1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk_cunit.h" 35 /* We have our own mock for this */ 36 #define UNIT_TEST_NO_VTOPHYS 37 #include "common/lib/test_env.c" 38 #include "spdk_internal/mock.h" 39 #include "unit/lib/json_mock.c" 40 #include "spdk/reduce.h" 41 42 #include <rte_compressdev.h> 43 44 /* There will be one if the data perfectly matches the chunk size, 45 * or there could be an offset into the data and a remainder after 46 * the data or both for a max of 3. 47 */ 48 #define UT_MBUFS_PER_OP 3 49 /* For testing the crossing of a huge page boundary on address translation, 50 * we'll have an extra one but we only test on the source side. 51 */ 52 #define UT_MBUFS_PER_OP_BOUND_TEST 4 53 54 struct spdk_bdev_io *g_bdev_io; 55 struct spdk_io_channel *g_io_ch; 56 struct rte_comp_op g_comp_op[2]; 57 struct vbdev_compress g_comp_bdev; 58 struct comp_device_qp g_device_qp; 59 struct compress_dev g_device; 60 struct rte_compressdev_capabilities g_cdev_cap; 61 static struct rte_mbuf *g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST]; 62 static struct rte_mbuf *g_dst_mbufs[UT_MBUFS_PER_OP]; 63 static struct rte_mbuf g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST]; 64 static struct rte_mbuf g_expected_dst_mbufs[UT_MBUFS_PER_OP]; 65 struct comp_bdev_io *g_io_ctx; 66 struct comp_io_channel *g_comp_ch; 67 struct rte_config *g_test_config; 68 69 /* Those functions are defined as static inline in DPDK, so we can't 70 * mock them straight away. We use defines to redirect them into 71 * our custom functions. 72 */ 73 74 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova, 75 uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo); 76 #define rte_pktmbuf_attach_extbuf mock_rte_pktmbuf_attach_extbuf 77 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova, 78 uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo) 79 { 80 assert(m != NULL); 81 m->buf_addr = buf_addr; 82 m->buf_iova = buf_iova; 83 m->buf_len = buf_len; 84 m->data_len = m->pkt_len = 0; 85 } 86 87 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len); 88 #define rte_pktmbuf_append mock_rte_pktmbuf_append 89 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len) 90 { 91 m->pkt_len = m->pkt_len + len; 92 return NULL; 93 } 94 95 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail); 96 #define rte_pktmbuf_chain mock_rte_pktmbuf_chain 97 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail) 98 { 99 struct rte_mbuf *cur_tail; 100 101 cur_tail = rte_pktmbuf_lastseg(head); 102 cur_tail->next = tail; 103 104 return 0; 105 } 106 107 uint16_t ut_max_nb_queue_pairs = 0; 108 void __rte_experimental mock_rte_compressdev_info_get(uint8_t dev_id, 109 struct rte_compressdev_info *dev_info); 110 #define rte_compressdev_info_get mock_rte_compressdev_info_get 111 void __rte_experimental 112 mock_rte_compressdev_info_get(uint8_t dev_id, struct rte_compressdev_info *dev_info) 113 { 114 dev_info->max_nb_queue_pairs = ut_max_nb_queue_pairs; 115 dev_info->capabilities = &g_cdev_cap; 116 dev_info->driver_name = "compress_isal"; 117 } 118 119 int ut_rte_compressdev_configure = 0; 120 int __rte_experimental mock_rte_compressdev_configure(uint8_t dev_id, 121 struct rte_compressdev_config *config); 122 #define rte_compressdev_configure mock_rte_compressdev_configure 123 int __rte_experimental 124 mock_rte_compressdev_configure(uint8_t dev_id, struct rte_compressdev_config *config) 125 { 126 return ut_rte_compressdev_configure; 127 } 128 129 int ut_rte_compressdev_queue_pair_setup = 0; 130 int __rte_experimental mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, 131 uint32_t max_inflight_ops, int socket_id); 132 #define rte_compressdev_queue_pair_setup mock_rte_compressdev_queue_pair_setup 133 int __rte_experimental 134 mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, 135 uint32_t max_inflight_ops, int socket_id) 136 { 137 return ut_rte_compressdev_queue_pair_setup; 138 } 139 140 int ut_rte_compressdev_start = 0; 141 int __rte_experimental mock_rte_compressdev_start(uint8_t dev_id); 142 #define rte_compressdev_start mock_rte_compressdev_start 143 int __rte_experimental 144 mock_rte_compressdev_start(uint8_t dev_id) 145 { 146 return ut_rte_compressdev_start; 147 } 148 149 int ut_rte_compressdev_private_xform_create = 0; 150 int __rte_experimental mock_rte_compressdev_private_xform_create(uint8_t dev_id, 151 const struct rte_comp_xform *xform, void **private_xform); 152 #define rte_compressdev_private_xform_create mock_rte_compressdev_private_xform_create 153 int __rte_experimental 154 mock_rte_compressdev_private_xform_create(uint8_t dev_id, 155 const struct rte_comp_xform *xform, void **private_xform) 156 { 157 return ut_rte_compressdev_private_xform_create; 158 } 159 160 uint8_t ut_rte_compressdev_count = 0; 161 uint8_t __rte_experimental mock_rte_compressdev_count(void); 162 #define rte_compressdev_count mock_rte_compressdev_count 163 uint8_t __rte_experimental 164 mock_rte_compressdev_count(void) 165 { 166 return ut_rte_compressdev_count; 167 } 168 169 struct rte_mempool *ut_rte_comp_op_pool_create = NULL; 170 struct rte_mempool *__rte_experimental mock_rte_comp_op_pool_create(const char *name, 171 unsigned int nb_elts, unsigned int cache_size, uint16_t user_size, 172 int socket_id); 173 #define rte_comp_op_pool_create mock_rte_comp_op_pool_create 174 struct rte_mempool *__rte_experimental 175 mock_rte_comp_op_pool_create(const char *name, unsigned int nb_elts, 176 unsigned int cache_size, uint16_t user_size, int socket_id) 177 { 178 return ut_rte_comp_op_pool_create; 179 } 180 181 void mock_rte_pktmbuf_free(struct rte_mbuf *m); 182 #define rte_pktmbuf_free mock_rte_pktmbuf_free 183 void mock_rte_pktmbuf_free(struct rte_mbuf *m) 184 { 185 } 186 187 static bool ut_boundary_alloc = false; 188 static int ut_rte_pktmbuf_alloc_bulk = 0; 189 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs, 190 unsigned count); 191 #define rte_pktmbuf_alloc_bulk mock_rte_pktmbuf_alloc_bulk 192 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs, 193 unsigned count) 194 { 195 int i; 196 197 /* This mocked function only supports the alloc of up to 3 src and 3 dst. */ 198 ut_rte_pktmbuf_alloc_bulk += count; 199 200 if (ut_rte_pktmbuf_alloc_bulk == 1) { 201 /* allocation of an extra mbuf for boundary cross test */ 202 ut_boundary_alloc = true; 203 g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]->next = NULL; 204 *mbufs = g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]; 205 ut_rte_pktmbuf_alloc_bulk = 0; 206 } else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP) { 207 /* first test allocation, src mbufs */ 208 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 209 g_src_mbufs[i]->next = NULL; 210 *mbufs++ = g_src_mbufs[i]; 211 } 212 } else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP * 2) { 213 /* second test allocation, dst mbufs */ 214 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 215 g_dst_mbufs[i]->next = NULL; 216 *mbufs++ = g_dst_mbufs[i]; 217 } 218 ut_rte_pktmbuf_alloc_bulk = 0; 219 } else { 220 return -1; 221 } 222 return 0; 223 } 224 225 struct rte_mempool * 226 rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size, 227 uint16_t priv_size, uint16_t data_room_size, int socket_id) 228 { 229 struct spdk_mempool *tmp; 230 231 tmp = spdk_mempool_create("mbuf_mp", 1024, sizeof(struct rte_mbuf), 232 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 233 SPDK_ENV_SOCKET_ID_ANY); 234 235 return (struct rte_mempool *)tmp; 236 } 237 238 void 239 rte_mempool_free(struct rte_mempool *mp) 240 { 241 if (mp) { 242 spdk_mempool_free((struct spdk_mempool *)mp); 243 } 244 } 245 246 static int ut_spdk_reduce_vol_op_complete_err = 0; 247 void 248 spdk_reduce_vol_writev(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt, 249 uint64_t offset, uint64_t length, spdk_reduce_vol_op_complete cb_fn, 250 void *cb_arg) 251 { 252 cb_fn(cb_arg, ut_spdk_reduce_vol_op_complete_err); 253 } 254 255 void 256 spdk_reduce_vol_readv(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt, 257 uint64_t offset, uint64_t length, spdk_reduce_vol_op_complete cb_fn, 258 void *cb_arg) 259 { 260 cb_fn(cb_arg, ut_spdk_reduce_vol_op_complete_err); 261 } 262 263 #include "bdev/compress/vbdev_compress.c" 264 265 /* SPDK stubs */ 266 DEFINE_STUB(spdk_bdev_get_aliases, const struct spdk_bdev_aliases_list *, 267 (const struct spdk_bdev *bdev), NULL); 268 DEFINE_STUB_V(spdk_bdev_module_list_add, (struct spdk_bdev_module *bdev_module)); 269 DEFINE_STUB_V(spdk_bdev_free_io, (struct spdk_bdev_io *g_bdev_io)); 270 DEFINE_STUB(spdk_bdev_io_type_supported, bool, (struct spdk_bdev *bdev, 271 enum spdk_bdev_io_type io_type), 0); 272 DEFINE_STUB_V(spdk_bdev_module_release_bdev, (struct spdk_bdev *bdev)); 273 DEFINE_STUB_V(spdk_bdev_close, (struct spdk_bdev_desc *desc)); 274 DEFINE_STUB(spdk_bdev_get_name, const char *, (const struct spdk_bdev *bdev), 0); 275 DEFINE_STUB(spdk_bdev_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_desc *desc), 0); 276 DEFINE_STUB_V(spdk_bdev_unregister, (struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, 277 void *cb_arg)); 278 DEFINE_STUB(spdk_bdev_open, int, (struct spdk_bdev *bdev, bool write, 279 spdk_bdev_remove_cb_t remove_cb, 280 void *remove_ctx, struct spdk_bdev_desc **_desc), 0); 281 DEFINE_STUB(spdk_bdev_module_claim_bdev, int, (struct spdk_bdev *bdev, struct spdk_bdev_desc *desc, 282 struct spdk_bdev_module *module), 0); 283 DEFINE_STUB_V(spdk_bdev_module_examine_done, (struct spdk_bdev_module *module)); 284 DEFINE_STUB(spdk_bdev_register, int, (struct spdk_bdev *bdev), 0); 285 DEFINE_STUB(spdk_bdev_get_by_name, struct spdk_bdev *, (const char *bdev_name), NULL); 286 DEFINE_STUB(spdk_bdev_io_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_io *bdev_io), 287 0); 288 DEFINE_STUB(spdk_bdev_queue_io_wait, int, (struct spdk_bdev *bdev, struct spdk_io_channel *ch, 289 struct spdk_bdev_io_wait_entry *entry), 0); 290 DEFINE_STUB_V(spdk_reduce_vol_unload, (struct spdk_reduce_vol *vol, 291 spdk_reduce_vol_op_complete cb_fn, void *cb_arg)); 292 DEFINE_STUB_V(spdk_reduce_vol_load, (struct spdk_reduce_backing_dev *backing_dev, 293 spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg)); 294 DEFINE_STUB(spdk_reduce_vol_get_params, const struct spdk_reduce_vol_params *, 295 (struct spdk_reduce_vol *vol), NULL); 296 297 /* DPDK stubs */ 298 DEFINE_STUB(rte_socket_id, unsigned, (void), 0); 299 DEFINE_STUB(rte_eal_get_configuration, struct rte_config *, (void), NULL); 300 DEFINE_STUB(rte_vdev_init, int, (const char *name, const char *args), 0); 301 DEFINE_STUB_V(rte_comp_op_free, (struct rte_comp_op *op)); 302 DEFINE_STUB(rte_comp_op_alloc, struct rte_comp_op *, (struct rte_mempool *mempool), NULL); 303 304 int g_small_size_counter = 0; 305 int g_small_size_modify = 0; 306 uint64_t g_small_size = 0; 307 uint64_t 308 spdk_vtophys(void *buf, uint64_t *size) 309 { 310 g_small_size_counter++; 311 if (g_small_size_counter == g_small_size_modify) { 312 *size = g_small_size; 313 g_small_size_counter = 0; 314 g_small_size_modify = 0; 315 } 316 return (uint64_t)buf; 317 } 318 319 void 320 spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len) 321 { 322 cb(g_io_ch, g_bdev_io, true); 323 } 324 325 /* Mock these functions to call the callback and then return the value we require */ 326 int ut_spdk_bdev_readv_blocks = 0; 327 int 328 spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 329 struct iovec *iov, int iovcnt, 330 uint64_t offset_blocks, uint64_t num_blocks, 331 spdk_bdev_io_completion_cb cb, void *cb_arg) 332 { 333 cb(g_bdev_io, !ut_spdk_bdev_readv_blocks, cb_arg); 334 return ut_spdk_bdev_readv_blocks; 335 } 336 337 int ut_spdk_bdev_writev_blocks = 0; 338 bool ut_spdk_bdev_writev_blocks_mocked = false; 339 int 340 spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 341 struct iovec *iov, int iovcnt, 342 uint64_t offset_blocks, uint64_t num_blocks, 343 spdk_bdev_io_completion_cb cb, void *cb_arg) 344 { 345 cb(g_bdev_io, !ut_spdk_bdev_writev_blocks, cb_arg); 346 return ut_spdk_bdev_writev_blocks; 347 } 348 349 int ut_spdk_bdev_unmap_blocks = 0; 350 bool ut_spdk_bdev_unmap_blocks_mocked = false; 351 int 352 spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 353 uint64_t offset_blocks, uint64_t num_blocks, 354 spdk_bdev_io_completion_cb cb, void *cb_arg) 355 { 356 cb(g_bdev_io, !ut_spdk_bdev_unmap_blocks, cb_arg); 357 return ut_spdk_bdev_unmap_blocks; 358 } 359 360 int ut_spdk_bdev_flush_blocks = 0; 361 bool ut_spdk_bdev_flush_blocks_mocked = false; 362 int 363 spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 364 uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, 365 void *cb_arg) 366 { 367 cb(g_bdev_io, !ut_spdk_bdev_flush_blocks, cb_arg); 368 return ut_spdk_bdev_flush_blocks; 369 } 370 371 int ut_spdk_bdev_reset = 0; 372 bool ut_spdk_bdev_reset_mocked = false; 373 int 374 spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 375 spdk_bdev_io_completion_cb cb, void *cb_arg) 376 { 377 cb(g_bdev_io, !ut_spdk_bdev_reset, cb_arg); 378 return ut_spdk_bdev_reset; 379 } 380 381 bool g_completion_called = false; 382 void 383 spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status) 384 { 385 bdev_io->internal.status = status; 386 g_completion_called = true; 387 } 388 389 static uint16_t ut_rte_compressdev_dequeue_burst = 0; 390 uint16_t 391 rte_compressdev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops, 392 uint16_t nb_op) 393 { 394 if (ut_rte_compressdev_dequeue_burst == 0) { 395 return 0; 396 } 397 398 ops[0] = &g_comp_op[0]; 399 ops[1] = &g_comp_op[1]; 400 401 return ut_rte_compressdev_dequeue_burst; 402 } 403 404 static int ut_compress_done[2]; 405 /* done_count and done_idx together control which expected assertion 406 * value to use when dequeuing 2 operations. 407 */ 408 static uint16_t done_count = 1; 409 static uint16_t done_idx = 0; 410 static void 411 _compress_done(void *_req, int reduce_errno) 412 { 413 if (done_count == 1) { 414 CU_ASSERT(reduce_errno == ut_compress_done[0]); 415 } else if (done_count == 2) { 416 CU_ASSERT(reduce_errno == ut_compress_done[done_idx++]); 417 } 418 } 419 420 static void 421 _get_mbuf_array(struct rte_mbuf *mbuf_array[UT_MBUFS_PER_OP_BOUND_TEST], 422 struct rte_mbuf *mbuf_head, int mbuf_count, bool null_final) 423 { 424 int i; 425 426 for (i = 0; i < mbuf_count; i++) { 427 mbuf_array[i] = mbuf_head; 428 if (mbuf_head) { 429 mbuf_head = mbuf_head->next; 430 } 431 } 432 if (null_final) { 433 mbuf_array[i - 1] = NULL; 434 } 435 } 436 437 #define FAKE_ENQUEUE_SUCCESS 255 438 #define FAKE_ENQUEUE_ERROR 128 439 #define FAKE_ENQUEUE_BUSY 64 440 static uint16_t ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 441 static struct rte_comp_op ut_expected_op; 442 uint16_t 443 rte_compressdev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops, 444 uint16_t nb_ops) 445 { 446 struct rte_comp_op *op = *ops; 447 struct rte_mbuf *op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 448 struct rte_mbuf *exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 449 int i, num_src_mbufs = UT_MBUFS_PER_OP; 450 451 switch (ut_enqueue_value) { 452 case FAKE_ENQUEUE_BUSY: 453 op->status = RTE_COMP_OP_STATUS_NOT_PROCESSED; 454 return 0; 455 break; 456 case FAKE_ENQUEUE_SUCCESS: 457 op->status = RTE_COMP_OP_STATUS_SUCCESS; 458 return 1; 459 break; 460 case FAKE_ENQUEUE_ERROR: 461 op->status = RTE_COMP_OP_STATUS_ERROR; 462 return 0; 463 break; 464 default: 465 break; 466 } 467 468 /* by design the compress module will never send more than 1 op at a time */ 469 CU_ASSERT(op->private_xform == ut_expected_op.private_xform); 470 471 /* setup our local pointers to the chained mbufs, those pointed to in the 472 * operation struct and the expected values. 473 */ 474 _get_mbuf_array(op_mbuf, op->m_src, SPDK_COUNTOF(op_mbuf), true); 475 _get_mbuf_array(exp_mbuf, ut_expected_op.m_src, SPDK_COUNTOF(exp_mbuf), true); 476 477 if (ut_boundary_alloc == true) { 478 /* if we crossed a boundary, we need to check the 4th src mbuf and 479 * reset the global that is used to identify whether we crossed 480 * or not 481 */ 482 num_src_mbufs = UT_MBUFS_PER_OP_BOUND_TEST; 483 exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = ut_expected_op.m_src->next->next->next; 484 op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = op->m_src->next->next->next; 485 ut_boundary_alloc = false; 486 } 487 488 489 for (i = 0; i < num_src_mbufs; i++) { 490 CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr); 491 CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova); 492 CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len); 493 CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len); 494 } 495 496 /* if only 3 mbufs were used in the test, the 4th should be zeroed */ 497 if (num_src_mbufs == UT_MBUFS_PER_OP) { 498 CU_ASSERT(op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL); 499 CU_ASSERT(exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL); 500 } 501 502 CU_ASSERT(op->m_src->userdata == ut_expected_op.m_src->userdata); 503 CU_ASSERT(op->src.offset == ut_expected_op.src.offset); 504 CU_ASSERT(op->src.length == ut_expected_op.src.length); 505 506 /* check dst mbuf values */ 507 _get_mbuf_array(op_mbuf, op->m_dst, SPDK_COUNTOF(op_mbuf), true); 508 _get_mbuf_array(exp_mbuf, ut_expected_op.m_dst, SPDK_COUNTOF(exp_mbuf), true); 509 510 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 511 CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr); 512 CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova); 513 CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len); 514 CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len); 515 } 516 CU_ASSERT(op->dst.offset == ut_expected_op.dst.offset); 517 518 return ut_enqueue_value; 519 } 520 521 /* Global setup for all tests that share a bunch of preparation... */ 522 static int 523 test_setup(void) 524 { 525 int i; 526 527 g_comp_bdev.backing_dev.unmap = _comp_reduce_unmap; 528 g_comp_bdev.backing_dev.readv = _comp_reduce_readv; 529 g_comp_bdev.backing_dev.writev = _comp_reduce_writev; 530 g_comp_bdev.backing_dev.compress = _comp_reduce_compress; 531 g_comp_bdev.backing_dev.decompress = _comp_reduce_decompress; 532 g_comp_bdev.backing_dev.blocklen = 512; 533 g_comp_bdev.backing_dev.blockcnt = 1024 * 16; 534 535 g_comp_bdev.device_qp = &g_device_qp; 536 g_comp_bdev.device_qp->device = &g_device; 537 538 TAILQ_INIT(&g_comp_bdev.queued_comp_ops); 539 540 g_comp_xform = (struct rte_comp_xform) { 541 .type = RTE_COMP_COMPRESS, 542 .compress = { 543 .algo = RTE_COMP_ALGO_DEFLATE, 544 .deflate.huffman = RTE_COMP_HUFFMAN_DEFAULT, 545 .level = RTE_COMP_LEVEL_MAX, 546 .window_size = DEFAULT_WINDOW_SIZE, 547 .chksum = RTE_COMP_CHECKSUM_NONE, 548 .hash_algo = RTE_COMP_HASH_ALGO_NONE 549 } 550 }; 551 552 g_decomp_xform = (struct rte_comp_xform) { 553 .type = RTE_COMP_DECOMPRESS, 554 .decompress = { 555 .algo = RTE_COMP_ALGO_DEFLATE, 556 .chksum = RTE_COMP_CHECKSUM_NONE, 557 .window_size = DEFAULT_WINDOW_SIZE, 558 .hash_algo = RTE_COMP_HASH_ALGO_NONE 559 } 560 }; 561 g_device.comp_xform = &g_comp_xform; 562 g_device.decomp_xform = &g_decomp_xform; 563 g_cdev_cap.comp_feature_flags = RTE_COMP_FF_SHAREABLE_PRIV_XFORM; 564 g_device.cdev_info.driver_name = "compress_isal"; 565 g_device.cdev_info.capabilities = &g_cdev_cap; 566 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) { 567 g_src_mbufs[i] = calloc(1, sizeof(struct rte_mbuf)); 568 } 569 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 570 g_dst_mbufs[i] = calloc(1, sizeof(struct rte_mbuf)); 571 } 572 573 g_bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct comp_bdev_io)); 574 g_bdev_io->u.bdev.iovs = calloc(128, sizeof(struct iovec)); 575 g_bdev_io->bdev = &g_comp_bdev.comp_bdev; 576 g_io_ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct comp_io_channel)); 577 g_comp_ch = (struct comp_io_channel *)((uint8_t *)g_io_ch + sizeof(struct spdk_io_channel)); 578 g_io_ctx = (struct comp_bdev_io *)g_bdev_io->driver_ctx; 579 580 g_io_ctx->comp_ch = g_comp_ch; 581 g_io_ctx->comp_bdev = &g_comp_bdev; 582 g_comp_bdev.device_qp = &g_device_qp; 583 584 g_test_config = calloc(1, sizeof(struct rte_config)); 585 g_test_config->lcore_count = 1; 586 587 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) { 588 g_expected_src_mbufs[i].next = &g_expected_src_mbufs[i + 1]; 589 } 590 g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1].next = NULL; 591 592 /* we only test w/4 mbufs on src side */ 593 for (i = 0; i < UT_MBUFS_PER_OP - 1; i++) { 594 g_expected_dst_mbufs[i].next = &g_expected_dst_mbufs[i + 1]; 595 } 596 g_expected_dst_mbufs[UT_MBUFS_PER_OP - 1].next = NULL; 597 598 return 0; 599 } 600 601 /* Global teardown for all tests */ 602 static int 603 test_cleanup(void) 604 { 605 int i; 606 607 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) { 608 free(g_src_mbufs[i]); 609 } 610 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 611 free(g_dst_mbufs[i]); 612 } 613 free(g_bdev_io->u.bdev.iovs); 614 free(g_bdev_io); 615 free(g_io_ch); 616 free(g_test_config); 617 return 0; 618 } 619 620 static void 621 test_compress_operation(void) 622 { 623 struct iovec src_iovs[3] = {}; 624 int src_iovcnt; 625 struct iovec dst_iovs[3] = {}; 626 int dst_iovcnt; 627 struct spdk_reduce_vol_cb_args cb_arg; 628 int rc, i; 629 struct vbdev_comp_op *op; 630 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP]; 631 struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP]; 632 633 src_iovcnt = dst_iovcnt = 3; 634 for (i = 0; i < dst_iovcnt; i++) { 635 src_iovs[i].iov_len = 0x1000; 636 dst_iovs[i].iov_len = 0x1000; 637 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 638 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 639 } 640 641 /* test rte_comp_op_alloc failure */ 642 MOCK_SET(rte_comp_op_alloc, NULL); 643 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 644 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 645 &dst_iovs[0], dst_iovcnt, true, &cb_arg); 646 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false); 647 while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) { 648 op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops); 649 TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link); 650 free(op); 651 } 652 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 653 CU_ASSERT(rc == 0); 654 MOCK_SET(rte_comp_op_alloc, &g_comp_op[0]); 655 656 /* test mempool get failure */ 657 ut_rte_pktmbuf_alloc_bulk = -1; 658 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 659 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 660 &dst_iovs[0], dst_iovcnt, true, &cb_arg); 661 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false); 662 while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) { 663 op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops); 664 TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link); 665 free(op); 666 } 667 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 668 CU_ASSERT(rc == 0); 669 ut_rte_pktmbuf_alloc_bulk = 0; 670 671 /* test enqueue failure busy */ 672 ut_enqueue_value = FAKE_ENQUEUE_BUSY; 673 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 674 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 675 &dst_iovs[0], dst_iovcnt, true, &cb_arg); 676 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false); 677 while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) { 678 op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops); 679 TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link); 680 free(op); 681 } 682 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 683 CU_ASSERT(rc == 0); 684 ut_enqueue_value = 1; 685 686 /* test enqueue failure error */ 687 ut_enqueue_value = FAKE_ENQUEUE_ERROR; 688 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 689 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 690 &dst_iovs[0], dst_iovcnt, true, &cb_arg); 691 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 692 CU_ASSERT(rc == -EINVAL); 693 ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 694 695 /* test success with 3 vector iovec */ 696 ut_expected_op.private_xform = &g_decomp_xform; 697 ut_expected_op.src.offset = 0; 698 ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len; 699 700 /* setup the src expected values */ 701 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false); 702 ut_expected_op.m_src = exp_src_mbuf[0]; 703 704 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 705 exp_src_mbuf[i]->userdata = &cb_arg; 706 exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base; 707 exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len); 708 exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len; 709 exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len; 710 } 711 712 /* setup the dst expected values */ 713 _get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false); 714 ut_expected_op.dst.offset = 0; 715 ut_expected_op.m_dst = exp_dst_mbuf[0]; 716 717 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 718 exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base; 719 exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len); 720 exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len; 721 exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len; 722 } 723 724 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 725 &dst_iovs[0], dst_iovcnt, false, &cb_arg); 726 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 727 CU_ASSERT(rc == 0); 728 729 } 730 731 static void 732 test_compress_operation_cross_boundary(void) 733 { 734 struct iovec src_iovs[3] = {}; 735 int src_iovcnt; 736 struct iovec dst_iovs[3] = {}; 737 int dst_iovcnt; 738 struct spdk_reduce_vol_cb_args cb_arg; 739 int rc, i; 740 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 741 struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 742 743 /* Setup the same basic 3 IOV test as used in the simple success case 744 * but then we'll start testing a vtophy boundary crossing at each 745 * position. 746 */ 747 src_iovcnt = dst_iovcnt = 3; 748 for (i = 0; i < dst_iovcnt; i++) { 749 src_iovs[i].iov_len = 0x1000; 750 dst_iovs[i].iov_len = 0x1000; 751 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 752 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 753 } 754 755 ut_expected_op.private_xform = &g_decomp_xform; 756 ut_expected_op.src.offset = 0; 757 ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len; 758 759 /* setup the src expected values */ 760 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false); 761 ut_expected_op.m_src = exp_src_mbuf[0]; 762 763 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 764 exp_src_mbuf[i]->userdata = &cb_arg; 765 exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base; 766 exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len); 767 exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len; 768 exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len; 769 } 770 771 /* setup the dst expected values, we don't test needing a 4th dst mbuf */ 772 _get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false); 773 ut_expected_op.dst.offset = 0; 774 ut_expected_op.m_dst = exp_dst_mbuf[0]; 775 776 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 777 exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base; 778 exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len); 779 exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len; 780 exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len; 781 } 782 783 /* force the 1st IOV to get partial length from spdk_vtophys */ 784 g_small_size_counter = 0; 785 g_small_size_modify = 1; 786 g_small_size = 0x800; 787 exp_src_mbuf[3]->userdata = &cb_arg; 788 789 /* first only has shorter length */ 790 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x800; 791 792 /* 2nd was inserted by the boundary crossing condition and finishes off 793 * the length from the first */ 794 exp_src_mbuf[1]->buf_addr = (void *)0x10000800; 795 exp_src_mbuf[1]->buf_iova = 0x10000800; 796 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800; 797 798 /* 3rd looks like that the 2nd would have */ 799 exp_src_mbuf[2]->buf_addr = (void *)0x10001000; 800 exp_src_mbuf[2]->buf_iova = 0x10001000; 801 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x1000; 802 803 /* a new 4th looks like what the 3rd would have */ 804 exp_src_mbuf[3]->buf_addr = (void *)0x10002000; 805 exp_src_mbuf[3]->buf_iova = 0x10002000; 806 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000; 807 808 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 809 &dst_iovs[0], dst_iovcnt, false, &cb_arg); 810 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 811 CU_ASSERT(rc == 0); 812 813 /* Now force the 2nd IOV to get partial length from spdk_vtophys */ 814 g_small_size_counter = 0; 815 g_small_size_modify = 2; 816 g_small_size = 0x800; 817 818 /* first is normal */ 819 exp_src_mbuf[0]->buf_addr = (void *)0x10000000; 820 exp_src_mbuf[0]->buf_iova = 0x10000000; 821 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000; 822 823 /* second only has shorter length */ 824 exp_src_mbuf[1]->buf_addr = (void *)0x10001000; 825 exp_src_mbuf[1]->buf_iova = 0x10001000; 826 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800; 827 828 /* 3rd was inserted by the boundary crossing condition and finishes off 829 * the length from the first */ 830 exp_src_mbuf[2]->buf_addr = (void *)0x10001800; 831 exp_src_mbuf[2]->buf_iova = 0x10001800; 832 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800; 833 834 /* a new 4th looks like what the 3rd would have */ 835 exp_src_mbuf[3]->buf_addr = (void *)0x10002000; 836 exp_src_mbuf[3]->buf_iova = 0x10002000; 837 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000; 838 839 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 840 &dst_iovs[0], dst_iovcnt, false, &cb_arg); 841 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 842 CU_ASSERT(rc == 0); 843 844 /* Finally force the 3rd IOV to get partial length from spdk_vtophys */ 845 g_small_size_counter = 0; 846 g_small_size_modify = 3; 847 g_small_size = 0x800; 848 849 /* first is normal */ 850 exp_src_mbuf[0]->buf_addr = (void *)0x10000000; 851 exp_src_mbuf[0]->buf_iova = 0x10000000; 852 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000; 853 854 /* second is normal */ 855 exp_src_mbuf[1]->buf_addr = (void *)0x10001000; 856 exp_src_mbuf[1]->buf_iova = 0x10001000; 857 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x1000; 858 859 /* 3rd has shorter length */ 860 exp_src_mbuf[2]->buf_addr = (void *)0x10002000; 861 exp_src_mbuf[2]->buf_iova = 0x10002000; 862 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800; 863 864 /* a new 4th handles the remainder from the 3rd */ 865 exp_src_mbuf[3]->buf_addr = (void *)0x10002800; 866 exp_src_mbuf[3]->buf_iova = 0x10002800; 867 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x800; 868 869 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 870 &dst_iovs[0], dst_iovcnt, false, &cb_arg); 871 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 872 CU_ASSERT(rc == 0); 873 } 874 875 static void 876 test_poller(void) 877 { 878 int rc; 879 struct spdk_reduce_vol_cb_args *cb_args; 880 struct rte_mbuf mbuf[4]; /* one src, one dst, 2 ops */ 881 struct vbdev_comp_op *op_to_queue; 882 struct iovec src_iovs[3] = {}; 883 struct iovec dst_iovs[3] = {}; 884 int i; 885 886 cb_args = calloc(1, sizeof(*cb_args)); 887 SPDK_CU_ASSERT_FATAL(cb_args != NULL); 888 cb_args->cb_fn = _compress_done; 889 memset(&g_comp_op[0], 0, sizeof(struct rte_comp_op)); 890 g_comp_op[0].m_src = &mbuf[0]; 891 g_comp_op[1].m_src = &mbuf[1]; 892 g_comp_op[0].m_dst = &mbuf[2]; 893 g_comp_op[1].m_dst = &mbuf[3]; 894 for (i = 0; i < 3; i++) { 895 src_iovs[i].iov_len = 0x1000; 896 dst_iovs[i].iov_len = 0x1000; 897 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 898 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 899 } 900 901 /* Error from dequeue, nothing needing to be resubmitted. 902 */ 903 ut_rte_compressdev_dequeue_burst = 1; 904 /* setup what we want dequeue to return for the op */ 905 g_comp_op[0].m_src->userdata = (void *)cb_args; 906 g_comp_op[0].produced = 1; 907 g_comp_op[0].status = 1; 908 /* value asserted in the reduce callback */ 909 ut_compress_done[0] = -EINVAL; 910 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 911 rc = comp_dev_poller((void *)&g_comp_bdev); 912 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 913 CU_ASSERT(rc == 0); 914 915 /* Success from dequeue, 2 ops. nothing needing to be resubmitted. 916 */ 917 ut_rte_compressdev_dequeue_burst = 2; 918 /* setup what we want dequeue to return for the op */ 919 g_comp_op[0].m_src->userdata = (void *)cb_args; 920 g_comp_op[0].produced = 16; 921 g_comp_op[0].status = 0; 922 g_comp_op[1].m_src->userdata = (void *)cb_args; 923 g_comp_op[1].produced = 32; 924 g_comp_op[1].status = 0; 925 /* value asserted in the reduce callback */ 926 ut_compress_done[0] = 16; 927 ut_compress_done[1] = 32; 928 done_count = 2; 929 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 930 rc = comp_dev_poller((void *)&g_comp_bdev); 931 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 932 CU_ASSERT(rc == 0); 933 934 /* Success from dequeue, one op to be resubmitted. 935 */ 936 ut_rte_compressdev_dequeue_burst = 1; 937 /* setup what we want dequeue to return for the op */ 938 g_comp_op[0].m_src->userdata = (void *)cb_args; 939 g_comp_op[0].produced = 16; 940 g_comp_op[0].status = 0; 941 /* value asserted in the reduce callback */ 942 ut_compress_done[0] = 16; 943 done_count = 1; 944 op_to_queue = calloc(1, sizeof(struct vbdev_comp_op)); 945 SPDK_CU_ASSERT_FATAL(op_to_queue != NULL); 946 op_to_queue->backing_dev = &g_comp_bdev.backing_dev; 947 op_to_queue->src_iovs = &src_iovs[0]; 948 op_to_queue->src_iovcnt = 3; 949 op_to_queue->dst_iovs = &dst_iovs[0]; 950 op_to_queue->dst_iovcnt = 3; 951 op_to_queue->compress = true; 952 op_to_queue->cb_arg = cb_args; 953 ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 954 TAILQ_INSERT_TAIL(&g_comp_bdev.queued_comp_ops, 955 op_to_queue, 956 link); 957 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false); 958 rc = comp_dev_poller((void *)&g_comp_bdev); 959 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 960 CU_ASSERT(rc == 0); 961 962 /* op_to_queue is freed in code under test */ 963 free(cb_args); 964 } 965 966 static void 967 test_vbdev_compress_submit_request(void) 968 { 969 /* Single element block size write */ 970 g_bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 971 g_bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE; 972 g_completion_called = false; 973 MOCK_SET(spdk_bdev_io_get_io_channel, g_io_ch); 974 vbdev_compress_submit_request(g_io_ch, g_bdev_io); 975 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS); 976 CU_ASSERT(g_completion_called == true); 977 CU_ASSERT(g_io_ctx->orig_io == g_bdev_io); 978 CU_ASSERT(g_io_ctx->comp_bdev == &g_comp_bdev); 979 CU_ASSERT(g_io_ctx->comp_ch == g_comp_ch); 980 981 /* same write but now fail it */ 982 ut_spdk_reduce_vol_op_complete_err = 1; 983 g_completion_called = false; 984 vbdev_compress_submit_request(g_io_ch, g_bdev_io); 985 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FAILED); 986 CU_ASSERT(g_completion_called == true); 987 988 /* test a read success */ 989 g_bdev_io->type = SPDK_BDEV_IO_TYPE_READ; 990 ut_spdk_reduce_vol_op_complete_err = 0; 991 g_completion_called = false; 992 vbdev_compress_submit_request(g_io_ch, g_bdev_io); 993 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS); 994 CU_ASSERT(g_completion_called == true); 995 996 /* test a read failure */ 997 ut_spdk_reduce_vol_op_complete_err = 1; 998 g_completion_called = false; 999 vbdev_compress_submit_request(g_io_ch, g_bdev_io); 1000 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FAILED); 1001 CU_ASSERT(g_completion_called == true); 1002 } 1003 1004 static void 1005 test_passthru(void) 1006 { 1007 1008 } 1009 1010 static void 1011 test_reset(void) 1012 { 1013 /* TODO: There are a few different ways to do this given that 1014 * the code uses spdk_for_each_channel() to implement reset 1015 * handling. SUbmitting w/o UT for this function for now and 1016 * will follow up with something shortly. 1017 */ 1018 } 1019 1020 static void 1021 test_initdrivers(void) 1022 { 1023 int rc; 1024 1025 /* test return values from rte_vdev_init() */ 1026 MOCK_SET(rte_eal_get_configuration, g_test_config); 1027 MOCK_SET(rte_vdev_init, -EEXIST); 1028 rc = vbdev_init_compress_drivers(); 1029 /* This is not an error condition, we already have one */ 1030 CU_ASSERT(rc == 0); 1031 1032 /* error */ 1033 MOCK_SET(rte_vdev_init, -2); 1034 rc = vbdev_init_compress_drivers(); 1035 CU_ASSERT(rc == -EINVAL); 1036 CU_ASSERT(g_mbuf_mp == NULL); 1037 CU_ASSERT(g_comp_op_mp == NULL); 1038 1039 /* compressdev count 0 */ 1040 ut_rte_compressdev_count = 0; 1041 MOCK_SET(rte_vdev_init, 0); 1042 rc = vbdev_init_compress_drivers(); 1043 CU_ASSERT(rc == 0); 1044 1045 /* bogus count */ 1046 ut_rte_compressdev_count = RTE_COMPRESS_MAX_DEVS + 1; 1047 rc = vbdev_init_compress_drivers(); 1048 CU_ASSERT(rc == -EINVAL); 1049 1050 /* can't get mbuf pool */ 1051 ut_rte_compressdev_count = 1; 1052 MOCK_SET(spdk_mempool_create, NULL); 1053 rc = vbdev_init_compress_drivers(); 1054 CU_ASSERT(rc == -ENOMEM); 1055 MOCK_CLEAR(spdk_mempool_create); 1056 1057 /* can't get comp op pool */ 1058 ut_rte_comp_op_pool_create = NULL; 1059 rc = vbdev_init_compress_drivers(); 1060 CU_ASSERT(rc == -ENOMEM); 1061 1062 /* error on create_compress_dev() */ 1063 ut_rte_comp_op_pool_create = (struct rte_mempool *)&test_initdrivers; 1064 ut_rte_compressdev_configure = -1; 1065 rc = vbdev_init_compress_drivers(); 1066 CU_ASSERT(rc == -1); 1067 1068 /* error on create_compress_dev() but coverage for large num queues */ 1069 ut_max_nb_queue_pairs = 99; 1070 rc = vbdev_init_compress_drivers(); 1071 CU_ASSERT(rc == -1); 1072 1073 /* qpair setup fails */ 1074 ut_rte_compressdev_configure = 0; 1075 ut_max_nb_queue_pairs = 0; 1076 ut_rte_compressdev_queue_pair_setup = -1; 1077 rc = vbdev_init_compress_drivers(); 1078 CU_ASSERT(rc == -EINVAL); 1079 1080 /* rte_compressdev_start fails */ 1081 ut_rte_compressdev_queue_pair_setup = 0; 1082 ut_rte_compressdev_start = -1; 1083 rc = vbdev_init_compress_drivers(); 1084 CU_ASSERT(rc == -1); 1085 1086 /* rte_compressdev_private_xform_create() fails */ 1087 ut_rte_compressdev_start = 0; 1088 ut_rte_compressdev_private_xform_create = -2; 1089 rc = vbdev_init_compress_drivers(); 1090 CU_ASSERT(rc == -2); 1091 1092 /* success */ 1093 ut_rte_compressdev_private_xform_create = 0; 1094 rc = vbdev_init_compress_drivers(); 1095 CU_ASSERT(rc == 0); 1096 spdk_mempool_free((struct spdk_mempool *)g_mbuf_mp); 1097 } 1098 1099 static void 1100 test_supported_io(void) 1101 { 1102 1103 } 1104 1105 int 1106 main(int argc, char **argv) 1107 { 1108 CU_pSuite suite = NULL; 1109 unsigned int num_failures; 1110 1111 if (CU_initialize_registry() != CUE_SUCCESS) { 1112 return CU_get_error(); 1113 } 1114 1115 suite = CU_add_suite("compress", test_setup, test_cleanup); 1116 if (suite == NULL) { 1117 CU_cleanup_registry(); 1118 return CU_get_error(); 1119 } 1120 1121 if (CU_add_test(suite, "test_compress_operation", 1122 test_compress_operation) == NULL || 1123 CU_add_test(suite, "test_compress_operation_cross_boundary", 1124 test_compress_operation_cross_boundary) == NULL || 1125 CU_add_test(suite, "vbdev_compress_submit_request", 1126 test_vbdev_compress_submit_request) == NULL || 1127 CU_add_test(suite, "test_passthru", 1128 test_passthru) == NULL || 1129 CU_add_test(suite, "test_initdrivers", 1130 test_initdrivers) == NULL || 1131 CU_add_test(suite, "test_supported_io", 1132 test_supported_io) == NULL || 1133 CU_add_test(suite, "test_poller", 1134 test_poller) == NULL || 1135 CU_add_test(suite, "test_reset", 1136 test_reset) == NULL 1137 ) { 1138 CU_cleanup_registry(); 1139 return CU_get_error(); 1140 } 1141 1142 CU_basic_set_mode(CU_BRM_VERBOSE); 1143 CU_basic_run_tests(); 1144 num_failures = CU_get_number_of_failures(); 1145 CU_cleanup_registry(); 1146 return num_failures; 1147 } 1148