xref: /spdk/test/unit/lib/bdev/compress.c/compress_ut.c (revision fecffda6ecf8853b82edccde429b68252f0a62c5)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2019 Intel Corporation.
3  *   All rights reserved.
4  *   Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_cunit.h"
8 /* We have our own mock for this */
9 #define UNIT_TEST_NO_VTOPHYS
10 #include "common/lib/test_env.c"
11 #include "spdk_internal/mock.h"
12 #include "thread/thread_internal.h"
13 #include "unit/lib/json_mock.c"
14 #include "spdk/reduce.h"
15 
16 #include <rte_compressdev.h>
17 
18 /* There will be one if the data perfectly matches the chunk size,
19  * or there could be an offset into the data and a remainder after
20  * the data or both for a max of 3.
21  */
22 #define UT_MBUFS_PER_OP 3
23 /* For testing the crossing of a huge page boundary on address translation,
24  * we'll have an extra one but we only test on the source side.
25  */
26 #define UT_MBUFS_PER_OP_BOUND_TEST 4
27 
28 struct spdk_bdev_io *g_bdev_io;
29 struct spdk_io_channel *g_io_ch;
30 struct rte_comp_op g_comp_op[2];
31 struct vbdev_compress g_comp_bdev;
32 struct comp_device_qp g_device_qp;
33 struct compress_dev g_device;
34 struct rte_compressdev_capabilities g_cdev_cap;
35 static struct rte_mbuf *g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST];
36 static struct rte_mbuf *g_dst_mbufs[UT_MBUFS_PER_OP];
37 static struct rte_mbuf g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST];
38 static struct rte_mbuf g_expected_dst_mbufs[UT_MBUFS_PER_OP];
39 struct comp_bdev_io *g_io_ctx;
40 struct comp_io_channel *g_comp_ch;
41 
42 /* Those functions are defined as static inline in DPDK, so we can't
43  * mock them straight away. We use defines to redirect them into
44  * our custom functions.
45  */
46 
47 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova,
48 		uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo);
49 #define rte_pktmbuf_attach_extbuf mock_rte_pktmbuf_attach_extbuf
50 static void
51 mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova,
52 			       uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo)
53 {
54 	assert(m != NULL);
55 	m->buf_addr = buf_addr;
56 	m->buf_iova = buf_iova;
57 	m->buf_len = buf_len;
58 	m->data_len = m->pkt_len = 0;
59 }
60 
61 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len);
62 #define rte_pktmbuf_append mock_rte_pktmbuf_append
63 static char *
64 mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
65 {
66 	m->pkt_len = m->pkt_len + len;
67 	return NULL;
68 }
69 
70 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail);
71 #define rte_pktmbuf_chain mock_rte_pktmbuf_chain
72 static inline int
73 mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
74 {
75 	struct rte_mbuf *cur_tail;
76 
77 	cur_tail = rte_pktmbuf_lastseg(head);
78 	cur_tail->next = tail;
79 
80 	return 0;
81 }
82 
83 uint16_t ut_max_nb_queue_pairs = 0;
84 void __rte_experimental mock_rte_compressdev_info_get(uint8_t dev_id,
85 		struct rte_compressdev_info *dev_info);
86 #define rte_compressdev_info_get mock_rte_compressdev_info_get
87 void __rte_experimental
88 mock_rte_compressdev_info_get(uint8_t dev_id, struct rte_compressdev_info *dev_info)
89 {
90 	dev_info->max_nb_queue_pairs = ut_max_nb_queue_pairs;
91 	dev_info->capabilities = &g_cdev_cap;
92 	dev_info->driver_name = "compress_isal";
93 }
94 
95 int ut_rte_compressdev_configure = 0;
96 int __rte_experimental mock_rte_compressdev_configure(uint8_t dev_id,
97 		struct rte_compressdev_config *config);
98 #define rte_compressdev_configure mock_rte_compressdev_configure
99 int __rte_experimental
100 mock_rte_compressdev_configure(uint8_t dev_id, struct rte_compressdev_config *config)
101 {
102 	return ut_rte_compressdev_configure;
103 }
104 
105 int ut_rte_compressdev_queue_pair_setup = 0;
106 int __rte_experimental mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
107 		uint32_t max_inflight_ops, int socket_id);
108 #define rte_compressdev_queue_pair_setup mock_rte_compressdev_queue_pair_setup
109 int __rte_experimental
110 mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
111 				      uint32_t max_inflight_ops, int socket_id)
112 {
113 	return ut_rte_compressdev_queue_pair_setup;
114 }
115 
116 int ut_rte_compressdev_start = 0;
117 int __rte_experimental mock_rte_compressdev_start(uint8_t dev_id);
118 #define rte_compressdev_start mock_rte_compressdev_start
119 int __rte_experimental
120 mock_rte_compressdev_start(uint8_t dev_id)
121 {
122 	return ut_rte_compressdev_start;
123 }
124 
125 int ut_rte_compressdev_private_xform_create = 0;
126 int __rte_experimental mock_rte_compressdev_private_xform_create(uint8_t dev_id,
127 		const struct rte_comp_xform *xform, void **private_xform);
128 #define rte_compressdev_private_xform_create mock_rte_compressdev_private_xform_create
129 int __rte_experimental
130 mock_rte_compressdev_private_xform_create(uint8_t dev_id,
131 		const struct rte_comp_xform *xform, void **private_xform)
132 {
133 	return ut_rte_compressdev_private_xform_create;
134 }
135 
136 uint8_t ut_rte_compressdev_count = 0;
137 uint8_t __rte_experimental mock_rte_compressdev_count(void);
138 #define rte_compressdev_count mock_rte_compressdev_count
139 uint8_t __rte_experimental
140 mock_rte_compressdev_count(void)
141 {
142 	return ut_rte_compressdev_count;
143 }
144 
145 struct rte_mempool *ut_rte_comp_op_pool_create = NULL;
146 struct rte_mempool *__rte_experimental mock_rte_comp_op_pool_create(const char *name,
147 		unsigned int nb_elts, unsigned int cache_size, uint16_t user_size,
148 		int socket_id);
149 #define rte_comp_op_pool_create mock_rte_comp_op_pool_create
150 struct rte_mempool *__rte_experimental
151 mock_rte_comp_op_pool_create(const char *name, unsigned int nb_elts,
152 			     unsigned int cache_size, uint16_t user_size, int socket_id)
153 {
154 	return ut_rte_comp_op_pool_create;
155 }
156 
157 void mock_rte_pktmbuf_free(struct rte_mbuf *m);
158 #define rte_pktmbuf_free mock_rte_pktmbuf_free
159 void
160 mock_rte_pktmbuf_free(struct rte_mbuf *m)
161 {
162 }
163 
164 void mock_rte_pktmbuf_free_bulk(struct rte_mbuf **m, unsigned int cnt);
165 #define rte_pktmbuf_free_bulk mock_rte_pktmbuf_free_bulk
166 void
167 mock_rte_pktmbuf_free_bulk(struct rte_mbuf **m, unsigned int cnt)
168 {
169 }
170 
171 static bool ut_boundary_alloc = false;
172 static int ut_rte_pktmbuf_alloc_bulk = 0;
173 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs,
174 				unsigned count);
175 #define rte_pktmbuf_alloc_bulk mock_rte_pktmbuf_alloc_bulk
176 int
177 mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs,
178 			    unsigned count)
179 {
180 	int i;
181 
182 	/* This mocked function only supports the alloc of up to 3 src and 3 dst. */
183 	ut_rte_pktmbuf_alloc_bulk += count;
184 
185 	if (ut_rte_pktmbuf_alloc_bulk == 1) {
186 		/* allocation of an extra mbuf for boundary cross test */
187 		ut_boundary_alloc = true;
188 		g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]->next = NULL;
189 		*mbufs = g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1];
190 		ut_rte_pktmbuf_alloc_bulk = 0;
191 	} else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP) {
192 		/* first test allocation, src mbufs */
193 		for (i = 0; i < UT_MBUFS_PER_OP; i++) {
194 			g_src_mbufs[i]->next = NULL;
195 			*mbufs++ = g_src_mbufs[i];
196 		}
197 	} else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP * 2) {
198 		/* second test allocation, dst mbufs */
199 		for (i = 0; i < UT_MBUFS_PER_OP; i++) {
200 			g_dst_mbufs[i]->next = NULL;
201 			*mbufs++ = g_dst_mbufs[i];
202 		}
203 		ut_rte_pktmbuf_alloc_bulk = 0;
204 	} else {
205 		return -1;
206 	}
207 	return 0;
208 }
209 
210 struct rte_mempool *
211 rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size,
212 			uint16_t priv_size, uint16_t data_room_size, int socket_id)
213 {
214 	struct spdk_mempool *tmp;
215 
216 	tmp = spdk_mempool_create("mbuf_mp", 1024, sizeof(struct rte_mbuf),
217 				  SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
218 				  SPDK_ENV_SOCKET_ID_ANY);
219 
220 	return (struct rte_mempool *)tmp;
221 }
222 
223 void
224 rte_mempool_free(struct rte_mempool *mp)
225 {
226 	if (mp) {
227 		spdk_mempool_free((struct spdk_mempool *)mp);
228 	}
229 }
230 
231 static int ut_spdk_reduce_vol_op_complete_err = 0;
232 void
233 spdk_reduce_vol_writev(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt,
234 		       uint64_t offset, uint64_t length, spdk_reduce_vol_op_complete cb_fn,
235 		       void *cb_arg)
236 {
237 	cb_fn(cb_arg, ut_spdk_reduce_vol_op_complete_err);
238 }
239 
240 void
241 spdk_reduce_vol_readv(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt,
242 		      uint64_t offset, uint64_t length, spdk_reduce_vol_op_complete cb_fn,
243 		      void *cb_arg)
244 {
245 	cb_fn(cb_arg, ut_spdk_reduce_vol_op_complete_err);
246 }
247 
248 #include "bdev/compress/vbdev_compress.c"
249 
250 /* SPDK stubs */
251 DEFINE_STUB(spdk_bdev_get_aliases, const struct spdk_bdev_aliases_list *,
252 	    (const struct spdk_bdev *bdev), NULL);
253 DEFINE_STUB_V(spdk_bdev_module_list_add, (struct spdk_bdev_module *bdev_module));
254 DEFINE_STUB_V(spdk_bdev_free_io, (struct spdk_bdev_io *g_bdev_io));
255 DEFINE_STUB(spdk_bdev_io_type_supported, bool, (struct spdk_bdev *bdev,
256 		enum spdk_bdev_io_type io_type), 0);
257 DEFINE_STUB_V(spdk_bdev_module_release_bdev, (struct spdk_bdev *bdev));
258 DEFINE_STUB_V(spdk_bdev_close, (struct spdk_bdev_desc *desc));
259 DEFINE_STUB(spdk_bdev_get_name, const char *, (const struct spdk_bdev *bdev), 0);
260 DEFINE_STUB(spdk_bdev_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_desc *desc), 0);
261 DEFINE_STUB_V(spdk_bdev_unregister, (struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn,
262 				     void *cb_arg));
263 DEFINE_STUB(spdk_bdev_open_ext, int, (const char *bdev_name, bool write,
264 				      spdk_bdev_event_cb_t event_cb,
265 				      void *event_ctx, struct spdk_bdev_desc **_desc), 0);
266 DEFINE_STUB(spdk_bdev_desc_get_bdev, struct spdk_bdev *, (struct spdk_bdev_desc *desc), NULL);
267 DEFINE_STUB(spdk_bdev_module_claim_bdev, int, (struct spdk_bdev *bdev, struct spdk_bdev_desc *desc,
268 		struct spdk_bdev_module *module), 0);
269 DEFINE_STUB_V(spdk_bdev_module_examine_done, (struct spdk_bdev_module *module));
270 DEFINE_STUB(spdk_bdev_register, int, (struct spdk_bdev *bdev), 0);
271 DEFINE_STUB(spdk_bdev_get_by_name, struct spdk_bdev *, (const char *bdev_name), NULL);
272 DEFINE_STUB(spdk_bdev_io_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_io *bdev_io),
273 	    0);
274 DEFINE_STUB(spdk_bdev_queue_io_wait, int, (struct spdk_bdev *bdev, struct spdk_io_channel *ch,
275 		struct spdk_bdev_io_wait_entry *entry), 0);
276 DEFINE_STUB_V(spdk_reduce_vol_unload, (struct spdk_reduce_vol *vol,
277 				       spdk_reduce_vol_op_complete cb_fn, void *cb_arg));
278 DEFINE_STUB_V(spdk_reduce_vol_load, (struct spdk_reduce_backing_dev *backing_dev,
279 				     spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg));
280 DEFINE_STUB(spdk_reduce_vol_get_params, const struct spdk_reduce_vol_params *,
281 	    (struct spdk_reduce_vol *vol), NULL);
282 DEFINE_STUB_V(spdk_reduce_vol_init, (struct spdk_reduce_vol_params *params,
283 				     struct spdk_reduce_backing_dev *backing_dev,
284 				     const char *pm_file_dir,
285 				     spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg));
286 DEFINE_STUB_V(spdk_reduce_vol_destroy, (struct spdk_reduce_backing_dev *backing_dev,
287 					spdk_reduce_vol_op_complete cb_fn, void *cb_arg));
288 
289 /* DPDK stubs */
290 #define DPDK_DYNFIELD_OFFSET offsetof(struct rte_mbuf, dynfield1[1])
291 DEFINE_STUB(rte_mbuf_dynfield_register, int, (const struct rte_mbuf_dynfield *params),
292 	    DPDK_DYNFIELD_OFFSET);
293 DEFINE_STUB(rte_socket_id, unsigned, (void), 0);
294 DEFINE_STUB(rte_vdev_init, int, (const char *name, const char *args), 0);
295 DEFINE_STUB_V(rte_comp_op_free, (struct rte_comp_op *op));
296 DEFINE_STUB(rte_comp_op_alloc, struct rte_comp_op *, (struct rte_mempool *mempool), NULL);
297 
298 int g_small_size_counter = 0;
299 int g_small_size_modify = 0;
300 uint64_t g_small_size = 0;
301 uint64_t
302 spdk_vtophys(const void *buf, uint64_t *size)
303 {
304 	g_small_size_counter++;
305 	if (g_small_size_counter == g_small_size_modify) {
306 		*size = g_small_size;
307 		g_small_size_counter = 0;
308 		g_small_size_modify = 0;
309 	}
310 	return (uint64_t)buf;
311 }
312 
313 void
314 spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len)
315 {
316 	cb(g_io_ch, g_bdev_io, true);
317 }
318 
319 /* Mock these functions to call the callback and then return the value we require */
320 int ut_spdk_bdev_readv_blocks = 0;
321 int
322 spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
323 		       struct iovec *iov, int iovcnt,
324 		       uint64_t offset_blocks, uint64_t num_blocks,
325 		       spdk_bdev_io_completion_cb cb, void *cb_arg)
326 {
327 	cb(g_bdev_io, !ut_spdk_bdev_readv_blocks, cb_arg);
328 	return ut_spdk_bdev_readv_blocks;
329 }
330 
331 int ut_spdk_bdev_writev_blocks = 0;
332 bool ut_spdk_bdev_writev_blocks_mocked = false;
333 int
334 spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
335 			struct iovec *iov, int iovcnt,
336 			uint64_t offset_blocks, uint64_t num_blocks,
337 			spdk_bdev_io_completion_cb cb, void *cb_arg)
338 {
339 	cb(g_bdev_io, !ut_spdk_bdev_writev_blocks, cb_arg);
340 	return ut_spdk_bdev_writev_blocks;
341 }
342 
343 int ut_spdk_bdev_unmap_blocks = 0;
344 bool ut_spdk_bdev_unmap_blocks_mocked = false;
345 int
346 spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
347 		       uint64_t offset_blocks, uint64_t num_blocks,
348 		       spdk_bdev_io_completion_cb cb, void *cb_arg)
349 {
350 	cb(g_bdev_io, !ut_spdk_bdev_unmap_blocks, cb_arg);
351 	return ut_spdk_bdev_unmap_blocks;
352 }
353 
354 int ut_spdk_bdev_flush_blocks = 0;
355 bool ut_spdk_bdev_flush_blocks_mocked = false;
356 int
357 spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
358 		       uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb,
359 		       void *cb_arg)
360 {
361 	cb(g_bdev_io, !ut_spdk_bdev_flush_blocks, cb_arg);
362 	return ut_spdk_bdev_flush_blocks;
363 }
364 
365 int ut_spdk_bdev_reset = 0;
366 bool ut_spdk_bdev_reset_mocked = false;
367 int
368 spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
369 		spdk_bdev_io_completion_cb cb, void *cb_arg)
370 {
371 	cb(g_bdev_io, !ut_spdk_bdev_reset, cb_arg);
372 	return ut_spdk_bdev_reset;
373 }
374 
375 bool g_completion_called = false;
376 void
377 spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status)
378 {
379 	bdev_io->internal.status = status;
380 	g_completion_called = true;
381 }
382 
383 static uint16_t ut_rte_compressdev_dequeue_burst = 0;
384 uint16_t
385 rte_compressdev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops,
386 			      uint16_t nb_op)
387 {
388 	if (ut_rte_compressdev_dequeue_burst == 0) {
389 		return 0;
390 	}
391 
392 	ops[0] = &g_comp_op[0];
393 	ops[1] = &g_comp_op[1];
394 
395 	return ut_rte_compressdev_dequeue_burst;
396 }
397 
398 static int ut_compress_done[2];
399 /* done_count and done_idx together control which expected assertion
400  * value to use when dequeuing 2 operations.
401  */
402 static uint16_t done_count = 1;
403 static uint16_t done_idx = 0;
404 static void
405 _compress_done(void *_req, int reduce_errno)
406 {
407 	if (done_count == 1) {
408 		CU_ASSERT(reduce_errno == ut_compress_done[0]);
409 	} else if (done_count == 2) {
410 		CU_ASSERT(reduce_errno == ut_compress_done[done_idx++]);
411 	}
412 }
413 
414 static void
415 _get_mbuf_array(struct rte_mbuf **mbuf_array, struct rte_mbuf *mbuf_head,
416 		int mbuf_count, bool null_final)
417 {
418 	int i;
419 
420 	for (i = 0; i < mbuf_count; i++) {
421 		mbuf_array[i] = mbuf_head;
422 		if (mbuf_head) {
423 			mbuf_head = mbuf_head->next;
424 		}
425 	}
426 	if (null_final) {
427 		mbuf_array[i - 1] = NULL;
428 	}
429 }
430 
431 #define FAKE_ENQUEUE_SUCCESS 255
432 #define FAKE_ENQUEUE_ERROR 128
433 #define FAKE_ENQUEUE_BUSY 64
434 static uint16_t ut_enqueue_value = FAKE_ENQUEUE_SUCCESS;
435 static struct rte_comp_op ut_expected_op;
436 uint16_t
437 rte_compressdev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops,
438 			      uint16_t nb_ops)
439 {
440 	struct rte_comp_op *op = *ops;
441 	struct rte_mbuf *op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
442 	struct rte_mbuf *exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
443 	int i, num_src_mbufs = UT_MBUFS_PER_OP;
444 
445 	switch (ut_enqueue_value) {
446 	case FAKE_ENQUEUE_BUSY:
447 		op->status = RTE_COMP_OP_STATUS_NOT_PROCESSED;
448 		return 0;
449 	case FAKE_ENQUEUE_SUCCESS:
450 		op->status = RTE_COMP_OP_STATUS_SUCCESS;
451 		return 1;
452 	case FAKE_ENQUEUE_ERROR:
453 		op->status = RTE_COMP_OP_STATUS_ERROR;
454 		return 0;
455 	default:
456 		break;
457 	}
458 
459 	/* by design the compress module will never send more than 1 op at a time */
460 	CU_ASSERT(op->private_xform == ut_expected_op.private_xform);
461 
462 	/* setup our local pointers to the chained mbufs, those pointed to in the
463 	 * operation struct and the expected values.
464 	 */
465 	_get_mbuf_array(op_mbuf, op->m_src, SPDK_COUNTOF(op_mbuf), true);
466 	_get_mbuf_array(exp_mbuf, ut_expected_op.m_src, SPDK_COUNTOF(exp_mbuf), true);
467 
468 	if (ut_boundary_alloc == true) {
469 		/* if we crossed a boundary, we need to check the 4th src mbuf and
470 		 * reset the global that is used to identify whether we crossed
471 		 * or not
472 		 */
473 		num_src_mbufs = UT_MBUFS_PER_OP_BOUND_TEST;
474 		exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = ut_expected_op.m_src->next->next->next;
475 		op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = op->m_src->next->next->next;
476 		ut_boundary_alloc = false;
477 	}
478 
479 	for (i = 0; i < num_src_mbufs; i++) {
480 		CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr);
481 		CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova);
482 		CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len);
483 		CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len);
484 	}
485 
486 	/* if only 3 mbufs were used in the test, the 4th should be zeroed */
487 	if (num_src_mbufs == UT_MBUFS_PER_OP) {
488 		CU_ASSERT(op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL);
489 		CU_ASSERT(exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL);
490 	}
491 	CU_ASSERT(*RTE_MBUF_DYNFIELD(op->m_src, g_mbuf_offset, uint64_t *) ==
492 		  *RTE_MBUF_DYNFIELD(ut_expected_op.m_src, g_mbuf_offset, uint64_t *));
493 	CU_ASSERT(op->src.offset == ut_expected_op.src.offset);
494 	CU_ASSERT(op->src.length == ut_expected_op.src.length);
495 
496 	/* check dst mbuf values */
497 	_get_mbuf_array(op_mbuf, op->m_dst, SPDK_COUNTOF(op_mbuf), true);
498 	_get_mbuf_array(exp_mbuf, ut_expected_op.m_dst, SPDK_COUNTOF(exp_mbuf), true);
499 
500 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
501 		CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr);
502 		CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova);
503 		CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len);
504 		CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len);
505 	}
506 	CU_ASSERT(op->dst.offset == ut_expected_op.dst.offset);
507 
508 	return ut_enqueue_value;
509 }
510 
511 /* Global setup for all tests that share a bunch of preparation... */
512 static int
513 test_setup(void)
514 {
515 	struct spdk_thread *thread;
516 	int i;
517 
518 	spdk_thread_lib_init(NULL, 0);
519 
520 	thread = spdk_thread_create(NULL, NULL);
521 	spdk_set_thread(thread);
522 
523 	g_comp_bdev.drv_name = "test";
524 	g_comp_bdev.reduce_thread = thread;
525 	g_comp_bdev.backing_dev.unmap = _comp_reduce_unmap;
526 	g_comp_bdev.backing_dev.readv = _comp_reduce_readv;
527 	g_comp_bdev.backing_dev.writev = _comp_reduce_writev;
528 	g_comp_bdev.backing_dev.compress = _comp_reduce_compress;
529 	g_comp_bdev.backing_dev.decompress = _comp_reduce_decompress;
530 	g_comp_bdev.backing_dev.blocklen = 512;
531 	g_comp_bdev.backing_dev.blockcnt = 1024 * 16;
532 	g_comp_bdev.backing_dev.sgl_in = true;
533 	g_comp_bdev.backing_dev.sgl_out = true;
534 
535 	g_comp_bdev.device_qp = &g_device_qp;
536 	g_comp_bdev.device_qp->device = &g_device;
537 
538 	TAILQ_INIT(&g_comp_bdev.queued_comp_ops);
539 
540 	g_comp_xform = (struct rte_comp_xform) {
541 		.type = RTE_COMP_COMPRESS,
542 		.compress = {
543 			.algo = RTE_COMP_ALGO_DEFLATE,
544 			.deflate.huffman = RTE_COMP_HUFFMAN_DEFAULT,
545 			.level = RTE_COMP_LEVEL_MAX,
546 			.window_size = DEFAULT_WINDOW_SIZE,
547 			.chksum = RTE_COMP_CHECKSUM_NONE,
548 			.hash_algo = RTE_COMP_HASH_ALGO_NONE
549 		}
550 	};
551 
552 	g_decomp_xform = (struct rte_comp_xform) {
553 		.type = RTE_COMP_DECOMPRESS,
554 		.decompress = {
555 			.algo = RTE_COMP_ALGO_DEFLATE,
556 			.chksum = RTE_COMP_CHECKSUM_NONE,
557 			.window_size = DEFAULT_WINDOW_SIZE,
558 			.hash_algo = RTE_COMP_HASH_ALGO_NONE
559 		}
560 	};
561 	g_device.comp_xform = &g_comp_xform;
562 	g_device.decomp_xform = &g_decomp_xform;
563 	g_cdev_cap.comp_feature_flags = RTE_COMP_FF_SHAREABLE_PRIV_XFORM;
564 	g_device.cdev_info.driver_name = "compress_isal";
565 	g_device.cdev_info.capabilities = &g_cdev_cap;
566 	for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) {
567 		g_src_mbufs[i] = calloc(1, sizeof(struct rte_mbuf));
568 	}
569 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
570 		g_dst_mbufs[i] = calloc(1, sizeof(struct rte_mbuf));
571 	}
572 
573 	g_bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct comp_bdev_io));
574 	g_bdev_io->u.bdev.iovs = calloc(128, sizeof(struct iovec));
575 	g_bdev_io->bdev = &g_comp_bdev.comp_bdev;
576 	g_io_ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct comp_io_channel));
577 	g_io_ch->thread = thread;
578 	g_comp_ch = (struct comp_io_channel *)spdk_io_channel_get_ctx(g_io_ch);
579 	g_io_ctx = (struct comp_bdev_io *)g_bdev_io->driver_ctx;
580 
581 	g_io_ctx->comp_ch = g_comp_ch;
582 	g_io_ctx->comp_bdev = &g_comp_bdev;
583 	g_comp_bdev.device_qp = &g_device_qp;
584 
585 	for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) {
586 		g_expected_src_mbufs[i].next = &g_expected_src_mbufs[i + 1];
587 	}
588 	g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1].next = NULL;
589 
590 	/* we only test w/4 mbufs on src side */
591 	for (i = 0; i < UT_MBUFS_PER_OP - 1; i++) {
592 		g_expected_dst_mbufs[i].next = &g_expected_dst_mbufs[i + 1];
593 	}
594 	g_expected_dst_mbufs[UT_MBUFS_PER_OP - 1].next = NULL;
595 	g_mbuf_offset = DPDK_DYNFIELD_OFFSET;
596 
597 	return 0;
598 }
599 
600 /* Global teardown for all tests */
601 static int
602 test_cleanup(void)
603 {
604 	struct spdk_thread *thread;
605 	int i;
606 
607 	for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) {
608 		free(g_src_mbufs[i]);
609 	}
610 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
611 		free(g_dst_mbufs[i]);
612 	}
613 	free(g_bdev_io->u.bdev.iovs);
614 	free(g_bdev_io);
615 	free(g_io_ch);
616 
617 	thread = spdk_get_thread();
618 	spdk_thread_exit(thread);
619 	while (!spdk_thread_is_exited(thread)) {
620 		spdk_thread_poll(thread, 0, 0);
621 	}
622 	spdk_thread_destroy(thread);
623 
624 	spdk_thread_lib_fini();
625 
626 	return 0;
627 }
628 
629 static void
630 test_compress_operation(void)
631 {
632 	struct iovec src_iovs[3] = {};
633 	int src_iovcnt;
634 	struct iovec dst_iovs[3] = {};
635 	int dst_iovcnt;
636 	struct spdk_reduce_vol_cb_args cb_arg;
637 	int rc, i;
638 	struct vbdev_comp_op *op;
639 	struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP];
640 	struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP];
641 
642 	src_iovcnt = dst_iovcnt = 3;
643 	for (i = 0; i < dst_iovcnt; i++) {
644 		src_iovs[i].iov_len = 0x1000;
645 		dst_iovs[i].iov_len = 0x1000;
646 		src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i;
647 		dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i;
648 	}
649 
650 	/* test rte_comp_op_alloc failure */
651 	MOCK_SET(rte_comp_op_alloc, NULL);
652 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
653 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
654 				 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
655 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false);
656 	while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) {
657 		op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops);
658 		TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link);
659 		free(op);
660 	}
661 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
662 	CU_ASSERT(rc == 0);
663 	MOCK_SET(rte_comp_op_alloc, &g_comp_op[0]);
664 
665 	/* test mempool get failure */
666 	ut_rte_pktmbuf_alloc_bulk = -1;
667 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
668 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
669 				 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
670 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false);
671 	while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) {
672 		op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops);
673 		TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link);
674 		free(op);
675 	}
676 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
677 	CU_ASSERT(rc == 0);
678 	ut_rte_pktmbuf_alloc_bulk = 0;
679 
680 	/* test enqueue failure busy */
681 	ut_enqueue_value = FAKE_ENQUEUE_BUSY;
682 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
683 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
684 				 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
685 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false);
686 	while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) {
687 		op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops);
688 		TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link);
689 		free(op);
690 	}
691 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
692 	CU_ASSERT(rc == 0);
693 	ut_enqueue_value = 1;
694 
695 	/* test enqueue failure error */
696 	ut_enqueue_value = FAKE_ENQUEUE_ERROR;
697 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
698 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
699 				 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
700 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
701 	CU_ASSERT(rc == -EINVAL);
702 	ut_enqueue_value = FAKE_ENQUEUE_SUCCESS;
703 
704 	/* test success with 3 vector iovec */
705 	ut_expected_op.private_xform = &g_decomp_xform;
706 	ut_expected_op.src.offset = 0;
707 	ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len;
708 
709 	/* setup the src expected values */
710 	_get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false);
711 	ut_expected_op.m_src = exp_src_mbuf[0];
712 
713 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
714 		*RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&cb_arg;
715 		exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base;
716 		exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len);
717 		exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len;
718 		exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len;
719 	}
720 
721 	/* setup the dst expected values */
722 	_get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false);
723 	ut_expected_op.dst.offset = 0;
724 	ut_expected_op.m_dst = exp_dst_mbuf[0];
725 
726 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
727 		exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base;
728 		exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len);
729 		exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len;
730 		exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len;
731 	}
732 
733 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
734 				 &dst_iovs[0], dst_iovcnt, false, &cb_arg);
735 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
736 	CU_ASSERT(rc == 0);
737 
738 	/* test sgl out failure */
739 	g_comp_bdev.backing_dev.sgl_out = false;
740 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
741 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], 1,
742 				 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
743 	CU_ASSERT(rc == -EINVAL);
744 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
745 	g_comp_bdev.backing_dev.sgl_out = true;
746 
747 	/* test sgl in failure */
748 	g_comp_bdev.backing_dev.sgl_in = false;
749 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
750 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
751 				 &dst_iovs[0], 1, true, &cb_arg);
752 	CU_ASSERT(rc == -EINVAL);
753 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
754 	g_comp_bdev.backing_dev.sgl_in = true;
755 
756 
757 }
758 
759 static void
760 test_compress_operation_cross_boundary(void)
761 {
762 	struct iovec src_iovs[3] = {};
763 	int src_iovcnt;
764 	struct iovec dst_iovs[3] = {};
765 	int dst_iovcnt;
766 	struct spdk_reduce_vol_cb_args cb_arg;
767 	int rc, i;
768 	struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
769 	struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
770 
771 	/* Setup the same basic 3 IOV test as used in the simple success case
772 	 * but then we'll start testing a vtophy boundary crossing at each
773 	 * position.
774 	 */
775 	src_iovcnt = dst_iovcnt = 3;
776 	for (i = 0; i < dst_iovcnt; i++) {
777 		src_iovs[i].iov_len = 0x1000;
778 		dst_iovs[i].iov_len = 0x1000;
779 		src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i;
780 		dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i;
781 	}
782 
783 	ut_expected_op.private_xform = &g_decomp_xform;
784 	ut_expected_op.src.offset = 0;
785 	ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len;
786 
787 	/* setup the src expected values */
788 	_get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false);
789 	ut_expected_op.m_src = exp_src_mbuf[0];
790 
791 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
792 		*RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&cb_arg;
793 		exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base;
794 		exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len);
795 		exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len;
796 		exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len;
797 	}
798 
799 	/* setup the dst expected values, we don't test needing a 4th dst mbuf */
800 	_get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false);
801 	ut_expected_op.dst.offset = 0;
802 	ut_expected_op.m_dst = exp_dst_mbuf[0];
803 
804 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
805 		exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base;
806 		exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len);
807 		exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len;
808 		exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len;
809 	}
810 
811 	/* force the 1st IOV to get partial length from spdk_vtophys */
812 	g_small_size_counter = 0;
813 	g_small_size_modify = 1;
814 	g_small_size = 0x800;
815 	*RTE_MBUF_DYNFIELD(exp_src_mbuf[3], g_mbuf_offset, uint64_t *) = (uint64_t)&cb_arg;
816 
817 	/* first only has shorter length */
818 	exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x800;
819 
820 	/* 2nd was inserted by the boundary crossing condition and finishes off
821 	 * the length from the first */
822 	exp_src_mbuf[1]->buf_addr = (void *)0x10000800;
823 	exp_src_mbuf[1]->buf_iova = 0x10000800;
824 	exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800;
825 
826 	/* 3rd looks like that the 2nd would have */
827 	exp_src_mbuf[2]->buf_addr = (void *)0x10001000;
828 	exp_src_mbuf[2]->buf_iova = 0x10001000;
829 	exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x1000;
830 
831 	/* a new 4th looks like what the 3rd would have */
832 	exp_src_mbuf[3]->buf_addr = (void *)0x10002000;
833 	exp_src_mbuf[3]->buf_iova = 0x10002000;
834 	exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000;
835 
836 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
837 				 &dst_iovs[0], dst_iovcnt, false, &cb_arg);
838 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
839 	CU_ASSERT(rc == 0);
840 
841 	/* Now force the 2nd IOV to get partial length from spdk_vtophys */
842 	g_small_size_counter = 0;
843 	g_small_size_modify = 2;
844 	g_small_size = 0x800;
845 
846 	/* first is normal */
847 	exp_src_mbuf[0]->buf_addr = (void *)0x10000000;
848 	exp_src_mbuf[0]->buf_iova = 0x10000000;
849 	exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000;
850 
851 	/* second only has shorter length */
852 	exp_src_mbuf[1]->buf_addr = (void *)0x10001000;
853 	exp_src_mbuf[1]->buf_iova = 0x10001000;
854 	exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800;
855 
856 	/* 3rd was inserted by the boundary crossing condition and finishes off
857 	 * the length from the first */
858 	exp_src_mbuf[2]->buf_addr = (void *)0x10001800;
859 	exp_src_mbuf[2]->buf_iova = 0x10001800;
860 	exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800;
861 
862 	/* a new 4th looks like what the 3rd would have */
863 	exp_src_mbuf[3]->buf_addr = (void *)0x10002000;
864 	exp_src_mbuf[3]->buf_iova = 0x10002000;
865 	exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000;
866 
867 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
868 				 &dst_iovs[0], dst_iovcnt, false, &cb_arg);
869 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
870 	CU_ASSERT(rc == 0);
871 
872 	/* Finally force the 3rd IOV to get partial length from spdk_vtophys */
873 	g_small_size_counter = 0;
874 	g_small_size_modify = 3;
875 	g_small_size = 0x800;
876 
877 	/* first is normal */
878 	exp_src_mbuf[0]->buf_addr = (void *)0x10000000;
879 	exp_src_mbuf[0]->buf_iova = 0x10000000;
880 	exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000;
881 
882 	/* second is normal */
883 	exp_src_mbuf[1]->buf_addr = (void *)0x10001000;
884 	exp_src_mbuf[1]->buf_iova = 0x10001000;
885 	exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x1000;
886 
887 	/* 3rd has shorter length */
888 	exp_src_mbuf[2]->buf_addr = (void *)0x10002000;
889 	exp_src_mbuf[2]->buf_iova = 0x10002000;
890 	exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800;
891 
892 	/* a new 4th handles the remainder from the 3rd */
893 	exp_src_mbuf[3]->buf_addr = (void *)0x10002800;
894 	exp_src_mbuf[3]->buf_iova = 0x10002800;
895 	exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x800;
896 
897 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
898 				 &dst_iovs[0], dst_iovcnt, false, &cb_arg);
899 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
900 	CU_ASSERT(rc == 0);
901 
902 	/* Single input iov is split on page boundary, sgl_in is not supported */
903 	g_comp_bdev.backing_dev.sgl_in = false;
904 	g_small_size_counter = 0;
905 	g_small_size_modify = 1;
906 	g_small_size = 0x800;
907 	rc = _compress_operation(&g_comp_bdev.backing_dev, src_iovs, 1,
908 				 dst_iovs, 1, false, &cb_arg);
909 	CU_ASSERT(rc == -EINVAL);
910 	g_comp_bdev.backing_dev.sgl_in = true;
911 
912 	/* Single output iov is split on page boundary, sgl_out is not supported */
913 	g_comp_bdev.backing_dev.sgl_out = false;
914 	g_small_size_counter = 0;
915 	g_small_size_modify = 2;
916 	g_small_size = 0x800;
917 	rc = _compress_operation(&g_comp_bdev.backing_dev, src_iovs, 1,
918 				 dst_iovs, 1, false, &cb_arg);
919 	CU_ASSERT(rc == -EINVAL);
920 	g_comp_bdev.backing_dev.sgl_out = true;
921 }
922 
923 static void
924 test_poller(void)
925 {
926 	int rc;
927 	struct spdk_reduce_vol_cb_args *cb_args;
928 	struct rte_mbuf mbuf[4]; /* one src, one dst, 2 ops */
929 	struct vbdev_comp_op *op_to_queue;
930 	struct iovec src_iovs[3] = {};
931 	struct iovec dst_iovs[3] = {};
932 	int i;
933 
934 	cb_args = calloc(1, sizeof(*cb_args));
935 	SPDK_CU_ASSERT_FATAL(cb_args != NULL);
936 	cb_args->cb_fn = _compress_done;
937 	memset(&g_comp_op[0], 0, sizeof(struct rte_comp_op));
938 	g_comp_op[0].m_src = &mbuf[0];
939 	g_comp_op[1].m_src = &mbuf[1];
940 	g_comp_op[0].m_dst = &mbuf[2];
941 	g_comp_op[1].m_dst = &mbuf[3];
942 	for (i = 0; i < 3; i++) {
943 		src_iovs[i].iov_len = 0x1000;
944 		dst_iovs[i].iov_len = 0x1000;
945 		src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i;
946 		dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i;
947 	}
948 
949 	/* Error from dequeue, nothing needing to be resubmitted.
950 	 */
951 	ut_rte_compressdev_dequeue_burst = 1;
952 	/* setup what we want dequeue to return for the op */
953 	*RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args;
954 	g_comp_op[0].produced = 1;
955 	g_comp_op[0].status = 1;
956 	/* value asserted in the reduce callback */
957 	ut_compress_done[0] = -EINVAL;
958 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
959 	rc = comp_dev_poller((void *)&g_comp_bdev);
960 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
961 	CU_ASSERT(rc == SPDK_POLLER_BUSY);
962 
963 	/* Success from dequeue, 2 ops. nothing needing to be resubmitted.
964 	 */
965 	ut_rte_compressdev_dequeue_burst = 2;
966 	/* setup what we want dequeue to return for the op */
967 	*RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args;
968 	g_comp_op[0].produced = 16;
969 	g_comp_op[0].status = 0;
970 	*RTE_MBUF_DYNFIELD(g_comp_op[1].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args;
971 	g_comp_op[1].produced = 32;
972 	g_comp_op[1].status = 0;
973 	/* value asserted in the reduce callback */
974 	ut_compress_done[0] = 16;
975 	ut_compress_done[1] = 32;
976 	done_count = 2;
977 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
978 	rc = comp_dev_poller((void *)&g_comp_bdev);
979 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
980 	CU_ASSERT(rc == SPDK_POLLER_BUSY);
981 
982 	/* Success from dequeue, one op to be resubmitted.
983 	 */
984 	ut_rte_compressdev_dequeue_burst = 1;
985 	/* setup what we want dequeue to return for the op */
986 	*RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args;
987 	g_comp_op[0].produced = 16;
988 	g_comp_op[0].status = 0;
989 	/* value asserted in the reduce callback */
990 	ut_compress_done[0] = 16;
991 	done_count = 1;
992 	op_to_queue = calloc(1, sizeof(struct vbdev_comp_op));
993 	SPDK_CU_ASSERT_FATAL(op_to_queue != NULL);
994 	op_to_queue->backing_dev = &g_comp_bdev.backing_dev;
995 	op_to_queue->src_iovs = &src_iovs[0];
996 	op_to_queue->src_iovcnt = 3;
997 	op_to_queue->dst_iovs = &dst_iovs[0];
998 	op_to_queue->dst_iovcnt = 3;
999 	op_to_queue->compress = true;
1000 	op_to_queue->cb_arg = cb_args;
1001 	ut_enqueue_value = FAKE_ENQUEUE_SUCCESS;
1002 	TAILQ_INSERT_TAIL(&g_comp_bdev.queued_comp_ops,
1003 			  op_to_queue,
1004 			  link);
1005 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false);
1006 	rc = comp_dev_poller((void *)&g_comp_bdev);
1007 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
1008 	CU_ASSERT(rc == SPDK_POLLER_BUSY);
1009 
1010 	/* op_to_queue is freed in code under test */
1011 	free(cb_args);
1012 }
1013 
1014 static void
1015 test_vbdev_compress_submit_request(void)
1016 {
1017 	/* Single element block size write */
1018 	g_bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
1019 	g_bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE;
1020 	g_completion_called = false;
1021 	vbdev_compress_submit_request(g_io_ch, g_bdev_io);
1022 	CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS);
1023 	CU_ASSERT(g_completion_called == true);
1024 	CU_ASSERT(g_io_ctx->orig_io == g_bdev_io);
1025 	CU_ASSERT(g_io_ctx->comp_bdev == &g_comp_bdev);
1026 	CU_ASSERT(g_io_ctx->comp_ch == g_comp_ch);
1027 
1028 	/* same write but now fail it */
1029 	ut_spdk_reduce_vol_op_complete_err = 1;
1030 	g_completion_called = false;
1031 	vbdev_compress_submit_request(g_io_ch, g_bdev_io);
1032 	CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FAILED);
1033 	CU_ASSERT(g_completion_called == true);
1034 
1035 	/* test a read success */
1036 	g_bdev_io->type = SPDK_BDEV_IO_TYPE_READ;
1037 	ut_spdk_reduce_vol_op_complete_err = 0;
1038 	g_completion_called = false;
1039 	vbdev_compress_submit_request(g_io_ch, g_bdev_io);
1040 	CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS);
1041 	CU_ASSERT(g_completion_called == true);
1042 
1043 	/* test a read failure */
1044 	ut_spdk_reduce_vol_op_complete_err = 1;
1045 	g_completion_called = false;
1046 	vbdev_compress_submit_request(g_io_ch, g_bdev_io);
1047 	CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FAILED);
1048 	CU_ASSERT(g_completion_called == true);
1049 }
1050 
1051 static void
1052 test_passthru(void)
1053 {
1054 
1055 }
1056 
1057 static void
1058 test_reset(void)
1059 {
1060 	/* TODO: There are a few different ways to do this given that
1061 	 * the code uses spdk_for_each_channel() to implement reset
1062 	 * handling. SUbmitting w/o UT for this function for now and
1063 	 * will follow up with something shortly.
1064 	 */
1065 }
1066 
1067 static void
1068 test_initdrivers(void)
1069 {
1070 	int rc;
1071 
1072 	/* test return values from rte_vdev_init() */
1073 	MOCK_SET(rte_vdev_init, -EEXIST);
1074 	rc = vbdev_init_compress_drivers();
1075 	/* This is not an error condition, we already have one */
1076 	CU_ASSERT(rc == 0);
1077 
1078 	/* error */
1079 	MOCK_SET(rte_vdev_init, -2);
1080 	rc = vbdev_init_compress_drivers();
1081 	CU_ASSERT(rc == -EINVAL);
1082 	CU_ASSERT(g_mbuf_mp == NULL);
1083 	CU_ASSERT(g_comp_op_mp == NULL);
1084 
1085 	/* compressdev count 0 */
1086 	ut_rte_compressdev_count = 0;
1087 	MOCK_SET(rte_vdev_init, 0);
1088 	rc = vbdev_init_compress_drivers();
1089 	CU_ASSERT(rc == 0);
1090 
1091 	/* bogus count */
1092 	ut_rte_compressdev_count = RTE_COMPRESS_MAX_DEVS + 1;
1093 	rc = vbdev_init_compress_drivers();
1094 	CU_ASSERT(rc == -EINVAL);
1095 
1096 	/* can't get mbuf pool */
1097 	ut_rte_compressdev_count = 1;
1098 	MOCK_SET(spdk_mempool_create, NULL);
1099 	rc = vbdev_init_compress_drivers();
1100 	CU_ASSERT(rc == -ENOMEM);
1101 	MOCK_CLEAR(spdk_mempool_create);
1102 
1103 	/* can't get comp op pool */
1104 	ut_rte_comp_op_pool_create = NULL;
1105 	rc = vbdev_init_compress_drivers();
1106 	CU_ASSERT(rc == -ENOMEM);
1107 
1108 	/* error on create_compress_dev() */
1109 	ut_rte_comp_op_pool_create = (struct rte_mempool *)&test_initdrivers;
1110 	ut_rte_compressdev_configure = -1;
1111 	rc = vbdev_init_compress_drivers();
1112 	CU_ASSERT(rc == -1);
1113 
1114 	/* error on create_compress_dev() but coverage for large num queues */
1115 	ut_max_nb_queue_pairs = 99;
1116 	rc = vbdev_init_compress_drivers();
1117 	CU_ASSERT(rc == -1);
1118 
1119 	/* qpair setup fails */
1120 	ut_rte_compressdev_configure = 0;
1121 	ut_max_nb_queue_pairs = 0;
1122 	ut_rte_compressdev_queue_pair_setup = -1;
1123 	rc = vbdev_init_compress_drivers();
1124 	CU_ASSERT(rc == -EINVAL);
1125 
1126 	/* rte_compressdev_start fails */
1127 	ut_rte_compressdev_queue_pair_setup = 0;
1128 	ut_rte_compressdev_start = -1;
1129 	rc = vbdev_init_compress_drivers();
1130 	CU_ASSERT(rc == -1);
1131 
1132 	/* rte_compressdev_private_xform_create() fails */
1133 	ut_rte_compressdev_start = 0;
1134 	ut_rte_compressdev_private_xform_create = -2;
1135 	rc = vbdev_init_compress_drivers();
1136 	CU_ASSERT(rc == -2);
1137 
1138 	/* success */
1139 	ut_rte_compressdev_private_xform_create = 0;
1140 	rc = vbdev_init_compress_drivers();
1141 	CU_ASSERT(rc == 0);
1142 	CU_ASSERT(g_mbuf_offset == DPDK_DYNFIELD_OFFSET);
1143 	spdk_mempool_free((struct spdk_mempool *)g_mbuf_mp);
1144 }
1145 
1146 static void
1147 test_supported_io(void)
1148 {
1149 
1150 }
1151 
1152 int
1153 main(int argc, char **argv)
1154 {
1155 	CU_pSuite	suite = NULL;
1156 	unsigned int	num_failures;
1157 
1158 	CU_set_error_action(CUEA_ABORT);
1159 	CU_initialize_registry();
1160 
1161 	suite = CU_add_suite("compress", test_setup, test_cleanup);
1162 	CU_ADD_TEST(suite, test_compress_operation);
1163 	CU_ADD_TEST(suite, test_compress_operation_cross_boundary);
1164 	CU_ADD_TEST(suite, test_vbdev_compress_submit_request);
1165 	CU_ADD_TEST(suite, test_passthru);
1166 	CU_ADD_TEST(suite, test_initdrivers);
1167 	CU_ADD_TEST(suite, test_supported_io);
1168 	CU_ADD_TEST(suite, test_poller);
1169 	CU_ADD_TEST(suite, test_reset);
1170 
1171 	CU_basic_set_mode(CU_BRM_VERBOSE);
1172 	CU_basic_run_tests();
1173 	num_failures = CU_get_number_of_failures();
1174 	CU_cleanup_registry();
1175 	return num_failures;
1176 }
1177