1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk_cunit.h" 35 /* We have our own mock for this */ 36 #define UNIT_TEST_NO_VTOPHYS 37 #include "common/lib/test_env.c" 38 #include "spdk_internal/mock.h" 39 #include "unit/lib/json_mock.c" 40 #include "spdk/reduce.h" 41 42 #include <rte_compressdev.h> 43 44 /* There will be one if the data perfectly matches the chunk size, 45 * or there could be an offset into the data and a remainder after 46 * the data or both for a max of 3. 47 */ 48 #define UT_MBUFS_PER_OP 3 49 /* For testing the crossing of a huge page boundary on address translation, 50 * we'll have an extra one but we only test on the source side. 51 */ 52 #define UT_MBUFS_PER_OP_BOUND_TEST 4 53 54 struct spdk_bdev_io *g_bdev_io; 55 struct spdk_io_channel *g_io_ch; 56 struct rte_comp_op g_comp_op[2]; 57 struct vbdev_compress g_comp_bdev; 58 struct comp_device_qp g_device_qp; 59 struct compress_dev g_device; 60 struct rte_compressdev_capabilities g_cdev_cap; 61 static struct rte_mbuf *g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST]; 62 static struct rte_mbuf *g_dst_mbufs[UT_MBUFS_PER_OP]; 63 static struct rte_mbuf g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST]; 64 static struct rte_mbuf g_expected_dst_mbufs[UT_MBUFS_PER_OP]; 65 struct comp_bdev_io *g_io_ctx; 66 struct comp_io_channel *g_comp_ch; 67 68 /* Those functions are defined as static inline in DPDK, so we can't 69 * mock them straight away. We use defines to redirect them into 70 * our custom functions. 71 */ 72 73 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova, 74 uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo); 75 #define rte_pktmbuf_attach_extbuf mock_rte_pktmbuf_attach_extbuf 76 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova, 77 uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo) 78 { 79 assert(m != NULL); 80 m->buf_addr = buf_addr; 81 m->buf_iova = buf_iova; 82 m->buf_len = buf_len; 83 m->data_len = m->pkt_len = 0; 84 } 85 86 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len); 87 #define rte_pktmbuf_append mock_rte_pktmbuf_append 88 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len) 89 { 90 m->pkt_len = m->pkt_len + len; 91 return NULL; 92 } 93 94 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail); 95 #define rte_pktmbuf_chain mock_rte_pktmbuf_chain 96 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail) 97 { 98 struct rte_mbuf *cur_tail; 99 100 cur_tail = rte_pktmbuf_lastseg(head); 101 cur_tail->next = tail; 102 103 return 0; 104 } 105 106 uint16_t ut_max_nb_queue_pairs = 0; 107 void __rte_experimental mock_rte_compressdev_info_get(uint8_t dev_id, 108 struct rte_compressdev_info *dev_info); 109 #define rte_compressdev_info_get mock_rte_compressdev_info_get 110 void __rte_experimental 111 mock_rte_compressdev_info_get(uint8_t dev_id, struct rte_compressdev_info *dev_info) 112 { 113 dev_info->max_nb_queue_pairs = ut_max_nb_queue_pairs; 114 dev_info->capabilities = &g_cdev_cap; 115 dev_info->driver_name = "compress_isal"; 116 } 117 118 int ut_rte_compressdev_configure = 0; 119 int __rte_experimental mock_rte_compressdev_configure(uint8_t dev_id, 120 struct rte_compressdev_config *config); 121 #define rte_compressdev_configure mock_rte_compressdev_configure 122 int __rte_experimental 123 mock_rte_compressdev_configure(uint8_t dev_id, struct rte_compressdev_config *config) 124 { 125 return ut_rte_compressdev_configure; 126 } 127 128 int ut_rte_compressdev_queue_pair_setup = 0; 129 int __rte_experimental mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, 130 uint32_t max_inflight_ops, int socket_id); 131 #define rte_compressdev_queue_pair_setup mock_rte_compressdev_queue_pair_setup 132 int __rte_experimental 133 mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, 134 uint32_t max_inflight_ops, int socket_id) 135 { 136 return ut_rte_compressdev_queue_pair_setup; 137 } 138 139 int ut_rte_compressdev_start = 0; 140 int __rte_experimental mock_rte_compressdev_start(uint8_t dev_id); 141 #define rte_compressdev_start mock_rte_compressdev_start 142 int __rte_experimental 143 mock_rte_compressdev_start(uint8_t dev_id) 144 { 145 return ut_rte_compressdev_start; 146 } 147 148 int ut_rte_compressdev_private_xform_create = 0; 149 int __rte_experimental mock_rte_compressdev_private_xform_create(uint8_t dev_id, 150 const struct rte_comp_xform *xform, void **private_xform); 151 #define rte_compressdev_private_xform_create mock_rte_compressdev_private_xform_create 152 int __rte_experimental 153 mock_rte_compressdev_private_xform_create(uint8_t dev_id, 154 const struct rte_comp_xform *xform, void **private_xform) 155 { 156 return ut_rte_compressdev_private_xform_create; 157 } 158 159 uint8_t ut_rte_compressdev_count = 0; 160 uint8_t __rte_experimental mock_rte_compressdev_count(void); 161 #define rte_compressdev_count mock_rte_compressdev_count 162 uint8_t __rte_experimental 163 mock_rte_compressdev_count(void) 164 { 165 return ut_rte_compressdev_count; 166 } 167 168 struct rte_mempool *ut_rte_comp_op_pool_create = NULL; 169 struct rte_mempool *__rte_experimental mock_rte_comp_op_pool_create(const char *name, 170 unsigned int nb_elts, unsigned int cache_size, uint16_t user_size, 171 int socket_id); 172 #define rte_comp_op_pool_create mock_rte_comp_op_pool_create 173 struct rte_mempool *__rte_experimental 174 mock_rte_comp_op_pool_create(const char *name, unsigned int nb_elts, 175 unsigned int cache_size, uint16_t user_size, int socket_id) 176 { 177 return ut_rte_comp_op_pool_create; 178 } 179 180 void mock_rte_pktmbuf_free(struct rte_mbuf *m); 181 #define rte_pktmbuf_free mock_rte_pktmbuf_free 182 void mock_rte_pktmbuf_free(struct rte_mbuf *m) 183 { 184 } 185 186 static bool ut_boundary_alloc = false; 187 static int ut_rte_pktmbuf_alloc_bulk = 0; 188 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs, 189 unsigned count); 190 #define rte_pktmbuf_alloc_bulk mock_rte_pktmbuf_alloc_bulk 191 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs, 192 unsigned count) 193 { 194 int i; 195 196 /* This mocked function only supports the alloc of up to 3 src and 3 dst. */ 197 ut_rte_pktmbuf_alloc_bulk += count; 198 199 if (ut_rte_pktmbuf_alloc_bulk == 1) { 200 /* allocation of an extra mbuf for boundary cross test */ 201 ut_boundary_alloc = true; 202 g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]->next = NULL; 203 *mbufs = g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]; 204 ut_rte_pktmbuf_alloc_bulk = 0; 205 } else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP) { 206 /* first test allocation, src mbufs */ 207 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 208 g_src_mbufs[i]->next = NULL; 209 *mbufs++ = g_src_mbufs[i]; 210 } 211 } else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP * 2) { 212 /* second test allocation, dst mbufs */ 213 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 214 g_dst_mbufs[i]->next = NULL; 215 *mbufs++ = g_dst_mbufs[i]; 216 } 217 ut_rte_pktmbuf_alloc_bulk = 0; 218 } else { 219 return -1; 220 } 221 return 0; 222 } 223 224 struct rte_mempool * 225 rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size, 226 uint16_t priv_size, uint16_t data_room_size, int socket_id) 227 { 228 struct spdk_mempool *tmp; 229 230 tmp = spdk_mempool_create("mbuf_mp", 1024, sizeof(struct rte_mbuf), 231 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 232 SPDK_ENV_SOCKET_ID_ANY); 233 234 return (struct rte_mempool *)tmp; 235 } 236 237 void 238 rte_mempool_free(struct rte_mempool *mp) 239 { 240 if (mp) { 241 spdk_mempool_free((struct spdk_mempool *)mp); 242 } 243 } 244 245 static int ut_spdk_reduce_vol_op_complete_err = 0; 246 void 247 spdk_reduce_vol_writev(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt, 248 uint64_t offset, uint64_t length, spdk_reduce_vol_op_complete cb_fn, 249 void *cb_arg) 250 { 251 cb_fn(cb_arg, ut_spdk_reduce_vol_op_complete_err); 252 } 253 254 void 255 spdk_reduce_vol_readv(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt, 256 uint64_t offset, uint64_t length, spdk_reduce_vol_op_complete cb_fn, 257 void *cb_arg) 258 { 259 cb_fn(cb_arg, ut_spdk_reduce_vol_op_complete_err); 260 } 261 262 #include "bdev/compress/vbdev_compress.c" 263 264 /* SPDK stubs */ 265 DEFINE_STUB(spdk_bdev_get_aliases, const struct spdk_bdev_aliases_list *, 266 (const struct spdk_bdev *bdev), NULL); 267 DEFINE_STUB_V(spdk_bdev_module_list_add, (struct spdk_bdev_module *bdev_module)); 268 DEFINE_STUB_V(spdk_bdev_free_io, (struct spdk_bdev_io *g_bdev_io)); 269 DEFINE_STUB(spdk_bdev_io_type_supported, bool, (struct spdk_bdev *bdev, 270 enum spdk_bdev_io_type io_type), 0); 271 DEFINE_STUB_V(spdk_bdev_module_release_bdev, (struct spdk_bdev *bdev)); 272 DEFINE_STUB_V(spdk_bdev_close, (struct spdk_bdev_desc *desc)); 273 DEFINE_STUB(spdk_bdev_get_name, const char *, (const struct spdk_bdev *bdev), 0); 274 DEFINE_STUB(spdk_bdev_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_desc *desc), 0); 275 DEFINE_STUB_V(spdk_bdev_unregister, (struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, 276 void *cb_arg)); 277 DEFINE_STUB(spdk_bdev_open_ext, int, (const char *bdev_name, bool write, 278 spdk_bdev_event_cb_t event_cb, 279 void *event_ctx, struct spdk_bdev_desc **_desc), 0); 280 DEFINE_STUB(spdk_bdev_desc_get_bdev, struct spdk_bdev *, (struct spdk_bdev_desc *desc), NULL); 281 DEFINE_STUB(spdk_bdev_module_claim_bdev, int, (struct spdk_bdev *bdev, struct spdk_bdev_desc *desc, 282 struct spdk_bdev_module *module), 0); 283 DEFINE_STUB_V(spdk_bdev_module_examine_done, (struct spdk_bdev_module *module)); 284 DEFINE_STUB(spdk_bdev_register, int, (struct spdk_bdev *bdev), 0); 285 DEFINE_STUB(spdk_bdev_get_by_name, struct spdk_bdev *, (const char *bdev_name), NULL); 286 DEFINE_STUB(spdk_bdev_io_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_io *bdev_io), 287 0); 288 DEFINE_STUB(spdk_bdev_queue_io_wait, int, (struct spdk_bdev *bdev, struct spdk_io_channel *ch, 289 struct spdk_bdev_io_wait_entry *entry), 0); 290 DEFINE_STUB_V(spdk_reduce_vol_unload, (struct spdk_reduce_vol *vol, 291 spdk_reduce_vol_op_complete cb_fn, void *cb_arg)); 292 DEFINE_STUB_V(spdk_reduce_vol_load, (struct spdk_reduce_backing_dev *backing_dev, 293 spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg)); 294 DEFINE_STUB(spdk_reduce_vol_get_params, const struct spdk_reduce_vol_params *, 295 (struct spdk_reduce_vol *vol), NULL); 296 297 /* DPDK stubs */ 298 DEFINE_STUB(rte_socket_id, unsigned, (void), 0); 299 DEFINE_STUB(rte_vdev_init, int, (const char *name, const char *args), 0); 300 DEFINE_STUB_V(rte_comp_op_free, (struct rte_comp_op *op)); 301 DEFINE_STUB(rte_comp_op_alloc, struct rte_comp_op *, (struct rte_mempool *mempool), NULL); 302 303 int g_small_size_counter = 0; 304 int g_small_size_modify = 0; 305 uint64_t g_small_size = 0; 306 uint64_t 307 spdk_vtophys(const void *buf, uint64_t *size) 308 { 309 g_small_size_counter++; 310 if (g_small_size_counter == g_small_size_modify) { 311 *size = g_small_size; 312 g_small_size_counter = 0; 313 g_small_size_modify = 0; 314 } 315 return (uint64_t)buf; 316 } 317 318 void 319 spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len) 320 { 321 cb(g_io_ch, g_bdev_io, true); 322 } 323 324 /* Mock these functions to call the callback and then return the value we require */ 325 int ut_spdk_bdev_readv_blocks = 0; 326 int 327 spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 328 struct iovec *iov, int iovcnt, 329 uint64_t offset_blocks, uint64_t num_blocks, 330 spdk_bdev_io_completion_cb cb, void *cb_arg) 331 { 332 cb(g_bdev_io, !ut_spdk_bdev_readv_blocks, cb_arg); 333 return ut_spdk_bdev_readv_blocks; 334 } 335 336 int ut_spdk_bdev_writev_blocks = 0; 337 bool ut_spdk_bdev_writev_blocks_mocked = false; 338 int 339 spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 340 struct iovec *iov, int iovcnt, 341 uint64_t offset_blocks, uint64_t num_blocks, 342 spdk_bdev_io_completion_cb cb, void *cb_arg) 343 { 344 cb(g_bdev_io, !ut_spdk_bdev_writev_blocks, cb_arg); 345 return ut_spdk_bdev_writev_blocks; 346 } 347 348 int ut_spdk_bdev_unmap_blocks = 0; 349 bool ut_spdk_bdev_unmap_blocks_mocked = false; 350 int 351 spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 352 uint64_t offset_blocks, uint64_t num_blocks, 353 spdk_bdev_io_completion_cb cb, void *cb_arg) 354 { 355 cb(g_bdev_io, !ut_spdk_bdev_unmap_blocks, cb_arg); 356 return ut_spdk_bdev_unmap_blocks; 357 } 358 359 int ut_spdk_bdev_flush_blocks = 0; 360 bool ut_spdk_bdev_flush_blocks_mocked = false; 361 int 362 spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 363 uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, 364 void *cb_arg) 365 { 366 cb(g_bdev_io, !ut_spdk_bdev_flush_blocks, cb_arg); 367 return ut_spdk_bdev_flush_blocks; 368 } 369 370 int ut_spdk_bdev_reset = 0; 371 bool ut_spdk_bdev_reset_mocked = false; 372 int 373 spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 374 spdk_bdev_io_completion_cb cb, void *cb_arg) 375 { 376 cb(g_bdev_io, !ut_spdk_bdev_reset, cb_arg); 377 return ut_spdk_bdev_reset; 378 } 379 380 bool g_completion_called = false; 381 void 382 spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status) 383 { 384 bdev_io->internal.status = status; 385 g_completion_called = true; 386 } 387 388 static uint16_t ut_rte_compressdev_dequeue_burst = 0; 389 uint16_t 390 rte_compressdev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops, 391 uint16_t nb_op) 392 { 393 if (ut_rte_compressdev_dequeue_burst == 0) { 394 return 0; 395 } 396 397 ops[0] = &g_comp_op[0]; 398 ops[1] = &g_comp_op[1]; 399 400 return ut_rte_compressdev_dequeue_burst; 401 } 402 403 static int ut_compress_done[2]; 404 /* done_count and done_idx together control which expected assertion 405 * value to use when dequeuing 2 operations. 406 */ 407 static uint16_t done_count = 1; 408 static uint16_t done_idx = 0; 409 static void 410 _compress_done(void *_req, int reduce_errno) 411 { 412 if (done_count == 1) { 413 CU_ASSERT(reduce_errno == ut_compress_done[0]); 414 } else if (done_count == 2) { 415 CU_ASSERT(reduce_errno == ut_compress_done[done_idx++]); 416 } 417 } 418 419 static void 420 _get_mbuf_array(struct rte_mbuf *mbuf_array[UT_MBUFS_PER_OP_BOUND_TEST], 421 struct rte_mbuf *mbuf_head, int mbuf_count, bool null_final) 422 { 423 int i; 424 425 for (i = 0; i < mbuf_count; i++) { 426 mbuf_array[i] = mbuf_head; 427 if (mbuf_head) { 428 mbuf_head = mbuf_head->next; 429 } 430 } 431 if (null_final) { 432 mbuf_array[i - 1] = NULL; 433 } 434 } 435 436 #define FAKE_ENQUEUE_SUCCESS 255 437 #define FAKE_ENQUEUE_ERROR 128 438 #define FAKE_ENQUEUE_BUSY 64 439 static uint16_t ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 440 static struct rte_comp_op ut_expected_op; 441 uint16_t 442 rte_compressdev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops, 443 uint16_t nb_ops) 444 { 445 struct rte_comp_op *op = *ops; 446 struct rte_mbuf *op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 447 struct rte_mbuf *exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 448 int i, num_src_mbufs = UT_MBUFS_PER_OP; 449 450 switch (ut_enqueue_value) { 451 case FAKE_ENQUEUE_BUSY: 452 op->status = RTE_COMP_OP_STATUS_NOT_PROCESSED; 453 return 0; 454 break; 455 case FAKE_ENQUEUE_SUCCESS: 456 op->status = RTE_COMP_OP_STATUS_SUCCESS; 457 return 1; 458 break; 459 case FAKE_ENQUEUE_ERROR: 460 op->status = RTE_COMP_OP_STATUS_ERROR; 461 return 0; 462 break; 463 default: 464 break; 465 } 466 467 /* by design the compress module will never send more than 1 op at a time */ 468 CU_ASSERT(op->private_xform == ut_expected_op.private_xform); 469 470 /* setup our local pointers to the chained mbufs, those pointed to in the 471 * operation struct and the expected values. 472 */ 473 _get_mbuf_array(op_mbuf, op->m_src, SPDK_COUNTOF(op_mbuf), true); 474 _get_mbuf_array(exp_mbuf, ut_expected_op.m_src, SPDK_COUNTOF(exp_mbuf), true); 475 476 if (ut_boundary_alloc == true) { 477 /* if we crossed a boundary, we need to check the 4th src mbuf and 478 * reset the global that is used to identify whether we crossed 479 * or not 480 */ 481 num_src_mbufs = UT_MBUFS_PER_OP_BOUND_TEST; 482 exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = ut_expected_op.m_src->next->next->next; 483 op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = op->m_src->next->next->next; 484 ut_boundary_alloc = false; 485 } 486 487 488 for (i = 0; i < num_src_mbufs; i++) { 489 CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr); 490 CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova); 491 CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len); 492 CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len); 493 } 494 495 /* if only 3 mbufs were used in the test, the 4th should be zeroed */ 496 if (num_src_mbufs == UT_MBUFS_PER_OP) { 497 CU_ASSERT(op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL); 498 CU_ASSERT(exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL); 499 } 500 501 CU_ASSERT(op->m_src->userdata == ut_expected_op.m_src->userdata); 502 CU_ASSERT(op->src.offset == ut_expected_op.src.offset); 503 CU_ASSERT(op->src.length == ut_expected_op.src.length); 504 505 /* check dst mbuf values */ 506 _get_mbuf_array(op_mbuf, op->m_dst, SPDK_COUNTOF(op_mbuf), true); 507 _get_mbuf_array(exp_mbuf, ut_expected_op.m_dst, SPDK_COUNTOF(exp_mbuf), true); 508 509 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 510 CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr); 511 CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova); 512 CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len); 513 CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len); 514 } 515 CU_ASSERT(op->dst.offset == ut_expected_op.dst.offset); 516 517 return ut_enqueue_value; 518 } 519 520 /* Global setup for all tests that share a bunch of preparation... */ 521 static int 522 test_setup(void) 523 { 524 struct spdk_thread *thread; 525 int i; 526 527 spdk_thread_lib_init(NULL, 0); 528 529 thread = spdk_thread_create(NULL, NULL); 530 spdk_set_thread(thread); 531 532 g_comp_bdev.reduce_thread = thread; 533 g_comp_bdev.backing_dev.unmap = _comp_reduce_unmap; 534 g_comp_bdev.backing_dev.readv = _comp_reduce_readv; 535 g_comp_bdev.backing_dev.writev = _comp_reduce_writev; 536 g_comp_bdev.backing_dev.compress = _comp_reduce_compress; 537 g_comp_bdev.backing_dev.decompress = _comp_reduce_decompress; 538 g_comp_bdev.backing_dev.blocklen = 512; 539 g_comp_bdev.backing_dev.blockcnt = 1024 * 16; 540 541 g_comp_bdev.device_qp = &g_device_qp; 542 g_comp_bdev.device_qp->device = &g_device; 543 544 TAILQ_INIT(&g_comp_bdev.queued_comp_ops); 545 546 g_comp_xform = (struct rte_comp_xform) { 547 .type = RTE_COMP_COMPRESS, 548 .compress = { 549 .algo = RTE_COMP_ALGO_DEFLATE, 550 .deflate.huffman = RTE_COMP_HUFFMAN_DEFAULT, 551 .level = RTE_COMP_LEVEL_MAX, 552 .window_size = DEFAULT_WINDOW_SIZE, 553 .chksum = RTE_COMP_CHECKSUM_NONE, 554 .hash_algo = RTE_COMP_HASH_ALGO_NONE 555 } 556 }; 557 558 g_decomp_xform = (struct rte_comp_xform) { 559 .type = RTE_COMP_DECOMPRESS, 560 .decompress = { 561 .algo = RTE_COMP_ALGO_DEFLATE, 562 .chksum = RTE_COMP_CHECKSUM_NONE, 563 .window_size = DEFAULT_WINDOW_SIZE, 564 .hash_algo = RTE_COMP_HASH_ALGO_NONE 565 } 566 }; 567 g_device.comp_xform = &g_comp_xform; 568 g_device.decomp_xform = &g_decomp_xform; 569 g_cdev_cap.comp_feature_flags = RTE_COMP_FF_SHAREABLE_PRIV_XFORM; 570 g_device.cdev_info.driver_name = "compress_isal"; 571 g_device.cdev_info.capabilities = &g_cdev_cap; 572 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) { 573 g_src_mbufs[i] = calloc(1, sizeof(struct rte_mbuf)); 574 } 575 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 576 g_dst_mbufs[i] = calloc(1, sizeof(struct rte_mbuf)); 577 } 578 579 g_bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct comp_bdev_io)); 580 g_bdev_io->u.bdev.iovs = calloc(128, sizeof(struct iovec)); 581 g_bdev_io->bdev = &g_comp_bdev.comp_bdev; 582 g_io_ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct comp_io_channel)); 583 g_io_ch->thread = thread; 584 g_comp_ch = (struct comp_io_channel *)((uint8_t *)g_io_ch + sizeof(struct spdk_io_channel)); 585 g_io_ctx = (struct comp_bdev_io *)g_bdev_io->driver_ctx; 586 587 g_io_ctx->comp_ch = g_comp_ch; 588 g_io_ctx->comp_bdev = &g_comp_bdev; 589 g_comp_bdev.device_qp = &g_device_qp; 590 591 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) { 592 g_expected_src_mbufs[i].next = &g_expected_src_mbufs[i + 1]; 593 } 594 g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1].next = NULL; 595 596 /* we only test w/4 mbufs on src side */ 597 for (i = 0; i < UT_MBUFS_PER_OP - 1; i++) { 598 g_expected_dst_mbufs[i].next = &g_expected_dst_mbufs[i + 1]; 599 } 600 g_expected_dst_mbufs[UT_MBUFS_PER_OP - 1].next = NULL; 601 602 return 0; 603 } 604 605 /* Global teardown for all tests */ 606 static int 607 test_cleanup(void) 608 { 609 struct spdk_thread *thread; 610 int i; 611 612 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) { 613 free(g_src_mbufs[i]); 614 } 615 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 616 free(g_dst_mbufs[i]); 617 } 618 free(g_bdev_io->u.bdev.iovs); 619 free(g_bdev_io); 620 free(g_io_ch); 621 622 thread = spdk_get_thread(); 623 spdk_thread_exit(thread); 624 while (!spdk_thread_is_exited(thread)) { 625 spdk_thread_poll(thread, 0, 0); 626 } 627 spdk_thread_destroy(thread); 628 629 spdk_thread_lib_fini(); 630 631 return 0; 632 } 633 634 static void 635 test_compress_operation(void) 636 { 637 struct iovec src_iovs[3] = {}; 638 int src_iovcnt; 639 struct iovec dst_iovs[3] = {}; 640 int dst_iovcnt; 641 struct spdk_reduce_vol_cb_args cb_arg; 642 int rc, i; 643 struct vbdev_comp_op *op; 644 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP]; 645 struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP]; 646 647 src_iovcnt = dst_iovcnt = 3; 648 for (i = 0; i < dst_iovcnt; i++) { 649 src_iovs[i].iov_len = 0x1000; 650 dst_iovs[i].iov_len = 0x1000; 651 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 652 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 653 } 654 655 /* test rte_comp_op_alloc failure */ 656 MOCK_SET(rte_comp_op_alloc, NULL); 657 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 658 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 659 &dst_iovs[0], dst_iovcnt, true, &cb_arg); 660 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false); 661 while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) { 662 op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops); 663 TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link); 664 free(op); 665 } 666 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 667 CU_ASSERT(rc == 0); 668 MOCK_SET(rte_comp_op_alloc, &g_comp_op[0]); 669 670 /* test mempool get failure */ 671 ut_rte_pktmbuf_alloc_bulk = -1; 672 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 673 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 674 &dst_iovs[0], dst_iovcnt, true, &cb_arg); 675 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false); 676 while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) { 677 op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops); 678 TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link); 679 free(op); 680 } 681 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 682 CU_ASSERT(rc == 0); 683 ut_rte_pktmbuf_alloc_bulk = 0; 684 685 /* test enqueue failure busy */ 686 ut_enqueue_value = FAKE_ENQUEUE_BUSY; 687 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 688 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 689 &dst_iovs[0], dst_iovcnt, true, &cb_arg); 690 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false); 691 while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) { 692 op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops); 693 TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link); 694 free(op); 695 } 696 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 697 CU_ASSERT(rc == 0); 698 ut_enqueue_value = 1; 699 700 /* test enqueue failure error */ 701 ut_enqueue_value = FAKE_ENQUEUE_ERROR; 702 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 703 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 704 &dst_iovs[0], dst_iovcnt, true, &cb_arg); 705 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 706 CU_ASSERT(rc == -EINVAL); 707 ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 708 709 /* test success with 3 vector iovec */ 710 ut_expected_op.private_xform = &g_decomp_xform; 711 ut_expected_op.src.offset = 0; 712 ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len; 713 714 /* setup the src expected values */ 715 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false); 716 ut_expected_op.m_src = exp_src_mbuf[0]; 717 718 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 719 exp_src_mbuf[i]->userdata = &cb_arg; 720 exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base; 721 exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len); 722 exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len; 723 exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len; 724 } 725 726 /* setup the dst expected values */ 727 _get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false); 728 ut_expected_op.dst.offset = 0; 729 ut_expected_op.m_dst = exp_dst_mbuf[0]; 730 731 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 732 exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base; 733 exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len); 734 exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len; 735 exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len; 736 } 737 738 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 739 &dst_iovs[0], dst_iovcnt, false, &cb_arg); 740 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 741 CU_ASSERT(rc == 0); 742 743 } 744 745 static void 746 test_compress_operation_cross_boundary(void) 747 { 748 struct iovec src_iovs[3] = {}; 749 int src_iovcnt; 750 struct iovec dst_iovs[3] = {}; 751 int dst_iovcnt; 752 struct spdk_reduce_vol_cb_args cb_arg; 753 int rc, i; 754 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 755 struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 756 757 /* Setup the same basic 3 IOV test as used in the simple success case 758 * but then we'll start testing a vtophy boundary crossing at each 759 * position. 760 */ 761 src_iovcnt = dst_iovcnt = 3; 762 for (i = 0; i < dst_iovcnt; i++) { 763 src_iovs[i].iov_len = 0x1000; 764 dst_iovs[i].iov_len = 0x1000; 765 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 766 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 767 } 768 769 ut_expected_op.private_xform = &g_decomp_xform; 770 ut_expected_op.src.offset = 0; 771 ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len; 772 773 /* setup the src expected values */ 774 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false); 775 ut_expected_op.m_src = exp_src_mbuf[0]; 776 777 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 778 exp_src_mbuf[i]->userdata = &cb_arg; 779 exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base; 780 exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len); 781 exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len; 782 exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len; 783 } 784 785 /* setup the dst expected values, we don't test needing a 4th dst mbuf */ 786 _get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false); 787 ut_expected_op.dst.offset = 0; 788 ut_expected_op.m_dst = exp_dst_mbuf[0]; 789 790 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 791 exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base; 792 exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len); 793 exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len; 794 exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len; 795 } 796 797 /* force the 1st IOV to get partial length from spdk_vtophys */ 798 g_small_size_counter = 0; 799 g_small_size_modify = 1; 800 g_small_size = 0x800; 801 exp_src_mbuf[3]->userdata = &cb_arg; 802 803 /* first only has shorter length */ 804 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x800; 805 806 /* 2nd was inserted by the boundary crossing condition and finishes off 807 * the length from the first */ 808 exp_src_mbuf[1]->buf_addr = (void *)0x10000800; 809 exp_src_mbuf[1]->buf_iova = 0x10000800; 810 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800; 811 812 /* 3rd looks like that the 2nd would have */ 813 exp_src_mbuf[2]->buf_addr = (void *)0x10001000; 814 exp_src_mbuf[2]->buf_iova = 0x10001000; 815 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x1000; 816 817 /* a new 4th looks like what the 3rd would have */ 818 exp_src_mbuf[3]->buf_addr = (void *)0x10002000; 819 exp_src_mbuf[3]->buf_iova = 0x10002000; 820 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000; 821 822 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 823 &dst_iovs[0], dst_iovcnt, false, &cb_arg); 824 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 825 CU_ASSERT(rc == 0); 826 827 /* Now force the 2nd IOV to get partial length from spdk_vtophys */ 828 g_small_size_counter = 0; 829 g_small_size_modify = 2; 830 g_small_size = 0x800; 831 832 /* first is normal */ 833 exp_src_mbuf[0]->buf_addr = (void *)0x10000000; 834 exp_src_mbuf[0]->buf_iova = 0x10000000; 835 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000; 836 837 /* second only has shorter length */ 838 exp_src_mbuf[1]->buf_addr = (void *)0x10001000; 839 exp_src_mbuf[1]->buf_iova = 0x10001000; 840 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800; 841 842 /* 3rd was inserted by the boundary crossing condition and finishes off 843 * the length from the first */ 844 exp_src_mbuf[2]->buf_addr = (void *)0x10001800; 845 exp_src_mbuf[2]->buf_iova = 0x10001800; 846 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800; 847 848 /* a new 4th looks like what the 3rd would have */ 849 exp_src_mbuf[3]->buf_addr = (void *)0x10002000; 850 exp_src_mbuf[3]->buf_iova = 0x10002000; 851 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000; 852 853 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 854 &dst_iovs[0], dst_iovcnt, false, &cb_arg); 855 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 856 CU_ASSERT(rc == 0); 857 858 /* Finally force the 3rd IOV to get partial length from spdk_vtophys */ 859 g_small_size_counter = 0; 860 g_small_size_modify = 3; 861 g_small_size = 0x800; 862 863 /* first is normal */ 864 exp_src_mbuf[0]->buf_addr = (void *)0x10000000; 865 exp_src_mbuf[0]->buf_iova = 0x10000000; 866 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000; 867 868 /* second is normal */ 869 exp_src_mbuf[1]->buf_addr = (void *)0x10001000; 870 exp_src_mbuf[1]->buf_iova = 0x10001000; 871 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x1000; 872 873 /* 3rd has shorter length */ 874 exp_src_mbuf[2]->buf_addr = (void *)0x10002000; 875 exp_src_mbuf[2]->buf_iova = 0x10002000; 876 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800; 877 878 /* a new 4th handles the remainder from the 3rd */ 879 exp_src_mbuf[3]->buf_addr = (void *)0x10002800; 880 exp_src_mbuf[3]->buf_iova = 0x10002800; 881 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x800; 882 883 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 884 &dst_iovs[0], dst_iovcnt, false, &cb_arg); 885 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 886 CU_ASSERT(rc == 0); 887 } 888 889 static void 890 test_poller(void) 891 { 892 int rc; 893 struct spdk_reduce_vol_cb_args *cb_args; 894 struct rte_mbuf mbuf[4]; /* one src, one dst, 2 ops */ 895 struct vbdev_comp_op *op_to_queue; 896 struct iovec src_iovs[3] = {}; 897 struct iovec dst_iovs[3] = {}; 898 int i; 899 900 cb_args = calloc(1, sizeof(*cb_args)); 901 SPDK_CU_ASSERT_FATAL(cb_args != NULL); 902 cb_args->cb_fn = _compress_done; 903 memset(&g_comp_op[0], 0, sizeof(struct rte_comp_op)); 904 g_comp_op[0].m_src = &mbuf[0]; 905 g_comp_op[1].m_src = &mbuf[1]; 906 g_comp_op[0].m_dst = &mbuf[2]; 907 g_comp_op[1].m_dst = &mbuf[3]; 908 for (i = 0; i < 3; i++) { 909 src_iovs[i].iov_len = 0x1000; 910 dst_iovs[i].iov_len = 0x1000; 911 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 912 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 913 } 914 915 /* Error from dequeue, nothing needing to be resubmitted. 916 */ 917 ut_rte_compressdev_dequeue_burst = 1; 918 /* setup what we want dequeue to return for the op */ 919 g_comp_op[0].m_src->userdata = (void *)cb_args; 920 g_comp_op[0].produced = 1; 921 g_comp_op[0].status = 1; 922 /* value asserted in the reduce callback */ 923 ut_compress_done[0] = -EINVAL; 924 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 925 rc = comp_dev_poller((void *)&g_comp_bdev); 926 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 927 CU_ASSERT(rc == SPDK_POLLER_BUSY); 928 929 /* Success from dequeue, 2 ops. nothing needing to be resubmitted. 930 */ 931 ut_rte_compressdev_dequeue_burst = 2; 932 /* setup what we want dequeue to return for the op */ 933 g_comp_op[0].m_src->userdata = (void *)cb_args; 934 g_comp_op[0].produced = 16; 935 g_comp_op[0].status = 0; 936 g_comp_op[1].m_src->userdata = (void *)cb_args; 937 g_comp_op[1].produced = 32; 938 g_comp_op[1].status = 0; 939 /* value asserted in the reduce callback */ 940 ut_compress_done[0] = 16; 941 ut_compress_done[1] = 32; 942 done_count = 2; 943 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 944 rc = comp_dev_poller((void *)&g_comp_bdev); 945 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 946 CU_ASSERT(rc == SPDK_POLLER_BUSY); 947 948 /* Success from dequeue, one op to be resubmitted. 949 */ 950 ut_rte_compressdev_dequeue_burst = 1; 951 /* setup what we want dequeue to return for the op */ 952 g_comp_op[0].m_src->userdata = (void *)cb_args; 953 g_comp_op[0].produced = 16; 954 g_comp_op[0].status = 0; 955 /* value asserted in the reduce callback */ 956 ut_compress_done[0] = 16; 957 done_count = 1; 958 op_to_queue = calloc(1, sizeof(struct vbdev_comp_op)); 959 SPDK_CU_ASSERT_FATAL(op_to_queue != NULL); 960 op_to_queue->backing_dev = &g_comp_bdev.backing_dev; 961 op_to_queue->src_iovs = &src_iovs[0]; 962 op_to_queue->src_iovcnt = 3; 963 op_to_queue->dst_iovs = &dst_iovs[0]; 964 op_to_queue->dst_iovcnt = 3; 965 op_to_queue->compress = true; 966 op_to_queue->cb_arg = cb_args; 967 ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 968 TAILQ_INSERT_TAIL(&g_comp_bdev.queued_comp_ops, 969 op_to_queue, 970 link); 971 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false); 972 rc = comp_dev_poller((void *)&g_comp_bdev); 973 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 974 CU_ASSERT(rc == SPDK_POLLER_BUSY); 975 976 /* op_to_queue is freed in code under test */ 977 free(cb_args); 978 } 979 980 static void 981 test_vbdev_compress_submit_request(void) 982 { 983 /* Single element block size write */ 984 g_bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 985 g_bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE; 986 g_completion_called = false; 987 vbdev_compress_submit_request(g_io_ch, g_bdev_io); 988 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS); 989 CU_ASSERT(g_completion_called == true); 990 CU_ASSERT(g_io_ctx->orig_io == g_bdev_io); 991 CU_ASSERT(g_io_ctx->comp_bdev == &g_comp_bdev); 992 CU_ASSERT(g_io_ctx->comp_ch == g_comp_ch); 993 994 /* same write but now fail it */ 995 ut_spdk_reduce_vol_op_complete_err = 1; 996 g_completion_called = false; 997 vbdev_compress_submit_request(g_io_ch, g_bdev_io); 998 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FAILED); 999 CU_ASSERT(g_completion_called == true); 1000 1001 /* test a read success */ 1002 g_bdev_io->type = SPDK_BDEV_IO_TYPE_READ; 1003 ut_spdk_reduce_vol_op_complete_err = 0; 1004 g_completion_called = false; 1005 vbdev_compress_submit_request(g_io_ch, g_bdev_io); 1006 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS); 1007 CU_ASSERT(g_completion_called == true); 1008 1009 /* test a read failure */ 1010 ut_spdk_reduce_vol_op_complete_err = 1; 1011 g_completion_called = false; 1012 vbdev_compress_submit_request(g_io_ch, g_bdev_io); 1013 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FAILED); 1014 CU_ASSERT(g_completion_called == true); 1015 } 1016 1017 static void 1018 test_passthru(void) 1019 { 1020 1021 } 1022 1023 static void 1024 test_reset(void) 1025 { 1026 /* TODO: There are a few different ways to do this given that 1027 * the code uses spdk_for_each_channel() to implement reset 1028 * handling. SUbmitting w/o UT for this function for now and 1029 * will follow up with something shortly. 1030 */ 1031 } 1032 1033 static void 1034 test_initdrivers(void) 1035 { 1036 int rc; 1037 1038 /* test return values from rte_vdev_init() */ 1039 MOCK_SET(rte_vdev_init, -EEXIST); 1040 rc = vbdev_init_compress_drivers(); 1041 /* This is not an error condition, we already have one */ 1042 CU_ASSERT(rc == 0); 1043 1044 /* error */ 1045 MOCK_SET(rte_vdev_init, -2); 1046 rc = vbdev_init_compress_drivers(); 1047 CU_ASSERT(rc == -EINVAL); 1048 CU_ASSERT(g_mbuf_mp == NULL); 1049 CU_ASSERT(g_comp_op_mp == NULL); 1050 1051 /* compressdev count 0 */ 1052 ut_rte_compressdev_count = 0; 1053 MOCK_SET(rte_vdev_init, 0); 1054 rc = vbdev_init_compress_drivers(); 1055 CU_ASSERT(rc == 0); 1056 1057 /* bogus count */ 1058 ut_rte_compressdev_count = RTE_COMPRESS_MAX_DEVS + 1; 1059 rc = vbdev_init_compress_drivers(); 1060 CU_ASSERT(rc == -EINVAL); 1061 1062 /* can't get mbuf pool */ 1063 ut_rte_compressdev_count = 1; 1064 MOCK_SET(spdk_mempool_create, NULL); 1065 rc = vbdev_init_compress_drivers(); 1066 CU_ASSERT(rc == -ENOMEM); 1067 MOCK_CLEAR(spdk_mempool_create); 1068 1069 /* can't get comp op pool */ 1070 ut_rte_comp_op_pool_create = NULL; 1071 rc = vbdev_init_compress_drivers(); 1072 CU_ASSERT(rc == -ENOMEM); 1073 1074 /* error on create_compress_dev() */ 1075 ut_rte_comp_op_pool_create = (struct rte_mempool *)&test_initdrivers; 1076 ut_rte_compressdev_configure = -1; 1077 rc = vbdev_init_compress_drivers(); 1078 CU_ASSERT(rc == -1); 1079 1080 /* error on create_compress_dev() but coverage for large num queues */ 1081 ut_max_nb_queue_pairs = 99; 1082 rc = vbdev_init_compress_drivers(); 1083 CU_ASSERT(rc == -1); 1084 1085 /* qpair setup fails */ 1086 ut_rte_compressdev_configure = 0; 1087 ut_max_nb_queue_pairs = 0; 1088 ut_rte_compressdev_queue_pair_setup = -1; 1089 rc = vbdev_init_compress_drivers(); 1090 CU_ASSERT(rc == -EINVAL); 1091 1092 /* rte_compressdev_start fails */ 1093 ut_rte_compressdev_queue_pair_setup = 0; 1094 ut_rte_compressdev_start = -1; 1095 rc = vbdev_init_compress_drivers(); 1096 CU_ASSERT(rc == -1); 1097 1098 /* rte_compressdev_private_xform_create() fails */ 1099 ut_rte_compressdev_start = 0; 1100 ut_rte_compressdev_private_xform_create = -2; 1101 rc = vbdev_init_compress_drivers(); 1102 CU_ASSERT(rc == -2); 1103 1104 /* success */ 1105 ut_rte_compressdev_private_xform_create = 0; 1106 rc = vbdev_init_compress_drivers(); 1107 CU_ASSERT(rc == 0); 1108 spdk_mempool_free((struct spdk_mempool *)g_mbuf_mp); 1109 } 1110 1111 static void 1112 test_supported_io(void) 1113 { 1114 1115 } 1116 1117 int 1118 main(int argc, char **argv) 1119 { 1120 CU_pSuite suite = NULL; 1121 unsigned int num_failures; 1122 1123 CU_set_error_action(CUEA_ABORT); 1124 CU_initialize_registry(); 1125 1126 suite = CU_add_suite("compress", test_setup, test_cleanup); 1127 CU_ADD_TEST(suite, test_compress_operation); 1128 CU_ADD_TEST(suite, test_compress_operation_cross_boundary); 1129 CU_ADD_TEST(suite, test_vbdev_compress_submit_request); 1130 CU_ADD_TEST(suite, test_passthru); 1131 CU_ADD_TEST(suite, test_initdrivers); 1132 CU_ADD_TEST(suite, test_supported_io); 1133 CU_ADD_TEST(suite, test_poller); 1134 CU_ADD_TEST(suite, test_reset); 1135 1136 CU_basic_set_mode(CU_BRM_VERBOSE); 1137 CU_basic_run_tests(); 1138 num_failures = CU_get_number_of_failures(); 1139 CU_cleanup_registry(); 1140 return num_failures; 1141 } 1142