xref: /spdk/test/unit/lib/bdev/compress.c/compress_ut.c (revision 8bb0ded3e55c182cea67af1f6790f8de5f38c05f)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk_cunit.h"
35 /* We have our own mock for this */
36 #define UNIT_TEST_NO_VTOPHYS
37 #include "common/lib/test_env.c"
38 #include "spdk_internal/mock.h"
39 #include "unit/lib/json_mock.c"
40 #include "spdk/reduce.h"
41 
42 #include <rte_compressdev.h>
43 
44 /* There will be one if the data perfectly matches the chunk size,
45  * or there could be an offset into the data and a remainder after
46  * the data or both for a max of 3.
47  */
48 #define UT_MBUFS_PER_OP 3
49 /* For testing the crossing of a huge page boundary on address translation,
50  * we'll have an extra one but we only test on the source side.
51  */
52 #define UT_MBUFS_PER_OP_BOUND_TEST 4
53 
54 struct spdk_bdev_io *g_bdev_io;
55 struct spdk_io_channel *g_io_ch;
56 struct rte_comp_op g_comp_op[2];
57 struct vbdev_compress g_comp_bdev;
58 struct comp_device_qp g_device_qp;
59 struct compress_dev g_device;
60 struct rte_compressdev_capabilities g_cdev_cap;
61 static struct rte_mbuf *g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST];
62 static struct rte_mbuf *g_dst_mbufs[UT_MBUFS_PER_OP];
63 static struct rte_mbuf g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST];
64 static struct rte_mbuf g_expected_dst_mbufs[UT_MBUFS_PER_OP];
65 struct comp_bdev_io *g_io_ctx;
66 struct comp_io_channel *g_comp_ch;
67 
68 /* Those functions are defined as static inline in DPDK, so we can't
69  * mock them straight away. We use defines to redirect them into
70  * our custom functions.
71  */
72 
73 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova,
74 		uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo);
75 #define rte_pktmbuf_attach_extbuf mock_rte_pktmbuf_attach_extbuf
76 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova,
77 		uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo)
78 {
79 	assert(m != NULL);
80 	m->buf_addr = buf_addr;
81 	m->buf_iova = buf_iova;
82 	m->buf_len = buf_len;
83 	m->data_len = m->pkt_len = 0;
84 }
85 
86 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len);
87 #define rte_pktmbuf_append mock_rte_pktmbuf_append
88 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
89 {
90 	m->pkt_len = m->pkt_len + len;
91 	return NULL;
92 }
93 
94 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail);
95 #define rte_pktmbuf_chain mock_rte_pktmbuf_chain
96 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
97 {
98 	struct rte_mbuf *cur_tail;
99 
100 	cur_tail = rte_pktmbuf_lastseg(head);
101 	cur_tail->next = tail;
102 
103 	return 0;
104 }
105 
106 uint16_t ut_max_nb_queue_pairs = 0;
107 void __rte_experimental mock_rte_compressdev_info_get(uint8_t dev_id,
108 		struct rte_compressdev_info *dev_info);
109 #define rte_compressdev_info_get mock_rte_compressdev_info_get
110 void __rte_experimental
111 mock_rte_compressdev_info_get(uint8_t dev_id, struct rte_compressdev_info *dev_info)
112 {
113 	dev_info->max_nb_queue_pairs = ut_max_nb_queue_pairs;
114 	dev_info->capabilities = &g_cdev_cap;
115 	dev_info->driver_name = "compress_isal";
116 }
117 
118 int ut_rte_compressdev_configure = 0;
119 int __rte_experimental mock_rte_compressdev_configure(uint8_t dev_id,
120 		struct rte_compressdev_config *config);
121 #define rte_compressdev_configure mock_rte_compressdev_configure
122 int __rte_experimental
123 mock_rte_compressdev_configure(uint8_t dev_id, struct rte_compressdev_config *config)
124 {
125 	return ut_rte_compressdev_configure;
126 }
127 
128 int ut_rte_compressdev_queue_pair_setup = 0;
129 int __rte_experimental mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
130 		uint32_t max_inflight_ops, int socket_id);
131 #define rte_compressdev_queue_pair_setup mock_rte_compressdev_queue_pair_setup
132 int __rte_experimental
133 mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
134 				      uint32_t max_inflight_ops, int socket_id)
135 {
136 	return ut_rte_compressdev_queue_pair_setup;
137 }
138 
139 int ut_rte_compressdev_start = 0;
140 int __rte_experimental mock_rte_compressdev_start(uint8_t dev_id);
141 #define rte_compressdev_start mock_rte_compressdev_start
142 int __rte_experimental
143 mock_rte_compressdev_start(uint8_t dev_id)
144 {
145 	return ut_rte_compressdev_start;
146 }
147 
148 int ut_rte_compressdev_private_xform_create = 0;
149 int __rte_experimental mock_rte_compressdev_private_xform_create(uint8_t dev_id,
150 		const struct rte_comp_xform *xform, void **private_xform);
151 #define rte_compressdev_private_xform_create mock_rte_compressdev_private_xform_create
152 int __rte_experimental
153 mock_rte_compressdev_private_xform_create(uint8_t dev_id,
154 		const struct rte_comp_xform *xform, void **private_xform)
155 {
156 	return ut_rte_compressdev_private_xform_create;
157 }
158 
159 uint8_t ut_rte_compressdev_count = 0;
160 uint8_t __rte_experimental mock_rte_compressdev_count(void);
161 #define rte_compressdev_count mock_rte_compressdev_count
162 uint8_t __rte_experimental
163 mock_rte_compressdev_count(void)
164 {
165 	return ut_rte_compressdev_count;
166 }
167 
168 struct rte_mempool *ut_rte_comp_op_pool_create = NULL;
169 struct rte_mempool *__rte_experimental mock_rte_comp_op_pool_create(const char *name,
170 		unsigned int nb_elts, unsigned int cache_size, uint16_t user_size,
171 		int socket_id);
172 #define rte_comp_op_pool_create mock_rte_comp_op_pool_create
173 struct rte_mempool *__rte_experimental
174 mock_rte_comp_op_pool_create(const char *name, unsigned int nb_elts,
175 			     unsigned int cache_size, uint16_t user_size, int socket_id)
176 {
177 	return ut_rte_comp_op_pool_create;
178 }
179 
180 void mock_rte_pktmbuf_free(struct rte_mbuf *m);
181 #define rte_pktmbuf_free mock_rte_pktmbuf_free
182 void mock_rte_pktmbuf_free(struct rte_mbuf *m)
183 {
184 }
185 
186 static bool ut_boundary_alloc = false;
187 static int ut_rte_pktmbuf_alloc_bulk = 0;
188 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs,
189 				unsigned count);
190 #define rte_pktmbuf_alloc_bulk mock_rte_pktmbuf_alloc_bulk
191 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs,
192 				unsigned count)
193 {
194 	int i;
195 
196 	/* This mocked function only supports the alloc of up to 3 src and 3 dst. */
197 	ut_rte_pktmbuf_alloc_bulk += count;
198 
199 	if (ut_rte_pktmbuf_alloc_bulk == 1) {
200 		/* allocation of an extra mbuf for boundary cross test */
201 		ut_boundary_alloc = true;
202 		g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]->next = NULL;
203 		*mbufs = g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1];
204 		ut_rte_pktmbuf_alloc_bulk = 0;
205 	} else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP) {
206 		/* first test allocation, src mbufs */
207 		for (i = 0; i < UT_MBUFS_PER_OP; i++) {
208 			g_src_mbufs[i]->next = NULL;
209 			*mbufs++ = g_src_mbufs[i];
210 		}
211 	} else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP * 2) {
212 		/* second test allocation, dst mbufs */
213 		for (i = 0; i < UT_MBUFS_PER_OP; i++) {
214 			g_dst_mbufs[i]->next = NULL;
215 			*mbufs++ = g_dst_mbufs[i];
216 		}
217 		ut_rte_pktmbuf_alloc_bulk = 0;
218 	} else {
219 		return -1;
220 	}
221 	return 0;
222 }
223 
224 struct rte_mempool *
225 rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size,
226 			uint16_t priv_size, uint16_t data_room_size, int socket_id)
227 {
228 	struct spdk_mempool *tmp;
229 
230 	tmp = spdk_mempool_create("mbuf_mp", 1024, sizeof(struct rte_mbuf),
231 				  SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
232 				  SPDK_ENV_SOCKET_ID_ANY);
233 
234 	return (struct rte_mempool *)tmp;
235 }
236 
237 void
238 rte_mempool_free(struct rte_mempool *mp)
239 {
240 	if (mp) {
241 		spdk_mempool_free((struct spdk_mempool *)mp);
242 	}
243 }
244 
245 static int ut_spdk_reduce_vol_op_complete_err = 0;
246 void
247 spdk_reduce_vol_writev(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt,
248 		       uint64_t offset, uint64_t length, spdk_reduce_vol_op_complete cb_fn,
249 		       void *cb_arg)
250 {
251 	cb_fn(cb_arg, ut_spdk_reduce_vol_op_complete_err);
252 }
253 
254 void
255 spdk_reduce_vol_readv(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt,
256 		      uint64_t offset, uint64_t length, spdk_reduce_vol_op_complete cb_fn,
257 		      void *cb_arg)
258 {
259 	cb_fn(cb_arg, ut_spdk_reduce_vol_op_complete_err);
260 }
261 
262 #include "bdev/compress/vbdev_compress.c"
263 
264 /* SPDK stubs */
265 DEFINE_STUB(spdk_bdev_get_aliases, const struct spdk_bdev_aliases_list *,
266 	    (const struct spdk_bdev *bdev), NULL);
267 DEFINE_STUB_V(spdk_bdev_module_list_add, (struct spdk_bdev_module *bdev_module));
268 DEFINE_STUB_V(spdk_bdev_free_io, (struct spdk_bdev_io *g_bdev_io));
269 DEFINE_STUB(spdk_bdev_io_type_supported, bool, (struct spdk_bdev *bdev,
270 		enum spdk_bdev_io_type io_type), 0);
271 DEFINE_STUB_V(spdk_bdev_module_release_bdev, (struct spdk_bdev *bdev));
272 DEFINE_STUB_V(spdk_bdev_close, (struct spdk_bdev_desc *desc));
273 DEFINE_STUB(spdk_bdev_get_name, const char *, (const struct spdk_bdev *bdev), 0);
274 DEFINE_STUB(spdk_bdev_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_desc *desc), 0);
275 DEFINE_STUB_V(spdk_bdev_unregister, (struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn,
276 				     void *cb_arg));
277 DEFINE_STUB(spdk_bdev_open_ext, int, (const char *bdev_name, bool write,
278 				      spdk_bdev_event_cb_t event_cb,
279 				      void *event_ctx, struct spdk_bdev_desc **_desc), 0);
280 DEFINE_STUB(spdk_bdev_desc_get_bdev, struct spdk_bdev *, (struct spdk_bdev_desc *desc), NULL);
281 DEFINE_STUB(spdk_bdev_module_claim_bdev, int, (struct spdk_bdev *bdev, struct spdk_bdev_desc *desc,
282 		struct spdk_bdev_module *module), 0);
283 DEFINE_STUB_V(spdk_bdev_module_examine_done, (struct spdk_bdev_module *module));
284 DEFINE_STUB(spdk_bdev_register, int, (struct spdk_bdev *bdev), 0);
285 DEFINE_STUB(spdk_bdev_get_by_name, struct spdk_bdev *, (const char *bdev_name), NULL);
286 DEFINE_STUB(spdk_bdev_io_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_io *bdev_io),
287 	    0);
288 DEFINE_STUB(spdk_bdev_queue_io_wait, int, (struct spdk_bdev *bdev, struct spdk_io_channel *ch,
289 		struct spdk_bdev_io_wait_entry *entry), 0);
290 DEFINE_STUB_V(spdk_reduce_vol_unload, (struct spdk_reduce_vol *vol,
291 				       spdk_reduce_vol_op_complete cb_fn, void *cb_arg));
292 DEFINE_STUB_V(spdk_reduce_vol_load, (struct spdk_reduce_backing_dev *backing_dev,
293 				     spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg));
294 DEFINE_STUB(spdk_reduce_vol_get_params, const struct spdk_reduce_vol_params *,
295 	    (struct spdk_reduce_vol *vol), NULL);
296 DEFINE_STUB_V(spdk_reduce_vol_init, (struct spdk_reduce_vol_params *params,
297 				     struct spdk_reduce_backing_dev *backing_dev,
298 				     const char *pm_file_dir,
299 				     spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg));
300 DEFINE_STUB_V(spdk_reduce_vol_destroy, (struct spdk_reduce_backing_dev *backing_dev,
301 					spdk_reduce_vol_op_complete cb_fn, void *cb_arg));
302 
303 /* DPDK stubs */
304 #define DPDK_DYNFIELD_OFFSET offsetof(struct rte_mbuf, dynfield1[1])
305 DEFINE_STUB(rte_mbuf_dynfield_register, int, (const struct rte_mbuf_dynfield *params),
306 	    DPDK_DYNFIELD_OFFSET);
307 DEFINE_STUB(rte_socket_id, unsigned, (void), 0);
308 DEFINE_STUB(rte_vdev_init, int, (const char *name, const char *args), 0);
309 DEFINE_STUB_V(rte_comp_op_free, (struct rte_comp_op *op));
310 DEFINE_STUB(rte_comp_op_alloc, struct rte_comp_op *, (struct rte_mempool *mempool), NULL);
311 
312 int g_small_size_counter = 0;
313 int g_small_size_modify = 0;
314 uint64_t g_small_size = 0;
315 uint64_t
316 spdk_vtophys(const void *buf, uint64_t *size)
317 {
318 	g_small_size_counter++;
319 	if (g_small_size_counter == g_small_size_modify) {
320 		*size = g_small_size;
321 		g_small_size_counter = 0;
322 		g_small_size_modify = 0;
323 	}
324 	return (uint64_t)buf;
325 }
326 
327 void
328 spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len)
329 {
330 	cb(g_io_ch, g_bdev_io, true);
331 }
332 
333 /* Mock these functions to call the callback and then return the value we require */
334 int ut_spdk_bdev_readv_blocks = 0;
335 int
336 spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
337 		       struct iovec *iov, int iovcnt,
338 		       uint64_t offset_blocks, uint64_t num_blocks,
339 		       spdk_bdev_io_completion_cb cb, void *cb_arg)
340 {
341 	cb(g_bdev_io, !ut_spdk_bdev_readv_blocks, cb_arg);
342 	return ut_spdk_bdev_readv_blocks;
343 }
344 
345 int ut_spdk_bdev_writev_blocks = 0;
346 bool ut_spdk_bdev_writev_blocks_mocked = false;
347 int
348 spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
349 			struct iovec *iov, int iovcnt,
350 			uint64_t offset_blocks, uint64_t num_blocks,
351 			spdk_bdev_io_completion_cb cb, void *cb_arg)
352 {
353 	cb(g_bdev_io, !ut_spdk_bdev_writev_blocks, cb_arg);
354 	return ut_spdk_bdev_writev_blocks;
355 }
356 
357 int ut_spdk_bdev_unmap_blocks = 0;
358 bool ut_spdk_bdev_unmap_blocks_mocked = false;
359 int
360 spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
361 		       uint64_t offset_blocks, uint64_t num_blocks,
362 		       spdk_bdev_io_completion_cb cb, void *cb_arg)
363 {
364 	cb(g_bdev_io, !ut_spdk_bdev_unmap_blocks, cb_arg);
365 	return ut_spdk_bdev_unmap_blocks;
366 }
367 
368 int ut_spdk_bdev_flush_blocks = 0;
369 bool ut_spdk_bdev_flush_blocks_mocked = false;
370 int
371 spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
372 		       uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb,
373 		       void *cb_arg)
374 {
375 	cb(g_bdev_io, !ut_spdk_bdev_flush_blocks, cb_arg);
376 	return ut_spdk_bdev_flush_blocks;
377 }
378 
379 int ut_spdk_bdev_reset = 0;
380 bool ut_spdk_bdev_reset_mocked = false;
381 int
382 spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
383 		spdk_bdev_io_completion_cb cb, void *cb_arg)
384 {
385 	cb(g_bdev_io, !ut_spdk_bdev_reset, cb_arg);
386 	return ut_spdk_bdev_reset;
387 }
388 
389 bool g_completion_called = false;
390 void
391 spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status)
392 {
393 	bdev_io->internal.status = status;
394 	g_completion_called = true;
395 }
396 
397 static uint16_t ut_rte_compressdev_dequeue_burst = 0;
398 uint16_t
399 rte_compressdev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops,
400 			      uint16_t nb_op)
401 {
402 	if (ut_rte_compressdev_dequeue_burst == 0) {
403 		return 0;
404 	}
405 
406 	ops[0] = &g_comp_op[0];
407 	ops[1] = &g_comp_op[1];
408 
409 	return ut_rte_compressdev_dequeue_burst;
410 }
411 
412 static int ut_compress_done[2];
413 /* done_count and done_idx together control which expected assertion
414  * value to use when dequeuing 2 operations.
415  */
416 static uint16_t done_count = 1;
417 static uint16_t done_idx = 0;
418 static void
419 _compress_done(void *_req, int reduce_errno)
420 {
421 	if (done_count == 1) {
422 		CU_ASSERT(reduce_errno == ut_compress_done[0]);
423 	} else if (done_count == 2) {
424 		CU_ASSERT(reduce_errno == ut_compress_done[done_idx++]);
425 	}
426 }
427 
428 static void
429 _get_mbuf_array(struct rte_mbuf *mbuf_array[UT_MBUFS_PER_OP_BOUND_TEST],
430 		struct rte_mbuf *mbuf_head, int mbuf_count, bool null_final)
431 {
432 	int i;
433 
434 	for (i = 0; i < mbuf_count; i++) {
435 		mbuf_array[i] = mbuf_head;
436 		if (mbuf_head) {
437 			mbuf_head = mbuf_head->next;
438 		}
439 	}
440 	if (null_final) {
441 		mbuf_array[i - 1] = NULL;
442 	}
443 }
444 
445 #define FAKE_ENQUEUE_SUCCESS 255
446 #define FAKE_ENQUEUE_ERROR 128
447 #define FAKE_ENQUEUE_BUSY 64
448 static uint16_t ut_enqueue_value = FAKE_ENQUEUE_SUCCESS;
449 static struct rte_comp_op ut_expected_op;
450 uint16_t
451 rte_compressdev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops,
452 			      uint16_t nb_ops)
453 {
454 	struct rte_comp_op *op = *ops;
455 	struct rte_mbuf *op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
456 	struct rte_mbuf *exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
457 	int i, num_src_mbufs = UT_MBUFS_PER_OP;
458 
459 	switch (ut_enqueue_value) {
460 	case FAKE_ENQUEUE_BUSY:
461 		op->status = RTE_COMP_OP_STATUS_NOT_PROCESSED;
462 		return 0;
463 		break;
464 	case FAKE_ENQUEUE_SUCCESS:
465 		op->status = RTE_COMP_OP_STATUS_SUCCESS;
466 		return 1;
467 		break;
468 	case FAKE_ENQUEUE_ERROR:
469 		op->status = RTE_COMP_OP_STATUS_ERROR;
470 		return 0;
471 		break;
472 	default:
473 		break;
474 	}
475 
476 	/* by design the compress module will never send more than 1 op at a time */
477 	CU_ASSERT(op->private_xform == ut_expected_op.private_xform);
478 
479 	/* setup our local pointers to the chained mbufs, those pointed to in the
480 	 * operation struct and the expected values.
481 	 */
482 	_get_mbuf_array(op_mbuf, op->m_src, SPDK_COUNTOF(op_mbuf), true);
483 	_get_mbuf_array(exp_mbuf, ut_expected_op.m_src, SPDK_COUNTOF(exp_mbuf), true);
484 
485 	if (ut_boundary_alloc == true) {
486 		/* if we crossed a boundary, we need to check the 4th src mbuf and
487 		 * reset the global that is used to identify whether we crossed
488 		 * or not
489 		 */
490 		num_src_mbufs = UT_MBUFS_PER_OP_BOUND_TEST;
491 		exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = ut_expected_op.m_src->next->next->next;
492 		op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = op->m_src->next->next->next;
493 		ut_boundary_alloc = false;
494 	}
495 
496 
497 	for (i = 0; i < num_src_mbufs; i++) {
498 		CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr);
499 		CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova);
500 		CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len);
501 		CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len);
502 	}
503 
504 	/* if only 3 mbufs were used in the test, the 4th should be zeroed */
505 	if (num_src_mbufs == UT_MBUFS_PER_OP) {
506 		CU_ASSERT(op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL);
507 		CU_ASSERT(exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL);
508 	}
509 	CU_ASSERT(*RTE_MBUF_DYNFIELD(op->m_src, g_mbuf_offset, uint64_t *) ==
510 		  *RTE_MBUF_DYNFIELD(ut_expected_op.m_src, g_mbuf_offset, uint64_t *));
511 	CU_ASSERT(op->src.offset == ut_expected_op.src.offset);
512 	CU_ASSERT(op->src.length == ut_expected_op.src.length);
513 
514 	/* check dst mbuf values */
515 	_get_mbuf_array(op_mbuf, op->m_dst, SPDK_COUNTOF(op_mbuf), true);
516 	_get_mbuf_array(exp_mbuf, ut_expected_op.m_dst, SPDK_COUNTOF(exp_mbuf), true);
517 
518 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
519 		CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr);
520 		CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova);
521 		CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len);
522 		CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len);
523 	}
524 	CU_ASSERT(op->dst.offset == ut_expected_op.dst.offset);
525 
526 	return ut_enqueue_value;
527 }
528 
529 /* Global setup for all tests that share a bunch of preparation... */
530 static int
531 test_setup(void)
532 {
533 	struct spdk_thread *thread;
534 	int i;
535 
536 	spdk_thread_lib_init(NULL, 0);
537 
538 	thread = spdk_thread_create(NULL, NULL);
539 	spdk_set_thread(thread);
540 
541 	g_comp_bdev.reduce_thread = thread;
542 	g_comp_bdev.backing_dev.unmap = _comp_reduce_unmap;
543 	g_comp_bdev.backing_dev.readv = _comp_reduce_readv;
544 	g_comp_bdev.backing_dev.writev = _comp_reduce_writev;
545 	g_comp_bdev.backing_dev.compress = _comp_reduce_compress;
546 	g_comp_bdev.backing_dev.decompress = _comp_reduce_decompress;
547 	g_comp_bdev.backing_dev.blocklen = 512;
548 	g_comp_bdev.backing_dev.blockcnt = 1024 * 16;
549 
550 	g_comp_bdev.device_qp = &g_device_qp;
551 	g_comp_bdev.device_qp->device = &g_device;
552 
553 	TAILQ_INIT(&g_comp_bdev.queued_comp_ops);
554 
555 	g_comp_xform = (struct rte_comp_xform) {
556 		.type = RTE_COMP_COMPRESS,
557 		.compress = {
558 			.algo = RTE_COMP_ALGO_DEFLATE,
559 			.deflate.huffman = RTE_COMP_HUFFMAN_DEFAULT,
560 			.level = RTE_COMP_LEVEL_MAX,
561 			.window_size = DEFAULT_WINDOW_SIZE,
562 			.chksum = RTE_COMP_CHECKSUM_NONE,
563 			.hash_algo = RTE_COMP_HASH_ALGO_NONE
564 		}
565 	};
566 
567 	g_decomp_xform = (struct rte_comp_xform) {
568 		.type = RTE_COMP_DECOMPRESS,
569 		.decompress = {
570 			.algo = RTE_COMP_ALGO_DEFLATE,
571 			.chksum = RTE_COMP_CHECKSUM_NONE,
572 			.window_size = DEFAULT_WINDOW_SIZE,
573 			.hash_algo = RTE_COMP_HASH_ALGO_NONE
574 		}
575 	};
576 	g_device.comp_xform = &g_comp_xform;
577 	g_device.decomp_xform = &g_decomp_xform;
578 	g_cdev_cap.comp_feature_flags = RTE_COMP_FF_SHAREABLE_PRIV_XFORM;
579 	g_device.cdev_info.driver_name = "compress_isal";
580 	g_device.cdev_info.capabilities = &g_cdev_cap;
581 	for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) {
582 		g_src_mbufs[i] = calloc(1, sizeof(struct rte_mbuf));
583 	}
584 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
585 		g_dst_mbufs[i] = calloc(1, sizeof(struct rte_mbuf));
586 	}
587 
588 	g_bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct comp_bdev_io));
589 	g_bdev_io->u.bdev.iovs = calloc(128, sizeof(struct iovec));
590 	g_bdev_io->bdev = &g_comp_bdev.comp_bdev;
591 	g_io_ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct comp_io_channel));
592 	g_io_ch->thread = thread;
593 	g_comp_ch = (struct comp_io_channel *)((uint8_t *)g_io_ch + sizeof(struct spdk_io_channel));
594 	g_io_ctx = (struct comp_bdev_io *)g_bdev_io->driver_ctx;
595 
596 	g_io_ctx->comp_ch = g_comp_ch;
597 	g_io_ctx->comp_bdev = &g_comp_bdev;
598 	g_comp_bdev.device_qp = &g_device_qp;
599 
600 	for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) {
601 		g_expected_src_mbufs[i].next = &g_expected_src_mbufs[i + 1];
602 	}
603 	g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1].next = NULL;
604 
605 	/* we only test w/4 mbufs on src side */
606 	for (i = 0; i < UT_MBUFS_PER_OP - 1; i++) {
607 		g_expected_dst_mbufs[i].next = &g_expected_dst_mbufs[i + 1];
608 	}
609 	g_expected_dst_mbufs[UT_MBUFS_PER_OP - 1].next = NULL;
610 	g_mbuf_offset = DPDK_DYNFIELD_OFFSET;
611 
612 	return 0;
613 }
614 
615 /* Global teardown for all tests */
616 static int
617 test_cleanup(void)
618 {
619 	struct spdk_thread *thread;
620 	int i;
621 
622 	for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) {
623 		free(g_src_mbufs[i]);
624 	}
625 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
626 		free(g_dst_mbufs[i]);
627 	}
628 	free(g_bdev_io->u.bdev.iovs);
629 	free(g_bdev_io);
630 	free(g_io_ch);
631 
632 	thread = spdk_get_thread();
633 	spdk_thread_exit(thread);
634 	while (!spdk_thread_is_exited(thread)) {
635 		spdk_thread_poll(thread, 0, 0);
636 	}
637 	spdk_thread_destroy(thread);
638 
639 	spdk_thread_lib_fini();
640 
641 	return 0;
642 }
643 
644 static void
645 test_compress_operation(void)
646 {
647 	struct iovec src_iovs[3] = {};
648 	int src_iovcnt;
649 	struct iovec dst_iovs[3] = {};
650 	int dst_iovcnt;
651 	struct spdk_reduce_vol_cb_args cb_arg;
652 	int rc, i;
653 	struct vbdev_comp_op *op;
654 	struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP];
655 	struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP];
656 
657 	src_iovcnt = dst_iovcnt = 3;
658 	for (i = 0; i < dst_iovcnt; i++) {
659 		src_iovs[i].iov_len = 0x1000;
660 		dst_iovs[i].iov_len = 0x1000;
661 		src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i;
662 		dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i;
663 	}
664 
665 	/* test rte_comp_op_alloc failure */
666 	MOCK_SET(rte_comp_op_alloc, NULL);
667 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
668 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
669 				 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
670 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false);
671 	while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) {
672 		op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops);
673 		TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link);
674 		free(op);
675 	}
676 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
677 	CU_ASSERT(rc == 0);
678 	MOCK_SET(rte_comp_op_alloc, &g_comp_op[0]);
679 
680 	/* test mempool get failure */
681 	ut_rte_pktmbuf_alloc_bulk = -1;
682 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
683 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
684 				 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
685 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false);
686 	while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) {
687 		op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops);
688 		TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link);
689 		free(op);
690 	}
691 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
692 	CU_ASSERT(rc == 0);
693 	ut_rte_pktmbuf_alloc_bulk = 0;
694 
695 	/* test enqueue failure busy */
696 	ut_enqueue_value = FAKE_ENQUEUE_BUSY;
697 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
698 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
699 				 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
700 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false);
701 	while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) {
702 		op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops);
703 		TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link);
704 		free(op);
705 	}
706 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
707 	CU_ASSERT(rc == 0);
708 	ut_enqueue_value = 1;
709 
710 	/* test enqueue failure error */
711 	ut_enqueue_value = FAKE_ENQUEUE_ERROR;
712 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
713 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
714 				 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
715 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
716 	CU_ASSERT(rc == -EINVAL);
717 	ut_enqueue_value = FAKE_ENQUEUE_SUCCESS;
718 
719 	/* test success with 3 vector iovec */
720 	ut_expected_op.private_xform = &g_decomp_xform;
721 	ut_expected_op.src.offset = 0;
722 	ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len;
723 
724 	/* setup the src expected values */
725 	_get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false);
726 	ut_expected_op.m_src = exp_src_mbuf[0];
727 
728 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
729 		*RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&cb_arg;
730 		exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base;
731 		exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len);
732 		exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len;
733 		exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len;
734 	}
735 
736 	/* setup the dst expected values */
737 	_get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false);
738 	ut_expected_op.dst.offset = 0;
739 	ut_expected_op.m_dst = exp_dst_mbuf[0];
740 
741 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
742 		exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base;
743 		exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len);
744 		exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len;
745 		exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len;
746 	}
747 
748 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
749 				 &dst_iovs[0], dst_iovcnt, false, &cb_arg);
750 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
751 	CU_ASSERT(rc == 0);
752 
753 }
754 
755 static void
756 test_compress_operation_cross_boundary(void)
757 {
758 	struct iovec src_iovs[3] = {};
759 	int src_iovcnt;
760 	struct iovec dst_iovs[3] = {};
761 	int dst_iovcnt;
762 	struct spdk_reduce_vol_cb_args cb_arg;
763 	int rc, i;
764 	struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
765 	struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
766 
767 	/* Setup the same basic 3 IOV test as used in the simple success case
768 	 * but then we'll start testing a vtophy boundary crossing at each
769 	 * position.
770 	 */
771 	src_iovcnt = dst_iovcnt = 3;
772 	for (i = 0; i < dst_iovcnt; i++) {
773 		src_iovs[i].iov_len = 0x1000;
774 		dst_iovs[i].iov_len = 0x1000;
775 		src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i;
776 		dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i;
777 	}
778 
779 	ut_expected_op.private_xform = &g_decomp_xform;
780 	ut_expected_op.src.offset = 0;
781 	ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len;
782 
783 	/* setup the src expected values */
784 	_get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false);
785 	ut_expected_op.m_src = exp_src_mbuf[0];
786 
787 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
788 		*RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&cb_arg;
789 		exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base;
790 		exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len);
791 		exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len;
792 		exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len;
793 	}
794 
795 	/* setup the dst expected values, we don't test needing a 4th dst mbuf */
796 	_get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false);
797 	ut_expected_op.dst.offset = 0;
798 	ut_expected_op.m_dst = exp_dst_mbuf[0];
799 
800 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
801 		exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base;
802 		exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len);
803 		exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len;
804 		exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len;
805 	}
806 
807 	/* force the 1st IOV to get partial length from spdk_vtophys */
808 	g_small_size_counter = 0;
809 	g_small_size_modify = 1;
810 	g_small_size = 0x800;
811 	*RTE_MBUF_DYNFIELD(exp_src_mbuf[3], g_mbuf_offset, uint64_t *) = (uint64_t)&cb_arg;
812 
813 	/* first only has shorter length */
814 	exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x800;
815 
816 	/* 2nd was inserted by the boundary crossing condition and finishes off
817 	 * the length from the first */
818 	exp_src_mbuf[1]->buf_addr = (void *)0x10000800;
819 	exp_src_mbuf[1]->buf_iova = 0x10000800;
820 	exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800;
821 
822 	/* 3rd looks like that the 2nd would have */
823 	exp_src_mbuf[2]->buf_addr = (void *)0x10001000;
824 	exp_src_mbuf[2]->buf_iova = 0x10001000;
825 	exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x1000;
826 
827 	/* a new 4th looks like what the 3rd would have */
828 	exp_src_mbuf[3]->buf_addr = (void *)0x10002000;
829 	exp_src_mbuf[3]->buf_iova = 0x10002000;
830 	exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000;
831 
832 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
833 				 &dst_iovs[0], dst_iovcnt, false, &cb_arg);
834 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
835 	CU_ASSERT(rc == 0);
836 
837 	/* Now force the 2nd IOV to get partial length from spdk_vtophys */
838 	g_small_size_counter = 0;
839 	g_small_size_modify = 2;
840 	g_small_size = 0x800;
841 
842 	/* first is normal */
843 	exp_src_mbuf[0]->buf_addr = (void *)0x10000000;
844 	exp_src_mbuf[0]->buf_iova = 0x10000000;
845 	exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000;
846 
847 	/* second only has shorter length */
848 	exp_src_mbuf[1]->buf_addr = (void *)0x10001000;
849 	exp_src_mbuf[1]->buf_iova = 0x10001000;
850 	exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800;
851 
852 	/* 3rd was inserted by the boundary crossing condition and finishes off
853 	 * the length from the first */
854 	exp_src_mbuf[2]->buf_addr = (void *)0x10001800;
855 	exp_src_mbuf[2]->buf_iova = 0x10001800;
856 	exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800;
857 
858 	/* a new 4th looks like what the 3rd would have */
859 	exp_src_mbuf[3]->buf_addr = (void *)0x10002000;
860 	exp_src_mbuf[3]->buf_iova = 0x10002000;
861 	exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000;
862 
863 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
864 				 &dst_iovs[0], dst_iovcnt, false, &cb_arg);
865 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
866 	CU_ASSERT(rc == 0);
867 
868 	/* Finally force the 3rd IOV to get partial length from spdk_vtophys */
869 	g_small_size_counter = 0;
870 	g_small_size_modify = 3;
871 	g_small_size = 0x800;
872 
873 	/* first is normal */
874 	exp_src_mbuf[0]->buf_addr = (void *)0x10000000;
875 	exp_src_mbuf[0]->buf_iova = 0x10000000;
876 	exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000;
877 
878 	/* second is normal */
879 	exp_src_mbuf[1]->buf_addr = (void *)0x10001000;
880 	exp_src_mbuf[1]->buf_iova = 0x10001000;
881 	exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x1000;
882 
883 	/* 3rd has shorter length */
884 	exp_src_mbuf[2]->buf_addr = (void *)0x10002000;
885 	exp_src_mbuf[2]->buf_iova = 0x10002000;
886 	exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800;
887 
888 	/* a new 4th handles the remainder from the 3rd */
889 	exp_src_mbuf[3]->buf_addr = (void *)0x10002800;
890 	exp_src_mbuf[3]->buf_iova = 0x10002800;
891 	exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x800;
892 
893 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
894 				 &dst_iovs[0], dst_iovcnt, false, &cb_arg);
895 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
896 	CU_ASSERT(rc == 0);
897 }
898 
899 static void
900 test_poller(void)
901 {
902 	int rc;
903 	struct spdk_reduce_vol_cb_args *cb_args;
904 	struct rte_mbuf mbuf[4]; /* one src, one dst, 2 ops */
905 	struct vbdev_comp_op *op_to_queue;
906 	struct iovec src_iovs[3] = {};
907 	struct iovec dst_iovs[3] = {};
908 	int i;
909 
910 	cb_args = calloc(1, sizeof(*cb_args));
911 	SPDK_CU_ASSERT_FATAL(cb_args != NULL);
912 	cb_args->cb_fn = _compress_done;
913 	memset(&g_comp_op[0], 0, sizeof(struct rte_comp_op));
914 	g_comp_op[0].m_src = &mbuf[0];
915 	g_comp_op[1].m_src = &mbuf[1];
916 	g_comp_op[0].m_dst = &mbuf[2];
917 	g_comp_op[1].m_dst = &mbuf[3];
918 	for (i = 0; i < 3; i++) {
919 		src_iovs[i].iov_len = 0x1000;
920 		dst_iovs[i].iov_len = 0x1000;
921 		src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i;
922 		dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i;
923 	}
924 
925 	/* Error from dequeue, nothing needing to be resubmitted.
926 	 */
927 	ut_rte_compressdev_dequeue_burst = 1;
928 	/* setup what we want dequeue to return for the op */
929 	*RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args;
930 	g_comp_op[0].produced = 1;
931 	g_comp_op[0].status = 1;
932 	/* value asserted in the reduce callback */
933 	ut_compress_done[0] = -EINVAL;
934 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
935 	rc = comp_dev_poller((void *)&g_comp_bdev);
936 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
937 	CU_ASSERT(rc == SPDK_POLLER_BUSY);
938 
939 	/* Success from dequeue, 2 ops. nothing needing to be resubmitted.
940 	 */
941 	ut_rte_compressdev_dequeue_burst = 2;
942 	/* setup what we want dequeue to return for the op */
943 	*RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args;
944 	g_comp_op[0].produced = 16;
945 	g_comp_op[0].status = 0;
946 	*RTE_MBUF_DYNFIELD(g_comp_op[1].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args;
947 	g_comp_op[1].produced = 32;
948 	g_comp_op[1].status = 0;
949 	/* value asserted in the reduce callback */
950 	ut_compress_done[0] = 16;
951 	ut_compress_done[1] = 32;
952 	done_count = 2;
953 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
954 	rc = comp_dev_poller((void *)&g_comp_bdev);
955 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
956 	CU_ASSERT(rc == SPDK_POLLER_BUSY);
957 
958 	/* Success from dequeue, one op to be resubmitted.
959 	 */
960 	ut_rte_compressdev_dequeue_burst = 1;
961 	/* setup what we want dequeue to return for the op */
962 	*RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args;
963 	g_comp_op[0].produced = 16;
964 	g_comp_op[0].status = 0;
965 	/* value asserted in the reduce callback */
966 	ut_compress_done[0] = 16;
967 	done_count = 1;
968 	op_to_queue = calloc(1, sizeof(struct vbdev_comp_op));
969 	SPDK_CU_ASSERT_FATAL(op_to_queue != NULL);
970 	op_to_queue->backing_dev = &g_comp_bdev.backing_dev;
971 	op_to_queue->src_iovs = &src_iovs[0];
972 	op_to_queue->src_iovcnt = 3;
973 	op_to_queue->dst_iovs = &dst_iovs[0];
974 	op_to_queue->dst_iovcnt = 3;
975 	op_to_queue->compress = true;
976 	op_to_queue->cb_arg = cb_args;
977 	ut_enqueue_value = FAKE_ENQUEUE_SUCCESS;
978 	TAILQ_INSERT_TAIL(&g_comp_bdev.queued_comp_ops,
979 			  op_to_queue,
980 			  link);
981 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false);
982 	rc = comp_dev_poller((void *)&g_comp_bdev);
983 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
984 	CU_ASSERT(rc == SPDK_POLLER_BUSY);
985 
986 	/* op_to_queue is freed in code under test */
987 	free(cb_args);
988 }
989 
990 static void
991 test_vbdev_compress_submit_request(void)
992 {
993 	/* Single element block size write */
994 	g_bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
995 	g_bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE;
996 	g_completion_called = false;
997 	vbdev_compress_submit_request(g_io_ch, g_bdev_io);
998 	CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS);
999 	CU_ASSERT(g_completion_called == true);
1000 	CU_ASSERT(g_io_ctx->orig_io == g_bdev_io);
1001 	CU_ASSERT(g_io_ctx->comp_bdev == &g_comp_bdev);
1002 	CU_ASSERT(g_io_ctx->comp_ch == g_comp_ch);
1003 
1004 	/* same write but now fail it */
1005 	ut_spdk_reduce_vol_op_complete_err = 1;
1006 	g_completion_called = false;
1007 	vbdev_compress_submit_request(g_io_ch, g_bdev_io);
1008 	CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FAILED);
1009 	CU_ASSERT(g_completion_called == true);
1010 
1011 	/* test a read success */
1012 	g_bdev_io->type = SPDK_BDEV_IO_TYPE_READ;
1013 	ut_spdk_reduce_vol_op_complete_err = 0;
1014 	g_completion_called = false;
1015 	vbdev_compress_submit_request(g_io_ch, g_bdev_io);
1016 	CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS);
1017 	CU_ASSERT(g_completion_called == true);
1018 
1019 	/* test a read failure */
1020 	ut_spdk_reduce_vol_op_complete_err = 1;
1021 	g_completion_called = false;
1022 	vbdev_compress_submit_request(g_io_ch, g_bdev_io);
1023 	CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FAILED);
1024 	CU_ASSERT(g_completion_called == true);
1025 }
1026 
1027 static void
1028 test_passthru(void)
1029 {
1030 
1031 }
1032 
1033 static void
1034 test_reset(void)
1035 {
1036 	/* TODO: There are a few different ways to do this given that
1037 	 * the code uses spdk_for_each_channel() to implement reset
1038 	 * handling. SUbmitting w/o UT for this function for now and
1039 	 * will follow up with something shortly.
1040 	 */
1041 }
1042 
1043 static void
1044 test_initdrivers(void)
1045 {
1046 	int rc;
1047 
1048 	/* test return values from rte_vdev_init() */
1049 	MOCK_SET(rte_vdev_init, -EEXIST);
1050 	rc = vbdev_init_compress_drivers();
1051 	/* This is not an error condition, we already have one */
1052 	CU_ASSERT(rc == 0);
1053 
1054 	/* error */
1055 	MOCK_SET(rte_vdev_init, -2);
1056 	rc = vbdev_init_compress_drivers();
1057 	CU_ASSERT(rc == -EINVAL);
1058 	CU_ASSERT(g_mbuf_mp == NULL);
1059 	CU_ASSERT(g_comp_op_mp == NULL);
1060 
1061 	/* compressdev count 0 */
1062 	ut_rte_compressdev_count = 0;
1063 	MOCK_SET(rte_vdev_init, 0);
1064 	rc = vbdev_init_compress_drivers();
1065 	CU_ASSERT(rc == 0);
1066 
1067 	/* bogus count */
1068 	ut_rte_compressdev_count = RTE_COMPRESS_MAX_DEVS + 1;
1069 	rc = vbdev_init_compress_drivers();
1070 	CU_ASSERT(rc == -EINVAL);
1071 
1072 	/* can't get mbuf pool */
1073 	ut_rte_compressdev_count = 1;
1074 	MOCK_SET(spdk_mempool_create, NULL);
1075 	rc = vbdev_init_compress_drivers();
1076 	CU_ASSERT(rc == -ENOMEM);
1077 	MOCK_CLEAR(spdk_mempool_create);
1078 
1079 	/* can't get comp op pool */
1080 	ut_rte_comp_op_pool_create = NULL;
1081 	rc = vbdev_init_compress_drivers();
1082 	CU_ASSERT(rc == -ENOMEM);
1083 
1084 	/* error on create_compress_dev() */
1085 	ut_rte_comp_op_pool_create = (struct rte_mempool *)&test_initdrivers;
1086 	ut_rte_compressdev_configure = -1;
1087 	rc = vbdev_init_compress_drivers();
1088 	CU_ASSERT(rc == -1);
1089 
1090 	/* error on create_compress_dev() but coverage for large num queues */
1091 	ut_max_nb_queue_pairs = 99;
1092 	rc = vbdev_init_compress_drivers();
1093 	CU_ASSERT(rc == -1);
1094 
1095 	/* qpair setup fails */
1096 	ut_rte_compressdev_configure = 0;
1097 	ut_max_nb_queue_pairs = 0;
1098 	ut_rte_compressdev_queue_pair_setup = -1;
1099 	rc = vbdev_init_compress_drivers();
1100 	CU_ASSERT(rc == -EINVAL);
1101 
1102 	/* rte_compressdev_start fails */
1103 	ut_rte_compressdev_queue_pair_setup = 0;
1104 	ut_rte_compressdev_start = -1;
1105 	rc = vbdev_init_compress_drivers();
1106 	CU_ASSERT(rc == -1);
1107 
1108 	/* rte_compressdev_private_xform_create() fails */
1109 	ut_rte_compressdev_start = 0;
1110 	ut_rte_compressdev_private_xform_create = -2;
1111 	rc = vbdev_init_compress_drivers();
1112 	CU_ASSERT(rc == -2);
1113 
1114 	/* success */
1115 	ut_rte_compressdev_private_xform_create = 0;
1116 	rc = vbdev_init_compress_drivers();
1117 	CU_ASSERT(rc == 0);
1118 	CU_ASSERT(g_mbuf_offset == DPDK_DYNFIELD_OFFSET);
1119 	spdk_mempool_free((struct spdk_mempool *)g_mbuf_mp);
1120 }
1121 
1122 static void
1123 test_supported_io(void)
1124 {
1125 
1126 }
1127 
1128 int
1129 main(int argc, char **argv)
1130 {
1131 	CU_pSuite	suite = NULL;
1132 	unsigned int	num_failures;
1133 
1134 	CU_set_error_action(CUEA_ABORT);
1135 	CU_initialize_registry();
1136 
1137 	suite = CU_add_suite("compress", test_setup, test_cleanup);
1138 	CU_ADD_TEST(suite, test_compress_operation);
1139 	CU_ADD_TEST(suite, test_compress_operation_cross_boundary);
1140 	CU_ADD_TEST(suite, test_vbdev_compress_submit_request);
1141 	CU_ADD_TEST(suite, test_passthru);
1142 	CU_ADD_TEST(suite, test_initdrivers);
1143 	CU_ADD_TEST(suite, test_supported_io);
1144 	CU_ADD_TEST(suite, test_poller);
1145 	CU_ADD_TEST(suite, test_reset);
1146 
1147 	CU_basic_set_mode(CU_BRM_VERBOSE);
1148 	CU_basic_run_tests();
1149 	num_failures = CU_get_number_of_failures();
1150 	CU_cleanup_registry();
1151 	return num_failures;
1152 }
1153