xref: /spdk/test/unit/lib/bdev/compress.c/compress_ut.c (revision 7506a7aa53d239f533af3bc768f0d2af55e735fe)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation.
5  *   All rights reserved.
6  *   Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include "spdk_cunit.h"
36 /* We have our own mock for this */
37 #define UNIT_TEST_NO_VTOPHYS
38 #include "common/lib/test_env.c"
39 #include "spdk_internal/mock.h"
40 #include "thread/thread_internal.h"
41 #include "unit/lib/json_mock.c"
42 #include "spdk/reduce.h"
43 
44 #include <rte_compressdev.h>
45 
46 /* There will be one if the data perfectly matches the chunk size,
47  * or there could be an offset into the data and a remainder after
48  * the data or both for a max of 3.
49  */
50 #define UT_MBUFS_PER_OP 3
51 /* For testing the crossing of a huge page boundary on address translation,
52  * we'll have an extra one but we only test on the source side.
53  */
54 #define UT_MBUFS_PER_OP_BOUND_TEST 4
55 
56 struct spdk_bdev_io *g_bdev_io;
57 struct spdk_io_channel *g_io_ch;
58 struct rte_comp_op g_comp_op[2];
59 struct vbdev_compress g_comp_bdev;
60 struct comp_device_qp g_device_qp;
61 struct compress_dev g_device;
62 struct rte_compressdev_capabilities g_cdev_cap;
63 static struct rte_mbuf *g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST];
64 static struct rte_mbuf *g_dst_mbufs[UT_MBUFS_PER_OP];
65 static struct rte_mbuf g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST];
66 static struct rte_mbuf g_expected_dst_mbufs[UT_MBUFS_PER_OP];
67 struct comp_bdev_io *g_io_ctx;
68 struct comp_io_channel *g_comp_ch;
69 
70 /* Those functions are defined as static inline in DPDK, so we can't
71  * mock them straight away. We use defines to redirect them into
72  * our custom functions.
73  */
74 
75 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova,
76 		uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo);
77 #define rte_pktmbuf_attach_extbuf mock_rte_pktmbuf_attach_extbuf
78 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova,
79 		uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo)
80 {
81 	assert(m != NULL);
82 	m->buf_addr = buf_addr;
83 	m->buf_iova = buf_iova;
84 	m->buf_len = buf_len;
85 	m->data_len = m->pkt_len = 0;
86 }
87 
88 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len);
89 #define rte_pktmbuf_append mock_rte_pktmbuf_append
90 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
91 {
92 	m->pkt_len = m->pkt_len + len;
93 	return NULL;
94 }
95 
96 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail);
97 #define rte_pktmbuf_chain mock_rte_pktmbuf_chain
98 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
99 {
100 	struct rte_mbuf *cur_tail;
101 
102 	cur_tail = rte_pktmbuf_lastseg(head);
103 	cur_tail->next = tail;
104 
105 	return 0;
106 }
107 
108 uint16_t ut_max_nb_queue_pairs = 0;
109 void __rte_experimental mock_rte_compressdev_info_get(uint8_t dev_id,
110 		struct rte_compressdev_info *dev_info);
111 #define rte_compressdev_info_get mock_rte_compressdev_info_get
112 void __rte_experimental
113 mock_rte_compressdev_info_get(uint8_t dev_id, struct rte_compressdev_info *dev_info)
114 {
115 	dev_info->max_nb_queue_pairs = ut_max_nb_queue_pairs;
116 	dev_info->capabilities = &g_cdev_cap;
117 	dev_info->driver_name = "compress_isal";
118 }
119 
120 int ut_rte_compressdev_configure = 0;
121 int __rte_experimental mock_rte_compressdev_configure(uint8_t dev_id,
122 		struct rte_compressdev_config *config);
123 #define rte_compressdev_configure mock_rte_compressdev_configure
124 int __rte_experimental
125 mock_rte_compressdev_configure(uint8_t dev_id, struct rte_compressdev_config *config)
126 {
127 	return ut_rte_compressdev_configure;
128 }
129 
130 int ut_rte_compressdev_queue_pair_setup = 0;
131 int __rte_experimental mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
132 		uint32_t max_inflight_ops, int socket_id);
133 #define rte_compressdev_queue_pair_setup mock_rte_compressdev_queue_pair_setup
134 int __rte_experimental
135 mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
136 				      uint32_t max_inflight_ops, int socket_id)
137 {
138 	return ut_rte_compressdev_queue_pair_setup;
139 }
140 
141 int ut_rte_compressdev_start = 0;
142 int __rte_experimental mock_rte_compressdev_start(uint8_t dev_id);
143 #define rte_compressdev_start mock_rte_compressdev_start
144 int __rte_experimental
145 mock_rte_compressdev_start(uint8_t dev_id)
146 {
147 	return ut_rte_compressdev_start;
148 }
149 
150 int ut_rte_compressdev_private_xform_create = 0;
151 int __rte_experimental mock_rte_compressdev_private_xform_create(uint8_t dev_id,
152 		const struct rte_comp_xform *xform, void **private_xform);
153 #define rte_compressdev_private_xform_create mock_rte_compressdev_private_xform_create
154 int __rte_experimental
155 mock_rte_compressdev_private_xform_create(uint8_t dev_id,
156 		const struct rte_comp_xform *xform, void **private_xform)
157 {
158 	return ut_rte_compressdev_private_xform_create;
159 }
160 
161 uint8_t ut_rte_compressdev_count = 0;
162 uint8_t __rte_experimental mock_rte_compressdev_count(void);
163 #define rte_compressdev_count mock_rte_compressdev_count
164 uint8_t __rte_experimental
165 mock_rte_compressdev_count(void)
166 {
167 	return ut_rte_compressdev_count;
168 }
169 
170 struct rte_mempool *ut_rte_comp_op_pool_create = NULL;
171 struct rte_mempool *__rte_experimental mock_rte_comp_op_pool_create(const char *name,
172 		unsigned int nb_elts, unsigned int cache_size, uint16_t user_size,
173 		int socket_id);
174 #define rte_comp_op_pool_create mock_rte_comp_op_pool_create
175 struct rte_mempool *__rte_experimental
176 mock_rte_comp_op_pool_create(const char *name, unsigned int nb_elts,
177 			     unsigned int cache_size, uint16_t user_size, int socket_id)
178 {
179 	return ut_rte_comp_op_pool_create;
180 }
181 
182 void mock_rte_pktmbuf_free(struct rte_mbuf *m);
183 #define rte_pktmbuf_free mock_rte_pktmbuf_free
184 void mock_rte_pktmbuf_free(struct rte_mbuf *m)
185 {
186 }
187 
188 void mock_rte_pktmbuf_free_bulk(struct rte_mbuf **m, unsigned int cnt);
189 #define rte_pktmbuf_free_bulk mock_rte_pktmbuf_free_bulk
190 void mock_rte_pktmbuf_free_bulk(struct rte_mbuf **m, unsigned int cnt)
191 {
192 }
193 
194 static bool ut_boundary_alloc = false;
195 static int ut_rte_pktmbuf_alloc_bulk = 0;
196 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs,
197 				unsigned count);
198 #define rte_pktmbuf_alloc_bulk mock_rte_pktmbuf_alloc_bulk
199 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs,
200 				unsigned count)
201 {
202 	int i;
203 
204 	/* This mocked function only supports the alloc of up to 3 src and 3 dst. */
205 	ut_rte_pktmbuf_alloc_bulk += count;
206 
207 	if (ut_rte_pktmbuf_alloc_bulk == 1) {
208 		/* allocation of an extra mbuf for boundary cross test */
209 		ut_boundary_alloc = true;
210 		g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]->next = NULL;
211 		*mbufs = g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1];
212 		ut_rte_pktmbuf_alloc_bulk = 0;
213 	} else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP) {
214 		/* first test allocation, src mbufs */
215 		for (i = 0; i < UT_MBUFS_PER_OP; i++) {
216 			g_src_mbufs[i]->next = NULL;
217 			*mbufs++ = g_src_mbufs[i];
218 		}
219 	} else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP * 2) {
220 		/* second test allocation, dst mbufs */
221 		for (i = 0; i < UT_MBUFS_PER_OP; i++) {
222 			g_dst_mbufs[i]->next = NULL;
223 			*mbufs++ = g_dst_mbufs[i];
224 		}
225 		ut_rte_pktmbuf_alloc_bulk = 0;
226 	} else {
227 		return -1;
228 	}
229 	return 0;
230 }
231 
232 struct rte_mempool *
233 rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size,
234 			uint16_t priv_size, uint16_t data_room_size, int socket_id)
235 {
236 	struct spdk_mempool *tmp;
237 
238 	tmp = spdk_mempool_create("mbuf_mp", 1024, sizeof(struct rte_mbuf),
239 				  SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
240 				  SPDK_ENV_SOCKET_ID_ANY);
241 
242 	return (struct rte_mempool *)tmp;
243 }
244 
245 void
246 rte_mempool_free(struct rte_mempool *mp)
247 {
248 	if (mp) {
249 		spdk_mempool_free((struct spdk_mempool *)mp);
250 	}
251 }
252 
253 static int ut_spdk_reduce_vol_op_complete_err = 0;
254 void
255 spdk_reduce_vol_writev(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt,
256 		       uint64_t offset, uint64_t length, spdk_reduce_vol_op_complete cb_fn,
257 		       void *cb_arg)
258 {
259 	cb_fn(cb_arg, ut_spdk_reduce_vol_op_complete_err);
260 }
261 
262 void
263 spdk_reduce_vol_readv(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt,
264 		      uint64_t offset, uint64_t length, spdk_reduce_vol_op_complete cb_fn,
265 		      void *cb_arg)
266 {
267 	cb_fn(cb_arg, ut_spdk_reduce_vol_op_complete_err);
268 }
269 
270 #include "bdev/compress/vbdev_compress.c"
271 
272 /* SPDK stubs */
273 DEFINE_STUB(spdk_bdev_get_aliases, const struct spdk_bdev_aliases_list *,
274 	    (const struct spdk_bdev *bdev), NULL);
275 DEFINE_STUB_V(spdk_bdev_module_list_add, (struct spdk_bdev_module *bdev_module));
276 DEFINE_STUB_V(spdk_bdev_free_io, (struct spdk_bdev_io *g_bdev_io));
277 DEFINE_STUB(spdk_bdev_io_type_supported, bool, (struct spdk_bdev *bdev,
278 		enum spdk_bdev_io_type io_type), 0);
279 DEFINE_STUB_V(spdk_bdev_module_release_bdev, (struct spdk_bdev *bdev));
280 DEFINE_STUB_V(spdk_bdev_close, (struct spdk_bdev_desc *desc));
281 DEFINE_STUB(spdk_bdev_get_name, const char *, (const struct spdk_bdev *bdev), 0);
282 DEFINE_STUB(spdk_bdev_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_desc *desc), 0);
283 DEFINE_STUB_V(spdk_bdev_unregister, (struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn,
284 				     void *cb_arg));
285 DEFINE_STUB(spdk_bdev_open_ext, int, (const char *bdev_name, bool write,
286 				      spdk_bdev_event_cb_t event_cb,
287 				      void *event_ctx, struct spdk_bdev_desc **_desc), 0);
288 DEFINE_STUB(spdk_bdev_desc_get_bdev, struct spdk_bdev *, (struct spdk_bdev_desc *desc), NULL);
289 DEFINE_STUB(spdk_bdev_module_claim_bdev, int, (struct spdk_bdev *bdev, struct spdk_bdev_desc *desc,
290 		struct spdk_bdev_module *module), 0);
291 DEFINE_STUB_V(spdk_bdev_module_examine_done, (struct spdk_bdev_module *module));
292 DEFINE_STUB(spdk_bdev_register, int, (struct spdk_bdev *bdev), 0);
293 DEFINE_STUB(spdk_bdev_get_by_name, struct spdk_bdev *, (const char *bdev_name), NULL);
294 DEFINE_STUB(spdk_bdev_io_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_io *bdev_io),
295 	    0);
296 DEFINE_STUB(spdk_bdev_queue_io_wait, int, (struct spdk_bdev *bdev, struct spdk_io_channel *ch,
297 		struct spdk_bdev_io_wait_entry *entry), 0);
298 DEFINE_STUB_V(spdk_reduce_vol_unload, (struct spdk_reduce_vol *vol,
299 				       spdk_reduce_vol_op_complete cb_fn, void *cb_arg));
300 DEFINE_STUB_V(spdk_reduce_vol_load, (struct spdk_reduce_backing_dev *backing_dev,
301 				     spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg));
302 DEFINE_STUB(spdk_reduce_vol_get_params, const struct spdk_reduce_vol_params *,
303 	    (struct spdk_reduce_vol *vol), NULL);
304 DEFINE_STUB_V(spdk_reduce_vol_init, (struct spdk_reduce_vol_params *params,
305 				     struct spdk_reduce_backing_dev *backing_dev,
306 				     const char *pm_file_dir,
307 				     spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg));
308 DEFINE_STUB_V(spdk_reduce_vol_destroy, (struct spdk_reduce_backing_dev *backing_dev,
309 					spdk_reduce_vol_op_complete cb_fn, void *cb_arg));
310 
311 /* DPDK stubs */
312 #define DPDK_DYNFIELD_OFFSET offsetof(struct rte_mbuf, dynfield1[1])
313 DEFINE_STUB(rte_mbuf_dynfield_register, int, (const struct rte_mbuf_dynfield *params),
314 	    DPDK_DYNFIELD_OFFSET);
315 DEFINE_STUB(rte_socket_id, unsigned, (void), 0);
316 DEFINE_STUB(rte_vdev_init, int, (const char *name, const char *args), 0);
317 DEFINE_STUB_V(rte_comp_op_free, (struct rte_comp_op *op));
318 DEFINE_STUB(rte_comp_op_alloc, struct rte_comp_op *, (struct rte_mempool *mempool), NULL);
319 
320 int g_small_size_counter = 0;
321 int g_small_size_modify = 0;
322 uint64_t g_small_size = 0;
323 uint64_t
324 spdk_vtophys(const void *buf, uint64_t *size)
325 {
326 	g_small_size_counter++;
327 	if (g_small_size_counter == g_small_size_modify) {
328 		*size = g_small_size;
329 		g_small_size_counter = 0;
330 		g_small_size_modify = 0;
331 	}
332 	return (uint64_t)buf;
333 }
334 
335 void
336 spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len)
337 {
338 	cb(g_io_ch, g_bdev_io, true);
339 }
340 
341 /* Mock these functions to call the callback and then return the value we require */
342 int ut_spdk_bdev_readv_blocks = 0;
343 int
344 spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
345 		       struct iovec *iov, int iovcnt,
346 		       uint64_t offset_blocks, uint64_t num_blocks,
347 		       spdk_bdev_io_completion_cb cb, void *cb_arg)
348 {
349 	cb(g_bdev_io, !ut_spdk_bdev_readv_blocks, cb_arg);
350 	return ut_spdk_bdev_readv_blocks;
351 }
352 
353 int ut_spdk_bdev_writev_blocks = 0;
354 bool ut_spdk_bdev_writev_blocks_mocked = false;
355 int
356 spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
357 			struct iovec *iov, int iovcnt,
358 			uint64_t offset_blocks, uint64_t num_blocks,
359 			spdk_bdev_io_completion_cb cb, void *cb_arg)
360 {
361 	cb(g_bdev_io, !ut_spdk_bdev_writev_blocks, cb_arg);
362 	return ut_spdk_bdev_writev_blocks;
363 }
364 
365 int ut_spdk_bdev_unmap_blocks = 0;
366 bool ut_spdk_bdev_unmap_blocks_mocked = false;
367 int
368 spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
369 		       uint64_t offset_blocks, uint64_t num_blocks,
370 		       spdk_bdev_io_completion_cb cb, void *cb_arg)
371 {
372 	cb(g_bdev_io, !ut_spdk_bdev_unmap_blocks, cb_arg);
373 	return ut_spdk_bdev_unmap_blocks;
374 }
375 
376 int ut_spdk_bdev_flush_blocks = 0;
377 bool ut_spdk_bdev_flush_blocks_mocked = false;
378 int
379 spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
380 		       uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb,
381 		       void *cb_arg)
382 {
383 	cb(g_bdev_io, !ut_spdk_bdev_flush_blocks, cb_arg);
384 	return ut_spdk_bdev_flush_blocks;
385 }
386 
387 int ut_spdk_bdev_reset = 0;
388 bool ut_spdk_bdev_reset_mocked = false;
389 int
390 spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
391 		spdk_bdev_io_completion_cb cb, void *cb_arg)
392 {
393 	cb(g_bdev_io, !ut_spdk_bdev_reset, cb_arg);
394 	return ut_spdk_bdev_reset;
395 }
396 
397 bool g_completion_called = false;
398 void
399 spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status)
400 {
401 	bdev_io->internal.status = status;
402 	g_completion_called = true;
403 }
404 
405 static uint16_t ut_rte_compressdev_dequeue_burst = 0;
406 uint16_t
407 rte_compressdev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops,
408 			      uint16_t nb_op)
409 {
410 	if (ut_rte_compressdev_dequeue_burst == 0) {
411 		return 0;
412 	}
413 
414 	ops[0] = &g_comp_op[0];
415 	ops[1] = &g_comp_op[1];
416 
417 	return ut_rte_compressdev_dequeue_burst;
418 }
419 
420 static int ut_compress_done[2];
421 /* done_count and done_idx together control which expected assertion
422  * value to use when dequeuing 2 operations.
423  */
424 static uint16_t done_count = 1;
425 static uint16_t done_idx = 0;
426 static void
427 _compress_done(void *_req, int reduce_errno)
428 {
429 	if (done_count == 1) {
430 		CU_ASSERT(reduce_errno == ut_compress_done[0]);
431 	} else if (done_count == 2) {
432 		CU_ASSERT(reduce_errno == ut_compress_done[done_idx++]);
433 	}
434 }
435 
436 static void
437 _get_mbuf_array(struct rte_mbuf **mbuf_array, struct rte_mbuf *mbuf_head,
438 		int mbuf_count, bool null_final)
439 {
440 	int i;
441 
442 	for (i = 0; i < mbuf_count; i++) {
443 		mbuf_array[i] = mbuf_head;
444 		if (mbuf_head) {
445 			mbuf_head = mbuf_head->next;
446 		}
447 	}
448 	if (null_final) {
449 		mbuf_array[i - 1] = NULL;
450 	}
451 }
452 
453 #define FAKE_ENQUEUE_SUCCESS 255
454 #define FAKE_ENQUEUE_ERROR 128
455 #define FAKE_ENQUEUE_BUSY 64
456 static uint16_t ut_enqueue_value = FAKE_ENQUEUE_SUCCESS;
457 static struct rte_comp_op ut_expected_op;
458 uint16_t
459 rte_compressdev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops,
460 			      uint16_t nb_ops)
461 {
462 	struct rte_comp_op *op = *ops;
463 	struct rte_mbuf *op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
464 	struct rte_mbuf *exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
465 	int i, num_src_mbufs = UT_MBUFS_PER_OP;
466 
467 	switch (ut_enqueue_value) {
468 	case FAKE_ENQUEUE_BUSY:
469 		op->status = RTE_COMP_OP_STATUS_NOT_PROCESSED;
470 		return 0;
471 	case FAKE_ENQUEUE_SUCCESS:
472 		op->status = RTE_COMP_OP_STATUS_SUCCESS;
473 		return 1;
474 	case FAKE_ENQUEUE_ERROR:
475 		op->status = RTE_COMP_OP_STATUS_ERROR;
476 		return 0;
477 	default:
478 		break;
479 	}
480 
481 	/* by design the compress module will never send more than 1 op at a time */
482 	CU_ASSERT(op->private_xform == ut_expected_op.private_xform);
483 
484 	/* setup our local pointers to the chained mbufs, those pointed to in the
485 	 * operation struct and the expected values.
486 	 */
487 	_get_mbuf_array(op_mbuf, op->m_src, SPDK_COUNTOF(op_mbuf), true);
488 	_get_mbuf_array(exp_mbuf, ut_expected_op.m_src, SPDK_COUNTOF(exp_mbuf), true);
489 
490 	if (ut_boundary_alloc == true) {
491 		/* if we crossed a boundary, we need to check the 4th src mbuf and
492 		 * reset the global that is used to identify whether we crossed
493 		 * or not
494 		 */
495 		num_src_mbufs = UT_MBUFS_PER_OP_BOUND_TEST;
496 		exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = ut_expected_op.m_src->next->next->next;
497 		op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = op->m_src->next->next->next;
498 		ut_boundary_alloc = false;
499 	}
500 
501 	for (i = 0; i < num_src_mbufs; i++) {
502 		CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr);
503 		CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova);
504 		CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len);
505 		CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len);
506 	}
507 
508 	/* if only 3 mbufs were used in the test, the 4th should be zeroed */
509 	if (num_src_mbufs == UT_MBUFS_PER_OP) {
510 		CU_ASSERT(op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL);
511 		CU_ASSERT(exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL);
512 	}
513 	CU_ASSERT(*RTE_MBUF_DYNFIELD(op->m_src, g_mbuf_offset, uint64_t *) ==
514 		  *RTE_MBUF_DYNFIELD(ut_expected_op.m_src, g_mbuf_offset, uint64_t *));
515 	CU_ASSERT(op->src.offset == ut_expected_op.src.offset);
516 	CU_ASSERT(op->src.length == ut_expected_op.src.length);
517 
518 	/* check dst mbuf values */
519 	_get_mbuf_array(op_mbuf, op->m_dst, SPDK_COUNTOF(op_mbuf), true);
520 	_get_mbuf_array(exp_mbuf, ut_expected_op.m_dst, SPDK_COUNTOF(exp_mbuf), true);
521 
522 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
523 		CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr);
524 		CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova);
525 		CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len);
526 		CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len);
527 	}
528 	CU_ASSERT(op->dst.offset == ut_expected_op.dst.offset);
529 
530 	return ut_enqueue_value;
531 }
532 
533 /* Global setup for all tests that share a bunch of preparation... */
534 static int
535 test_setup(void)
536 {
537 	struct spdk_thread *thread;
538 	int i;
539 
540 	spdk_thread_lib_init(NULL, 0);
541 
542 	thread = spdk_thread_create(NULL, NULL);
543 	spdk_set_thread(thread);
544 
545 	g_comp_bdev.drv_name = "test";
546 	g_comp_bdev.reduce_thread = thread;
547 	g_comp_bdev.backing_dev.unmap = _comp_reduce_unmap;
548 	g_comp_bdev.backing_dev.readv = _comp_reduce_readv;
549 	g_comp_bdev.backing_dev.writev = _comp_reduce_writev;
550 	g_comp_bdev.backing_dev.compress = _comp_reduce_compress;
551 	g_comp_bdev.backing_dev.decompress = _comp_reduce_decompress;
552 	g_comp_bdev.backing_dev.blocklen = 512;
553 	g_comp_bdev.backing_dev.blockcnt = 1024 * 16;
554 	g_comp_bdev.backing_dev.sgl_in = true;
555 	g_comp_bdev.backing_dev.sgl_out = true;
556 
557 	g_comp_bdev.device_qp = &g_device_qp;
558 	g_comp_bdev.device_qp->device = &g_device;
559 
560 	TAILQ_INIT(&g_comp_bdev.queued_comp_ops);
561 
562 	g_comp_xform = (struct rte_comp_xform) {
563 		.type = RTE_COMP_COMPRESS,
564 		.compress = {
565 			.algo = RTE_COMP_ALGO_DEFLATE,
566 			.deflate.huffman = RTE_COMP_HUFFMAN_DEFAULT,
567 			.level = RTE_COMP_LEVEL_MAX,
568 			.window_size = DEFAULT_WINDOW_SIZE,
569 			.chksum = RTE_COMP_CHECKSUM_NONE,
570 			.hash_algo = RTE_COMP_HASH_ALGO_NONE
571 		}
572 	};
573 
574 	g_decomp_xform = (struct rte_comp_xform) {
575 		.type = RTE_COMP_DECOMPRESS,
576 		.decompress = {
577 			.algo = RTE_COMP_ALGO_DEFLATE,
578 			.chksum = RTE_COMP_CHECKSUM_NONE,
579 			.window_size = DEFAULT_WINDOW_SIZE,
580 			.hash_algo = RTE_COMP_HASH_ALGO_NONE
581 		}
582 	};
583 	g_device.comp_xform = &g_comp_xform;
584 	g_device.decomp_xform = &g_decomp_xform;
585 	g_cdev_cap.comp_feature_flags = RTE_COMP_FF_SHAREABLE_PRIV_XFORM;
586 	g_device.cdev_info.driver_name = "compress_isal";
587 	g_device.cdev_info.capabilities = &g_cdev_cap;
588 	for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) {
589 		g_src_mbufs[i] = calloc(1, sizeof(struct rte_mbuf));
590 	}
591 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
592 		g_dst_mbufs[i] = calloc(1, sizeof(struct rte_mbuf));
593 	}
594 
595 	g_bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct comp_bdev_io));
596 	g_bdev_io->u.bdev.iovs = calloc(128, sizeof(struct iovec));
597 	g_bdev_io->bdev = &g_comp_bdev.comp_bdev;
598 	g_io_ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct comp_io_channel));
599 	g_io_ch->thread = thread;
600 	g_comp_ch = (struct comp_io_channel *)spdk_io_channel_get_ctx(g_io_ch);
601 	g_io_ctx = (struct comp_bdev_io *)g_bdev_io->driver_ctx;
602 
603 	g_io_ctx->comp_ch = g_comp_ch;
604 	g_io_ctx->comp_bdev = &g_comp_bdev;
605 	g_comp_bdev.device_qp = &g_device_qp;
606 
607 	for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) {
608 		g_expected_src_mbufs[i].next = &g_expected_src_mbufs[i + 1];
609 	}
610 	g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1].next = NULL;
611 
612 	/* we only test w/4 mbufs on src side */
613 	for (i = 0; i < UT_MBUFS_PER_OP - 1; i++) {
614 		g_expected_dst_mbufs[i].next = &g_expected_dst_mbufs[i + 1];
615 	}
616 	g_expected_dst_mbufs[UT_MBUFS_PER_OP - 1].next = NULL;
617 	g_mbuf_offset = DPDK_DYNFIELD_OFFSET;
618 
619 	return 0;
620 }
621 
622 /* Global teardown for all tests */
623 static int
624 test_cleanup(void)
625 {
626 	struct spdk_thread *thread;
627 	int i;
628 
629 	for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) {
630 		free(g_src_mbufs[i]);
631 	}
632 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
633 		free(g_dst_mbufs[i]);
634 	}
635 	free(g_bdev_io->u.bdev.iovs);
636 	free(g_bdev_io);
637 	free(g_io_ch);
638 
639 	thread = spdk_get_thread();
640 	spdk_thread_exit(thread);
641 	while (!spdk_thread_is_exited(thread)) {
642 		spdk_thread_poll(thread, 0, 0);
643 	}
644 	spdk_thread_destroy(thread);
645 
646 	spdk_thread_lib_fini();
647 
648 	return 0;
649 }
650 
651 static void
652 test_compress_operation(void)
653 {
654 	struct iovec src_iovs[3] = {};
655 	int src_iovcnt;
656 	struct iovec dst_iovs[3] = {};
657 	int dst_iovcnt;
658 	struct spdk_reduce_vol_cb_args cb_arg;
659 	int rc, i;
660 	struct vbdev_comp_op *op;
661 	struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP];
662 	struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP];
663 
664 	src_iovcnt = dst_iovcnt = 3;
665 	for (i = 0; i < dst_iovcnt; i++) {
666 		src_iovs[i].iov_len = 0x1000;
667 		dst_iovs[i].iov_len = 0x1000;
668 		src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i;
669 		dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i;
670 	}
671 
672 	/* test rte_comp_op_alloc failure */
673 	MOCK_SET(rte_comp_op_alloc, NULL);
674 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
675 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
676 				 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
677 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false);
678 	while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) {
679 		op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops);
680 		TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link);
681 		free(op);
682 	}
683 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
684 	CU_ASSERT(rc == 0);
685 	MOCK_SET(rte_comp_op_alloc, &g_comp_op[0]);
686 
687 	/* test mempool get failure */
688 	ut_rte_pktmbuf_alloc_bulk = -1;
689 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
690 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
691 				 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
692 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false);
693 	while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) {
694 		op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops);
695 		TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link);
696 		free(op);
697 	}
698 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
699 	CU_ASSERT(rc == 0);
700 	ut_rte_pktmbuf_alloc_bulk = 0;
701 
702 	/* test enqueue failure busy */
703 	ut_enqueue_value = FAKE_ENQUEUE_BUSY;
704 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
705 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
706 				 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
707 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false);
708 	while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) {
709 		op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops);
710 		TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link);
711 		free(op);
712 	}
713 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
714 	CU_ASSERT(rc == 0);
715 	ut_enqueue_value = 1;
716 
717 	/* test enqueue failure error */
718 	ut_enqueue_value = FAKE_ENQUEUE_ERROR;
719 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
720 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
721 				 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
722 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
723 	CU_ASSERT(rc == -EINVAL);
724 	ut_enqueue_value = FAKE_ENQUEUE_SUCCESS;
725 
726 	/* test success with 3 vector iovec */
727 	ut_expected_op.private_xform = &g_decomp_xform;
728 	ut_expected_op.src.offset = 0;
729 	ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len;
730 
731 	/* setup the src expected values */
732 	_get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false);
733 	ut_expected_op.m_src = exp_src_mbuf[0];
734 
735 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
736 		*RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&cb_arg;
737 		exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base;
738 		exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len);
739 		exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len;
740 		exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len;
741 	}
742 
743 	/* setup the dst expected values */
744 	_get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false);
745 	ut_expected_op.dst.offset = 0;
746 	ut_expected_op.m_dst = exp_dst_mbuf[0];
747 
748 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
749 		exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base;
750 		exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len);
751 		exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len;
752 		exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len;
753 	}
754 
755 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
756 				 &dst_iovs[0], dst_iovcnt, false, &cb_arg);
757 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
758 	CU_ASSERT(rc == 0);
759 
760 	/* test sgl out failure */
761 	g_comp_bdev.backing_dev.sgl_out = false;
762 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
763 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], 1,
764 				 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
765 	CU_ASSERT(rc == -EINVAL);
766 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
767 	g_comp_bdev.backing_dev.sgl_out = true;
768 
769 	/* test sgl in failure */
770 	g_comp_bdev.backing_dev.sgl_in = false;
771 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
772 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
773 				 &dst_iovs[0], 1, true, &cb_arg);
774 	CU_ASSERT(rc == -EINVAL);
775 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
776 	g_comp_bdev.backing_dev.sgl_in = true;
777 
778 
779 }
780 
781 static void
782 test_compress_operation_cross_boundary(void)
783 {
784 	struct iovec src_iovs[3] = {};
785 	int src_iovcnt;
786 	struct iovec dst_iovs[3] = {};
787 	int dst_iovcnt;
788 	struct spdk_reduce_vol_cb_args cb_arg;
789 	int rc, i;
790 	struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
791 	struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
792 
793 	/* Setup the same basic 3 IOV test as used in the simple success case
794 	 * but then we'll start testing a vtophy boundary crossing at each
795 	 * position.
796 	 */
797 	src_iovcnt = dst_iovcnt = 3;
798 	for (i = 0; i < dst_iovcnt; i++) {
799 		src_iovs[i].iov_len = 0x1000;
800 		dst_iovs[i].iov_len = 0x1000;
801 		src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i;
802 		dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i;
803 	}
804 
805 	ut_expected_op.private_xform = &g_decomp_xform;
806 	ut_expected_op.src.offset = 0;
807 	ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len;
808 
809 	/* setup the src expected values */
810 	_get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false);
811 	ut_expected_op.m_src = exp_src_mbuf[0];
812 
813 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
814 		*RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&cb_arg;
815 		exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base;
816 		exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len);
817 		exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len;
818 		exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len;
819 	}
820 
821 	/* setup the dst expected values, we don't test needing a 4th dst mbuf */
822 	_get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false);
823 	ut_expected_op.dst.offset = 0;
824 	ut_expected_op.m_dst = exp_dst_mbuf[0];
825 
826 	for (i = 0; i < UT_MBUFS_PER_OP; i++) {
827 		exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base;
828 		exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len);
829 		exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len;
830 		exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len;
831 	}
832 
833 	/* force the 1st IOV to get partial length from spdk_vtophys */
834 	g_small_size_counter = 0;
835 	g_small_size_modify = 1;
836 	g_small_size = 0x800;
837 	*RTE_MBUF_DYNFIELD(exp_src_mbuf[3], g_mbuf_offset, uint64_t *) = (uint64_t)&cb_arg;
838 
839 	/* first only has shorter length */
840 	exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x800;
841 
842 	/* 2nd was inserted by the boundary crossing condition and finishes off
843 	 * the length from the first */
844 	exp_src_mbuf[1]->buf_addr = (void *)0x10000800;
845 	exp_src_mbuf[1]->buf_iova = 0x10000800;
846 	exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800;
847 
848 	/* 3rd looks like that the 2nd would have */
849 	exp_src_mbuf[2]->buf_addr = (void *)0x10001000;
850 	exp_src_mbuf[2]->buf_iova = 0x10001000;
851 	exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x1000;
852 
853 	/* a new 4th looks like what the 3rd would have */
854 	exp_src_mbuf[3]->buf_addr = (void *)0x10002000;
855 	exp_src_mbuf[3]->buf_iova = 0x10002000;
856 	exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000;
857 
858 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
859 				 &dst_iovs[0], dst_iovcnt, false, &cb_arg);
860 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
861 	CU_ASSERT(rc == 0);
862 
863 	/* Now force the 2nd IOV to get partial length from spdk_vtophys */
864 	g_small_size_counter = 0;
865 	g_small_size_modify = 2;
866 	g_small_size = 0x800;
867 
868 	/* first is normal */
869 	exp_src_mbuf[0]->buf_addr = (void *)0x10000000;
870 	exp_src_mbuf[0]->buf_iova = 0x10000000;
871 	exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000;
872 
873 	/* second only has shorter length */
874 	exp_src_mbuf[1]->buf_addr = (void *)0x10001000;
875 	exp_src_mbuf[1]->buf_iova = 0x10001000;
876 	exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800;
877 
878 	/* 3rd was inserted by the boundary crossing condition and finishes off
879 	 * the length from the first */
880 	exp_src_mbuf[2]->buf_addr = (void *)0x10001800;
881 	exp_src_mbuf[2]->buf_iova = 0x10001800;
882 	exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800;
883 
884 	/* a new 4th looks like what the 3rd would have */
885 	exp_src_mbuf[3]->buf_addr = (void *)0x10002000;
886 	exp_src_mbuf[3]->buf_iova = 0x10002000;
887 	exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000;
888 
889 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
890 				 &dst_iovs[0], dst_iovcnt, false, &cb_arg);
891 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
892 	CU_ASSERT(rc == 0);
893 
894 	/* Finally force the 3rd IOV to get partial length from spdk_vtophys */
895 	g_small_size_counter = 0;
896 	g_small_size_modify = 3;
897 	g_small_size = 0x800;
898 
899 	/* first is normal */
900 	exp_src_mbuf[0]->buf_addr = (void *)0x10000000;
901 	exp_src_mbuf[0]->buf_iova = 0x10000000;
902 	exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000;
903 
904 	/* second is normal */
905 	exp_src_mbuf[1]->buf_addr = (void *)0x10001000;
906 	exp_src_mbuf[1]->buf_iova = 0x10001000;
907 	exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x1000;
908 
909 	/* 3rd has shorter length */
910 	exp_src_mbuf[2]->buf_addr = (void *)0x10002000;
911 	exp_src_mbuf[2]->buf_iova = 0x10002000;
912 	exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800;
913 
914 	/* a new 4th handles the remainder from the 3rd */
915 	exp_src_mbuf[3]->buf_addr = (void *)0x10002800;
916 	exp_src_mbuf[3]->buf_iova = 0x10002800;
917 	exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x800;
918 
919 	rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
920 				 &dst_iovs[0], dst_iovcnt, false, &cb_arg);
921 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
922 	CU_ASSERT(rc == 0);
923 
924 	/* Single input iov is split on page boundary, sgl_in is not supported */
925 	g_comp_bdev.backing_dev.sgl_in = false;
926 	g_small_size_counter = 0;
927 	g_small_size_modify = 1;
928 	g_small_size = 0x800;
929 	rc = _compress_operation(&g_comp_bdev.backing_dev, src_iovs, 1,
930 				 dst_iovs, 1, false, &cb_arg);
931 	CU_ASSERT(rc == -EINVAL);
932 	g_comp_bdev.backing_dev.sgl_in = true;
933 
934 	/* Single output iov is split on page boundary, sgl_out is not supported */
935 	g_comp_bdev.backing_dev.sgl_out = false;
936 	g_small_size_counter = 0;
937 	g_small_size_modify = 2;
938 	g_small_size = 0x800;
939 	rc = _compress_operation(&g_comp_bdev.backing_dev, src_iovs, 1,
940 				 dst_iovs, 1, false, &cb_arg);
941 	CU_ASSERT(rc == -EINVAL);
942 	g_comp_bdev.backing_dev.sgl_out = true;
943 }
944 
945 static void
946 test_poller(void)
947 {
948 	int rc;
949 	struct spdk_reduce_vol_cb_args *cb_args;
950 	struct rte_mbuf mbuf[4]; /* one src, one dst, 2 ops */
951 	struct vbdev_comp_op *op_to_queue;
952 	struct iovec src_iovs[3] = {};
953 	struct iovec dst_iovs[3] = {};
954 	int i;
955 
956 	cb_args = calloc(1, sizeof(*cb_args));
957 	SPDK_CU_ASSERT_FATAL(cb_args != NULL);
958 	cb_args->cb_fn = _compress_done;
959 	memset(&g_comp_op[0], 0, sizeof(struct rte_comp_op));
960 	g_comp_op[0].m_src = &mbuf[0];
961 	g_comp_op[1].m_src = &mbuf[1];
962 	g_comp_op[0].m_dst = &mbuf[2];
963 	g_comp_op[1].m_dst = &mbuf[3];
964 	for (i = 0; i < 3; i++) {
965 		src_iovs[i].iov_len = 0x1000;
966 		dst_iovs[i].iov_len = 0x1000;
967 		src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i;
968 		dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i;
969 	}
970 
971 	/* Error from dequeue, nothing needing to be resubmitted.
972 	 */
973 	ut_rte_compressdev_dequeue_burst = 1;
974 	/* setup what we want dequeue to return for the op */
975 	*RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args;
976 	g_comp_op[0].produced = 1;
977 	g_comp_op[0].status = 1;
978 	/* value asserted in the reduce callback */
979 	ut_compress_done[0] = -EINVAL;
980 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
981 	rc = comp_dev_poller((void *)&g_comp_bdev);
982 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
983 	CU_ASSERT(rc == SPDK_POLLER_BUSY);
984 
985 	/* Success from dequeue, 2 ops. nothing needing to be resubmitted.
986 	 */
987 	ut_rte_compressdev_dequeue_burst = 2;
988 	/* setup what we want dequeue to return for the op */
989 	*RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args;
990 	g_comp_op[0].produced = 16;
991 	g_comp_op[0].status = 0;
992 	*RTE_MBUF_DYNFIELD(g_comp_op[1].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args;
993 	g_comp_op[1].produced = 32;
994 	g_comp_op[1].status = 0;
995 	/* value asserted in the reduce callback */
996 	ut_compress_done[0] = 16;
997 	ut_compress_done[1] = 32;
998 	done_count = 2;
999 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
1000 	rc = comp_dev_poller((void *)&g_comp_bdev);
1001 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
1002 	CU_ASSERT(rc == SPDK_POLLER_BUSY);
1003 
1004 	/* Success from dequeue, one op to be resubmitted.
1005 	 */
1006 	ut_rte_compressdev_dequeue_burst = 1;
1007 	/* setup what we want dequeue to return for the op */
1008 	*RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args;
1009 	g_comp_op[0].produced = 16;
1010 	g_comp_op[0].status = 0;
1011 	/* value asserted in the reduce callback */
1012 	ut_compress_done[0] = 16;
1013 	done_count = 1;
1014 	op_to_queue = calloc(1, sizeof(struct vbdev_comp_op));
1015 	SPDK_CU_ASSERT_FATAL(op_to_queue != NULL);
1016 	op_to_queue->backing_dev = &g_comp_bdev.backing_dev;
1017 	op_to_queue->src_iovs = &src_iovs[0];
1018 	op_to_queue->src_iovcnt = 3;
1019 	op_to_queue->dst_iovs = &dst_iovs[0];
1020 	op_to_queue->dst_iovcnt = 3;
1021 	op_to_queue->compress = true;
1022 	op_to_queue->cb_arg = cb_args;
1023 	ut_enqueue_value = FAKE_ENQUEUE_SUCCESS;
1024 	TAILQ_INSERT_TAIL(&g_comp_bdev.queued_comp_ops,
1025 			  op_to_queue,
1026 			  link);
1027 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false);
1028 	rc = comp_dev_poller((void *)&g_comp_bdev);
1029 	CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
1030 	CU_ASSERT(rc == SPDK_POLLER_BUSY);
1031 
1032 	/* op_to_queue is freed in code under test */
1033 	free(cb_args);
1034 }
1035 
1036 static void
1037 test_vbdev_compress_submit_request(void)
1038 {
1039 	/* Single element block size write */
1040 	g_bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
1041 	g_bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE;
1042 	g_completion_called = false;
1043 	vbdev_compress_submit_request(g_io_ch, g_bdev_io);
1044 	CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS);
1045 	CU_ASSERT(g_completion_called == true);
1046 	CU_ASSERT(g_io_ctx->orig_io == g_bdev_io);
1047 	CU_ASSERT(g_io_ctx->comp_bdev == &g_comp_bdev);
1048 	CU_ASSERT(g_io_ctx->comp_ch == g_comp_ch);
1049 
1050 	/* same write but now fail it */
1051 	ut_spdk_reduce_vol_op_complete_err = 1;
1052 	g_completion_called = false;
1053 	vbdev_compress_submit_request(g_io_ch, g_bdev_io);
1054 	CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FAILED);
1055 	CU_ASSERT(g_completion_called == true);
1056 
1057 	/* test a read success */
1058 	g_bdev_io->type = SPDK_BDEV_IO_TYPE_READ;
1059 	ut_spdk_reduce_vol_op_complete_err = 0;
1060 	g_completion_called = false;
1061 	vbdev_compress_submit_request(g_io_ch, g_bdev_io);
1062 	CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS);
1063 	CU_ASSERT(g_completion_called == true);
1064 
1065 	/* test a read failure */
1066 	ut_spdk_reduce_vol_op_complete_err = 1;
1067 	g_completion_called = false;
1068 	vbdev_compress_submit_request(g_io_ch, g_bdev_io);
1069 	CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FAILED);
1070 	CU_ASSERT(g_completion_called == true);
1071 }
1072 
1073 static void
1074 test_passthru(void)
1075 {
1076 
1077 }
1078 
1079 static void
1080 test_reset(void)
1081 {
1082 	/* TODO: There are a few different ways to do this given that
1083 	 * the code uses spdk_for_each_channel() to implement reset
1084 	 * handling. SUbmitting w/o UT for this function for now and
1085 	 * will follow up with something shortly.
1086 	 */
1087 }
1088 
1089 static void
1090 test_initdrivers(void)
1091 {
1092 	int rc;
1093 
1094 	/* test return values from rte_vdev_init() */
1095 	MOCK_SET(rte_vdev_init, -EEXIST);
1096 	rc = vbdev_init_compress_drivers();
1097 	/* This is not an error condition, we already have one */
1098 	CU_ASSERT(rc == 0);
1099 
1100 	/* error */
1101 	MOCK_SET(rte_vdev_init, -2);
1102 	rc = vbdev_init_compress_drivers();
1103 	CU_ASSERT(rc == -EINVAL);
1104 	CU_ASSERT(g_mbuf_mp == NULL);
1105 	CU_ASSERT(g_comp_op_mp == NULL);
1106 
1107 	/* compressdev count 0 */
1108 	ut_rte_compressdev_count = 0;
1109 	MOCK_SET(rte_vdev_init, 0);
1110 	rc = vbdev_init_compress_drivers();
1111 	CU_ASSERT(rc == 0);
1112 
1113 	/* bogus count */
1114 	ut_rte_compressdev_count = RTE_COMPRESS_MAX_DEVS + 1;
1115 	rc = vbdev_init_compress_drivers();
1116 	CU_ASSERT(rc == -EINVAL);
1117 
1118 	/* can't get mbuf pool */
1119 	ut_rte_compressdev_count = 1;
1120 	MOCK_SET(spdk_mempool_create, NULL);
1121 	rc = vbdev_init_compress_drivers();
1122 	CU_ASSERT(rc == -ENOMEM);
1123 	MOCK_CLEAR(spdk_mempool_create);
1124 
1125 	/* can't get comp op pool */
1126 	ut_rte_comp_op_pool_create = NULL;
1127 	rc = vbdev_init_compress_drivers();
1128 	CU_ASSERT(rc == -ENOMEM);
1129 
1130 	/* error on create_compress_dev() */
1131 	ut_rte_comp_op_pool_create = (struct rte_mempool *)&test_initdrivers;
1132 	ut_rte_compressdev_configure = -1;
1133 	rc = vbdev_init_compress_drivers();
1134 	CU_ASSERT(rc == -1);
1135 
1136 	/* error on create_compress_dev() but coverage for large num queues */
1137 	ut_max_nb_queue_pairs = 99;
1138 	rc = vbdev_init_compress_drivers();
1139 	CU_ASSERT(rc == -1);
1140 
1141 	/* qpair setup fails */
1142 	ut_rte_compressdev_configure = 0;
1143 	ut_max_nb_queue_pairs = 0;
1144 	ut_rte_compressdev_queue_pair_setup = -1;
1145 	rc = vbdev_init_compress_drivers();
1146 	CU_ASSERT(rc == -EINVAL);
1147 
1148 	/* rte_compressdev_start fails */
1149 	ut_rte_compressdev_queue_pair_setup = 0;
1150 	ut_rte_compressdev_start = -1;
1151 	rc = vbdev_init_compress_drivers();
1152 	CU_ASSERT(rc == -1);
1153 
1154 	/* rte_compressdev_private_xform_create() fails */
1155 	ut_rte_compressdev_start = 0;
1156 	ut_rte_compressdev_private_xform_create = -2;
1157 	rc = vbdev_init_compress_drivers();
1158 	CU_ASSERT(rc == -2);
1159 
1160 	/* success */
1161 	ut_rte_compressdev_private_xform_create = 0;
1162 	rc = vbdev_init_compress_drivers();
1163 	CU_ASSERT(rc == 0);
1164 	CU_ASSERT(g_mbuf_offset == DPDK_DYNFIELD_OFFSET);
1165 	spdk_mempool_free((struct spdk_mempool *)g_mbuf_mp);
1166 }
1167 
1168 static void
1169 test_supported_io(void)
1170 {
1171 
1172 }
1173 
1174 int
1175 main(int argc, char **argv)
1176 {
1177 	CU_pSuite	suite = NULL;
1178 	unsigned int	num_failures;
1179 
1180 	CU_set_error_action(CUEA_ABORT);
1181 	CU_initialize_registry();
1182 
1183 	suite = CU_add_suite("compress", test_setup, test_cleanup);
1184 	CU_ADD_TEST(suite, test_compress_operation);
1185 	CU_ADD_TEST(suite, test_compress_operation_cross_boundary);
1186 	CU_ADD_TEST(suite, test_vbdev_compress_submit_request);
1187 	CU_ADD_TEST(suite, test_passthru);
1188 	CU_ADD_TEST(suite, test_initdrivers);
1189 	CU_ADD_TEST(suite, test_supported_io);
1190 	CU_ADD_TEST(suite, test_poller);
1191 	CU_ADD_TEST(suite, test_reset);
1192 
1193 	CU_basic_set_mode(CU_BRM_VERBOSE);
1194 	CU_basic_run_tests();
1195 	num_failures = CU_get_number_of_failures();
1196 	CU_cleanup_registry();
1197 	return num_failures;
1198 }
1199