xref: /spdk/test/unit/lib/bdev/mt/bdev.c/bdev_ut.c (revision 27a23a33f93c98f134efcf782e25bb754a8e71a5)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk_cunit.h"
35 
36 #include "common/lib/ut_multithread.c"
37 #include "unit/lib/json_mock.c"
38 
39 #include "spdk/config.h"
40 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
41 #undef SPDK_CONFIG_VTUNE
42 
43 #include "bdev/bdev.c"
44 
45 #define BDEV_UT_NUM_THREADS 3
46 
47 DEFINE_STUB(spdk_conf_find_section, struct spdk_conf_section *, (struct spdk_conf *cp,
48 		const char *name), NULL);
49 DEFINE_STUB(spdk_conf_section_get_nmval, char *,
50 	    (struct spdk_conf_section *sp, const char *key, int idx1, int idx2), NULL);
51 DEFINE_STUB(spdk_conf_section_get_intval, int, (struct spdk_conf_section *sp, const char *key), -1);
52 
53 struct spdk_trace_histories *g_trace_histories;
54 DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
55 DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix));
56 DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
57 DEFINE_STUB_V(spdk_trace_register_description, (const char *name, const char *short_name,
58 		uint16_t tpoint_id, uint8_t owner_type,
59 		uint8_t object_type, uint8_t new_object,
60 		uint8_t arg1_is_ptr, const char *arg1_name));
61 DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
62 				   uint32_t size, uint64_t object_id, uint64_t arg1));
63 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
64 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
65 
66 struct ut_bdev {
67 	struct spdk_bdev	bdev;
68 	void			*io_target;
69 };
70 
71 struct ut_bdev_channel {
72 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
73 	uint32_t			outstanding_cnt;
74 	uint32_t			avail_cnt;
75 };
76 
77 int g_io_device;
78 struct ut_bdev g_bdev;
79 struct spdk_bdev_desc *g_desc;
80 bool g_teardown_done = false;
81 bool g_get_io_channel = true;
82 bool g_create_ch = true;
83 bool g_init_complete_called = false;
84 bool g_fini_start_called = true;
85 int g_status = 0;
86 int g_count = 0;
87 struct spdk_histogram_data *g_histogram = NULL;
88 
89 static int
90 stub_create_ch(void *io_device, void *ctx_buf)
91 {
92 	struct ut_bdev_channel *ch = ctx_buf;
93 
94 	if (g_create_ch == false) {
95 		return -1;
96 	}
97 
98 	TAILQ_INIT(&ch->outstanding_io);
99 	ch->outstanding_cnt = 0;
100 	/*
101 	 * When avail gets to 0, the submit_request function will return ENOMEM.
102 	 *  Most tests to not want ENOMEM to occur, so by default set this to a
103 	 *  big value that won't get hit.  The ENOMEM tests can then override this
104 	 *  value to something much smaller to induce ENOMEM conditions.
105 	 */
106 	ch->avail_cnt = 2048;
107 	return 0;
108 }
109 
110 static void
111 stub_destroy_ch(void *io_device, void *ctx_buf)
112 {
113 }
114 
115 static struct spdk_io_channel *
116 stub_get_io_channel(void *ctx)
117 {
118 	struct ut_bdev *ut_bdev = ctx;
119 
120 	if (g_get_io_channel == true) {
121 		return spdk_get_io_channel(ut_bdev->io_target);
122 	} else {
123 		return NULL;
124 	}
125 }
126 
127 static int
128 stub_destruct(void *ctx)
129 {
130 	return 0;
131 }
132 
133 static void
134 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
135 {
136 	struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
137 
138 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) {
139 		struct spdk_bdev_io *io;
140 
141 		while (!TAILQ_EMPTY(&ch->outstanding_io)) {
142 			io = TAILQ_FIRST(&ch->outstanding_io);
143 			TAILQ_REMOVE(&ch->outstanding_io, io, module_link);
144 			ch->outstanding_cnt--;
145 			spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_FAILED);
146 			ch->avail_cnt++;
147 		}
148 	}
149 
150 	if (ch->avail_cnt > 0) {
151 		TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
152 		ch->outstanding_cnt++;
153 		ch->avail_cnt--;
154 	} else {
155 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_NOMEM);
156 	}
157 }
158 
159 static uint32_t
160 stub_complete_io(void *io_target, uint32_t num_to_complete)
161 {
162 	struct spdk_io_channel *_ch = spdk_get_io_channel(io_target);
163 	struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
164 	struct spdk_bdev_io *io;
165 	bool complete_all = (num_to_complete == 0);
166 	uint32_t num_completed = 0;
167 
168 	while (complete_all || num_completed < num_to_complete) {
169 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
170 			break;
171 		}
172 		io = TAILQ_FIRST(&ch->outstanding_io);
173 		TAILQ_REMOVE(&ch->outstanding_io, io, module_link);
174 		ch->outstanding_cnt--;
175 		spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_SUCCESS);
176 		ch->avail_cnt++;
177 		num_completed++;
178 	}
179 
180 	spdk_put_io_channel(_ch);
181 	return num_completed;
182 }
183 
184 static struct spdk_bdev_fn_table fn_table = {
185 	.get_io_channel =	stub_get_io_channel,
186 	.destruct =		stub_destruct,
187 	.submit_request =	stub_submit_request,
188 };
189 
190 static int
191 module_init(void)
192 {
193 	return 0;
194 }
195 
196 static void
197 module_fini(void)
198 {
199 }
200 
201 static void
202 init_complete(void)
203 {
204 	g_init_complete_called = true;
205 }
206 
207 static void
208 fini_start(void)
209 {
210 	g_fini_start_called = true;
211 }
212 
213 struct spdk_bdev_module bdev_ut_if = {
214 	.name = "bdev_ut",
215 	.module_init = module_init,
216 	.module_fini = module_fini,
217 	.init_complete = init_complete,
218 	.fini_start = fini_start,
219 };
220 
221 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
222 
223 static void
224 register_bdev(struct ut_bdev *ut_bdev, char *name, void *io_target)
225 {
226 	memset(ut_bdev, 0, sizeof(*ut_bdev));
227 
228 	ut_bdev->io_target = io_target;
229 	ut_bdev->bdev.ctxt = ut_bdev;
230 	ut_bdev->bdev.name = name;
231 	ut_bdev->bdev.fn_table = &fn_table;
232 	ut_bdev->bdev.module = &bdev_ut_if;
233 	ut_bdev->bdev.blocklen = 4096;
234 	ut_bdev->bdev.blockcnt = 1024;
235 
236 	spdk_bdev_register(&ut_bdev->bdev);
237 }
238 
239 static void
240 unregister_bdev(struct ut_bdev *ut_bdev)
241 {
242 	/* Handle any deferred messages. */
243 	poll_threads();
244 	spdk_bdev_unregister(&ut_bdev->bdev, NULL, NULL);
245 }
246 
247 static void
248 bdev_init_cb(void *done, int rc)
249 {
250 	CU_ASSERT(rc == 0);
251 	*(bool *)done = true;
252 }
253 
254 static void
255 setup_test(void)
256 {
257 	bool done = false;
258 
259 	allocate_threads(BDEV_UT_NUM_THREADS);
260 	set_thread(0);
261 	spdk_bdev_initialize(bdev_init_cb, &done);
262 	spdk_io_device_register(&g_io_device, stub_create_ch, stub_destroy_ch,
263 				sizeof(struct ut_bdev_channel), NULL);
264 	register_bdev(&g_bdev, "ut_bdev", &g_io_device);
265 	spdk_bdev_open(&g_bdev.bdev, true, NULL, NULL, &g_desc);
266 }
267 
268 static void
269 finish_cb(void *cb_arg)
270 {
271 	g_teardown_done = true;
272 }
273 
274 static void
275 teardown_test(void)
276 {
277 	set_thread(0);
278 	g_teardown_done = false;
279 	spdk_bdev_close(g_desc);
280 	g_desc = NULL;
281 	unregister_bdev(&g_bdev);
282 	spdk_io_device_unregister(&g_io_device, NULL);
283 	spdk_bdev_finish(finish_cb, NULL);
284 	poll_threads();
285 	memset(&g_bdev, 0, sizeof(g_bdev));
286 	CU_ASSERT(g_teardown_done == true);
287 	g_teardown_done = false;
288 	free_threads();
289 }
290 
291 static uint32_t
292 bdev_io_tailq_cnt(bdev_io_tailq_t *tailq)
293 {
294 	struct spdk_bdev_io *io;
295 	uint32_t cnt = 0;
296 
297 	TAILQ_FOREACH(io, tailq, internal.link) {
298 		cnt++;
299 	}
300 
301 	return cnt;
302 }
303 
304 static void
305 basic(void)
306 {
307 	g_init_complete_called = false;
308 	setup_test();
309 	CU_ASSERT(g_init_complete_called == true);
310 
311 	set_thread(0);
312 
313 	g_get_io_channel = false;
314 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
315 	CU_ASSERT(g_ut_threads[0].ch == NULL);
316 
317 	g_get_io_channel = true;
318 	g_create_ch = false;
319 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
320 	CU_ASSERT(g_ut_threads[0].ch == NULL);
321 
322 	g_get_io_channel = true;
323 	g_create_ch = true;
324 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
325 	CU_ASSERT(g_ut_threads[0].ch != NULL);
326 	spdk_put_io_channel(g_ut_threads[0].ch);
327 
328 	g_fini_start_called = false;
329 	teardown_test();
330 	CU_ASSERT(g_fini_start_called == true);
331 }
332 
333 static void
334 _bdev_removed(void *done)
335 {
336 	*(bool *)done = true;
337 }
338 
339 static void
340 _bdev_unregistered(void *done, int rc)
341 {
342 	CU_ASSERT(rc == 0);
343 	*(bool *)done = true;
344 }
345 
346 static void
347 unregister_and_close(void)
348 {
349 	bool done, remove_notify;
350 	struct spdk_bdev_desc *desc;
351 
352 	setup_test();
353 	set_thread(0);
354 
355 	/* setup_test() automatically opens the bdev,
356 	 * but this test needs to do that in a different
357 	 * way. */
358 	spdk_bdev_close(g_desc);
359 	poll_threads();
360 
361 	remove_notify = false;
362 	spdk_bdev_open(&g_bdev.bdev, true, _bdev_removed, &remove_notify, &desc);
363 	CU_ASSERT(remove_notify == false);
364 	CU_ASSERT(desc != NULL);
365 
366 	/* There is an open descriptor on the device. Unregister it,
367 	 * which can't proceed until the descriptor is closed. */
368 	done = false;
369 	spdk_bdev_unregister(&g_bdev.bdev, _bdev_unregistered, &done);
370 	/* No polling has occurred, so neither of these should execute */
371 	CU_ASSERT(remove_notify == false);
372 	CU_ASSERT(done == false);
373 
374 	/* Prior to the unregister completing, close the descriptor */
375 	spdk_bdev_close(desc);
376 
377 	/* Poll the threads to allow all events to be processed */
378 	poll_threads();
379 
380 	/* Remove notify should not have been called because the
381 	 * descriptor is already closed. */
382 	CU_ASSERT(remove_notify == false);
383 
384 	/* The unregister should have completed */
385 	CU_ASSERT(done == true);
386 
387 	spdk_bdev_finish(finish_cb, NULL);
388 	poll_threads();
389 	free_threads();
390 }
391 
392 static void
393 reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
394 {
395 	bool *done = cb_arg;
396 
397 	CU_ASSERT(success == true);
398 	*done = true;
399 	spdk_bdev_free_io(bdev_io);
400 }
401 
402 static void
403 put_channel_during_reset(void)
404 {
405 	struct spdk_io_channel *io_ch;
406 	bool done = false;
407 
408 	setup_test();
409 
410 	set_thread(0);
411 	io_ch = spdk_bdev_get_io_channel(g_desc);
412 	CU_ASSERT(io_ch != NULL);
413 
414 	/*
415 	 * Start a reset, but then put the I/O channel before
416 	 *  the deferred messages for the reset get a chance to
417 	 *  execute.
418 	 */
419 	spdk_bdev_reset(g_desc, io_ch, reset_done, &done);
420 	spdk_put_io_channel(io_ch);
421 	poll_threads();
422 	stub_complete_io(g_bdev.io_target, 0);
423 
424 	teardown_test();
425 }
426 
427 static void
428 aborted_reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
429 {
430 	enum spdk_bdev_io_status *status = cb_arg;
431 
432 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
433 	spdk_bdev_free_io(bdev_io);
434 }
435 
436 static void
437 aborted_reset(void)
438 {
439 	struct spdk_io_channel *io_ch[2];
440 	enum spdk_bdev_io_status status1 = SPDK_BDEV_IO_STATUS_PENDING,
441 				 status2 = SPDK_BDEV_IO_STATUS_PENDING;
442 
443 	setup_test();
444 
445 	set_thread(0);
446 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
447 	CU_ASSERT(io_ch[0] != NULL);
448 	spdk_bdev_reset(g_desc, io_ch[0], aborted_reset_done, &status1);
449 	poll_threads();
450 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL);
451 
452 	/*
453 	 * First reset has been submitted on ch0.  Now submit a second
454 	 *  reset on ch1 which will get queued since there is already a
455 	 *  reset in progress.
456 	 */
457 	set_thread(1);
458 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
459 	CU_ASSERT(io_ch[1] != NULL);
460 	spdk_bdev_reset(g_desc, io_ch[1], aborted_reset_done, &status2);
461 	poll_threads();
462 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL);
463 
464 	/*
465 	 * Now destroy ch1.  This will abort the queued reset.  Check that
466 	 *  the second reset was completed with failed status.  Also check
467 	 *  that bdev->internal.reset_in_progress != NULL, since the
468 	 *  original reset has not been completed yet.  This ensures that
469 	 *  the bdev code is correctly noticing that the failed reset is
470 	 *  *not* the one that had been submitted to the bdev module.
471 	 */
472 	set_thread(1);
473 	spdk_put_io_channel(io_ch[1]);
474 	poll_threads();
475 	CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_FAILED);
476 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL);
477 
478 	/*
479 	 * Now complete the first reset, verify that it completed with SUCCESS
480 	 *  status and that bdev->internal.reset_in_progress is also set back to NULL.
481 	 */
482 	set_thread(0);
483 	spdk_put_io_channel(io_ch[0]);
484 	stub_complete_io(g_bdev.io_target, 0);
485 	poll_threads();
486 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
487 	CU_ASSERT(g_bdev.bdev.internal.reset_in_progress == NULL);
488 
489 	teardown_test();
490 }
491 
492 static void
493 io_during_io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
494 {
495 	enum spdk_bdev_io_status *status = cb_arg;
496 
497 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
498 	spdk_bdev_free_io(bdev_io);
499 }
500 
501 static void
502 io_during_reset(void)
503 {
504 	struct spdk_io_channel *io_ch[2];
505 	struct spdk_bdev_channel *bdev_ch[2];
506 	enum spdk_bdev_io_status status0, status1, status_reset;
507 	int rc;
508 
509 	setup_test();
510 
511 	/*
512 	 * First test normal case - submit an I/O on each of two channels (with no resets)
513 	 *  and verify they complete successfully.
514 	 */
515 	set_thread(0);
516 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
517 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
518 	CU_ASSERT(bdev_ch[0]->flags == 0);
519 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
520 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
521 	CU_ASSERT(rc == 0);
522 
523 	set_thread(1);
524 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
525 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
526 	CU_ASSERT(bdev_ch[1]->flags == 0);
527 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
528 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
529 	CU_ASSERT(rc == 0);
530 
531 	poll_threads();
532 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
533 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
534 
535 	set_thread(0);
536 	stub_complete_io(g_bdev.io_target, 0);
537 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS);
538 
539 	set_thread(1);
540 	stub_complete_io(g_bdev.io_target, 0);
541 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
542 
543 	/*
544 	 * Now submit a reset, and leave it pending while we submit I/O on two different
545 	 *  channels.  These I/O should be failed by the bdev layer since the reset is in
546 	 *  progress.
547 	 */
548 	set_thread(0);
549 	status_reset = SPDK_BDEV_IO_STATUS_PENDING;
550 	rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &status_reset);
551 	CU_ASSERT(rc == 0);
552 
553 	CU_ASSERT(bdev_ch[0]->flags == 0);
554 	CU_ASSERT(bdev_ch[1]->flags == 0);
555 	poll_threads();
556 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_RESET_IN_PROGRESS);
557 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_RESET_IN_PROGRESS);
558 
559 	set_thread(0);
560 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
561 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
562 	CU_ASSERT(rc == 0);
563 
564 	set_thread(1);
565 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
566 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
567 	CU_ASSERT(rc == 0);
568 
569 	/*
570 	 * A reset is in progress so these read I/O should complete with failure.  Note that we
571 	 *  need to poll_threads() since I/O completed inline have their completion deferred.
572 	 */
573 	poll_threads();
574 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
575 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_FAILED);
576 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_FAILED);
577 
578 	/*
579 	 * Complete the reset
580 	 */
581 	set_thread(0);
582 	stub_complete_io(g_bdev.io_target, 0);
583 
584 	/*
585 	 * Only poll thread 0. We should not get a completion.
586 	 */
587 	poll_thread(0);
588 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
589 
590 	/*
591 	 * Poll both thread 0 and 1 so the messages can propagate and we
592 	 * get a completion.
593 	 */
594 	poll_threads();
595 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_SUCCESS);
596 
597 	spdk_put_io_channel(io_ch[0]);
598 	set_thread(1);
599 	spdk_put_io_channel(io_ch[1]);
600 	poll_threads();
601 
602 	teardown_test();
603 }
604 
605 static void
606 basic_qos(void)
607 {
608 	struct spdk_io_channel *io_ch[2];
609 	struct spdk_bdev_channel *bdev_ch[2];
610 	struct spdk_bdev *bdev;
611 	enum spdk_bdev_io_status status;
612 	int rc;
613 
614 	setup_test();
615 
616 	/* Enable QoS */
617 	bdev = &g_bdev.bdev;
618 	bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
619 	SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL);
620 	TAILQ_INIT(&bdev->internal.qos->queued);
621 	/*
622 	 * Enable read/write IOPS, read only byte per second and
623 	 * read/write byte per second rate limits.
624 	 * In this case, all rate limits will take equal effect.
625 	 */
626 	/* 2000 read/write I/O per second, or 2 per millisecond */
627 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 2000;
628 	/* 8K read/write byte per millisecond with 4K block size */
629 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 8192000;
630 	/* 8K read only byte per millisecond with 4K block size */
631 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT].limit = 8192000;
632 
633 	g_get_io_channel = true;
634 
635 	set_thread(0);
636 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
637 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
638 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
639 
640 	set_thread(1);
641 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
642 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
643 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
644 
645 	/*
646 	 * Send an I/O on thread 0, which is where the QoS thread is running.
647 	 */
648 	set_thread(0);
649 	status = SPDK_BDEV_IO_STATUS_PENDING;
650 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status);
651 	CU_ASSERT(rc == 0);
652 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
653 	poll_threads();
654 	stub_complete_io(g_bdev.io_target, 0);
655 	poll_threads();
656 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS);
657 
658 	/* Send an I/O on thread 1. The QoS thread is not running here. */
659 	status = SPDK_BDEV_IO_STATUS_PENDING;
660 	set_thread(1);
661 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status);
662 	CU_ASSERT(rc == 0);
663 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
664 	poll_threads();
665 	/* Complete I/O on thread 1. This should not complete the I/O we submitted */
666 	stub_complete_io(g_bdev.io_target, 0);
667 	poll_threads();
668 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
669 	/* Now complete I/O on thread 0 */
670 	set_thread(0);
671 	poll_threads();
672 	stub_complete_io(g_bdev.io_target, 0);
673 	poll_threads();
674 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS);
675 
676 	/*
677 	 * Close the descriptor only, which should stop the qos channel as
678 	 * the last descriptor removed.
679 	 */
680 	spdk_bdev_close(g_desc);
681 	poll_threads();
682 	CU_ASSERT(bdev->internal.qos->ch == NULL);
683 
684 	/*
685 	 * Open the bdev again which shall setup the qos channel as the
686 	 * channels are valid.
687 	 */
688 	spdk_bdev_open(bdev, true, NULL, NULL, &g_desc);
689 	poll_threads();
690 	CU_ASSERT(bdev->internal.qos->ch != NULL);
691 
692 	/* Tear down the channels */
693 	set_thread(0);
694 	spdk_put_io_channel(io_ch[0]);
695 	set_thread(1);
696 	spdk_put_io_channel(io_ch[1]);
697 	poll_threads();
698 	set_thread(0);
699 
700 	/* Close the descriptor, which should stop the qos channel */
701 	spdk_bdev_close(g_desc);
702 	poll_threads();
703 	CU_ASSERT(bdev->internal.qos->ch == NULL);
704 
705 	/* Open the bdev again, no qos channel setup without valid channels. */
706 	spdk_bdev_open(bdev, true, NULL, NULL, &g_desc);
707 	poll_threads();
708 	CU_ASSERT(bdev->internal.qos->ch == NULL);
709 
710 	/* Create the channels in reverse order. */
711 	set_thread(1);
712 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
713 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
714 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
715 
716 	set_thread(0);
717 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
718 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
719 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
720 
721 	/* Confirm that the qos thread is now thread 1 */
722 	CU_ASSERT(bdev->internal.qos->ch == bdev_ch[1]);
723 
724 	/* Tear down the channels */
725 	set_thread(0);
726 	spdk_put_io_channel(io_ch[0]);
727 	set_thread(1);
728 	spdk_put_io_channel(io_ch[1]);
729 	poll_threads();
730 
731 	set_thread(0);
732 
733 	teardown_test();
734 }
735 
736 static void
737 io_during_qos_queue(void)
738 {
739 	struct spdk_io_channel *io_ch[2];
740 	struct spdk_bdev_channel *bdev_ch[2];
741 	struct spdk_bdev *bdev;
742 	enum spdk_bdev_io_status status0, status1, status2;
743 	int rc;
744 
745 	setup_test();
746 	MOCK_SET(spdk_get_ticks, 0);
747 
748 	/* Enable QoS */
749 	bdev = &g_bdev.bdev;
750 	bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
751 	SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL);
752 	TAILQ_INIT(&bdev->internal.qos->queued);
753 	/*
754 	 * Enable read/write IOPS, read only byte per sec, write only
755 	 * byte per sec and read/write byte per sec rate limits.
756 	 * In this case, both read only and write only byte per sec
757 	 * rate limit will take effect.
758 	 */
759 	/* 4000 read/write I/O per second, or 4 per millisecond */
760 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 4000;
761 	/* 8K byte per millisecond with 4K block size */
762 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 8192000;
763 	/* 4K byte per millisecond with 4K block size */
764 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT].limit = 4096000;
765 	/* 4K byte per millisecond with 4K block size */
766 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT].limit = 4096000;
767 
768 	g_get_io_channel = true;
769 
770 	/* Create channels */
771 	set_thread(0);
772 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
773 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
774 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
775 
776 	set_thread(1);
777 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
778 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
779 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
780 
781 	/* Send two read I/Os */
782 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
783 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
784 	CU_ASSERT(rc == 0);
785 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
786 	set_thread(0);
787 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
788 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
789 	CU_ASSERT(rc == 0);
790 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
791 	/* Send one write I/O */
792 	status2 = SPDK_BDEV_IO_STATUS_PENDING;
793 	rc = spdk_bdev_write_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status2);
794 	CU_ASSERT(rc == 0);
795 	CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_PENDING);
796 
797 	/* Complete any I/O that arrived at the disk */
798 	poll_threads();
799 	set_thread(1);
800 	stub_complete_io(g_bdev.io_target, 0);
801 	set_thread(0);
802 	stub_complete_io(g_bdev.io_target, 0);
803 	poll_threads();
804 
805 	/* Only one of the two read I/Os should complete. (logical XOR) */
806 	if (status0 == SPDK_BDEV_IO_STATUS_SUCCESS) {
807 		CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
808 	} else {
809 		CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
810 	}
811 	/* The write I/O should complete. */
812 	CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_SUCCESS);
813 
814 	/* Advance in time by a millisecond */
815 	spdk_delay_us(1000);
816 
817 	/* Complete more I/O */
818 	poll_threads();
819 	set_thread(1);
820 	stub_complete_io(g_bdev.io_target, 0);
821 	set_thread(0);
822 	stub_complete_io(g_bdev.io_target, 0);
823 	poll_threads();
824 
825 	/* Now the second read I/O should be done */
826 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS);
827 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
828 
829 	/* Tear down the channels */
830 	set_thread(1);
831 	spdk_put_io_channel(io_ch[1]);
832 	set_thread(0);
833 	spdk_put_io_channel(io_ch[0]);
834 	poll_threads();
835 
836 	teardown_test();
837 }
838 
839 static void
840 io_during_qos_reset(void)
841 {
842 	struct spdk_io_channel *io_ch[2];
843 	struct spdk_bdev_channel *bdev_ch[2];
844 	struct spdk_bdev *bdev;
845 	enum spdk_bdev_io_status status0, status1, reset_status;
846 	int rc;
847 
848 	setup_test();
849 	MOCK_SET(spdk_get_ticks, 0);
850 
851 	/* Enable QoS */
852 	bdev = &g_bdev.bdev;
853 	bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
854 	SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL);
855 	TAILQ_INIT(&bdev->internal.qos->queued);
856 	/*
857 	 * Enable read/write IOPS, write only byte per sec and
858 	 * read/write byte per second rate limits.
859 	 * In this case, read/write byte per second rate limit will
860 	 * take effect first.
861 	 */
862 	/* 2000 read/write I/O per second, or 2 per millisecond */
863 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 2000;
864 	/* 4K byte per millisecond with 4K block size */
865 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 4096000;
866 	/* 8K byte per millisecond with 4K block size */
867 	bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT].limit = 8192000;
868 
869 	g_get_io_channel = true;
870 
871 	/* Create channels */
872 	set_thread(0);
873 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
874 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
875 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
876 
877 	set_thread(1);
878 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
879 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
880 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
881 
882 	/* Send two I/O. One of these gets queued by QoS. The other is sitting at the disk. */
883 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
884 	rc = spdk_bdev_write_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
885 	CU_ASSERT(rc == 0);
886 	set_thread(0);
887 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
888 	rc = spdk_bdev_write_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
889 	CU_ASSERT(rc == 0);
890 
891 	poll_threads();
892 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
893 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
894 
895 	/* Reset the bdev. */
896 	reset_status = SPDK_BDEV_IO_STATUS_PENDING;
897 	rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &reset_status);
898 	CU_ASSERT(rc == 0);
899 
900 	/* Complete any I/O that arrived at the disk */
901 	poll_threads();
902 	set_thread(1);
903 	stub_complete_io(g_bdev.io_target, 0);
904 	set_thread(0);
905 	stub_complete_io(g_bdev.io_target, 0);
906 	poll_threads();
907 
908 	CU_ASSERT(reset_status == SPDK_BDEV_IO_STATUS_SUCCESS);
909 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_FAILED);
910 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_FAILED);
911 
912 	/* Tear down the channels */
913 	set_thread(1);
914 	spdk_put_io_channel(io_ch[1]);
915 	set_thread(0);
916 	spdk_put_io_channel(io_ch[0]);
917 	poll_threads();
918 
919 	teardown_test();
920 }
921 
922 static void
923 enomem_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
924 {
925 	enum spdk_bdev_io_status *status = cb_arg;
926 
927 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
928 	spdk_bdev_free_io(bdev_io);
929 }
930 
931 static void
932 enomem(void)
933 {
934 	struct spdk_io_channel *io_ch;
935 	struct spdk_bdev_channel *bdev_ch;
936 	struct spdk_bdev_shared_resource *shared_resource;
937 	struct ut_bdev_channel *ut_ch;
938 	const uint32_t IO_ARRAY_SIZE = 64;
939 	const uint32_t AVAIL = 20;
940 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE], status_reset;
941 	uint32_t nomem_cnt, i;
942 	struct spdk_bdev_io *first_io;
943 	int rc;
944 
945 	setup_test();
946 
947 	set_thread(0);
948 	io_ch = spdk_bdev_get_io_channel(g_desc);
949 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
950 	shared_resource = bdev_ch->shared_resource;
951 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
952 	ut_ch->avail_cnt = AVAIL;
953 
954 	/* First submit a number of IOs equal to what the channel can support. */
955 	for (i = 0; i < AVAIL; i++) {
956 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
957 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
958 		CU_ASSERT(rc == 0);
959 	}
960 	CU_ASSERT(TAILQ_EMPTY(&shared_resource->nomem_io));
961 
962 	/*
963 	 * Next, submit one additional I/O.  This one should fail with ENOMEM and then go onto
964 	 *  the enomem_io list.
965 	 */
966 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
967 	rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
968 	CU_ASSERT(rc == 0);
969 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&shared_resource->nomem_io));
970 	first_io = TAILQ_FIRST(&shared_resource->nomem_io);
971 
972 	/*
973 	 * Now submit a bunch more I/O.  These should all fail with ENOMEM and get queued behind
974 	 *  the first_io above.
975 	 */
976 	for (i = AVAIL + 1; i < IO_ARRAY_SIZE; i++) {
977 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
978 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
979 		CU_ASSERT(rc == 0);
980 	}
981 
982 	/* Assert that first_io is still at the head of the list. */
983 	CU_ASSERT(TAILQ_FIRST(&shared_resource->nomem_io) == first_io);
984 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == (IO_ARRAY_SIZE - AVAIL));
985 	nomem_cnt = bdev_io_tailq_cnt(&shared_resource->nomem_io);
986 	CU_ASSERT(shared_resource->nomem_threshold == (AVAIL - NOMEM_THRESHOLD_COUNT));
987 
988 	/*
989 	 * Complete 1 I/O only.  The key check here is bdev_io_tailq_cnt - this should not have
990 	 *  changed since completing just 1 I/O should not trigger retrying the queued nomem_io
991 	 *  list.
992 	 */
993 	stub_complete_io(g_bdev.io_target, 1);
994 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == nomem_cnt);
995 
996 	/*
997 	 * Complete enough I/O to hit the nomem_theshold.  This should trigger retrying nomem_io,
998 	 *  and we should see I/O get resubmitted to the test bdev module.
999 	 */
1000 	stub_complete_io(g_bdev.io_target, NOMEM_THRESHOLD_COUNT - 1);
1001 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) < nomem_cnt);
1002 	nomem_cnt = bdev_io_tailq_cnt(&shared_resource->nomem_io);
1003 
1004 	/* Complete 1 I/O only.  This should not trigger retrying the queued nomem_io. */
1005 	stub_complete_io(g_bdev.io_target, 1);
1006 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == nomem_cnt);
1007 
1008 	/*
1009 	 * Send a reset and confirm that all I/O are completed, including the ones that
1010 	 *  were queued on the nomem_io list.
1011 	 */
1012 	status_reset = SPDK_BDEV_IO_STATUS_PENDING;
1013 	rc = spdk_bdev_reset(g_desc, io_ch, enomem_done, &status_reset);
1014 	poll_threads();
1015 	CU_ASSERT(rc == 0);
1016 	/* This will complete the reset. */
1017 	stub_complete_io(g_bdev.io_target, 0);
1018 
1019 	CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == 0);
1020 	CU_ASSERT(shared_resource->io_outstanding == 0);
1021 
1022 	spdk_put_io_channel(io_ch);
1023 	poll_threads();
1024 	teardown_test();
1025 }
1026 
1027 static void
1028 enomem_multi_bdev(void)
1029 {
1030 	struct spdk_io_channel *io_ch;
1031 	struct spdk_bdev_channel *bdev_ch;
1032 	struct spdk_bdev_shared_resource *shared_resource;
1033 	struct ut_bdev_channel *ut_ch;
1034 	const uint32_t IO_ARRAY_SIZE = 64;
1035 	const uint32_t AVAIL = 20;
1036 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE];
1037 	uint32_t i;
1038 	struct ut_bdev *second_bdev;
1039 	struct spdk_bdev_desc *second_desc = NULL;
1040 	struct spdk_bdev_channel *second_bdev_ch;
1041 	struct spdk_io_channel *second_ch;
1042 	int rc;
1043 
1044 	setup_test();
1045 
1046 	/* Register second bdev with the same io_target  */
1047 	second_bdev = calloc(1, sizeof(*second_bdev));
1048 	SPDK_CU_ASSERT_FATAL(second_bdev != NULL);
1049 	register_bdev(second_bdev, "ut_bdev2", g_bdev.io_target);
1050 	spdk_bdev_open(&second_bdev->bdev, true, NULL, NULL, &second_desc);
1051 	SPDK_CU_ASSERT_FATAL(second_desc != NULL);
1052 
1053 	set_thread(0);
1054 	io_ch = spdk_bdev_get_io_channel(g_desc);
1055 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
1056 	shared_resource = bdev_ch->shared_resource;
1057 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
1058 	ut_ch->avail_cnt = AVAIL;
1059 
1060 	second_ch = spdk_bdev_get_io_channel(second_desc);
1061 	second_bdev_ch = spdk_io_channel_get_ctx(second_ch);
1062 	SPDK_CU_ASSERT_FATAL(shared_resource == second_bdev_ch->shared_resource);
1063 
1064 	/* Saturate io_target through bdev A. */
1065 	for (i = 0; i < AVAIL; i++) {
1066 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
1067 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
1068 		CU_ASSERT(rc == 0);
1069 	}
1070 	CU_ASSERT(TAILQ_EMPTY(&shared_resource->nomem_io));
1071 
1072 	/*
1073 	 * Now submit I/O through the second bdev. This should fail with ENOMEM
1074 	 * and then go onto the nomem_io list.
1075 	 */
1076 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
1077 	rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
1078 	CU_ASSERT(rc == 0);
1079 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&shared_resource->nomem_io));
1080 
1081 	/* Complete first bdev's I/O. This should retry sending second bdev's nomem_io */
1082 	stub_complete_io(g_bdev.io_target, AVAIL);
1083 
1084 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&shared_resource->nomem_io));
1085 	CU_ASSERT(shared_resource->io_outstanding == 1);
1086 
1087 	/* Now complete our retried I/O  */
1088 	stub_complete_io(g_bdev.io_target, 1);
1089 	SPDK_CU_ASSERT_FATAL(shared_resource->io_outstanding == 0);
1090 
1091 	spdk_put_io_channel(io_ch);
1092 	spdk_put_io_channel(second_ch);
1093 	spdk_bdev_close(second_desc);
1094 	unregister_bdev(second_bdev);
1095 	poll_threads();
1096 	free(second_bdev);
1097 	teardown_test();
1098 }
1099 
1100 
1101 static void
1102 enomem_multi_io_target(void)
1103 {
1104 	struct spdk_io_channel *io_ch;
1105 	struct spdk_bdev_channel *bdev_ch;
1106 	struct ut_bdev_channel *ut_ch;
1107 	const uint32_t IO_ARRAY_SIZE = 64;
1108 	const uint32_t AVAIL = 20;
1109 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE];
1110 	uint32_t i;
1111 	int new_io_device;
1112 	struct ut_bdev *second_bdev;
1113 	struct spdk_bdev_desc *second_desc = NULL;
1114 	struct spdk_bdev_channel *second_bdev_ch;
1115 	struct spdk_io_channel *second_ch;
1116 	int rc;
1117 
1118 	setup_test();
1119 
1120 	/* Create new io_target and a second bdev using it */
1121 	spdk_io_device_register(&new_io_device, stub_create_ch, stub_destroy_ch,
1122 				sizeof(struct ut_bdev_channel), NULL);
1123 	second_bdev = calloc(1, sizeof(*second_bdev));
1124 	SPDK_CU_ASSERT_FATAL(second_bdev != NULL);
1125 	register_bdev(second_bdev, "ut_bdev2", &new_io_device);
1126 	spdk_bdev_open(&second_bdev->bdev, true, NULL, NULL, &second_desc);
1127 	SPDK_CU_ASSERT_FATAL(second_desc != NULL);
1128 
1129 	set_thread(0);
1130 	io_ch = spdk_bdev_get_io_channel(g_desc);
1131 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
1132 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
1133 	ut_ch->avail_cnt = AVAIL;
1134 
1135 	/* Different io_target should imply a different shared_resource */
1136 	second_ch = spdk_bdev_get_io_channel(second_desc);
1137 	second_bdev_ch = spdk_io_channel_get_ctx(second_ch);
1138 	SPDK_CU_ASSERT_FATAL(bdev_ch->shared_resource != second_bdev_ch->shared_resource);
1139 
1140 	/* Saturate io_target through bdev A. */
1141 	for (i = 0; i < AVAIL; i++) {
1142 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
1143 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
1144 		CU_ASSERT(rc == 0);
1145 	}
1146 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
1147 
1148 	/* Issue one more I/O to fill ENOMEM list. */
1149 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
1150 	rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
1151 	CU_ASSERT(rc == 0);
1152 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
1153 
1154 	/*
1155 	 * Now submit I/O through the second bdev. This should go through and complete
1156 	 * successfully because we're using a different io_device underneath.
1157 	 */
1158 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
1159 	rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
1160 	CU_ASSERT(rc == 0);
1161 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&second_bdev_ch->shared_resource->nomem_io));
1162 	stub_complete_io(second_bdev->io_target, 1);
1163 
1164 	/* Cleanup; Complete outstanding I/O. */
1165 	stub_complete_io(g_bdev.io_target, AVAIL);
1166 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
1167 	/* Complete the ENOMEM I/O */
1168 	stub_complete_io(g_bdev.io_target, 1);
1169 	CU_ASSERT(bdev_ch->shared_resource->io_outstanding == 0);
1170 
1171 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
1172 	CU_ASSERT(bdev_ch->shared_resource->io_outstanding == 0);
1173 	spdk_put_io_channel(io_ch);
1174 	spdk_put_io_channel(second_ch);
1175 	spdk_bdev_close(second_desc);
1176 	unregister_bdev(second_bdev);
1177 	spdk_io_device_unregister(&new_io_device, NULL);
1178 	poll_threads();
1179 	free(second_bdev);
1180 	teardown_test();
1181 }
1182 
1183 static void
1184 qos_dynamic_enable_done(void *cb_arg, int status)
1185 {
1186 	int *rc = cb_arg;
1187 	*rc = status;
1188 }
1189 
1190 static void
1191 qos_dynamic_enable(void)
1192 {
1193 	struct spdk_io_channel *io_ch[2];
1194 	struct spdk_bdev_channel *bdev_ch[2];
1195 	struct spdk_bdev *bdev;
1196 	enum spdk_bdev_io_status bdev_io_status[2];
1197 	uint64_t limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES] = {};
1198 	int status, second_status, rc, i;
1199 
1200 	setup_test();
1201 	MOCK_SET(spdk_get_ticks, 0);
1202 
1203 	for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
1204 		limits[i] = UINT64_MAX;
1205 	}
1206 
1207 	bdev = &g_bdev.bdev;
1208 
1209 	g_get_io_channel = true;
1210 
1211 	/* Create channels */
1212 	set_thread(0);
1213 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
1214 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
1215 	CU_ASSERT(bdev_ch[0]->flags == 0);
1216 
1217 	set_thread(1);
1218 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
1219 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
1220 	CU_ASSERT(bdev_ch[1]->flags == 0);
1221 
1222 	set_thread(0);
1223 
1224 	/*
1225 	 * Enable QoS: Read/Write IOPS, Read/Write byte,
1226 	 * Read only byte and Write only byte per second
1227 	 * rate limits.
1228 	 * More than 10 I/Os allowed per timeslice.
1229 	 */
1230 	status = -1;
1231 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000;
1232 	limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 100;
1233 	limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT] = 100;
1234 	limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT] = 10;
1235 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1236 	poll_threads();
1237 	CU_ASSERT(status == 0);
1238 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1239 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1240 
1241 	/*
1242 	 * Submit and complete 10 I/O to fill the QoS allotment for this timeslice.
1243 	 * Additional I/O will then be queued.
1244 	 */
1245 	set_thread(0);
1246 	for (i = 0; i < 10; i++) {
1247 		bdev_io_status[0] = SPDK_BDEV_IO_STATUS_PENDING;
1248 		rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &bdev_io_status[0]);
1249 		CU_ASSERT(rc == 0);
1250 		CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_PENDING);
1251 		poll_thread(0);
1252 		stub_complete_io(g_bdev.io_target, 0);
1253 		CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_SUCCESS);
1254 	}
1255 
1256 	/*
1257 	 * Send two more I/O.  These I/O will be queued since the current timeslice allotment has been
1258 	 * filled already.  We want to test that when QoS is disabled that these two I/O:
1259 	 *  1) are not aborted
1260 	 *  2) are sent back to their original thread for resubmission
1261 	 */
1262 	bdev_io_status[0] = SPDK_BDEV_IO_STATUS_PENDING;
1263 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &bdev_io_status[0]);
1264 	CU_ASSERT(rc == 0);
1265 	CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_PENDING);
1266 	set_thread(1);
1267 	bdev_io_status[1] = SPDK_BDEV_IO_STATUS_PENDING;
1268 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &bdev_io_status[1]);
1269 	CU_ASSERT(rc == 0);
1270 	CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_PENDING);
1271 	poll_threads();
1272 
1273 	/*
1274 	 * Disable QoS: Read/Write IOPS, Read/Write byte,
1275 	 * Read only byte rate limits
1276 	 */
1277 	status = -1;
1278 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0;
1279 	limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 0;
1280 	limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT] = 0;
1281 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1282 	poll_threads();
1283 	CU_ASSERT(status == 0);
1284 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1285 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1286 
1287 	/* Disable QoS: Write only Byte per second rate limit */
1288 	status = -1;
1289 	limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT] = 0;
1290 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1291 	poll_threads();
1292 	CU_ASSERT(status == 0);
1293 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0);
1294 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0);
1295 
1296 	/*
1297 	 * All I/O should have been resubmitted back on their original thread.  Complete
1298 	 *  all I/O on thread 0, and ensure that only the thread 0 I/O was completed.
1299 	 */
1300 	set_thread(0);
1301 	stub_complete_io(g_bdev.io_target, 0);
1302 	poll_threads();
1303 	CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_SUCCESS);
1304 	CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_PENDING);
1305 
1306 	/* Now complete all I/O on thread 1 and ensure the thread 1 I/O was completed. */
1307 	set_thread(1);
1308 	stub_complete_io(g_bdev.io_target, 0);
1309 	poll_threads();
1310 	CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_SUCCESS);
1311 
1312 	/* Disable QoS again */
1313 	status = -1;
1314 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0;
1315 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1316 	poll_threads();
1317 	CU_ASSERT(status == 0); /* This should succeed */
1318 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0);
1319 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0);
1320 
1321 	/* Enable QoS on thread 0 */
1322 	status = -1;
1323 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000;
1324 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1325 	poll_threads();
1326 	CU_ASSERT(status == 0);
1327 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1328 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1329 
1330 	/* Disable QoS on thread 1 */
1331 	set_thread(1);
1332 	status = -1;
1333 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0;
1334 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1335 	/* Don't poll yet. This should leave the channels with QoS enabled */
1336 	CU_ASSERT(status == -1);
1337 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1338 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1339 
1340 	/* Enable QoS. This should immediately fail because the previous disable QoS hasn't completed. */
1341 	second_status = 0;
1342 	limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 10;
1343 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &second_status);
1344 	poll_threads();
1345 	CU_ASSERT(status == 0); /* The disable should succeed */
1346 	CU_ASSERT(second_status < 0); /* The enable should fail */
1347 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0);
1348 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0);
1349 
1350 	/* Enable QoS on thread 1. This should succeed now that the disable has completed. */
1351 	status = -1;
1352 	limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000;
1353 	spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
1354 	poll_threads();
1355 	CU_ASSERT(status == 0);
1356 	CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
1357 	CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
1358 
1359 	/* Tear down the channels */
1360 	set_thread(0);
1361 	spdk_put_io_channel(io_ch[0]);
1362 	set_thread(1);
1363 	spdk_put_io_channel(io_ch[1]);
1364 	poll_threads();
1365 
1366 	set_thread(0);
1367 	teardown_test();
1368 }
1369 
1370 static void
1371 histogram_status_cb(void *cb_arg, int status)
1372 {
1373 	g_status = status;
1374 }
1375 
1376 static void
1377 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
1378 {
1379 	g_status = status;
1380 	g_histogram = histogram;
1381 }
1382 
1383 static void
1384 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
1385 		   uint64_t total, uint64_t so_far)
1386 {
1387 	g_count += count;
1388 }
1389 
1390 static void
1391 bdev_histograms_mt(void)
1392 {
1393 	struct spdk_io_channel *ch[2];
1394 	struct spdk_histogram_data *histogram;
1395 	uint8_t buf[4096];
1396 	int status = false;
1397 	int rc;
1398 
1399 
1400 	setup_test();
1401 
1402 	set_thread(0);
1403 	ch[0] = spdk_bdev_get_io_channel(g_desc);
1404 	CU_ASSERT(ch[0] != NULL);
1405 
1406 	set_thread(1);
1407 	ch[1] = spdk_bdev_get_io_channel(g_desc);
1408 	CU_ASSERT(ch[1] != NULL);
1409 
1410 
1411 	/* Enable histogram */
1412 	spdk_bdev_histogram_enable(&g_bdev.bdev, histogram_status_cb, NULL, true);
1413 	poll_threads();
1414 	CU_ASSERT(g_status == 0);
1415 	CU_ASSERT(g_bdev.bdev.internal.histogram_enabled == true);
1416 
1417 	/* Allocate histogram */
1418 	histogram = spdk_histogram_data_alloc();
1419 
1420 	/* Check if histogram is zeroed */
1421 	spdk_bdev_histogram_get(&g_bdev.bdev, histogram, histogram_data_cb, NULL);
1422 	poll_threads();
1423 	CU_ASSERT(g_status == 0);
1424 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
1425 
1426 	g_count = 0;
1427 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
1428 
1429 	CU_ASSERT(g_count == 0);
1430 
1431 	set_thread(0);
1432 	rc = spdk_bdev_write_blocks(g_desc, ch[0], &buf, 0, 1, io_during_io_done, &status);
1433 	CU_ASSERT(rc == 0);
1434 
1435 	spdk_delay_us(10);
1436 	stub_complete_io(g_bdev.io_target, 1);
1437 	poll_threads();
1438 	CU_ASSERT(status == true);
1439 
1440 
1441 	set_thread(1);
1442 	rc = spdk_bdev_read_blocks(g_desc, ch[1], &buf, 0, 1, io_during_io_done, &status);
1443 	CU_ASSERT(rc == 0);
1444 
1445 	spdk_delay_us(10);
1446 	stub_complete_io(g_bdev.io_target, 1);
1447 	poll_threads();
1448 	CU_ASSERT(status == true);
1449 
1450 	set_thread(0);
1451 
1452 	/* Check if histogram gathered data from all I/O channels */
1453 	spdk_bdev_histogram_get(&g_bdev.bdev, histogram, histogram_data_cb, NULL);
1454 	poll_threads();
1455 	CU_ASSERT(g_status == 0);
1456 	CU_ASSERT(g_bdev.bdev.internal.histogram_enabled == true);
1457 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
1458 
1459 	g_count = 0;
1460 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
1461 	CU_ASSERT(g_count == 2);
1462 
1463 	/* Disable histogram */
1464 	spdk_bdev_histogram_enable(&g_bdev.bdev, histogram_status_cb, NULL, false);
1465 	poll_threads();
1466 	CU_ASSERT(g_status == 0);
1467 	CU_ASSERT(g_bdev.bdev.internal.histogram_enabled == false);
1468 
1469 	spdk_histogram_data_free(g_histogram);
1470 }
1471 
1472 int
1473 main(int argc, char **argv)
1474 {
1475 	CU_pSuite	suite = NULL;
1476 	unsigned int	num_failures;
1477 
1478 	if (CU_initialize_registry() != CUE_SUCCESS) {
1479 		return CU_get_error();
1480 	}
1481 
1482 	suite = CU_add_suite("bdev", NULL, NULL);
1483 	if (suite == NULL) {
1484 		CU_cleanup_registry();
1485 		return CU_get_error();
1486 	}
1487 
1488 	if (
1489 		CU_add_test(suite, "basic", basic) == NULL ||
1490 		CU_add_test(suite, "unregister_and_close", unregister_and_close) == NULL ||
1491 		CU_add_test(suite, "basic_qos", basic_qos) == NULL ||
1492 		CU_add_test(suite, "put_channel_during_reset", put_channel_during_reset) == NULL ||
1493 		CU_add_test(suite, "aborted_reset", aborted_reset) == NULL ||
1494 		CU_add_test(suite, "io_during_reset", io_during_reset) == NULL ||
1495 		CU_add_test(suite, "io_during_qos_queue", io_during_qos_queue) == NULL ||
1496 		CU_add_test(suite, "io_during_qos_reset", io_during_qos_reset) == NULL ||
1497 		CU_add_test(suite, "enomem", enomem) == NULL ||
1498 		CU_add_test(suite, "enomem_multi_bdev", enomem_multi_bdev) == NULL ||
1499 		CU_add_test(suite, "enomem_multi_io_target", enomem_multi_io_target) == NULL ||
1500 		CU_add_test(suite, "qos_dynamic_enable", qos_dynamic_enable) == NULL ||
1501 		CU_add_test(suite, "bdev_histograms_mt", bdev_histograms_mt) == NULL
1502 	) {
1503 		CU_cleanup_registry();
1504 		return CU_get_error();
1505 	}
1506 
1507 	CU_basic_set_mode(CU_BRM_VERBOSE);
1508 	CU_basic_run_tests();
1509 	num_failures = CU_get_number_of_failures();
1510 	CU_cleanup_registry();
1511 	return num_failures;
1512 }
1513