 4);
2613 	CU_ASSERT(desc->refs == 2);
2614 	CU_ASSERT(resize_notify_count == 1);
2615 
2616 	set_thread(1);
2617 
2618 	spdk_bdev_close(desc);
2619 	CU_ASSERT(desc->closed == true);
2620 	CU_ASSERT(desc->refs == 2);
2621 	CU_ASSERT(resize_notify_count == 1);
2622 
2623 	poll_threads();
2624 
2625 	CU_ASSERT(resize_notify_count == 1);
2626 
2627 	set_thread(0);
2628 
2629 	/* Restore g_desc. Then, we can execute teardown_test(). */
2630 	spdk_bdev_open_ext("ut_bdev", true, _bdev_event_cb, NULL, &g_desc);
2631 	teardown_test();
2632 }
2633 
2634 int
2635 main(int argc, char **argv)
2636 {
2637 	CU_pSuite	suite = NULL;
2638 	CU_pSuite	suite_wt = NULL;
2639 	unsigned int	num_failures;
2640 
2641 	CU_initialize_registry();
2642 
2643 	suite = CU_add_suite("bdev", NULL, NULL);
2644 	suite_wt = CU_add_suite("bdev_wrong_thread", wrong_thread_setup, wrong_thread_teardown);
2645 
2646 	CU_ADD_TEST(suite, basic);
2647 	CU_ADD_TEST(suite, unregister_and_close);
2648 	CU_ADD_TEST(suite, unregister_and_close_different_threads);
2649 	CU_ADD_TEST(suite, basic_qos);
2650 	CU_ADD_TEST(suite, put_channel_during_reset);
2651 	CU_ADD_TEST(suite, aborted_reset);
2652 	CU_ADD_TEST(suite, aborted_reset_no_outstanding_io);
2653 	CU_ADD_TEST(suite, io_during_reset);
2654 	CU_ADD_TEST(suite, reset_completions);
2655 	CU_ADD_TEST(suite, io_during_qos_queue);
2656 	CU_ADD_TEST(suite, io_during_qos_reset);
2657 	CU_ADD_TEST(suite, enomem);
2658 	CU_ADD_TEST(suite, enomem_multi_bdev);
2659 	CU_ADD_TEST(suite, enomem_multi_bdev_unregister);
2660 	CU_ADD_TEST(suite, enomem_multi_io_target);
2661 	CU_ADD_TEST(suite, qos_dynamic_enable);
2662 	CU_ADD_TEST(suite, bdev_histograms_mt);
2663 	CU_ADD_TEST(suite, bdev_set_io_timeout_mt);
2664 	CU_ADD_TEST(suite, lock_lba_range_then_submit_io);
2665 	CU_ADD_TEST(suite, unregister_during_reset);
2666 	CU_ADD_TEST(suite_wt, spdk_bdev_register_wt);
2667 	CU_ADD_TEST(suite_wt, spdk_bdev_examine_wt);
2668 	CU_ADD_TEST(suite, event_notify_and_close);
2669 
2670 	num_failures = spdk_ut_run_tests(argc, argv, NULL);
2671 	CU_cleanup_registry();
2672 	return num_failures;
2673 }
2674