1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk_cunit.h" 35 /* We have our own mock for this */ 36 #define UNIT_TEST_NO_VTOPHYS 37 #include "common/lib/test_env.c" 38 #include "spdk_internal/mock.h" 39 #include "unit/lib/json_mock.c" 40 #include "spdk/reduce.h" 41 42 #include <rte_compressdev.h> 43 44 /* There will be one if the data perfectly matches the chunk size, 45 * or there could be an offset into the data and a remainder after 46 * the data or both for a max of 3. 47 */ 48 #define UT_MBUFS_PER_OP 3 49 /* For testing the crossing of a huge page boundary on address translation, 50 * we'll have an extra one but we only test on the source side. 51 */ 52 #define UT_MBUFS_PER_OP_BOUND_TEST 4 53 54 struct spdk_bdev_io *g_bdev_io; 55 struct spdk_io_channel *g_io_ch; 56 struct rte_comp_op g_comp_op[2]; 57 struct vbdev_compress g_comp_bdev; 58 struct comp_device_qp g_device_qp; 59 struct compress_dev g_device; 60 struct rte_compressdev_capabilities g_cdev_cap; 61 static struct rte_mbuf *g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST]; 62 static struct rte_mbuf *g_dst_mbufs[UT_MBUFS_PER_OP]; 63 static struct rte_mbuf g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST]; 64 static struct rte_mbuf g_expected_dst_mbufs[UT_MBUFS_PER_OP]; 65 struct comp_bdev_io *g_io_ctx; 66 struct comp_io_channel *g_comp_ch; 67 68 /* Those functions are defined as static inline in DPDK, so we can't 69 * mock them straight away. We use defines to redirect them into 70 * our custom functions. 71 */ 72 73 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova, 74 uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo); 75 #define rte_pktmbuf_attach_extbuf mock_rte_pktmbuf_attach_extbuf 76 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova, 77 uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo) 78 { 79 assert(m != NULL); 80 m->buf_addr = buf_addr; 81 m->buf_iova = buf_iova; 82 m->buf_len = buf_len; 83 m->data_len = m->pkt_len = 0; 84 } 85 86 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len); 87 #define rte_pktmbuf_append mock_rte_pktmbuf_append 88 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len) 89 { 90 m->pkt_len = m->pkt_len + len; 91 return NULL; 92 } 93 94 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail); 95 #define rte_pktmbuf_chain mock_rte_pktmbuf_chain 96 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail) 97 { 98 struct rte_mbuf *cur_tail; 99 100 cur_tail = rte_pktmbuf_lastseg(head); 101 cur_tail->next = tail; 102 103 return 0; 104 } 105 106 uint16_t ut_max_nb_queue_pairs = 0; 107 void __rte_experimental mock_rte_compressdev_info_get(uint8_t dev_id, 108 struct rte_compressdev_info *dev_info); 109 #define rte_compressdev_info_get mock_rte_compressdev_info_get 110 void __rte_experimental 111 mock_rte_compressdev_info_get(uint8_t dev_id, struct rte_compressdev_info *dev_info) 112 { 113 dev_info->max_nb_queue_pairs = ut_max_nb_queue_pairs; 114 dev_info->capabilities = &g_cdev_cap; 115 dev_info->driver_name = "compress_isal"; 116 } 117 118 int ut_rte_compressdev_configure = 0; 119 int __rte_experimental mock_rte_compressdev_configure(uint8_t dev_id, 120 struct rte_compressdev_config *config); 121 #define rte_compressdev_configure mock_rte_compressdev_configure 122 int __rte_experimental 123 mock_rte_compressdev_configure(uint8_t dev_id, struct rte_compressdev_config *config) 124 { 125 return ut_rte_compressdev_configure; 126 } 127 128 int ut_rte_compressdev_queue_pair_setup = 0; 129 int __rte_experimental mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, 130 uint32_t max_inflight_ops, int socket_id); 131 #define rte_compressdev_queue_pair_setup mock_rte_compressdev_queue_pair_setup 132 int __rte_experimental 133 mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, 134 uint32_t max_inflight_ops, int socket_id) 135 { 136 return ut_rte_compressdev_queue_pair_setup; 137 } 138 139 int ut_rte_compressdev_start = 0; 140 int __rte_experimental mock_rte_compressdev_start(uint8_t dev_id); 141 #define rte_compressdev_start mock_rte_compressdev_start 142 int __rte_experimental 143 mock_rte_compressdev_start(uint8_t dev_id) 144 { 145 return ut_rte_compressdev_start; 146 } 147 148 int ut_rte_compressdev_private_xform_create = 0; 149 int __rte_experimental mock_rte_compressdev_private_xform_create(uint8_t dev_id, 150 const struct rte_comp_xform *xform, void **private_xform); 151 #define rte_compressdev_private_xform_create mock_rte_compressdev_private_xform_create 152 int __rte_experimental 153 mock_rte_compressdev_private_xform_create(uint8_t dev_id, 154 const struct rte_comp_xform *xform, void **private_xform) 155 { 156 return ut_rte_compressdev_private_xform_create; 157 } 158 159 uint8_t ut_rte_compressdev_count = 0; 160 uint8_t __rte_experimental mock_rte_compressdev_count(void); 161 #define rte_compressdev_count mock_rte_compressdev_count 162 uint8_t __rte_experimental 163 mock_rte_compressdev_count(void) 164 { 165 return ut_rte_compressdev_count; 166 } 167 168 struct rte_mempool *ut_rte_comp_op_pool_create = NULL; 169 struct rte_mempool *__rte_experimental mock_rte_comp_op_pool_create(const char *name, 170 unsigned int nb_elts, unsigned int cache_size, uint16_t user_size, 171 int socket_id); 172 #define rte_comp_op_pool_create mock_rte_comp_op_pool_create 173 struct rte_mempool *__rte_experimental 174 mock_rte_comp_op_pool_create(const char *name, unsigned int nb_elts, 175 unsigned int cache_size, uint16_t user_size, int socket_id) 176 { 177 return ut_rte_comp_op_pool_create; 178 } 179 180 void mock_rte_pktmbuf_free(struct rte_mbuf *m); 181 #define rte_pktmbuf_free mock_rte_pktmbuf_free 182 void mock_rte_pktmbuf_free(struct rte_mbuf *m) 183 { 184 } 185 186 static bool ut_boundary_alloc = false; 187 static int ut_rte_pktmbuf_alloc_bulk = 0; 188 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs, 189 unsigned count); 190 #define rte_pktmbuf_alloc_bulk mock_rte_pktmbuf_alloc_bulk 191 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs, 192 unsigned count) 193 { 194 int i; 195 196 /* This mocked function only supports the alloc of up to 3 src and 3 dst. */ 197 ut_rte_pktmbuf_alloc_bulk += count; 198 199 if (ut_rte_pktmbuf_alloc_bulk == 1) { 200 /* allocation of an extra mbuf for boundary cross test */ 201 ut_boundary_alloc = true; 202 g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]->next = NULL; 203 *mbufs = g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]; 204 ut_rte_pktmbuf_alloc_bulk = 0; 205 } else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP) { 206 /* first test allocation, src mbufs */ 207 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 208 g_src_mbufs[i]->next = NULL; 209 *mbufs++ = g_src_mbufs[i]; 210 } 211 } else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP * 2) { 212 /* second test allocation, dst mbufs */ 213 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 214 g_dst_mbufs[i]->next = NULL; 215 *mbufs++ = g_dst_mbufs[i]; 216 } 217 ut_rte_pktmbuf_alloc_bulk = 0; 218 } else { 219 return -1; 220 } 221 return 0; 222 } 223 224 struct rte_mempool * 225 rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size, 226 uint16_t priv_size, uint16_t data_room_size, int socket_id) 227 { 228 struct spdk_mempool *tmp; 229 230 tmp = spdk_mempool_create("mbuf_mp", 1024, sizeof(struct rte_mbuf), 231 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 232 SPDK_ENV_SOCKET_ID_ANY); 233 234 return (struct rte_mempool *)tmp; 235 } 236 237 void 238 rte_mempool_free(struct rte_mempool *mp) 239 { 240 if (mp) { 241 spdk_mempool_free((struct spdk_mempool *)mp); 242 } 243 } 244 245 static int ut_spdk_reduce_vol_op_complete_err = 0; 246 void 247 spdk_reduce_vol_writev(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt, 248 uint64_t offset, uint64_t length, spdk_reduce_vol_op_complete cb_fn, 249 void *cb_arg) 250 { 251 cb_fn(cb_arg, ut_spdk_reduce_vol_op_complete_err); 252 } 253 254 void 255 spdk_reduce_vol_readv(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt, 256 uint64_t offset, uint64_t length, spdk_reduce_vol_op_complete cb_fn, 257 void *cb_arg) 258 { 259 cb_fn(cb_arg, ut_spdk_reduce_vol_op_complete_err); 260 } 261 262 #include "bdev/compress/vbdev_compress.c" 263 264 /* SPDK stubs */ 265 DEFINE_STUB(spdk_bdev_get_aliases, const struct spdk_bdev_aliases_list *, 266 (const struct spdk_bdev *bdev), NULL); 267 DEFINE_STUB_V(spdk_bdev_module_list_add, (struct spdk_bdev_module *bdev_module)); 268 DEFINE_STUB_V(spdk_bdev_free_io, (struct spdk_bdev_io *g_bdev_io)); 269 DEFINE_STUB(spdk_bdev_io_type_supported, bool, (struct spdk_bdev *bdev, 270 enum spdk_bdev_io_type io_type), 0); 271 DEFINE_STUB_V(spdk_bdev_module_release_bdev, (struct spdk_bdev *bdev)); 272 DEFINE_STUB_V(spdk_bdev_close, (struct spdk_bdev_desc *desc)); 273 DEFINE_STUB(spdk_bdev_get_name, const char *, (const struct spdk_bdev *bdev), 0); 274 DEFINE_STUB(spdk_bdev_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_desc *desc), 0); 275 DEFINE_STUB_V(spdk_bdev_unregister, (struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, 276 void *cb_arg)); 277 DEFINE_STUB(spdk_bdev_open_ext, int, (const char *bdev_name, bool write, 278 spdk_bdev_event_cb_t event_cb, 279 void *event_ctx, struct spdk_bdev_desc **_desc), 0); 280 DEFINE_STUB(spdk_bdev_desc_get_bdev, struct spdk_bdev *, (struct spdk_bdev_desc *desc), NULL); 281 DEFINE_STUB(spdk_bdev_module_claim_bdev, int, (struct spdk_bdev *bdev, struct spdk_bdev_desc *desc, 282 struct spdk_bdev_module *module), 0); 283 DEFINE_STUB_V(spdk_bdev_module_examine_done, (struct spdk_bdev_module *module)); 284 DEFINE_STUB(spdk_bdev_register, int, (struct spdk_bdev *bdev), 0); 285 DEFINE_STUB(spdk_bdev_get_by_name, struct spdk_bdev *, (const char *bdev_name), NULL); 286 DEFINE_STUB(spdk_bdev_io_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_io *bdev_io), 287 0); 288 DEFINE_STUB(spdk_bdev_queue_io_wait, int, (struct spdk_bdev *bdev, struct spdk_io_channel *ch, 289 struct spdk_bdev_io_wait_entry *entry), 0); 290 DEFINE_STUB_V(spdk_reduce_vol_unload, (struct spdk_reduce_vol *vol, 291 spdk_reduce_vol_op_complete cb_fn, void *cb_arg)); 292 DEFINE_STUB_V(spdk_reduce_vol_load, (struct spdk_reduce_backing_dev *backing_dev, 293 spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg)); 294 DEFINE_STUB(spdk_reduce_vol_get_params, const struct spdk_reduce_vol_params *, 295 (struct spdk_reduce_vol *vol), NULL); 296 DEFINE_STUB_V(spdk_reduce_vol_init, (struct spdk_reduce_vol_params *params, 297 struct spdk_reduce_backing_dev *backing_dev, 298 const char *pm_file_dir, 299 spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg)); 300 DEFINE_STUB_V(spdk_reduce_vol_destroy, (struct spdk_reduce_backing_dev *backing_dev, 301 spdk_reduce_vol_op_complete cb_fn, void *cb_arg)); 302 303 /* DPDK stubs */ 304 #define DPDK_DYNFIELD_OFFSET offsetof(struct rte_mbuf, dynfield1[1]) 305 DEFINE_STUB(rte_mbuf_dynfield_register, int, (const struct rte_mbuf_dynfield *params), 306 DPDK_DYNFIELD_OFFSET); 307 DEFINE_STUB(rte_socket_id, unsigned, (void), 0); 308 DEFINE_STUB(rte_vdev_init, int, (const char *name, const char *args), 0); 309 DEFINE_STUB_V(rte_comp_op_free, (struct rte_comp_op *op)); 310 DEFINE_STUB(rte_comp_op_alloc, struct rte_comp_op *, (struct rte_mempool *mempool), NULL); 311 312 int g_small_size_counter = 0; 313 int g_small_size_modify = 0; 314 uint64_t g_small_size = 0; 315 uint64_t 316 spdk_vtophys(const void *buf, uint64_t *size) 317 { 318 g_small_size_counter++; 319 if (g_small_size_counter == g_small_size_modify) { 320 *size = g_small_size; 321 g_small_size_counter = 0; 322 g_small_size_modify = 0; 323 } 324 return (uint64_t)buf; 325 } 326 327 void 328 spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len) 329 { 330 cb(g_io_ch, g_bdev_io, true); 331 } 332 333 /* Mock these functions to call the callback and then return the value we require */ 334 int ut_spdk_bdev_readv_blocks = 0; 335 int 336 spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 337 struct iovec *iov, int iovcnt, 338 uint64_t offset_blocks, uint64_t num_blocks, 339 spdk_bdev_io_completion_cb cb, void *cb_arg) 340 { 341 cb(g_bdev_io, !ut_spdk_bdev_readv_blocks, cb_arg); 342 return ut_spdk_bdev_readv_blocks; 343 } 344 345 int ut_spdk_bdev_writev_blocks = 0; 346 bool ut_spdk_bdev_writev_blocks_mocked = false; 347 int 348 spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 349 struct iovec *iov, int iovcnt, 350 uint64_t offset_blocks, uint64_t num_blocks, 351 spdk_bdev_io_completion_cb cb, void *cb_arg) 352 { 353 cb(g_bdev_io, !ut_spdk_bdev_writev_blocks, cb_arg); 354 return ut_spdk_bdev_writev_blocks; 355 } 356 357 int ut_spdk_bdev_unmap_blocks = 0; 358 bool ut_spdk_bdev_unmap_blocks_mocked = false; 359 int 360 spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 361 uint64_t offset_blocks, uint64_t num_blocks, 362 spdk_bdev_io_completion_cb cb, void *cb_arg) 363 { 364 cb(g_bdev_io, !ut_spdk_bdev_unmap_blocks, cb_arg); 365 return ut_spdk_bdev_unmap_blocks; 366 } 367 368 int ut_spdk_bdev_flush_blocks = 0; 369 bool ut_spdk_bdev_flush_blocks_mocked = false; 370 int 371 spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 372 uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, 373 void *cb_arg) 374 { 375 cb(g_bdev_io, !ut_spdk_bdev_flush_blocks, cb_arg); 376 return ut_spdk_bdev_flush_blocks; 377 } 378 379 int ut_spdk_bdev_reset = 0; 380 bool ut_spdk_bdev_reset_mocked = false; 381 int 382 spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 383 spdk_bdev_io_completion_cb cb, void *cb_arg) 384 { 385 cb(g_bdev_io, !ut_spdk_bdev_reset, cb_arg); 386 return ut_spdk_bdev_reset; 387 } 388 389 bool g_completion_called = false; 390 void 391 spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status) 392 { 393 bdev_io->internal.status = status; 394 g_completion_called = true; 395 } 396 397 static uint16_t ut_rte_compressdev_dequeue_burst = 0; 398 uint16_t 399 rte_compressdev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops, 400 uint16_t nb_op) 401 { 402 if (ut_rte_compressdev_dequeue_burst == 0) { 403 return 0; 404 } 405 406 ops[0] = &g_comp_op[0]; 407 ops[1] = &g_comp_op[1]; 408 409 return ut_rte_compressdev_dequeue_burst; 410 } 411 412 static int ut_compress_done[2]; 413 /* done_count and done_idx together control which expected assertion 414 * value to use when dequeuing 2 operations. 415 */ 416 static uint16_t done_count = 1; 417 static uint16_t done_idx = 0; 418 static void 419 _compress_done(void *_req, int reduce_errno) 420 { 421 if (done_count == 1) { 422 CU_ASSERT(reduce_errno == ut_compress_done[0]); 423 } else if (done_count == 2) { 424 CU_ASSERT(reduce_errno == ut_compress_done[done_idx++]); 425 } 426 } 427 428 static void 429 _get_mbuf_array(struct rte_mbuf *mbuf_array[UT_MBUFS_PER_OP_BOUND_TEST], 430 struct rte_mbuf *mbuf_head, int mbuf_count, bool null_final) 431 { 432 int i; 433 434 for (i = 0; i < mbuf_count; i++) { 435 mbuf_array[i] = mbuf_head; 436 if (mbuf_head) { 437 mbuf_head = mbuf_head->next; 438 } 439 } 440 if (null_final) { 441 mbuf_array[i - 1] = NULL; 442 } 443 } 444 445 #define FAKE_ENQUEUE_SUCCESS 255 446 #define FAKE_ENQUEUE_ERROR 128 447 #define FAKE_ENQUEUE_BUSY 64 448 static uint16_t ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 449 static struct rte_comp_op ut_expected_op; 450 uint16_t 451 rte_compressdev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops, 452 uint16_t nb_ops) 453 { 454 struct rte_comp_op *op = *ops; 455 struct rte_mbuf *op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 456 struct rte_mbuf *exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 457 int i, num_src_mbufs = UT_MBUFS_PER_OP; 458 459 switch (ut_enqueue_value) { 460 case FAKE_ENQUEUE_BUSY: 461 op->status = RTE_COMP_OP_STATUS_NOT_PROCESSED; 462 return 0; 463 break; 464 case FAKE_ENQUEUE_SUCCESS: 465 op->status = RTE_COMP_OP_STATUS_SUCCESS; 466 return 1; 467 break; 468 case FAKE_ENQUEUE_ERROR: 469 op->status = RTE_COMP_OP_STATUS_ERROR; 470 return 0; 471 break; 472 default: 473 break; 474 } 475 476 /* by design the compress module will never send more than 1 op at a time */ 477 CU_ASSERT(op->private_xform == ut_expected_op.private_xform); 478 479 /* setup our local pointers to the chained mbufs, those pointed to in the 480 * operation struct and the expected values. 481 */ 482 _get_mbuf_array(op_mbuf, op->m_src, SPDK_COUNTOF(op_mbuf), true); 483 _get_mbuf_array(exp_mbuf, ut_expected_op.m_src, SPDK_COUNTOF(exp_mbuf), true); 484 485 if (ut_boundary_alloc == true) { 486 /* if we crossed a boundary, we need to check the 4th src mbuf and 487 * reset the global that is used to identify whether we crossed 488 * or not 489 */ 490 num_src_mbufs = UT_MBUFS_PER_OP_BOUND_TEST; 491 exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = ut_expected_op.m_src->next->next->next; 492 op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = op->m_src->next->next->next; 493 ut_boundary_alloc = false; 494 } 495 496 497 for (i = 0; i < num_src_mbufs; i++) { 498 CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr); 499 CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova); 500 CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len); 501 CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len); 502 } 503 504 /* if only 3 mbufs were used in the test, the 4th should be zeroed */ 505 if (num_src_mbufs == UT_MBUFS_PER_OP) { 506 CU_ASSERT(op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL); 507 CU_ASSERT(exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL); 508 } 509 CU_ASSERT(*RTE_MBUF_DYNFIELD(op->m_src, g_mbuf_offset, uint64_t *) == 510 *RTE_MBUF_DYNFIELD(ut_expected_op.m_src, g_mbuf_offset, uint64_t *)); 511 CU_ASSERT(op->src.offset == ut_expected_op.src.offset); 512 CU_ASSERT(op->src.length == ut_expected_op.src.length); 513 514 /* check dst mbuf values */ 515 _get_mbuf_array(op_mbuf, op->m_dst, SPDK_COUNTOF(op_mbuf), true); 516 _get_mbuf_array(exp_mbuf, ut_expected_op.m_dst, SPDK_COUNTOF(exp_mbuf), true); 517 518 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 519 CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr); 520 CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova); 521 CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len); 522 CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len); 523 } 524 CU_ASSERT(op->dst.offset == ut_expected_op.dst.offset); 525 526 return ut_enqueue_value; 527 } 528 529 /* Global setup for all tests that share a bunch of preparation... */ 530 static int 531 test_setup(void) 532 { 533 struct spdk_thread *thread; 534 int i; 535 536 spdk_thread_lib_init(NULL, 0); 537 538 thread = spdk_thread_create(NULL, NULL); 539 spdk_set_thread(thread); 540 541 g_comp_bdev.reduce_thread = thread; 542 g_comp_bdev.backing_dev.unmap = _comp_reduce_unmap; 543 g_comp_bdev.backing_dev.readv = _comp_reduce_readv; 544 g_comp_bdev.backing_dev.writev = _comp_reduce_writev; 545 g_comp_bdev.backing_dev.compress = _comp_reduce_compress; 546 g_comp_bdev.backing_dev.decompress = _comp_reduce_decompress; 547 g_comp_bdev.backing_dev.blocklen = 512; 548 g_comp_bdev.backing_dev.blockcnt = 1024 * 16; 549 550 g_comp_bdev.device_qp = &g_device_qp; 551 g_comp_bdev.device_qp->device = &g_device; 552 553 TAILQ_INIT(&g_comp_bdev.queued_comp_ops); 554 555 g_comp_xform = (struct rte_comp_xform) { 556 .type = RTE_COMP_COMPRESS, 557 .compress = { 558 .algo = RTE_COMP_ALGO_DEFLATE, 559 .deflate.huffman = RTE_COMP_HUFFMAN_DEFAULT, 560 .level = RTE_COMP_LEVEL_MAX, 561 .window_size = DEFAULT_WINDOW_SIZE, 562 .chksum = RTE_COMP_CHECKSUM_NONE, 563 .hash_algo = RTE_COMP_HASH_ALGO_NONE 564 } 565 }; 566 567 g_decomp_xform = (struct rte_comp_xform) { 568 .type = RTE_COMP_DECOMPRESS, 569 .decompress = { 570 .algo = RTE_COMP_ALGO_DEFLATE, 571 .chksum = RTE_COMP_CHECKSUM_NONE, 572 .window_size = DEFAULT_WINDOW_SIZE, 573 .hash_algo = RTE_COMP_HASH_ALGO_NONE 574 } 575 }; 576 g_device.comp_xform = &g_comp_xform; 577 g_device.decomp_xform = &g_decomp_xform; 578 g_cdev_cap.comp_feature_flags = RTE_COMP_FF_SHAREABLE_PRIV_XFORM; 579 g_device.cdev_info.driver_name = "compress_isal"; 580 g_device.cdev_info.capabilities = &g_cdev_cap; 581 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) { 582 g_src_mbufs[i] = calloc(1, sizeof(struct rte_mbuf)); 583 } 584 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 585 g_dst_mbufs[i] = calloc(1, sizeof(struct rte_mbuf)); 586 } 587 588 g_bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct comp_bdev_io)); 589 g_bdev_io->u.bdev.iovs = calloc(128, sizeof(struct iovec)); 590 g_bdev_io->bdev = &g_comp_bdev.comp_bdev; 591 g_io_ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct comp_io_channel)); 592 g_io_ch->thread = thread; 593 g_comp_ch = (struct comp_io_channel *)((uint8_t *)g_io_ch + sizeof(struct spdk_io_channel)); 594 g_io_ctx = (struct comp_bdev_io *)g_bdev_io->driver_ctx; 595 596 g_io_ctx->comp_ch = g_comp_ch; 597 g_io_ctx->comp_bdev = &g_comp_bdev; 598 g_comp_bdev.device_qp = &g_device_qp; 599 600 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) { 601 g_expected_src_mbufs[i].next = &g_expected_src_mbufs[i + 1]; 602 } 603 g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1].next = NULL; 604 605 /* we only test w/4 mbufs on src side */ 606 for (i = 0; i < UT_MBUFS_PER_OP - 1; i++) { 607 g_expected_dst_mbufs[i].next = &g_expected_dst_mbufs[i + 1]; 608 } 609 g_expected_dst_mbufs[UT_MBUFS_PER_OP - 1].next = NULL; 610 g_mbuf_offset = DPDK_DYNFIELD_OFFSET; 611 612 return 0; 613 } 614 615 /* Global teardown for all tests */ 616 static int 617 test_cleanup(void) 618 { 619 struct spdk_thread *thread; 620 int i; 621 622 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) { 623 free(g_src_mbufs[i]); 624 } 625 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 626 free(g_dst_mbufs[i]); 627 } 628 free(g_bdev_io->u.bdev.iovs); 629 free(g_bdev_io); 630 free(g_io_ch); 631 632 thread = spdk_get_thread(); 633 spdk_thread_exit(thread); 634 while (!spdk_thread_is_exited(thread)) { 635 spdk_thread_poll(thread, 0, 0); 636 } 637 spdk_thread_destroy(thread); 638 639 spdk_thread_lib_fini(); 640 641 return 0; 642 } 643 644 static void 645 test_compress_operation(void) 646 { 647 struct iovec src_iovs[3] = {}; 648 int src_iovcnt; 649 struct iovec dst_iovs[3] = {}; 650 int dst_iovcnt; 651 struct spdk_reduce_vol_cb_args cb_arg; 652 int rc, i; 653 struct vbdev_comp_op *op; 654 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP]; 655 struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP]; 656 657 src_iovcnt = dst_iovcnt = 3; 658 for (i = 0; i < dst_iovcnt; i++) { 659 src_iovs[i].iov_len = 0x1000; 660 dst_iovs[i].iov_len = 0x1000; 661 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 662 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 663 } 664 665 /* test rte_comp_op_alloc failure */ 666 MOCK_SET(rte_comp_op_alloc, NULL); 667 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 668 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 669 &dst_iovs[0], dst_iovcnt, true, &cb_arg); 670 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false); 671 while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) { 672 op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops); 673 TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link); 674 free(op); 675 } 676 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 677 CU_ASSERT(rc == 0); 678 MOCK_SET(rte_comp_op_alloc, &g_comp_op[0]); 679 680 /* test mempool get failure */ 681 ut_rte_pktmbuf_alloc_bulk = -1; 682 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 683 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 684 &dst_iovs[0], dst_iovcnt, true, &cb_arg); 685 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false); 686 while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) { 687 op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops); 688 TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link); 689 free(op); 690 } 691 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 692 CU_ASSERT(rc == 0); 693 ut_rte_pktmbuf_alloc_bulk = 0; 694 695 /* test enqueue failure busy */ 696 ut_enqueue_value = FAKE_ENQUEUE_BUSY; 697 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 698 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 699 &dst_iovs[0], dst_iovcnt, true, &cb_arg); 700 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false); 701 while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) { 702 op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops); 703 TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link); 704 free(op); 705 } 706 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 707 CU_ASSERT(rc == 0); 708 ut_enqueue_value = 1; 709 710 /* test enqueue failure error */ 711 ut_enqueue_value = FAKE_ENQUEUE_ERROR; 712 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 713 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 714 &dst_iovs[0], dst_iovcnt, true, &cb_arg); 715 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 716 CU_ASSERT(rc == -EINVAL); 717 ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 718 719 /* test success with 3 vector iovec */ 720 ut_expected_op.private_xform = &g_decomp_xform; 721 ut_expected_op.src.offset = 0; 722 ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len; 723 724 /* setup the src expected values */ 725 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false); 726 ut_expected_op.m_src = exp_src_mbuf[0]; 727 728 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 729 *RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&cb_arg; 730 exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base; 731 exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len); 732 exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len; 733 exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len; 734 } 735 736 /* setup the dst expected values */ 737 _get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false); 738 ut_expected_op.dst.offset = 0; 739 ut_expected_op.m_dst = exp_dst_mbuf[0]; 740 741 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 742 exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base; 743 exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len); 744 exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len; 745 exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len; 746 } 747 748 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 749 &dst_iovs[0], dst_iovcnt, false, &cb_arg); 750 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 751 CU_ASSERT(rc == 0); 752 753 } 754 755 static void 756 test_compress_operation_cross_boundary(void) 757 { 758 struct iovec src_iovs[3] = {}; 759 int src_iovcnt; 760 struct iovec dst_iovs[3] = {}; 761 int dst_iovcnt; 762 struct spdk_reduce_vol_cb_args cb_arg; 763 int rc, i; 764 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 765 struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 766 767 /* Setup the same basic 3 IOV test as used in the simple success case 768 * but then we'll start testing a vtophy boundary crossing at each 769 * position. 770 */ 771 src_iovcnt = dst_iovcnt = 3; 772 for (i = 0; i < dst_iovcnt; i++) { 773 src_iovs[i].iov_len = 0x1000; 774 dst_iovs[i].iov_len = 0x1000; 775 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 776 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 777 } 778 779 ut_expected_op.private_xform = &g_decomp_xform; 780 ut_expected_op.src.offset = 0; 781 ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len; 782 783 /* setup the src expected values */ 784 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false); 785 ut_expected_op.m_src = exp_src_mbuf[0]; 786 787 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 788 *RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&cb_arg; 789 exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base; 790 exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len); 791 exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len; 792 exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len; 793 } 794 795 /* setup the dst expected values, we don't test needing a 4th dst mbuf */ 796 _get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false); 797 ut_expected_op.dst.offset = 0; 798 ut_expected_op.m_dst = exp_dst_mbuf[0]; 799 800 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 801 exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base; 802 exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len); 803 exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len; 804 exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len; 805 } 806 807 /* force the 1st IOV to get partial length from spdk_vtophys */ 808 g_small_size_counter = 0; 809 g_small_size_modify = 1; 810 g_small_size = 0x800; 811 *RTE_MBUF_DYNFIELD(exp_src_mbuf[3], g_mbuf_offset, uint64_t *) = (uint64_t)&cb_arg; 812 813 /* first only has shorter length */ 814 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x800; 815 816 /* 2nd was inserted by the boundary crossing condition and finishes off 817 * the length from the first */ 818 exp_src_mbuf[1]->buf_addr = (void *)0x10000800; 819 exp_src_mbuf[1]->buf_iova = 0x10000800; 820 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800; 821 822 /* 3rd looks like that the 2nd would have */ 823 exp_src_mbuf[2]->buf_addr = (void *)0x10001000; 824 exp_src_mbuf[2]->buf_iova = 0x10001000; 825 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x1000; 826 827 /* a new 4th looks like what the 3rd would have */ 828 exp_src_mbuf[3]->buf_addr = (void *)0x10002000; 829 exp_src_mbuf[3]->buf_iova = 0x10002000; 830 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000; 831 832 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 833 &dst_iovs[0], dst_iovcnt, false, &cb_arg); 834 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 835 CU_ASSERT(rc == 0); 836 837 /* Now force the 2nd IOV to get partial length from spdk_vtophys */ 838 g_small_size_counter = 0; 839 g_small_size_modify = 2; 840 g_small_size = 0x800; 841 842 /* first is normal */ 843 exp_src_mbuf[0]->buf_addr = (void *)0x10000000; 844 exp_src_mbuf[0]->buf_iova = 0x10000000; 845 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000; 846 847 /* second only has shorter length */ 848 exp_src_mbuf[1]->buf_addr = (void *)0x10001000; 849 exp_src_mbuf[1]->buf_iova = 0x10001000; 850 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800; 851 852 /* 3rd was inserted by the boundary crossing condition and finishes off 853 * the length from the first */ 854 exp_src_mbuf[2]->buf_addr = (void *)0x10001800; 855 exp_src_mbuf[2]->buf_iova = 0x10001800; 856 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800; 857 858 /* a new 4th looks like what the 3rd would have */ 859 exp_src_mbuf[3]->buf_addr = (void *)0x10002000; 860 exp_src_mbuf[3]->buf_iova = 0x10002000; 861 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000; 862 863 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 864 &dst_iovs[0], dst_iovcnt, false, &cb_arg); 865 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 866 CU_ASSERT(rc == 0); 867 868 /* Finally force the 3rd IOV to get partial length from spdk_vtophys */ 869 g_small_size_counter = 0; 870 g_small_size_modify = 3; 871 g_small_size = 0x800; 872 873 /* first is normal */ 874 exp_src_mbuf[0]->buf_addr = (void *)0x10000000; 875 exp_src_mbuf[0]->buf_iova = 0x10000000; 876 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000; 877 878 /* second is normal */ 879 exp_src_mbuf[1]->buf_addr = (void *)0x10001000; 880 exp_src_mbuf[1]->buf_iova = 0x10001000; 881 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x1000; 882 883 /* 3rd has shorter length */ 884 exp_src_mbuf[2]->buf_addr = (void *)0x10002000; 885 exp_src_mbuf[2]->buf_iova = 0x10002000; 886 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800; 887 888 /* a new 4th handles the remainder from the 3rd */ 889 exp_src_mbuf[3]->buf_addr = (void *)0x10002800; 890 exp_src_mbuf[3]->buf_iova = 0x10002800; 891 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x800; 892 893 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 894 &dst_iovs[0], dst_iovcnt, false, &cb_arg); 895 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 896 CU_ASSERT(rc == 0); 897 } 898 899 static void 900 test_poller(void) 901 { 902 int rc; 903 struct spdk_reduce_vol_cb_args *cb_args; 904 struct rte_mbuf mbuf[4]; /* one src, one dst, 2 ops */ 905 struct vbdev_comp_op *op_to_queue; 906 struct iovec src_iovs[3] = {}; 907 struct iovec dst_iovs[3] = {}; 908 int i; 909 910 cb_args = calloc(1, sizeof(*cb_args)); 911 SPDK_CU_ASSERT_FATAL(cb_args != NULL); 912 cb_args->cb_fn = _compress_done; 913 memset(&g_comp_op[0], 0, sizeof(struct rte_comp_op)); 914 g_comp_op[0].m_src = &mbuf[0]; 915 g_comp_op[1].m_src = &mbuf[1]; 916 g_comp_op[0].m_dst = &mbuf[2]; 917 g_comp_op[1].m_dst = &mbuf[3]; 918 for (i = 0; i < 3; i++) { 919 src_iovs[i].iov_len = 0x1000; 920 dst_iovs[i].iov_len = 0x1000; 921 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 922 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 923 } 924 925 /* Error from dequeue, nothing needing to be resubmitted. 926 */ 927 ut_rte_compressdev_dequeue_burst = 1; 928 /* setup what we want dequeue to return for the op */ 929 *RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args; 930 g_comp_op[0].produced = 1; 931 g_comp_op[0].status = 1; 932 /* value asserted in the reduce callback */ 933 ut_compress_done[0] = -EINVAL; 934 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 935 rc = comp_dev_poller((void *)&g_comp_bdev); 936 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 937 CU_ASSERT(rc == SPDK_POLLER_BUSY); 938 939 /* Success from dequeue, 2 ops. nothing needing to be resubmitted. 940 */ 941 ut_rte_compressdev_dequeue_burst = 2; 942 /* setup what we want dequeue to return for the op */ 943 *RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args; 944 g_comp_op[0].produced = 16; 945 g_comp_op[0].status = 0; 946 *RTE_MBUF_DYNFIELD(g_comp_op[1].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args; 947 g_comp_op[1].produced = 32; 948 g_comp_op[1].status = 0; 949 /* value asserted in the reduce callback */ 950 ut_compress_done[0] = 16; 951 ut_compress_done[1] = 32; 952 done_count = 2; 953 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 954 rc = comp_dev_poller((void *)&g_comp_bdev); 955 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 956 CU_ASSERT(rc == SPDK_POLLER_BUSY); 957 958 /* Success from dequeue, one op to be resubmitted. 959 */ 960 ut_rte_compressdev_dequeue_burst = 1; 961 /* setup what we want dequeue to return for the op */ 962 *RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args; 963 g_comp_op[0].produced = 16; 964 g_comp_op[0].status = 0; 965 /* value asserted in the reduce callback */ 966 ut_compress_done[0] = 16; 967 done_count = 1; 968 op_to_queue = calloc(1, sizeof(struct vbdev_comp_op)); 969 SPDK_CU_ASSERT_FATAL(op_to_queue != NULL); 970 op_to_queue->backing_dev = &g_comp_bdev.backing_dev; 971 op_to_queue->src_iovs = &src_iovs[0]; 972 op_to_queue->src_iovcnt = 3; 973 op_to_queue->dst_iovs = &dst_iovs[0]; 974 op_to_queue->dst_iovcnt = 3; 975 op_to_queue->compress = true; 976 op_to_queue->cb_arg = cb_args; 977 ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 978 TAILQ_INSERT_TAIL(&g_comp_bdev.queued_comp_ops, 979 op_to_queue, 980 link); 981 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false); 982 rc = comp_dev_poller((void *)&g_comp_bdev); 983 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 984 CU_ASSERT(rc == SPDK_POLLER_BUSY); 985 986 /* op_to_queue is freed in code under test */ 987 free(cb_args); 988 } 989 990 static void 991 test_vbdev_compress_submit_request(void) 992 { 993 /* Single element block size write */ 994 g_bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 995 g_bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE; 996 g_completion_called = false; 997 vbdev_compress_submit_request(g_io_ch, g_bdev_io); 998 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS); 999 CU_ASSERT(g_completion_called == true); 1000 CU_ASSERT(g_io_ctx->orig_io == g_bdev_io); 1001 CU_ASSERT(g_io_ctx->comp_bdev == &g_comp_bdev); 1002 CU_ASSERT(g_io_ctx->comp_ch == g_comp_ch); 1003 1004 /* same write but now fail it */ 1005 ut_spdk_reduce_vol_op_complete_err = 1; 1006 g_completion_called = false; 1007 vbdev_compress_submit_request(g_io_ch, g_bdev_io); 1008 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FAILED); 1009 CU_ASSERT(g_completion_called == true); 1010 1011 /* test a read success */ 1012 g_bdev_io->type = SPDK_BDEV_IO_TYPE_READ; 1013 ut_spdk_reduce_vol_op_complete_err = 0; 1014 g_completion_called = false; 1015 vbdev_compress_submit_request(g_io_ch, g_bdev_io); 1016 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS); 1017 CU_ASSERT(g_completion_called == true); 1018 1019 /* test a read failure */ 1020 ut_spdk_reduce_vol_op_complete_err = 1; 1021 g_completion_called = false; 1022 vbdev_compress_submit_request(g_io_ch, g_bdev_io); 1023 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FAILED); 1024 CU_ASSERT(g_completion_called == true); 1025 } 1026 1027 static void 1028 test_passthru(void) 1029 { 1030 1031 } 1032 1033 static void 1034 test_reset(void) 1035 { 1036 /* TODO: There are a few different ways to do this given that 1037 * the code uses spdk_for_each_channel() to implement reset 1038 * handling. SUbmitting w/o UT for this function for now and 1039 * will follow up with something shortly. 1040 */ 1041 } 1042 1043 static void 1044 test_initdrivers(void) 1045 { 1046 int rc; 1047 1048 /* test return values from rte_vdev_init() */ 1049 MOCK_SET(rte_vdev_init, -EEXIST); 1050 rc = vbdev_init_compress_drivers(); 1051 /* This is not an error condition, we already have one */ 1052 CU_ASSERT(rc == 0); 1053 1054 /* error */ 1055 MOCK_SET(rte_vdev_init, -2); 1056 rc = vbdev_init_compress_drivers(); 1057 CU_ASSERT(rc == -EINVAL); 1058 CU_ASSERT(g_mbuf_mp == NULL); 1059 CU_ASSERT(g_comp_op_mp == NULL); 1060 1061 /* compressdev count 0 */ 1062 ut_rte_compressdev_count = 0; 1063 MOCK_SET(rte_vdev_init, 0); 1064 rc = vbdev_init_compress_drivers(); 1065 CU_ASSERT(rc == 0); 1066 1067 /* bogus count */ 1068 ut_rte_compressdev_count = RTE_COMPRESS_MAX_DEVS + 1; 1069 rc = vbdev_init_compress_drivers(); 1070 CU_ASSERT(rc == -EINVAL); 1071 1072 /* can't get mbuf pool */ 1073 ut_rte_compressdev_count = 1; 1074 MOCK_SET(spdk_mempool_create, NULL); 1075 rc = vbdev_init_compress_drivers(); 1076 CU_ASSERT(rc == -ENOMEM); 1077 MOCK_CLEAR(spdk_mempool_create); 1078 1079 /* can't get comp op pool */ 1080 ut_rte_comp_op_pool_create = NULL; 1081 rc = vbdev_init_compress_drivers(); 1082 CU_ASSERT(rc == -ENOMEM); 1083 1084 /* error on create_compress_dev() */ 1085 ut_rte_comp_op_pool_create = (struct rte_mempool *)&test_initdrivers; 1086 ut_rte_compressdev_configure = -1; 1087 rc = vbdev_init_compress_drivers(); 1088 CU_ASSERT(rc == -1); 1089 1090 /* error on create_compress_dev() but coverage for large num queues */ 1091 ut_max_nb_queue_pairs = 99; 1092 rc = vbdev_init_compress_drivers(); 1093 CU_ASSERT(rc == -1); 1094 1095 /* qpair setup fails */ 1096 ut_rte_compressdev_configure = 0; 1097 ut_max_nb_queue_pairs = 0; 1098 ut_rte_compressdev_queue_pair_setup = -1; 1099 rc = vbdev_init_compress_drivers(); 1100 CU_ASSERT(rc == -EINVAL); 1101 1102 /* rte_compressdev_start fails */ 1103 ut_rte_compressdev_queue_pair_setup = 0; 1104 ut_rte_compressdev_start = -1; 1105 rc = vbdev_init_compress_drivers(); 1106 CU_ASSERT(rc == -1); 1107 1108 /* rte_compressdev_private_xform_create() fails */ 1109 ut_rte_compressdev_start = 0; 1110 ut_rte_compressdev_private_xform_create = -2; 1111 rc = vbdev_init_compress_drivers(); 1112 CU_ASSERT(rc == -2); 1113 1114 /* success */ 1115 ut_rte_compressdev_private_xform_create = 0; 1116 rc = vbdev_init_compress_drivers(); 1117 CU_ASSERT(rc == 0); 1118 CU_ASSERT(g_mbuf_offset == DPDK_DYNFIELD_OFFSET); 1119 spdk_mempool_free((struct spdk_mempool *)g_mbuf_mp); 1120 } 1121 1122 static void 1123 test_supported_io(void) 1124 { 1125 1126 } 1127 1128 int 1129 main(int argc, char **argv) 1130 { 1131 CU_pSuite suite = NULL; 1132 unsigned int num_failures; 1133 1134 CU_set_error_action(CUEA_ABORT); 1135 CU_initialize_registry(); 1136 1137 suite = CU_add_suite("compress", test_setup, test_cleanup); 1138 CU_ADD_TEST(suite, test_compress_operation); 1139 CU_ADD_TEST(suite, test_compress_operation_cross_boundary); 1140 CU_ADD_TEST(suite, test_vbdev_compress_submit_request); 1141 CU_ADD_TEST(suite, test_passthru); 1142 CU_ADD_TEST(suite, test_initdrivers); 1143 CU_ADD_TEST(suite, test_supported_io); 1144 CU_ADD_TEST(suite, test_poller); 1145 CU_ADD_TEST(suite, test_reset); 1146 1147 CU_basic_set_mode(CU_BRM_VERBOSE); 1148 CU_basic_run_tests(); 1149 num_failures = CU_get_number_of_failures(); 1150 CU_cleanup_registry(); 1151 return num_failures; 1152 } 1153