xref: /spdk/test/unit/lib/bdev/mt/bdev.c/bdev_ut.c (revision 19100ed580ebdb50c22eedd5aef76a637612986f)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk_cunit.h"
35 
36 #include "lib/test_env.c"
37 #include "lib/ut_multithread.c"
38 
39 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
40 #undef SPDK_CONFIG_VTUNE
41 
42 #include "bdev/bdev.c"
43 
44 #define BDEV_UT_NUM_THREADS 3
45 
46 DEFINE_STUB_V(spdk_scsi_nvme_translate, (const struct spdk_bdev_io *bdev_io,
47 		int *sc, int *sk, int *asc, int *ascq));
48 
49 struct ut_bdev {
50 	struct spdk_bdev	bdev;
51 	void			*io_target;
52 };
53 
54 struct ut_bdev_channel {
55 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
56 	uint32_t			outstanding_cnt;
57 	uint32_t			avail_cnt;
58 };
59 
60 int g_io_device;
61 struct ut_bdev g_bdev;
62 struct spdk_bdev_desc *g_desc;
63 bool g_teardown_done = false;
64 bool g_get_io_channel = true;
65 bool g_create_ch = true;
66 
67 static int
68 stub_create_ch(void *io_device, void *ctx_buf)
69 {
70 	struct ut_bdev_channel *ch = ctx_buf;
71 
72 	if (g_create_ch == false) {
73 		return -1;
74 	}
75 
76 	TAILQ_INIT(&ch->outstanding_io);
77 	ch->outstanding_cnt = 0;
78 	/*
79 	 * When avail gets to 0, the submit_request function will return ENOMEM.
80 	 *  Most tests to not want ENOMEM to occur, so by default set this to a
81 	 *  big value that won't get hit.  The ENOMEM tests can then override this
82 	 *  value to something much smaller to induce ENOMEM conditions.
83 	 */
84 	ch->avail_cnt = 2048;
85 	return 0;
86 }
87 
88 static void
89 stub_destroy_ch(void *io_device, void *ctx_buf)
90 {
91 }
92 
93 static struct spdk_io_channel *
94 stub_get_io_channel(void *ctx)
95 {
96 	struct ut_bdev *ut_bdev = ctx;
97 
98 	if (g_get_io_channel == true) {
99 		return spdk_get_io_channel(ut_bdev->io_target);
100 	} else {
101 		return NULL;
102 	}
103 }
104 
105 static int
106 stub_destruct(void *ctx)
107 {
108 	return 0;
109 }
110 
111 static void
112 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
113 {
114 	struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
115 
116 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) {
117 		struct spdk_bdev_io *io;
118 
119 		while (!TAILQ_EMPTY(&ch->outstanding_io)) {
120 			io = TAILQ_FIRST(&ch->outstanding_io);
121 			TAILQ_REMOVE(&ch->outstanding_io, io, module_link);
122 			ch->outstanding_cnt--;
123 			spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_FAILED);
124 			ch->avail_cnt++;
125 		}
126 	}
127 
128 	if (ch->avail_cnt > 0) {
129 		TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
130 		ch->outstanding_cnt++;
131 		ch->avail_cnt--;
132 	} else {
133 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_NOMEM);
134 	}
135 }
136 
137 static uint32_t
138 stub_complete_io(void *io_target, uint32_t num_to_complete)
139 {
140 	struct spdk_io_channel *_ch = spdk_get_io_channel(io_target);
141 	struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
142 	struct spdk_bdev_io *io;
143 	bool complete_all = (num_to_complete == 0);
144 	uint32_t num_completed = 0;
145 
146 	while (complete_all || num_completed < num_to_complete) {
147 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
148 			break;
149 		}
150 		io = TAILQ_FIRST(&ch->outstanding_io);
151 		TAILQ_REMOVE(&ch->outstanding_io, io, module_link);
152 		ch->outstanding_cnt--;
153 		spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_SUCCESS);
154 		ch->avail_cnt++;
155 		num_completed++;
156 	}
157 
158 	spdk_put_io_channel(_ch);
159 	return num_completed;
160 }
161 
162 static struct spdk_bdev_fn_table fn_table = {
163 	.get_io_channel =	stub_get_io_channel,
164 	.destruct =		stub_destruct,
165 	.submit_request =	stub_submit_request,
166 };
167 
168 static int
169 module_init(void)
170 {
171 	return 0;
172 }
173 
174 static void
175 module_fini(void)
176 {
177 }
178 
179 struct spdk_bdev_module bdev_ut_if = {
180 	.name = "bdev_ut",
181 	.module_init = module_init,
182 	.module_fini = module_fini,
183 };
184 
185 SPDK_BDEV_MODULE_REGISTER(&bdev_ut_if)
186 
187 static void
188 register_bdev(struct ut_bdev *ut_bdev, char *name, void *io_target)
189 {
190 	memset(ut_bdev, 0, sizeof(*ut_bdev));
191 
192 	ut_bdev->io_target = io_target;
193 	ut_bdev->bdev.ctxt = ut_bdev;
194 	ut_bdev->bdev.name = name;
195 	ut_bdev->bdev.fn_table = &fn_table;
196 	ut_bdev->bdev.module = &bdev_ut_if;
197 	ut_bdev->bdev.blocklen = 4096;
198 	ut_bdev->bdev.blockcnt = 1024;
199 
200 	spdk_bdev_register(&ut_bdev->bdev);
201 }
202 
203 static void
204 unregister_bdev(struct ut_bdev *ut_bdev)
205 {
206 	/* Handle any deferred messages. */
207 	poll_threads();
208 	spdk_bdev_unregister(&ut_bdev->bdev, NULL, NULL);
209 	memset(ut_bdev, 0, sizeof(*ut_bdev));
210 }
211 
212 static void
213 bdev_init_cb(void *done, int rc)
214 {
215 	CU_ASSERT(rc == 0);
216 	*(bool *)done = true;
217 }
218 
219 static void
220 setup_test(void)
221 {
222 	bool done = false;
223 
224 	allocate_threads(BDEV_UT_NUM_THREADS);
225 	spdk_bdev_initialize(bdev_init_cb, &done);
226 	spdk_io_device_register(&g_io_device, stub_create_ch, stub_destroy_ch,
227 				sizeof(struct ut_bdev_channel));
228 	register_bdev(&g_bdev, "ut_bdev", &g_io_device);
229 	spdk_bdev_open(&g_bdev.bdev, true, NULL, NULL, &g_desc);
230 }
231 
232 static void
233 finish_cb(void *cb_arg)
234 {
235 	g_teardown_done = true;
236 }
237 
238 static void
239 teardown_test(void)
240 {
241 	g_teardown_done = false;
242 	spdk_bdev_close(g_desc);
243 	g_desc = NULL;
244 	unregister_bdev(&g_bdev);
245 	spdk_io_device_unregister(&g_io_device, NULL);
246 	spdk_bdev_finish(finish_cb, NULL);
247 	poll_threads();
248 	CU_ASSERT(g_teardown_done == true);
249 	g_teardown_done = false;
250 	free_threads();
251 }
252 
253 static uint32_t
254 bdev_io_tailq_cnt(bdev_io_tailq_t *tailq)
255 {
256 	struct spdk_bdev_io *io;
257 	uint32_t cnt = 0;
258 
259 	TAILQ_FOREACH(io, tailq, link) {
260 		cnt++;
261 	}
262 
263 	return cnt;
264 }
265 
266 static void
267 basic(void)
268 {
269 	setup_test();
270 
271 	set_thread(0);
272 
273 	g_get_io_channel = false;
274 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
275 	CU_ASSERT(g_ut_threads[0].ch == NULL);
276 
277 	g_get_io_channel = true;
278 	g_create_ch = false;
279 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
280 	CU_ASSERT(g_ut_threads[0].ch == NULL);
281 
282 	g_get_io_channel = true;
283 	g_create_ch = true;
284 	g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
285 	CU_ASSERT(g_ut_threads[0].ch != NULL);
286 	spdk_put_io_channel(g_ut_threads[0].ch);
287 
288 	teardown_test();
289 }
290 
291 static void
292 poller_run_done(void *ctx)
293 {
294 	bool	*poller_run = ctx;
295 
296 	*poller_run = true;
297 }
298 
299 static void
300 poller_run_times_done(void *ctx)
301 {
302 	int	*poller_run_times = ctx;
303 
304 	(*poller_run_times)++;
305 }
306 
307 static void
308 basic_poller(void)
309 {
310 	struct spdk_poller	*poller = NULL;
311 	bool			poller_run = false;
312 	int			poller_run_times = 0;
313 
314 	setup_test();
315 
316 	set_thread(0);
317 	reset_time();
318 	/* Register a poller with no-wait time and test execution */
319 	poller = spdk_poller_register(poller_run_done, &poller_run, 0);
320 	CU_ASSERT(poller != NULL);
321 
322 	poll_threads();
323 	CU_ASSERT(poller_run == true);
324 
325 	spdk_poller_unregister(&poller);
326 	CU_ASSERT(poller == NULL);
327 
328 	/* Register a poller with 1000us wait time and test single execution */
329 	poller_run = false;
330 	poller = spdk_poller_register(poller_run_done, &poller_run, 1000);
331 	CU_ASSERT(poller != NULL);
332 
333 	poll_threads();
334 	CU_ASSERT(poller_run == false);
335 
336 	increment_time(1000);
337 	poll_threads();
338 	CU_ASSERT(poller_run == true);
339 
340 	reset_time();
341 	poller_run = false;
342 	poll_threads();
343 	CU_ASSERT(poller_run == false);
344 
345 	increment_time(1000);
346 	poll_threads();
347 	CU_ASSERT(poller_run == true);
348 
349 	spdk_poller_unregister(&poller);
350 	CU_ASSERT(poller == NULL);
351 
352 	reset_time();
353 	/* Register a poller with 1000us wait time and test multiple execution */
354 	poller = spdk_poller_register(poller_run_times_done, &poller_run_times, 1000);
355 	CU_ASSERT(poller != NULL);
356 
357 	poll_threads();
358 	CU_ASSERT(poller_run_times == 0);
359 
360 	increment_time(1000);
361 	poll_threads();
362 	CU_ASSERT(poller_run_times == 1);
363 
364 	poller_run_times = 0;
365 	increment_time(2000);
366 	poll_threads();
367 	CU_ASSERT(poller_run_times == 2);
368 
369 	spdk_poller_unregister(&poller);
370 	CU_ASSERT(poller == NULL);
371 
372 	teardown_test();
373 }
374 
375 static void
376 reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
377 {
378 	bool *done = cb_arg;
379 
380 	CU_ASSERT(success == true);
381 	*done = true;
382 	spdk_bdev_free_io(bdev_io);
383 }
384 
385 static void
386 put_channel_during_reset(void)
387 {
388 	struct spdk_io_channel *io_ch;
389 	bool done = false;
390 
391 	setup_test();
392 
393 	set_thread(0);
394 	io_ch = spdk_bdev_get_io_channel(g_desc);
395 	CU_ASSERT(io_ch != NULL);
396 
397 	/*
398 	 * Start a reset, but then put the I/O channel before
399 	 *  the deferred messages for the reset get a chance to
400 	 *  execute.
401 	 */
402 	spdk_bdev_reset(g_desc, io_ch, reset_done, &done);
403 	spdk_put_io_channel(io_ch);
404 	poll_threads();
405 	stub_complete_io(g_bdev.io_target, 0);
406 
407 	teardown_test();
408 }
409 
410 static void
411 aborted_reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
412 {
413 	enum spdk_bdev_io_status *status = cb_arg;
414 
415 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
416 	spdk_bdev_free_io(bdev_io);
417 }
418 
419 static void
420 aborted_reset(void)
421 {
422 	struct spdk_io_channel *io_ch[2];
423 	enum spdk_bdev_io_status status1, status2;
424 
425 	setup_test();
426 
427 	set_thread(0);
428 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
429 	CU_ASSERT(io_ch[0] != NULL);
430 	spdk_bdev_reset(g_desc, io_ch[0], aborted_reset_done, &status1);
431 	poll_threads();
432 	CU_ASSERT(g_bdev.bdev.reset_in_progress != NULL);
433 
434 	/*
435 	 * First reset has been submitted on ch0.  Now submit a second
436 	 *  reset on ch1 which will get queued since there is already a
437 	 *  reset in progress.
438 	 */
439 	set_thread(1);
440 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
441 	CU_ASSERT(io_ch[1] != NULL);
442 	spdk_bdev_reset(g_desc, io_ch[1], aborted_reset_done, &status2);
443 	poll_threads();
444 	CU_ASSERT(g_bdev.bdev.reset_in_progress != NULL);
445 
446 	/*
447 	 * Now destroy ch1.  This will abort the queued reset.  Check that
448 	 *  the second reset was completed with failed status.  Also check
449 	 *  that bdev->reset_in_progress != NULL, since the original reset
450 	 *  has not been completed yet.  This ensures that the bdev code is
451 	 *  correctly noticing that the failed reset is *not* the one that
452 	 *  had been submitted to the bdev module.
453 	 */
454 	set_thread(1);
455 	spdk_put_io_channel(io_ch[1]);
456 	poll_threads();
457 	CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_FAILED);
458 	CU_ASSERT(g_bdev.bdev.reset_in_progress != NULL);
459 
460 	/*
461 	 * Now complete the first reset, verify that it completed with SUCCESS
462 	 *  status and that bdev->reset_in_progress is also set back to NULL.
463 	 */
464 	set_thread(0);
465 	spdk_put_io_channel(io_ch[0]);
466 	stub_complete_io(g_bdev.io_target, 0);
467 	poll_threads();
468 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
469 	CU_ASSERT(g_bdev.bdev.reset_in_progress == NULL);
470 
471 	teardown_test();
472 }
473 
474 static void
475 io_during_io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
476 {
477 	enum spdk_bdev_io_status *status = cb_arg;
478 
479 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
480 	spdk_bdev_free_io(bdev_io);
481 }
482 
483 static void
484 io_during_reset(void)
485 {
486 	struct spdk_io_channel *io_ch[2];
487 	struct spdk_bdev_channel *bdev_ch[2];
488 	enum spdk_bdev_io_status status0, status1, status_reset;
489 	int rc;
490 
491 	setup_test();
492 
493 	/*
494 	 * First test normal case - submit an I/O on each of two channels (with no resets)
495 	 *  and verify they complete successfully.
496 	 */
497 	set_thread(0);
498 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
499 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
500 	CU_ASSERT(bdev_ch[0]->flags == 0);
501 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
502 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
503 	CU_ASSERT(rc == 0);
504 
505 	set_thread(1);
506 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
507 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
508 	CU_ASSERT(bdev_ch[1]->flags == 0);
509 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
510 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
511 	CU_ASSERT(rc == 0);
512 
513 	poll_threads();
514 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
515 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
516 
517 	set_thread(0);
518 	stub_complete_io(g_bdev.io_target, 0);
519 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS);
520 
521 	set_thread(1);
522 	stub_complete_io(g_bdev.io_target, 0);
523 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
524 
525 	/*
526 	 * Now submit a reset, and leave it pending while we submit I/O on two different
527 	 *  channels.  These I/O should be failed by the bdev layer since the reset is in
528 	 *  progress.
529 	 */
530 	set_thread(0);
531 	status_reset = SPDK_BDEV_IO_STATUS_PENDING;
532 	rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &status_reset);
533 	CU_ASSERT(rc == 0);
534 
535 	CU_ASSERT(bdev_ch[0]->flags == 0);
536 	CU_ASSERT(bdev_ch[1]->flags == 0);
537 	poll_threads();
538 	CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_RESET_IN_PROGRESS);
539 	CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_RESET_IN_PROGRESS);
540 
541 	set_thread(0);
542 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
543 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
544 	CU_ASSERT(rc == 0);
545 
546 	set_thread(1);
547 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
548 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
549 	CU_ASSERT(rc == 0);
550 
551 	/*
552 	 * A reset is in progress so these read I/O should complete with failure.  Note that we
553 	 *  need to poll_threads() since I/O completed inline have their completion deferred.
554 	 */
555 	poll_threads();
556 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
557 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_FAILED);
558 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_FAILED);
559 
560 	/*
561 	 * Complete the reset
562 	 */
563 	set_thread(0);
564 	stub_complete_io(g_bdev.io_target, 0);
565 
566 	/*
567 	 * Only poll thread 0. We should not get a completion.
568 	 */
569 	poll_thread(0);
570 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
571 
572 	/*
573 	 * Poll both thread 0 and 1 so the messages can propagate and we
574 	 * get a completion.
575 	 */
576 	poll_threads();
577 	CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_SUCCESS);
578 
579 	spdk_put_io_channel(io_ch[0]);
580 	set_thread(1);
581 	spdk_put_io_channel(io_ch[1]);
582 	poll_threads();
583 
584 	teardown_test();
585 }
586 
587 static void
588 basic_qos(void)
589 {
590 	struct spdk_io_channel *io_ch[3];
591 	struct spdk_bdev_channel *bdev_ch[3], *qos_bdev_ch;
592 	struct spdk_bdev *bdev;
593 	enum spdk_bdev_io_status status;
594 	struct spdk_bdev_module_channel *module_ch;
595 	int rc;
596 
597 	setup_test();
598 
599 	/*
600 	 * First test normal case - submit an I/O on the channel (QoS not enabled)
601 	 *  and verify it completes successfully.
602 	 */
603 	set_thread(0);
604 	g_get_io_channel = false;
605 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
606 	CU_ASSERT(io_ch[0] == NULL);
607 	g_get_io_channel = true;
608 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
609 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
610 	status = SPDK_BDEV_IO_STATUS_PENDING;
611 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status);
612 	CU_ASSERT(rc == 0);
613 	CU_ASSERT(bdev_ch[0]->flags == 0);
614 
615 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
616 
617 	set_thread(0);
618 	stub_complete_io(g_bdev.io_target, 0);
619 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS);
620 
621 	poll_threads();
622 
623 	set_thread(1);
624 	bdev = &g_bdev.bdev;
625 	bdev->ios_per_sec = 2000;
626 	g_get_io_channel = false;
627 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
628 	CU_ASSERT(io_ch[1] == NULL);
629 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
630 	qos_bdev_ch = bdev->qos_channel;
631 	CU_ASSERT(qos_bdev_ch == NULL);
632 	g_get_io_channel = true;
633 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
634 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
635 	qos_bdev_ch = bdev->qos_channel;
636 	CU_ASSERT(bdev->qos_channel->flags == BDEV_CH_QOS_ENABLED);
637 	CU_ASSERT(qos_bdev_ch != NULL);
638 	module_ch = qos_bdev_ch->module_ch;
639 	CU_ASSERT(module_ch->io_outstanding == 0);
640 	CU_ASSERT(g_ut_threads[1].thread == bdev->qos_thread);
641 
642 	/*
643 	 * Now sending one I/O on first channel
644 	 */
645 	set_thread(0);
646 	status = SPDK_BDEV_IO_STATUS_PENDING;
647 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status);
648 	CU_ASSERT(rc == 0);
649 
650 	poll_threads();
651 	CU_ASSERT(module_ch->io_outstanding == 1);
652 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
653 
654 	/*
655 	 * IO is operated on thread_id(1) via the QoS thread
656 	 */
657 	set_thread(1);
658 	stub_complete_io(g_bdev.io_target, 1);
659 
660 	poll_threads();
661 	CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS);
662 
663 	/*
664 	 * QoS thread is on thread 1. Put I/O channel on thread 1 first
665 	 * to trigger an async destruction of QoS bdev channel.
666 	 */
667 	set_thread(1);
668 	spdk_put_io_channel(io_ch[0]);
669 	set_thread(0);
670 	spdk_put_io_channel(io_ch[1]);
671 
672 	/*
673 	 * Handle the messages on thread 1 first so that the QoS bdev
674 	 * channel destroy message from thread 0 handling will be active
675 	 * there.
676 	 */
677 	poll_thread(1);
678 	poll_thread(0);
679 
680 	/*
681 	 * Create a new I/O channel when the async destruction of QoS
682 	 * bdev channel is on going. The expected result is the QoS bdev
683 	 * channel will be properly setup again.
684 	 */
685 	set_thread(2);
686 	io_ch[2] = spdk_bdev_get_io_channel(g_desc);
687 	bdev_ch[2] = spdk_io_channel_get_ctx(io_ch[2]);
688 
689 	poll_threads();
690 
691 	qos_bdev_ch = bdev->qos_channel;
692 	CU_ASSERT(qos_bdev_ch->flags == BDEV_CH_QOS_ENABLED);
693 	CU_ASSERT(qos_bdev_ch != NULL);
694 	module_ch = qos_bdev_ch->module_ch;
695 	CU_ASSERT(module_ch->io_outstanding == 0);
696 	CU_ASSERT(g_ut_threads[1].thread == bdev->qos_thread);
697 
698 	/*
699 	 * Destroy the last I/O channel so that the QoS bdev channel
700 	 * will be destroyed.
701 	 */
702 	set_thread(2);
703 	spdk_put_io_channel(io_ch[2]);
704 
705 	poll_threads();
706 
707 	teardown_test();
708 }
709 
710 static void
711 io_during_qos(void)
712 {
713 	struct spdk_io_channel *io_ch[3];
714 	struct spdk_bdev_channel *bdev_ch[3], *qos_bdev_ch;
715 	struct spdk_bdev *bdev;
716 	enum spdk_bdev_io_status status0, status1;
717 	struct spdk_bdev_module_channel *module_ch;
718 	int rc;
719 
720 	setup_test();
721 
722 	/*
723 	 * First test normal case - submit an I/O on each of two channels (QoS not enabled)
724 	 *  and verify they complete successfully.
725 	 */
726 	set_thread(0);
727 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
728 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
729 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
730 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
731 	CU_ASSERT(rc == 0);
732 	CU_ASSERT(bdev_ch[0]->flags == 0);
733 
734 	set_thread(1);
735 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
736 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
737 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
738 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
739 	CU_ASSERT(rc == 0);
740 	CU_ASSERT(bdev_ch[1]->flags == 0);
741 
742 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
743 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
744 
745 	set_thread(0);
746 	stub_complete_io(g_bdev.io_target, 0);
747 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS);
748 
749 	set_thread(1);
750 	stub_complete_io(g_bdev.io_target, 0);
751 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
752 
753 	poll_threads();
754 
755 	set_thread(2);
756 	bdev = &g_bdev.bdev;
757 	/*
758 	 * 10 IOs allowed per millisecond
759 	 */
760 	bdev->ios_per_sec = 10000;
761 	io_ch[2] = spdk_bdev_get_io_channel(g_desc);
762 	bdev_ch[2] = spdk_io_channel_get_ctx(io_ch[2]);
763 	qos_bdev_ch = bdev->qos_channel;
764 	CU_ASSERT(bdev->qos_channel->flags == BDEV_CH_QOS_ENABLED);
765 	CU_ASSERT(qos_bdev_ch != NULL);
766 	module_ch = qos_bdev_ch->module_ch;
767 	CU_ASSERT(module_ch->io_outstanding == 0);
768 
769 	/*
770 	 * Now sending some I/Os on different channels when QoS has been enabled
771 	 */
772 	set_thread(0);
773 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
774 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
775 	CU_ASSERT(rc == 0);
776 
777 	set_thread(1);
778 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
779 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
780 	CU_ASSERT(rc == 0);
781 
782 	poll_threads();
783 	CU_ASSERT(module_ch->io_outstanding == 2);
784 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
785 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
786 
787 	/*
788 	 * IOs are operated on thread_id(2) via the QoS thread
789 	 */
790 	set_thread(2);
791 	stub_complete_io(g_bdev.io_target, 2);
792 
793 	poll_threads();
794 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS);
795 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
796 
797 	set_thread(0);
798 	spdk_put_io_channel(io_ch[0]);
799 	set_thread(1);
800 	spdk_put_io_channel(io_ch[1]);
801 	set_thread(2);
802 	spdk_put_io_channel(io_ch[2]);
803 
804 	poll_threads();
805 
806 	teardown_test();
807 }
808 
809 static void
810 io_during_qos_queue(void)
811 {
812 	struct spdk_io_channel *io_ch[3];
813 	struct spdk_bdev_channel *bdev_ch[3], *qos_bdev_ch;
814 	struct spdk_bdev *bdev;
815 	enum spdk_bdev_io_status status0, status1;
816 	struct spdk_bdev_module_channel *module_ch;
817 	int rc;
818 
819 	setup_test();
820 	reset_time();
821 
822 	/*
823 	 * First test normal case - submit an I/O on each of two channels (QoS not enabled)
824 	 *  and verify they complete successfully.
825 	 */
826 	set_thread(0);
827 	io_ch[0] = spdk_bdev_get_io_channel(g_desc);
828 	bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
829 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
830 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
831 	CU_ASSERT(rc == 0);
832 	CU_ASSERT(bdev_ch[0]->flags == 0);
833 
834 	set_thread(1);
835 	io_ch[1] = spdk_bdev_get_io_channel(g_desc);
836 	bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
837 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
838 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
839 	CU_ASSERT(rc == 0);
840 	CU_ASSERT(bdev_ch[1]->flags == 0);
841 
842 	poll_threads();
843 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
844 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
845 
846 	set_thread(0);
847 	stub_complete_io(g_bdev.io_target, 0);
848 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS);
849 
850 	set_thread(1);
851 	stub_complete_io(g_bdev.io_target, 0);
852 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
853 
854 	poll_threads();
855 
856 	set_thread(2);
857 	bdev = bdev_ch[0]->bdev;
858 	/*
859 	 * Only 1 IO allowed per millisecond. More IOs will be queued.
860 	 */
861 	bdev->ios_per_sec = 1000;
862 	io_ch[2] = spdk_bdev_get_io_channel(g_desc);
863 	bdev_ch[2] = spdk_io_channel_get_ctx(io_ch[2]);
864 	qos_bdev_ch = bdev->qos_channel;
865 	CU_ASSERT(bdev->qos_channel->flags == BDEV_CH_QOS_ENABLED);
866 	CU_ASSERT(qos_bdev_ch != NULL);
867 	module_ch = qos_bdev_ch->module_ch;
868 	CU_ASSERT(module_ch->io_outstanding == 0);
869 
870 	/*
871 	 * Now sending some I/Os on different channels when QoS has been enabled
872 	 */
873 	set_thread(0);
874 	status0 = SPDK_BDEV_IO_STATUS_PENDING;
875 	rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
876 	CU_ASSERT(rc == 0);
877 
878 	set_thread(1);
879 	status1 = SPDK_BDEV_IO_STATUS_PENDING;
880 	rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
881 	CU_ASSERT(rc == 0);
882 
883 	/*
884 	 * Poll the QoS thread to send the allowed I/O down
885 	 */
886 	poll_threads();
887 	CU_ASSERT(module_ch->io_outstanding == 1);
888 	CU_ASSERT(bdev_io_tailq_cnt(&qos_bdev_ch->qos_io) == 1);
889 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
890 
891 	/*
892 	 * Increase the time and poll the QoS thread to run the periodical poller
893 	 */
894 	increment_time(1000);
895 	poll_threads();
896 	CU_ASSERT(module_ch->io_outstanding == 2);
897 	CU_ASSERT(bdev_io_tailq_cnt(&qos_bdev_ch->qos_io) == 0);
898 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
899 
900 	/*
901 	 * IOs are handled on the thread(2) as the master thread
902 	 */
903 	set_thread(2);
904 	stub_complete_io(g_bdev.io_target, 0);
905 	spdk_put_io_channel(io_ch[0]);
906 	spdk_put_io_channel(io_ch[1]);
907 	spdk_put_io_channel(io_ch[2]);
908 
909 	poll_threads();
910 
911 	CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS);
912 	CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
913 
914 	teardown_test();
915 }
916 
917 static void
918 enomem_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
919 {
920 	enum spdk_bdev_io_status *status = cb_arg;
921 
922 	*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
923 	spdk_bdev_free_io(bdev_io);
924 }
925 
926 static void
927 enomem(void)
928 {
929 	struct spdk_io_channel *io_ch;
930 	struct spdk_bdev_channel *bdev_ch;
931 	struct spdk_bdev_module_channel *module_ch;
932 	struct ut_bdev_channel *ut_ch;
933 	const uint32_t IO_ARRAY_SIZE = 64;
934 	const uint32_t AVAIL = 20;
935 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE], status_reset;
936 	uint32_t nomem_cnt, i;
937 	struct spdk_bdev_io *first_io;
938 	int rc;
939 
940 	setup_test();
941 
942 	set_thread(0);
943 	io_ch = spdk_bdev_get_io_channel(g_desc);
944 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
945 	module_ch = bdev_ch->module_ch;
946 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
947 	ut_ch->avail_cnt = AVAIL;
948 
949 	/* First submit a number of IOs equal to what the channel can support. */
950 	for (i = 0; i < AVAIL; i++) {
951 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
952 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
953 		CU_ASSERT(rc == 0);
954 	}
955 	CU_ASSERT(TAILQ_EMPTY(&module_ch->nomem_io));
956 
957 	/*
958 	 * Next, submit one additional I/O.  This one should fail with ENOMEM and then go onto
959 	 *  the enomem_io list.
960 	 */
961 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
962 	rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
963 	CU_ASSERT(rc == 0);
964 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&module_ch->nomem_io));
965 	first_io = TAILQ_FIRST(&module_ch->nomem_io);
966 
967 	/*
968 	 * Now submit a bunch more I/O.  These should all fail with ENOMEM and get queued behind
969 	 *  the first_io above.
970 	 */
971 	for (i = AVAIL + 1; i < IO_ARRAY_SIZE; i++) {
972 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
973 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
974 		CU_ASSERT(rc == 0);
975 	}
976 
977 	/* Assert that first_io is still at the head of the list. */
978 	CU_ASSERT(TAILQ_FIRST(&module_ch->nomem_io) == first_io);
979 	CU_ASSERT(bdev_io_tailq_cnt(&module_ch->nomem_io) == (IO_ARRAY_SIZE - AVAIL));
980 	nomem_cnt = bdev_io_tailq_cnt(&module_ch->nomem_io);
981 	CU_ASSERT(module_ch->nomem_threshold == (AVAIL - NOMEM_THRESHOLD_COUNT));
982 
983 	/*
984 	 * Complete 1 I/O only.  The key check here is bdev_io_tailq_cnt - this should not have
985 	 *  changed since completing just 1 I/O should not trigger retrying the queued nomem_io
986 	 *  list.
987 	 */
988 	stub_complete_io(g_bdev.io_target, 1);
989 	CU_ASSERT(bdev_io_tailq_cnt(&module_ch->nomem_io) == nomem_cnt);
990 
991 	/*
992 	 * Complete enough I/O to hit the nomem_theshold.  This should trigger retrying nomem_io,
993 	 *  and we should see I/O get resubmitted to the test bdev module.
994 	 */
995 	stub_complete_io(g_bdev.io_target, NOMEM_THRESHOLD_COUNT - 1);
996 	CU_ASSERT(bdev_io_tailq_cnt(&module_ch->nomem_io) < nomem_cnt);
997 	nomem_cnt = bdev_io_tailq_cnt(&module_ch->nomem_io);
998 
999 	/* Complete 1 I/O only.  This should not trigger retrying the queued nomem_io. */
1000 	stub_complete_io(g_bdev.io_target, 1);
1001 	CU_ASSERT(bdev_io_tailq_cnt(&module_ch->nomem_io) == nomem_cnt);
1002 
1003 	/*
1004 	 * Send a reset and confirm that all I/O are completed, including the ones that
1005 	 *  were queued on the nomem_io list.
1006 	 */
1007 	status_reset = SPDK_BDEV_IO_STATUS_PENDING;
1008 	rc = spdk_bdev_reset(g_desc, io_ch, enomem_done, &status_reset);
1009 	poll_threads();
1010 	CU_ASSERT(rc == 0);
1011 	/* This will complete the reset. */
1012 	stub_complete_io(g_bdev.io_target, 0);
1013 
1014 	CU_ASSERT(bdev_io_tailq_cnt(&module_ch->nomem_io) == 0);
1015 	CU_ASSERT(module_ch->io_outstanding == 0);
1016 
1017 	spdk_put_io_channel(io_ch);
1018 	poll_threads();
1019 	teardown_test();
1020 }
1021 
1022 static void
1023 enomem_multi_bdev(void)
1024 {
1025 	struct spdk_io_channel *io_ch;
1026 	struct spdk_bdev_channel *bdev_ch;
1027 	struct spdk_bdev_module_channel *module_ch;
1028 	struct ut_bdev_channel *ut_ch;
1029 	const uint32_t IO_ARRAY_SIZE = 64;
1030 	const uint32_t AVAIL = 20;
1031 	enum spdk_bdev_io_status status[IO_ARRAY_SIZE];
1032 	uint32_t i;
1033 	struct ut_bdev *second_bdev;
1034 	struct spdk_bdev_desc *second_desc;
1035 	struct spdk_bdev_channel *second_bdev_ch;
1036 	struct spdk_io_channel *second_ch;
1037 	int rc;
1038 
1039 	setup_test();
1040 
1041 	/* Register second bdev with the same io_target  */
1042 	second_bdev = calloc(1, sizeof(*second_bdev));
1043 	SPDK_CU_ASSERT_FATAL(second_bdev != NULL);
1044 	register_bdev(second_bdev, "ut_bdev2", g_bdev.io_target);
1045 	spdk_bdev_open(&second_bdev->bdev, true, NULL, NULL, &second_desc);
1046 
1047 	set_thread(0);
1048 	io_ch = spdk_bdev_get_io_channel(g_desc);
1049 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
1050 	module_ch = bdev_ch->module_ch;
1051 	ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
1052 	ut_ch->avail_cnt = AVAIL;
1053 
1054 	second_ch = spdk_bdev_get_io_channel(second_desc);
1055 	second_bdev_ch = spdk_io_channel_get_ctx(second_ch);
1056 	SPDK_CU_ASSERT_FATAL(module_ch == second_bdev_ch->module_ch);
1057 
1058 	/* Saturate io_target through bdev A. */
1059 	for (i = 0; i < AVAIL; i++) {
1060 		status[i] = SPDK_BDEV_IO_STATUS_PENDING;
1061 		rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
1062 		CU_ASSERT(rc == 0);
1063 	}
1064 	CU_ASSERT(TAILQ_EMPTY(&module_ch->nomem_io));
1065 
1066 	/*
1067 	 * Now submit I/O through the second bdev. This should fail with ENOMEM
1068 	 * and then go onto the nomem_io list.
1069 	 */
1070 	status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
1071 	rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
1072 	CU_ASSERT(rc == 0);
1073 	SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&module_ch->nomem_io));
1074 
1075 	/* Complete first bdev's I/O. This should retry sending second bdev's nomem_io */
1076 	stub_complete_io(g_bdev.io_target, AVAIL);
1077 
1078 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&module_ch->nomem_io));
1079 	CU_ASSERT(module_ch->io_outstanding == 1);
1080 
1081 	/* Now complete our retried I/O  */
1082 	stub_complete_io(g_bdev.io_target, 1);
1083 	SPDK_CU_ASSERT_FATAL(module_ch->io_outstanding == 0);
1084 
1085 	spdk_put_io_channel(io_ch);
1086 	spdk_put_io_channel(second_ch);
1087 	spdk_bdev_close(second_desc);
1088 	unregister_bdev(second_bdev);
1089 	free(second_bdev);
1090 	poll_threads();
1091 	teardown_test();
1092 }
1093 
1094 int
1095 main(int argc, char **argv)
1096 {
1097 	CU_pSuite	suite = NULL;
1098 	unsigned int	num_failures;
1099 
1100 	if (CU_initialize_registry() != CUE_SUCCESS) {
1101 		return CU_get_error();
1102 	}
1103 
1104 	suite = CU_add_suite("bdev", NULL, NULL);
1105 	if (suite == NULL) {
1106 		CU_cleanup_registry();
1107 		return CU_get_error();
1108 	}
1109 
1110 	if (
1111 		CU_add_test(suite, "basic", basic) == NULL ||
1112 		CU_add_test(suite, "basic_poller", basic_poller) == NULL ||
1113 		CU_add_test(suite, "basic_qos", basic_qos) == NULL ||
1114 		CU_add_test(suite, "put_channel_during_reset", put_channel_during_reset) == NULL ||
1115 		CU_add_test(suite, "aborted_reset", aborted_reset) == NULL ||
1116 		CU_add_test(suite, "io_during_reset", io_during_reset) == NULL ||
1117 		CU_add_test(suite, "io_during_qos", io_during_qos) == NULL ||
1118 		CU_add_test(suite, "io_during_qos_queue", io_during_qos_queue) == NULL ||
1119 		CU_add_test(suite, "enomem", enomem) == NULL ||
1120 		CU_add_test(suite, "enomem_multi_bdev", enomem_multi_bdev) == NULL
1121 	) {
1122 		CU_cleanup_registry();
1123 		return CU_get_error();
1124 	}
1125 
1126 	CU_basic_set_mode(CU_BRM_VERBOSE);
1127 	CU_basic_run_tests();
1128 	num_failures = CU_get_number_of_failures();
1129 	CU_cleanup_registry();
1130 	return num_failures;
1131 }
1132