1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk_cunit.h" 35 36 #include "common/lib/ut_multithread.c" 37 #include "unit/lib/json_mock.c" 38 39 #include "spdk/config.h" 40 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */ 41 #undef SPDK_CONFIG_VTUNE 42 43 #include "bdev/bdev.c" 44 45 #define BDEV_UT_NUM_THREADS 3 46 47 DEFINE_STUB(spdk_conf_find_section, struct spdk_conf_section *, (struct spdk_conf *cp, 48 const char *name), NULL); 49 DEFINE_STUB(spdk_conf_section_get_nmval, char *, 50 (struct spdk_conf_section *sp, const char *key, int idx1, int idx2), NULL); 51 DEFINE_STUB(spdk_conf_section_get_intval, int, (struct spdk_conf_section *sp, const char *key), -1); 52 53 struct spdk_trace_histories *g_trace_histories; 54 DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn)); 55 DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix)); 56 DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix)); 57 DEFINE_STUB_V(spdk_trace_register_description, (const char *name, const char *short_name, 58 uint16_t tpoint_id, uint8_t owner_type, 59 uint8_t object_type, uint8_t new_object, 60 uint8_t arg1_is_ptr, const char *arg1_name)); 61 DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id, 62 uint32_t size, uint64_t object_id, uint64_t arg1)); 63 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0); 64 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL); 65 66 struct ut_bdev { 67 struct spdk_bdev bdev; 68 void *io_target; 69 }; 70 71 struct ut_bdev_channel { 72 TAILQ_HEAD(, spdk_bdev_io) outstanding_io; 73 uint32_t outstanding_cnt; 74 uint32_t avail_cnt; 75 }; 76 77 int g_io_device; 78 struct ut_bdev g_bdev; 79 struct spdk_bdev_desc *g_desc; 80 bool g_teardown_done = false; 81 bool g_get_io_channel = true; 82 bool g_create_ch = true; 83 bool g_init_complete_called = false; 84 bool g_fini_start_called = true; 85 int g_status = 0; 86 int g_count = 0; 87 struct spdk_histogram_data *g_histogram = NULL; 88 89 static int 90 stub_create_ch(void *io_device, void *ctx_buf) 91 { 92 struct ut_bdev_channel *ch = ctx_buf; 93 94 if (g_create_ch == false) { 95 return -1; 96 } 97 98 TAILQ_INIT(&ch->outstanding_io); 99 ch->outstanding_cnt = 0; 100 /* 101 * When avail gets to 0, the submit_request function will return ENOMEM. 102 * Most tests to not want ENOMEM to occur, so by default set this to a 103 * big value that won't get hit. The ENOMEM tests can then override this 104 * value to something much smaller to induce ENOMEM conditions. 105 */ 106 ch->avail_cnt = 2048; 107 return 0; 108 } 109 110 static void 111 stub_destroy_ch(void *io_device, void *ctx_buf) 112 { 113 } 114 115 static struct spdk_io_channel * 116 stub_get_io_channel(void *ctx) 117 { 118 struct ut_bdev *ut_bdev = ctx; 119 120 if (g_get_io_channel == true) { 121 return spdk_get_io_channel(ut_bdev->io_target); 122 } else { 123 return NULL; 124 } 125 } 126 127 static int 128 stub_destruct(void *ctx) 129 { 130 return 0; 131 } 132 133 static void 134 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io) 135 { 136 struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 137 138 if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) { 139 struct spdk_bdev_io *io; 140 141 while (!TAILQ_EMPTY(&ch->outstanding_io)) { 142 io = TAILQ_FIRST(&ch->outstanding_io); 143 TAILQ_REMOVE(&ch->outstanding_io, io, module_link); 144 ch->outstanding_cnt--; 145 spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_FAILED); 146 ch->avail_cnt++; 147 } 148 } 149 150 if (ch->avail_cnt > 0) { 151 TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link); 152 ch->outstanding_cnt++; 153 ch->avail_cnt--; 154 } else { 155 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_NOMEM); 156 } 157 } 158 159 static uint32_t 160 stub_complete_io(void *io_target, uint32_t num_to_complete) 161 { 162 struct spdk_io_channel *_ch = spdk_get_io_channel(io_target); 163 struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 164 struct spdk_bdev_io *io; 165 bool complete_all = (num_to_complete == 0); 166 uint32_t num_completed = 0; 167 168 while (complete_all || num_completed < num_to_complete) { 169 if (TAILQ_EMPTY(&ch->outstanding_io)) { 170 break; 171 } 172 io = TAILQ_FIRST(&ch->outstanding_io); 173 TAILQ_REMOVE(&ch->outstanding_io, io, module_link); 174 ch->outstanding_cnt--; 175 spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_SUCCESS); 176 ch->avail_cnt++; 177 num_completed++; 178 } 179 180 spdk_put_io_channel(_ch); 181 return num_completed; 182 } 183 184 static struct spdk_bdev_fn_table fn_table = { 185 .get_io_channel = stub_get_io_channel, 186 .destruct = stub_destruct, 187 .submit_request = stub_submit_request, 188 }; 189 190 static int 191 module_init(void) 192 { 193 return 0; 194 } 195 196 static void 197 module_fini(void) 198 { 199 } 200 201 static void 202 init_complete(void) 203 { 204 g_init_complete_called = true; 205 } 206 207 static void 208 fini_start(void) 209 { 210 g_fini_start_called = true; 211 } 212 213 struct spdk_bdev_module bdev_ut_if = { 214 .name = "bdev_ut", 215 .module_init = module_init, 216 .module_fini = module_fini, 217 .init_complete = init_complete, 218 .fini_start = fini_start, 219 }; 220 221 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if) 222 223 static void 224 register_bdev(struct ut_bdev *ut_bdev, char *name, void *io_target) 225 { 226 memset(ut_bdev, 0, sizeof(*ut_bdev)); 227 228 ut_bdev->io_target = io_target; 229 ut_bdev->bdev.ctxt = ut_bdev; 230 ut_bdev->bdev.name = name; 231 ut_bdev->bdev.fn_table = &fn_table; 232 ut_bdev->bdev.module = &bdev_ut_if; 233 ut_bdev->bdev.blocklen = 4096; 234 ut_bdev->bdev.blockcnt = 1024; 235 236 spdk_bdev_register(&ut_bdev->bdev); 237 } 238 239 static void 240 unregister_bdev(struct ut_bdev *ut_bdev) 241 { 242 /* Handle any deferred messages. */ 243 poll_threads(); 244 spdk_bdev_unregister(&ut_bdev->bdev, NULL, NULL); 245 } 246 247 static void 248 bdev_init_cb(void *done, int rc) 249 { 250 CU_ASSERT(rc == 0); 251 *(bool *)done = true; 252 } 253 254 static void 255 setup_test(void) 256 { 257 bool done = false; 258 259 allocate_threads(BDEV_UT_NUM_THREADS); 260 set_thread(0); 261 spdk_bdev_initialize(bdev_init_cb, &done); 262 spdk_io_device_register(&g_io_device, stub_create_ch, stub_destroy_ch, 263 sizeof(struct ut_bdev_channel), NULL); 264 register_bdev(&g_bdev, "ut_bdev", &g_io_device); 265 spdk_bdev_open(&g_bdev.bdev, true, NULL, NULL, &g_desc); 266 } 267 268 static void 269 finish_cb(void *cb_arg) 270 { 271 g_teardown_done = true; 272 } 273 274 static void 275 teardown_test(void) 276 { 277 set_thread(0); 278 g_teardown_done = false; 279 spdk_bdev_close(g_desc); 280 g_desc = NULL; 281 unregister_bdev(&g_bdev); 282 spdk_io_device_unregister(&g_io_device, NULL); 283 spdk_bdev_finish(finish_cb, NULL); 284 poll_threads(); 285 memset(&g_bdev, 0, sizeof(g_bdev)); 286 CU_ASSERT(g_teardown_done == true); 287 g_teardown_done = false; 288 free_threads(); 289 } 290 291 static uint32_t 292 bdev_io_tailq_cnt(bdev_io_tailq_t *tailq) 293 { 294 struct spdk_bdev_io *io; 295 uint32_t cnt = 0; 296 297 TAILQ_FOREACH(io, tailq, internal.link) { 298 cnt++; 299 } 300 301 return cnt; 302 } 303 304 static void 305 basic(void) 306 { 307 g_init_complete_called = false; 308 setup_test(); 309 CU_ASSERT(g_init_complete_called == true); 310 311 set_thread(0); 312 313 g_get_io_channel = false; 314 g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc); 315 CU_ASSERT(g_ut_threads[0].ch == NULL); 316 317 g_get_io_channel = true; 318 g_create_ch = false; 319 g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc); 320 CU_ASSERT(g_ut_threads[0].ch == NULL); 321 322 g_get_io_channel = true; 323 g_create_ch = true; 324 g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc); 325 CU_ASSERT(g_ut_threads[0].ch != NULL); 326 spdk_put_io_channel(g_ut_threads[0].ch); 327 328 g_fini_start_called = false; 329 teardown_test(); 330 CU_ASSERT(g_fini_start_called == true); 331 } 332 333 static void 334 _bdev_removed(void *done) 335 { 336 *(bool *)done = true; 337 } 338 339 static void 340 _bdev_unregistered(void *done, int rc) 341 { 342 CU_ASSERT(rc == 0); 343 *(bool *)done = true; 344 } 345 346 static void 347 unregister_and_close(void) 348 { 349 bool done, remove_notify; 350 struct spdk_bdev_desc *desc; 351 352 setup_test(); 353 set_thread(0); 354 355 /* setup_test() automatically opens the bdev, 356 * but this test needs to do that in a different 357 * way. */ 358 spdk_bdev_close(g_desc); 359 poll_threads(); 360 361 remove_notify = false; 362 spdk_bdev_open(&g_bdev.bdev, true, _bdev_removed, &remove_notify, &desc); 363 CU_ASSERT(remove_notify == false); 364 CU_ASSERT(desc != NULL); 365 366 /* There is an open descriptor on the device. Unregister it, 367 * which can't proceed until the descriptor is closed. */ 368 done = false; 369 spdk_bdev_unregister(&g_bdev.bdev, _bdev_unregistered, &done); 370 /* No polling has occurred, so neither of these should execute */ 371 CU_ASSERT(remove_notify == false); 372 CU_ASSERT(done == false); 373 374 /* Prior to the unregister completing, close the descriptor */ 375 spdk_bdev_close(desc); 376 377 /* Poll the threads to allow all events to be processed */ 378 poll_threads(); 379 380 /* Remove notify should not have been called because the 381 * descriptor is already closed. */ 382 CU_ASSERT(remove_notify == false); 383 384 /* The unregister should have completed */ 385 CU_ASSERT(done == true); 386 387 spdk_bdev_finish(finish_cb, NULL); 388 poll_threads(); 389 free_threads(); 390 } 391 392 static void 393 reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 394 { 395 bool *done = cb_arg; 396 397 CU_ASSERT(success == true); 398 *done = true; 399 spdk_bdev_free_io(bdev_io); 400 } 401 402 static void 403 put_channel_during_reset(void) 404 { 405 struct spdk_io_channel *io_ch; 406 bool done = false; 407 408 setup_test(); 409 410 set_thread(0); 411 io_ch = spdk_bdev_get_io_channel(g_desc); 412 CU_ASSERT(io_ch != NULL); 413 414 /* 415 * Start a reset, but then put the I/O channel before 416 * the deferred messages for the reset get a chance to 417 * execute. 418 */ 419 spdk_bdev_reset(g_desc, io_ch, reset_done, &done); 420 spdk_put_io_channel(io_ch); 421 poll_threads(); 422 stub_complete_io(g_bdev.io_target, 0); 423 424 teardown_test(); 425 } 426 427 static void 428 aborted_reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 429 { 430 enum spdk_bdev_io_status *status = cb_arg; 431 432 *status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED; 433 spdk_bdev_free_io(bdev_io); 434 } 435 436 static void 437 aborted_reset(void) 438 { 439 struct spdk_io_channel *io_ch[2]; 440 enum spdk_bdev_io_status status1 = SPDK_BDEV_IO_STATUS_PENDING, 441 status2 = SPDK_BDEV_IO_STATUS_PENDING; 442 443 setup_test(); 444 445 set_thread(0); 446 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 447 CU_ASSERT(io_ch[0] != NULL); 448 spdk_bdev_reset(g_desc, io_ch[0], aborted_reset_done, &status1); 449 poll_threads(); 450 CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL); 451 452 /* 453 * First reset has been submitted on ch0. Now submit a second 454 * reset on ch1 which will get queued since there is already a 455 * reset in progress. 456 */ 457 set_thread(1); 458 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 459 CU_ASSERT(io_ch[1] != NULL); 460 spdk_bdev_reset(g_desc, io_ch[1], aborted_reset_done, &status2); 461 poll_threads(); 462 CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL); 463 464 /* 465 * Now destroy ch1. This will abort the queued reset. Check that 466 * the second reset was completed with failed status. Also check 467 * that bdev->internal.reset_in_progress != NULL, since the 468 * original reset has not been completed yet. This ensures that 469 * the bdev code is correctly noticing that the failed reset is 470 * *not* the one that had been submitted to the bdev module. 471 */ 472 set_thread(1); 473 spdk_put_io_channel(io_ch[1]); 474 poll_threads(); 475 CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_FAILED); 476 CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL); 477 478 /* 479 * Now complete the first reset, verify that it completed with SUCCESS 480 * status and that bdev->internal.reset_in_progress is also set back to NULL. 481 */ 482 set_thread(0); 483 spdk_put_io_channel(io_ch[0]); 484 stub_complete_io(g_bdev.io_target, 0); 485 poll_threads(); 486 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS); 487 CU_ASSERT(g_bdev.bdev.internal.reset_in_progress == NULL); 488 489 teardown_test(); 490 } 491 492 static void 493 io_during_io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 494 { 495 enum spdk_bdev_io_status *status = cb_arg; 496 497 *status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED; 498 spdk_bdev_free_io(bdev_io); 499 } 500 501 static void 502 io_during_reset(void) 503 { 504 struct spdk_io_channel *io_ch[2]; 505 struct spdk_bdev_channel *bdev_ch[2]; 506 enum spdk_bdev_io_status status0, status1, status_reset; 507 int rc; 508 509 setup_test(); 510 511 /* 512 * First test normal case - submit an I/O on each of two channels (with no resets) 513 * and verify they complete successfully. 514 */ 515 set_thread(0); 516 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 517 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 518 CU_ASSERT(bdev_ch[0]->flags == 0); 519 status0 = SPDK_BDEV_IO_STATUS_PENDING; 520 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0); 521 CU_ASSERT(rc == 0); 522 523 set_thread(1); 524 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 525 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 526 CU_ASSERT(bdev_ch[1]->flags == 0); 527 status1 = SPDK_BDEV_IO_STATUS_PENDING; 528 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1); 529 CU_ASSERT(rc == 0); 530 531 poll_threads(); 532 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING); 533 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING); 534 535 set_thread(0); 536 stub_complete_io(g_bdev.io_target, 0); 537 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS); 538 539 set_thread(1); 540 stub_complete_io(g_bdev.io_target, 0); 541 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS); 542 543 /* 544 * Now submit a reset, and leave it pending while we submit I/O on two different 545 * channels. These I/O should be failed by the bdev layer since the reset is in 546 * progress. 547 */ 548 set_thread(0); 549 status_reset = SPDK_BDEV_IO_STATUS_PENDING; 550 rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &status_reset); 551 CU_ASSERT(rc == 0); 552 553 CU_ASSERT(bdev_ch[0]->flags == 0); 554 CU_ASSERT(bdev_ch[1]->flags == 0); 555 poll_threads(); 556 CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_RESET_IN_PROGRESS); 557 CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_RESET_IN_PROGRESS); 558 559 set_thread(0); 560 status0 = SPDK_BDEV_IO_STATUS_PENDING; 561 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0); 562 CU_ASSERT(rc == 0); 563 564 set_thread(1); 565 status1 = SPDK_BDEV_IO_STATUS_PENDING; 566 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1); 567 CU_ASSERT(rc == 0); 568 569 /* 570 * A reset is in progress so these read I/O should complete with failure. Note that we 571 * need to poll_threads() since I/O completed inline have their completion deferred. 572 */ 573 poll_threads(); 574 CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING); 575 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_FAILED); 576 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_FAILED); 577 578 /* 579 * Complete the reset 580 */ 581 set_thread(0); 582 stub_complete_io(g_bdev.io_target, 0); 583 584 /* 585 * Only poll thread 0. We should not get a completion. 586 */ 587 poll_thread(0); 588 CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING); 589 590 /* 591 * Poll both thread 0 and 1 so the messages can propagate and we 592 * get a completion. 593 */ 594 poll_threads(); 595 CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_SUCCESS); 596 597 spdk_put_io_channel(io_ch[0]); 598 set_thread(1); 599 spdk_put_io_channel(io_ch[1]); 600 poll_threads(); 601 602 teardown_test(); 603 } 604 605 static void 606 basic_qos(void) 607 { 608 struct spdk_io_channel *io_ch[2]; 609 struct spdk_bdev_channel *bdev_ch[2]; 610 struct spdk_bdev *bdev; 611 enum spdk_bdev_io_status status; 612 int rc; 613 614 setup_test(); 615 616 /* Enable QoS */ 617 bdev = &g_bdev.bdev; 618 bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos)); 619 SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL); 620 TAILQ_INIT(&bdev->internal.qos->queued); 621 /* 622 * Enable read/write IOPS, read only byte per second and 623 * read/write byte per second rate limits. 624 * In this case, all rate limits will take equal effect. 625 */ 626 /* 2000 read/write I/O per second, or 2 per millisecond */ 627 bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 2000; 628 /* 8K read/write byte per millisecond with 4K block size */ 629 bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 8192000; 630 /* 8K read only byte per millisecond with 4K block size */ 631 bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT].limit = 8192000; 632 633 g_get_io_channel = true; 634 635 set_thread(0); 636 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 637 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 638 CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED); 639 640 set_thread(1); 641 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 642 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 643 CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED); 644 645 /* 646 * Send an I/O on thread 0, which is where the QoS thread is running. 647 */ 648 set_thread(0); 649 status = SPDK_BDEV_IO_STATUS_PENDING; 650 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status); 651 CU_ASSERT(rc == 0); 652 CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING); 653 poll_threads(); 654 stub_complete_io(g_bdev.io_target, 0); 655 poll_threads(); 656 CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS); 657 658 /* Send an I/O on thread 1. The QoS thread is not running here. */ 659 status = SPDK_BDEV_IO_STATUS_PENDING; 660 set_thread(1); 661 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status); 662 CU_ASSERT(rc == 0); 663 CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING); 664 poll_threads(); 665 /* Complete I/O on thread 1. This should not complete the I/O we submitted */ 666 stub_complete_io(g_bdev.io_target, 0); 667 poll_threads(); 668 CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING); 669 /* Now complete I/O on thread 0 */ 670 set_thread(0); 671 poll_threads(); 672 stub_complete_io(g_bdev.io_target, 0); 673 poll_threads(); 674 CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS); 675 676 /* 677 * Close the descriptor only, which should stop the qos channel as 678 * the last descriptor removed. 679 */ 680 spdk_bdev_close(g_desc); 681 poll_threads(); 682 CU_ASSERT(bdev->internal.qos->ch == NULL); 683 684 /* 685 * Open the bdev again which shall setup the qos channel as the 686 * channels are valid. 687 */ 688 spdk_bdev_open(bdev, true, NULL, NULL, &g_desc); 689 poll_threads(); 690 CU_ASSERT(bdev->internal.qos->ch != NULL); 691 692 /* Tear down the channels */ 693 set_thread(0); 694 spdk_put_io_channel(io_ch[0]); 695 set_thread(1); 696 spdk_put_io_channel(io_ch[1]); 697 poll_threads(); 698 set_thread(0); 699 700 /* Close the descriptor, which should stop the qos channel */ 701 spdk_bdev_close(g_desc); 702 poll_threads(); 703 CU_ASSERT(bdev->internal.qos->ch == NULL); 704 705 /* Open the bdev again, no qos channel setup without valid channels. */ 706 spdk_bdev_open(bdev, true, NULL, NULL, &g_desc); 707 poll_threads(); 708 CU_ASSERT(bdev->internal.qos->ch == NULL); 709 710 /* Create the channels in reverse order. */ 711 set_thread(1); 712 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 713 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 714 CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED); 715 716 set_thread(0); 717 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 718 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 719 CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED); 720 721 /* Confirm that the qos thread is now thread 1 */ 722 CU_ASSERT(bdev->internal.qos->ch == bdev_ch[1]); 723 724 /* Tear down the channels */ 725 set_thread(0); 726 spdk_put_io_channel(io_ch[0]); 727 set_thread(1); 728 spdk_put_io_channel(io_ch[1]); 729 poll_threads(); 730 731 set_thread(0); 732 733 teardown_test(); 734 } 735 736 static void 737 io_during_qos_queue(void) 738 { 739 struct spdk_io_channel *io_ch[2]; 740 struct spdk_bdev_channel *bdev_ch[2]; 741 struct spdk_bdev *bdev; 742 enum spdk_bdev_io_status status0, status1, status2; 743 int rc; 744 745 setup_test(); 746 MOCK_SET(spdk_get_ticks, 0); 747 748 /* Enable QoS */ 749 bdev = &g_bdev.bdev; 750 bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos)); 751 SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL); 752 TAILQ_INIT(&bdev->internal.qos->queued); 753 /* 754 * Enable read/write IOPS, read only byte per sec, write only 755 * byte per sec and read/write byte per sec rate limits. 756 * In this case, both read only and write only byte per sec 757 * rate limit will take effect. 758 */ 759 /* 4000 read/write I/O per second, or 4 per millisecond */ 760 bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 4000; 761 /* 8K byte per millisecond with 4K block size */ 762 bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 8192000; 763 /* 4K byte per millisecond with 4K block size */ 764 bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT].limit = 4096000; 765 /* 4K byte per millisecond with 4K block size */ 766 bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT].limit = 4096000; 767 768 g_get_io_channel = true; 769 770 /* Create channels */ 771 set_thread(0); 772 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 773 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 774 CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED); 775 776 set_thread(1); 777 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 778 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 779 CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED); 780 781 /* Send two read I/Os */ 782 status1 = SPDK_BDEV_IO_STATUS_PENDING; 783 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1); 784 CU_ASSERT(rc == 0); 785 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING); 786 set_thread(0); 787 status0 = SPDK_BDEV_IO_STATUS_PENDING; 788 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0); 789 CU_ASSERT(rc == 0); 790 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING); 791 /* Send one write I/O */ 792 status2 = SPDK_BDEV_IO_STATUS_PENDING; 793 rc = spdk_bdev_write_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status2); 794 CU_ASSERT(rc == 0); 795 CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_PENDING); 796 797 /* Complete any I/O that arrived at the disk */ 798 poll_threads(); 799 set_thread(1); 800 stub_complete_io(g_bdev.io_target, 0); 801 set_thread(0); 802 stub_complete_io(g_bdev.io_target, 0); 803 poll_threads(); 804 805 /* Only one of the two read I/Os should complete. (logical XOR) */ 806 if (status0 == SPDK_BDEV_IO_STATUS_SUCCESS) { 807 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING); 808 } else { 809 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS); 810 } 811 /* The write I/O should complete. */ 812 CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_SUCCESS); 813 814 /* Advance in time by a millisecond */ 815 spdk_delay_us(1000); 816 817 /* Complete more I/O */ 818 poll_threads(); 819 set_thread(1); 820 stub_complete_io(g_bdev.io_target, 0); 821 set_thread(0); 822 stub_complete_io(g_bdev.io_target, 0); 823 poll_threads(); 824 825 /* Now the second read I/O should be done */ 826 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS); 827 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS); 828 829 /* Tear down the channels */ 830 set_thread(1); 831 spdk_put_io_channel(io_ch[1]); 832 set_thread(0); 833 spdk_put_io_channel(io_ch[0]); 834 poll_threads(); 835 836 teardown_test(); 837 } 838 839 static void 840 io_during_qos_reset(void) 841 { 842 struct spdk_io_channel *io_ch[2]; 843 struct spdk_bdev_channel *bdev_ch[2]; 844 struct spdk_bdev *bdev; 845 enum spdk_bdev_io_status status0, status1, reset_status; 846 int rc; 847 848 setup_test(); 849 MOCK_SET(spdk_get_ticks, 0); 850 851 /* Enable QoS */ 852 bdev = &g_bdev.bdev; 853 bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos)); 854 SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL); 855 TAILQ_INIT(&bdev->internal.qos->queued); 856 /* 857 * Enable read/write IOPS, write only byte per sec and 858 * read/write byte per second rate limits. 859 * In this case, read/write byte per second rate limit will 860 * take effect first. 861 */ 862 /* 2000 read/write I/O per second, or 2 per millisecond */ 863 bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 2000; 864 /* 4K byte per millisecond with 4K block size */ 865 bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 4096000; 866 /* 8K byte per millisecond with 4K block size */ 867 bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT].limit = 8192000; 868 869 g_get_io_channel = true; 870 871 /* Create channels */ 872 set_thread(0); 873 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 874 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 875 CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED); 876 877 set_thread(1); 878 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 879 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 880 CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED); 881 882 /* Send two I/O. One of these gets queued by QoS. The other is sitting at the disk. */ 883 status1 = SPDK_BDEV_IO_STATUS_PENDING; 884 rc = spdk_bdev_write_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1); 885 CU_ASSERT(rc == 0); 886 set_thread(0); 887 status0 = SPDK_BDEV_IO_STATUS_PENDING; 888 rc = spdk_bdev_write_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0); 889 CU_ASSERT(rc == 0); 890 891 poll_threads(); 892 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING); 893 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING); 894 895 /* Reset the bdev. */ 896 reset_status = SPDK_BDEV_IO_STATUS_PENDING; 897 rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &reset_status); 898 CU_ASSERT(rc == 0); 899 900 /* Complete any I/O that arrived at the disk */ 901 poll_threads(); 902 set_thread(1); 903 stub_complete_io(g_bdev.io_target, 0); 904 set_thread(0); 905 stub_complete_io(g_bdev.io_target, 0); 906 poll_threads(); 907 908 CU_ASSERT(reset_status == SPDK_BDEV_IO_STATUS_SUCCESS); 909 CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_FAILED); 910 CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_FAILED); 911 912 /* Tear down the channels */ 913 set_thread(1); 914 spdk_put_io_channel(io_ch[1]); 915 set_thread(0); 916 spdk_put_io_channel(io_ch[0]); 917 poll_threads(); 918 919 teardown_test(); 920 } 921 922 static void 923 enomem_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 924 { 925 enum spdk_bdev_io_status *status = cb_arg; 926 927 *status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED; 928 spdk_bdev_free_io(bdev_io); 929 } 930 931 static void 932 enomem(void) 933 { 934 struct spdk_io_channel *io_ch; 935 struct spdk_bdev_channel *bdev_ch; 936 struct spdk_bdev_shared_resource *shared_resource; 937 struct ut_bdev_channel *ut_ch; 938 const uint32_t IO_ARRAY_SIZE = 64; 939 const uint32_t AVAIL = 20; 940 enum spdk_bdev_io_status status[IO_ARRAY_SIZE], status_reset; 941 uint32_t nomem_cnt, i; 942 struct spdk_bdev_io *first_io; 943 int rc; 944 945 setup_test(); 946 947 set_thread(0); 948 io_ch = spdk_bdev_get_io_channel(g_desc); 949 bdev_ch = spdk_io_channel_get_ctx(io_ch); 950 shared_resource = bdev_ch->shared_resource; 951 ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel); 952 ut_ch->avail_cnt = AVAIL; 953 954 /* First submit a number of IOs equal to what the channel can support. */ 955 for (i = 0; i < AVAIL; i++) { 956 status[i] = SPDK_BDEV_IO_STATUS_PENDING; 957 rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]); 958 CU_ASSERT(rc == 0); 959 } 960 CU_ASSERT(TAILQ_EMPTY(&shared_resource->nomem_io)); 961 962 /* 963 * Next, submit one additional I/O. This one should fail with ENOMEM and then go onto 964 * the enomem_io list. 965 */ 966 status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING; 967 rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]); 968 CU_ASSERT(rc == 0); 969 SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&shared_resource->nomem_io)); 970 first_io = TAILQ_FIRST(&shared_resource->nomem_io); 971 972 /* 973 * Now submit a bunch more I/O. These should all fail with ENOMEM and get queued behind 974 * the first_io above. 975 */ 976 for (i = AVAIL + 1; i < IO_ARRAY_SIZE; i++) { 977 status[i] = SPDK_BDEV_IO_STATUS_PENDING; 978 rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]); 979 CU_ASSERT(rc == 0); 980 } 981 982 /* Assert that first_io is still at the head of the list. */ 983 CU_ASSERT(TAILQ_FIRST(&shared_resource->nomem_io) == first_io); 984 CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == (IO_ARRAY_SIZE - AVAIL)); 985 nomem_cnt = bdev_io_tailq_cnt(&shared_resource->nomem_io); 986 CU_ASSERT(shared_resource->nomem_threshold == (AVAIL - NOMEM_THRESHOLD_COUNT)); 987 988 /* 989 * Complete 1 I/O only. The key check here is bdev_io_tailq_cnt - this should not have 990 * changed since completing just 1 I/O should not trigger retrying the queued nomem_io 991 * list. 992 */ 993 stub_complete_io(g_bdev.io_target, 1); 994 CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == nomem_cnt); 995 996 /* 997 * Complete enough I/O to hit the nomem_theshold. This should trigger retrying nomem_io, 998 * and we should see I/O get resubmitted to the test bdev module. 999 */ 1000 stub_complete_io(g_bdev.io_target, NOMEM_THRESHOLD_COUNT - 1); 1001 CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) < nomem_cnt); 1002 nomem_cnt = bdev_io_tailq_cnt(&shared_resource->nomem_io); 1003 1004 /* Complete 1 I/O only. This should not trigger retrying the queued nomem_io. */ 1005 stub_complete_io(g_bdev.io_target, 1); 1006 CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == nomem_cnt); 1007 1008 /* 1009 * Send a reset and confirm that all I/O are completed, including the ones that 1010 * were queued on the nomem_io list. 1011 */ 1012 status_reset = SPDK_BDEV_IO_STATUS_PENDING; 1013 rc = spdk_bdev_reset(g_desc, io_ch, enomem_done, &status_reset); 1014 poll_threads(); 1015 CU_ASSERT(rc == 0); 1016 /* This will complete the reset. */ 1017 stub_complete_io(g_bdev.io_target, 0); 1018 1019 CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == 0); 1020 CU_ASSERT(shared_resource->io_outstanding == 0); 1021 1022 spdk_put_io_channel(io_ch); 1023 poll_threads(); 1024 teardown_test(); 1025 } 1026 1027 static void 1028 enomem_multi_bdev(void) 1029 { 1030 struct spdk_io_channel *io_ch; 1031 struct spdk_bdev_channel *bdev_ch; 1032 struct spdk_bdev_shared_resource *shared_resource; 1033 struct ut_bdev_channel *ut_ch; 1034 const uint32_t IO_ARRAY_SIZE = 64; 1035 const uint32_t AVAIL = 20; 1036 enum spdk_bdev_io_status status[IO_ARRAY_SIZE]; 1037 uint32_t i; 1038 struct ut_bdev *second_bdev; 1039 struct spdk_bdev_desc *second_desc = NULL; 1040 struct spdk_bdev_channel *second_bdev_ch; 1041 struct spdk_io_channel *second_ch; 1042 int rc; 1043 1044 setup_test(); 1045 1046 /* Register second bdev with the same io_target */ 1047 second_bdev = calloc(1, sizeof(*second_bdev)); 1048 SPDK_CU_ASSERT_FATAL(second_bdev != NULL); 1049 register_bdev(second_bdev, "ut_bdev2", g_bdev.io_target); 1050 spdk_bdev_open(&second_bdev->bdev, true, NULL, NULL, &second_desc); 1051 SPDK_CU_ASSERT_FATAL(second_desc != NULL); 1052 1053 set_thread(0); 1054 io_ch = spdk_bdev_get_io_channel(g_desc); 1055 bdev_ch = spdk_io_channel_get_ctx(io_ch); 1056 shared_resource = bdev_ch->shared_resource; 1057 ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel); 1058 ut_ch->avail_cnt = AVAIL; 1059 1060 second_ch = spdk_bdev_get_io_channel(second_desc); 1061 second_bdev_ch = spdk_io_channel_get_ctx(second_ch); 1062 SPDK_CU_ASSERT_FATAL(shared_resource == second_bdev_ch->shared_resource); 1063 1064 /* Saturate io_target through bdev A. */ 1065 for (i = 0; i < AVAIL; i++) { 1066 status[i] = SPDK_BDEV_IO_STATUS_PENDING; 1067 rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]); 1068 CU_ASSERT(rc == 0); 1069 } 1070 CU_ASSERT(TAILQ_EMPTY(&shared_resource->nomem_io)); 1071 1072 /* 1073 * Now submit I/O through the second bdev. This should fail with ENOMEM 1074 * and then go onto the nomem_io list. 1075 */ 1076 status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING; 1077 rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]); 1078 CU_ASSERT(rc == 0); 1079 SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&shared_resource->nomem_io)); 1080 1081 /* Complete first bdev's I/O. This should retry sending second bdev's nomem_io */ 1082 stub_complete_io(g_bdev.io_target, AVAIL); 1083 1084 SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&shared_resource->nomem_io)); 1085 CU_ASSERT(shared_resource->io_outstanding == 1); 1086 1087 /* Now complete our retried I/O */ 1088 stub_complete_io(g_bdev.io_target, 1); 1089 SPDK_CU_ASSERT_FATAL(shared_resource->io_outstanding == 0); 1090 1091 spdk_put_io_channel(io_ch); 1092 spdk_put_io_channel(second_ch); 1093 spdk_bdev_close(second_desc); 1094 unregister_bdev(second_bdev); 1095 poll_threads(); 1096 free(second_bdev); 1097 teardown_test(); 1098 } 1099 1100 1101 static void 1102 enomem_multi_io_target(void) 1103 { 1104 struct spdk_io_channel *io_ch; 1105 struct spdk_bdev_channel *bdev_ch; 1106 struct ut_bdev_channel *ut_ch; 1107 const uint32_t IO_ARRAY_SIZE = 64; 1108 const uint32_t AVAIL = 20; 1109 enum spdk_bdev_io_status status[IO_ARRAY_SIZE]; 1110 uint32_t i; 1111 int new_io_device; 1112 struct ut_bdev *second_bdev; 1113 struct spdk_bdev_desc *second_desc = NULL; 1114 struct spdk_bdev_channel *second_bdev_ch; 1115 struct spdk_io_channel *second_ch; 1116 int rc; 1117 1118 setup_test(); 1119 1120 /* Create new io_target and a second bdev using it */ 1121 spdk_io_device_register(&new_io_device, stub_create_ch, stub_destroy_ch, 1122 sizeof(struct ut_bdev_channel), NULL); 1123 second_bdev = calloc(1, sizeof(*second_bdev)); 1124 SPDK_CU_ASSERT_FATAL(second_bdev != NULL); 1125 register_bdev(second_bdev, "ut_bdev2", &new_io_device); 1126 spdk_bdev_open(&second_bdev->bdev, true, NULL, NULL, &second_desc); 1127 SPDK_CU_ASSERT_FATAL(second_desc != NULL); 1128 1129 set_thread(0); 1130 io_ch = spdk_bdev_get_io_channel(g_desc); 1131 bdev_ch = spdk_io_channel_get_ctx(io_ch); 1132 ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel); 1133 ut_ch->avail_cnt = AVAIL; 1134 1135 /* Different io_target should imply a different shared_resource */ 1136 second_ch = spdk_bdev_get_io_channel(second_desc); 1137 second_bdev_ch = spdk_io_channel_get_ctx(second_ch); 1138 SPDK_CU_ASSERT_FATAL(bdev_ch->shared_resource != second_bdev_ch->shared_resource); 1139 1140 /* Saturate io_target through bdev A. */ 1141 for (i = 0; i < AVAIL; i++) { 1142 status[i] = SPDK_BDEV_IO_STATUS_PENDING; 1143 rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]); 1144 CU_ASSERT(rc == 0); 1145 } 1146 CU_ASSERT(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io)); 1147 1148 /* Issue one more I/O to fill ENOMEM list. */ 1149 status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING; 1150 rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]); 1151 CU_ASSERT(rc == 0); 1152 SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io)); 1153 1154 /* 1155 * Now submit I/O through the second bdev. This should go through and complete 1156 * successfully because we're using a different io_device underneath. 1157 */ 1158 status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING; 1159 rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]); 1160 CU_ASSERT(rc == 0); 1161 SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&second_bdev_ch->shared_resource->nomem_io)); 1162 stub_complete_io(second_bdev->io_target, 1); 1163 1164 /* Cleanup; Complete outstanding I/O. */ 1165 stub_complete_io(g_bdev.io_target, AVAIL); 1166 SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io)); 1167 /* Complete the ENOMEM I/O */ 1168 stub_complete_io(g_bdev.io_target, 1); 1169 CU_ASSERT(bdev_ch->shared_resource->io_outstanding == 0); 1170 1171 SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io)); 1172 CU_ASSERT(bdev_ch->shared_resource->io_outstanding == 0); 1173 spdk_put_io_channel(io_ch); 1174 spdk_put_io_channel(second_ch); 1175 spdk_bdev_close(second_desc); 1176 unregister_bdev(second_bdev); 1177 spdk_io_device_unregister(&new_io_device, NULL); 1178 poll_threads(); 1179 free(second_bdev); 1180 teardown_test(); 1181 } 1182 1183 static void 1184 qos_dynamic_enable_done(void *cb_arg, int status) 1185 { 1186 int *rc = cb_arg; 1187 *rc = status; 1188 } 1189 1190 static void 1191 qos_dynamic_enable(void) 1192 { 1193 struct spdk_io_channel *io_ch[2]; 1194 struct spdk_bdev_channel *bdev_ch[2]; 1195 struct spdk_bdev *bdev; 1196 enum spdk_bdev_io_status bdev_io_status[2]; 1197 uint64_t limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES] = {}; 1198 int status, second_status, rc, i; 1199 1200 setup_test(); 1201 MOCK_SET(spdk_get_ticks, 0); 1202 1203 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 1204 limits[i] = UINT64_MAX; 1205 } 1206 1207 bdev = &g_bdev.bdev; 1208 1209 g_get_io_channel = true; 1210 1211 /* Create channels */ 1212 set_thread(0); 1213 io_ch[0] = spdk_bdev_get_io_channel(g_desc); 1214 bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]); 1215 CU_ASSERT(bdev_ch[0]->flags == 0); 1216 1217 set_thread(1); 1218 io_ch[1] = spdk_bdev_get_io_channel(g_desc); 1219 bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]); 1220 CU_ASSERT(bdev_ch[1]->flags == 0); 1221 1222 set_thread(0); 1223 1224 /* 1225 * Enable QoS: Read/Write IOPS, Read/Write byte, 1226 * Read only byte and Write only byte per second 1227 * rate limits. 1228 * More than 10 I/Os allowed per timeslice. 1229 */ 1230 status = -1; 1231 limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000; 1232 limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 100; 1233 limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT] = 100; 1234 limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT] = 10; 1235 spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status); 1236 poll_threads(); 1237 CU_ASSERT(status == 0); 1238 CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0); 1239 CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0); 1240 1241 /* 1242 * Submit and complete 10 I/O to fill the QoS allotment for this timeslice. 1243 * Additional I/O will then be queued. 1244 */ 1245 set_thread(0); 1246 for (i = 0; i < 10; i++) { 1247 bdev_io_status[0] = SPDK_BDEV_IO_STATUS_PENDING; 1248 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &bdev_io_status[0]); 1249 CU_ASSERT(rc == 0); 1250 CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_PENDING); 1251 poll_thread(0); 1252 stub_complete_io(g_bdev.io_target, 0); 1253 CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_SUCCESS); 1254 } 1255 1256 /* 1257 * Send two more I/O. These I/O will be queued since the current timeslice allotment has been 1258 * filled already. We want to test that when QoS is disabled that these two I/O: 1259 * 1) are not aborted 1260 * 2) are sent back to their original thread for resubmission 1261 */ 1262 bdev_io_status[0] = SPDK_BDEV_IO_STATUS_PENDING; 1263 rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &bdev_io_status[0]); 1264 CU_ASSERT(rc == 0); 1265 CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_PENDING); 1266 set_thread(1); 1267 bdev_io_status[1] = SPDK_BDEV_IO_STATUS_PENDING; 1268 rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &bdev_io_status[1]); 1269 CU_ASSERT(rc == 0); 1270 CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_PENDING); 1271 poll_threads(); 1272 1273 /* 1274 * Disable QoS: Read/Write IOPS, Read/Write byte, 1275 * Read only byte rate limits 1276 */ 1277 status = -1; 1278 limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0; 1279 limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 0; 1280 limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT] = 0; 1281 spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status); 1282 poll_threads(); 1283 CU_ASSERT(status == 0); 1284 CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0); 1285 CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0); 1286 1287 /* Disable QoS: Write only Byte per second rate limit */ 1288 status = -1; 1289 limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT] = 0; 1290 spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status); 1291 poll_threads(); 1292 CU_ASSERT(status == 0); 1293 CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0); 1294 CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0); 1295 1296 /* 1297 * All I/O should have been resubmitted back on their original thread. Complete 1298 * all I/O on thread 0, and ensure that only the thread 0 I/O was completed. 1299 */ 1300 set_thread(0); 1301 stub_complete_io(g_bdev.io_target, 0); 1302 poll_threads(); 1303 CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_SUCCESS); 1304 CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_PENDING); 1305 1306 /* Now complete all I/O on thread 1 and ensure the thread 1 I/O was completed. */ 1307 set_thread(1); 1308 stub_complete_io(g_bdev.io_target, 0); 1309 poll_threads(); 1310 CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_SUCCESS); 1311 1312 /* Disable QoS again */ 1313 status = -1; 1314 limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0; 1315 spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status); 1316 poll_threads(); 1317 CU_ASSERT(status == 0); /* This should succeed */ 1318 CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0); 1319 CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0); 1320 1321 /* Enable QoS on thread 0 */ 1322 status = -1; 1323 limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000; 1324 spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status); 1325 poll_threads(); 1326 CU_ASSERT(status == 0); 1327 CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0); 1328 CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0); 1329 1330 /* Disable QoS on thread 1 */ 1331 set_thread(1); 1332 status = -1; 1333 limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0; 1334 spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status); 1335 /* Don't poll yet. This should leave the channels with QoS enabled */ 1336 CU_ASSERT(status == -1); 1337 CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0); 1338 CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0); 1339 1340 /* Enable QoS. This should immediately fail because the previous disable QoS hasn't completed. */ 1341 second_status = 0; 1342 limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 10; 1343 spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &second_status); 1344 poll_threads(); 1345 CU_ASSERT(status == 0); /* The disable should succeed */ 1346 CU_ASSERT(second_status < 0); /* The enable should fail */ 1347 CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0); 1348 CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0); 1349 1350 /* Enable QoS on thread 1. This should succeed now that the disable has completed. */ 1351 status = -1; 1352 limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000; 1353 spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status); 1354 poll_threads(); 1355 CU_ASSERT(status == 0); 1356 CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0); 1357 CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0); 1358 1359 /* Tear down the channels */ 1360 set_thread(0); 1361 spdk_put_io_channel(io_ch[0]); 1362 set_thread(1); 1363 spdk_put_io_channel(io_ch[1]); 1364 poll_threads(); 1365 1366 set_thread(0); 1367 teardown_test(); 1368 } 1369 1370 static void 1371 histogram_status_cb(void *cb_arg, int status) 1372 { 1373 g_status = status; 1374 } 1375 1376 static void 1377 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram) 1378 { 1379 g_status = status; 1380 g_histogram = histogram; 1381 } 1382 1383 static void 1384 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count, 1385 uint64_t total, uint64_t so_far) 1386 { 1387 g_count += count; 1388 } 1389 1390 static void 1391 bdev_histograms_mt(void) 1392 { 1393 struct spdk_io_channel *ch[2]; 1394 struct spdk_histogram_data *histogram; 1395 uint8_t buf[4096]; 1396 int status = false; 1397 int rc; 1398 1399 1400 setup_test(); 1401 1402 set_thread(0); 1403 ch[0] = spdk_bdev_get_io_channel(g_desc); 1404 CU_ASSERT(ch[0] != NULL); 1405 1406 set_thread(1); 1407 ch[1] = spdk_bdev_get_io_channel(g_desc); 1408 CU_ASSERT(ch[1] != NULL); 1409 1410 1411 /* Enable histogram */ 1412 spdk_bdev_histogram_enable(&g_bdev.bdev, histogram_status_cb, NULL, true); 1413 poll_threads(); 1414 CU_ASSERT(g_status == 0); 1415 CU_ASSERT(g_bdev.bdev.internal.histogram_enabled == true); 1416 1417 /* Allocate histogram */ 1418 histogram = spdk_histogram_data_alloc(); 1419 1420 /* Check if histogram is zeroed */ 1421 spdk_bdev_histogram_get(&g_bdev.bdev, histogram, histogram_data_cb, NULL); 1422 poll_threads(); 1423 CU_ASSERT(g_status == 0); 1424 SPDK_CU_ASSERT_FATAL(g_histogram != NULL); 1425 1426 g_count = 0; 1427 spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL); 1428 1429 CU_ASSERT(g_count == 0); 1430 1431 set_thread(0); 1432 rc = spdk_bdev_write_blocks(g_desc, ch[0], &buf, 0, 1, io_during_io_done, &status); 1433 CU_ASSERT(rc == 0); 1434 1435 spdk_delay_us(10); 1436 stub_complete_io(g_bdev.io_target, 1); 1437 poll_threads(); 1438 CU_ASSERT(status == true); 1439 1440 1441 set_thread(1); 1442 rc = spdk_bdev_read_blocks(g_desc, ch[1], &buf, 0, 1, io_during_io_done, &status); 1443 CU_ASSERT(rc == 0); 1444 1445 spdk_delay_us(10); 1446 stub_complete_io(g_bdev.io_target, 1); 1447 poll_threads(); 1448 CU_ASSERT(status == true); 1449 1450 set_thread(0); 1451 1452 /* Check if histogram gathered data from all I/O channels */ 1453 spdk_bdev_histogram_get(&g_bdev.bdev, histogram, histogram_data_cb, NULL); 1454 poll_threads(); 1455 CU_ASSERT(g_status == 0); 1456 CU_ASSERT(g_bdev.bdev.internal.histogram_enabled == true); 1457 SPDK_CU_ASSERT_FATAL(g_histogram != NULL); 1458 1459 g_count = 0; 1460 spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL); 1461 CU_ASSERT(g_count == 2); 1462 1463 /* Disable histogram */ 1464 spdk_bdev_histogram_enable(&g_bdev.bdev, histogram_status_cb, NULL, false); 1465 poll_threads(); 1466 CU_ASSERT(g_status == 0); 1467 CU_ASSERT(g_bdev.bdev.internal.histogram_enabled == false); 1468 1469 spdk_histogram_data_free(g_histogram); 1470 } 1471 1472 int 1473 main(int argc, char **argv) 1474 { 1475 CU_pSuite suite = NULL; 1476 unsigned int num_failures; 1477 1478 if (CU_initialize_registry() != CUE_SUCCESS) { 1479 return CU_get_error(); 1480 } 1481 1482 suite = CU_add_suite("bdev", NULL, NULL); 1483 if (suite == NULL) { 1484 CU_cleanup_registry(); 1485 return CU_get_error(); 1486 } 1487 1488 if ( 1489 CU_add_test(suite, "basic", basic) == NULL || 1490 CU_add_test(suite, "unregister_and_close", unregister_and_close) == NULL || 1491 CU_add_test(suite, "basic_qos", basic_qos) == NULL || 1492 CU_add_test(suite, "put_channel_during_reset", put_channel_during_reset) == NULL || 1493 CU_add_test(suite, "aborted_reset", aborted_reset) == NULL || 1494 CU_add_test(suite, "io_during_reset", io_during_reset) == NULL || 1495 CU_add_test(suite, "io_during_qos_queue", io_during_qos_queue) == NULL || 1496 CU_add_test(suite, "io_during_qos_reset", io_during_qos_reset) == NULL || 1497 CU_add_test(suite, "enomem", enomem) == NULL || 1498 CU_add_test(suite, "enomem_multi_bdev", enomem_multi_bdev) == NULL || 1499 CU_add_test(suite, "enomem_multi_io_target", enomem_multi_io_target) == NULL || 1500 CU_add_test(suite, "qos_dynamic_enable", qos_dynamic_enable) == NULL || 1501 CU_add_test(suite, "bdev_histograms_mt", bdev_histograms_mt) == NULL 1502 ) { 1503 CU_cleanup_registry(); 1504 return CU_get_error(); 1505 } 1506 1507 CU_basic_set_mode(CU_BRM_VERBOSE); 1508 CU_basic_run_tests(); 1509 num_failures = CU_get_number_of_failures(); 1510 CU_cleanup_registry(); 1511 return num_failures; 1512 } 1513