1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk_cunit.h" 35 /* We have our own mock for this */ 36 #define UNIT_TEST_NO_VTOPHYS 37 #include "common/lib/test_env.c" 38 #include "spdk_internal/mock.h" 39 #include "thread/thread_internal.h" 40 #include "unit/lib/json_mock.c" 41 #include "spdk/reduce.h" 42 43 #include <rte_compressdev.h> 44 45 /* There will be one if the data perfectly matches the chunk size, 46 * or there could be an offset into the data and a remainder after 47 * the data or both for a max of 3. 48 */ 49 #define UT_MBUFS_PER_OP 3 50 /* For testing the crossing of a huge page boundary on address translation, 51 * we'll have an extra one but we only test on the source side. 52 */ 53 #define UT_MBUFS_PER_OP_BOUND_TEST 4 54 55 struct spdk_bdev_io *g_bdev_io; 56 struct spdk_io_channel *g_io_ch; 57 struct rte_comp_op g_comp_op[2]; 58 struct vbdev_compress g_comp_bdev; 59 struct comp_device_qp g_device_qp; 60 struct compress_dev g_device; 61 struct rte_compressdev_capabilities g_cdev_cap; 62 static struct rte_mbuf *g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST]; 63 static struct rte_mbuf *g_dst_mbufs[UT_MBUFS_PER_OP]; 64 static struct rte_mbuf g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST]; 65 static struct rte_mbuf g_expected_dst_mbufs[UT_MBUFS_PER_OP]; 66 struct comp_bdev_io *g_io_ctx; 67 struct comp_io_channel *g_comp_ch; 68 69 /* Those functions are defined as static inline in DPDK, so we can't 70 * mock them straight away. We use defines to redirect them into 71 * our custom functions. 72 */ 73 74 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova, 75 uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo); 76 #define rte_pktmbuf_attach_extbuf mock_rte_pktmbuf_attach_extbuf 77 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova, 78 uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo) 79 { 80 assert(m != NULL); 81 m->buf_addr = buf_addr; 82 m->buf_iova = buf_iova; 83 m->buf_len = buf_len; 84 m->data_len = m->pkt_len = 0; 85 } 86 87 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len); 88 #define rte_pktmbuf_append mock_rte_pktmbuf_append 89 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len) 90 { 91 m->pkt_len = m->pkt_len + len; 92 return NULL; 93 } 94 95 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail); 96 #define rte_pktmbuf_chain mock_rte_pktmbuf_chain 97 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail) 98 { 99 struct rte_mbuf *cur_tail; 100 101 cur_tail = rte_pktmbuf_lastseg(head); 102 cur_tail->next = tail; 103 104 return 0; 105 } 106 107 uint16_t ut_max_nb_queue_pairs = 0; 108 void __rte_experimental mock_rte_compressdev_info_get(uint8_t dev_id, 109 struct rte_compressdev_info *dev_info); 110 #define rte_compressdev_info_get mock_rte_compressdev_info_get 111 void __rte_experimental 112 mock_rte_compressdev_info_get(uint8_t dev_id, struct rte_compressdev_info *dev_info) 113 { 114 dev_info->max_nb_queue_pairs = ut_max_nb_queue_pairs; 115 dev_info->capabilities = &g_cdev_cap; 116 dev_info->driver_name = "compress_isal"; 117 } 118 119 int ut_rte_compressdev_configure = 0; 120 int __rte_experimental mock_rte_compressdev_configure(uint8_t dev_id, 121 struct rte_compressdev_config *config); 122 #define rte_compressdev_configure mock_rte_compressdev_configure 123 int __rte_experimental 124 mock_rte_compressdev_configure(uint8_t dev_id, struct rte_compressdev_config *config) 125 { 126 return ut_rte_compressdev_configure; 127 } 128 129 int ut_rte_compressdev_queue_pair_setup = 0; 130 int __rte_experimental mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, 131 uint32_t max_inflight_ops, int socket_id); 132 #define rte_compressdev_queue_pair_setup mock_rte_compressdev_queue_pair_setup 133 int __rte_experimental 134 mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id, 135 uint32_t max_inflight_ops, int socket_id) 136 { 137 return ut_rte_compressdev_queue_pair_setup; 138 } 139 140 int ut_rte_compressdev_start = 0; 141 int __rte_experimental mock_rte_compressdev_start(uint8_t dev_id); 142 #define rte_compressdev_start mock_rte_compressdev_start 143 int __rte_experimental 144 mock_rte_compressdev_start(uint8_t dev_id) 145 { 146 return ut_rte_compressdev_start; 147 } 148 149 int ut_rte_compressdev_private_xform_create = 0; 150 int __rte_experimental mock_rte_compressdev_private_xform_create(uint8_t dev_id, 151 const struct rte_comp_xform *xform, void **private_xform); 152 #define rte_compressdev_private_xform_create mock_rte_compressdev_private_xform_create 153 int __rte_experimental 154 mock_rte_compressdev_private_xform_create(uint8_t dev_id, 155 const struct rte_comp_xform *xform, void **private_xform) 156 { 157 return ut_rte_compressdev_private_xform_create; 158 } 159 160 uint8_t ut_rte_compressdev_count = 0; 161 uint8_t __rte_experimental mock_rte_compressdev_count(void); 162 #define rte_compressdev_count mock_rte_compressdev_count 163 uint8_t __rte_experimental 164 mock_rte_compressdev_count(void) 165 { 166 return ut_rte_compressdev_count; 167 } 168 169 struct rte_mempool *ut_rte_comp_op_pool_create = NULL; 170 struct rte_mempool *__rte_experimental mock_rte_comp_op_pool_create(const char *name, 171 unsigned int nb_elts, unsigned int cache_size, uint16_t user_size, 172 int socket_id); 173 #define rte_comp_op_pool_create mock_rte_comp_op_pool_create 174 struct rte_mempool *__rte_experimental 175 mock_rte_comp_op_pool_create(const char *name, unsigned int nb_elts, 176 unsigned int cache_size, uint16_t user_size, int socket_id) 177 { 178 return ut_rte_comp_op_pool_create; 179 } 180 181 void mock_rte_pktmbuf_free(struct rte_mbuf *m); 182 #define rte_pktmbuf_free mock_rte_pktmbuf_free 183 void mock_rte_pktmbuf_free(struct rte_mbuf *m) 184 { 185 } 186 187 static bool ut_boundary_alloc = false; 188 static int ut_rte_pktmbuf_alloc_bulk = 0; 189 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs, 190 unsigned count); 191 #define rte_pktmbuf_alloc_bulk mock_rte_pktmbuf_alloc_bulk 192 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs, 193 unsigned count) 194 { 195 int i; 196 197 /* This mocked function only supports the alloc of up to 3 src and 3 dst. */ 198 ut_rte_pktmbuf_alloc_bulk += count; 199 200 if (ut_rte_pktmbuf_alloc_bulk == 1) { 201 /* allocation of an extra mbuf for boundary cross test */ 202 ut_boundary_alloc = true; 203 g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]->next = NULL; 204 *mbufs = g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]; 205 ut_rte_pktmbuf_alloc_bulk = 0; 206 } else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP) { 207 /* first test allocation, src mbufs */ 208 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 209 g_src_mbufs[i]->next = NULL; 210 *mbufs++ = g_src_mbufs[i]; 211 } 212 } else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP * 2) { 213 /* second test allocation, dst mbufs */ 214 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 215 g_dst_mbufs[i]->next = NULL; 216 *mbufs++ = g_dst_mbufs[i]; 217 } 218 ut_rte_pktmbuf_alloc_bulk = 0; 219 } else { 220 return -1; 221 } 222 return 0; 223 } 224 225 struct rte_mempool * 226 rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size, 227 uint16_t priv_size, uint16_t data_room_size, int socket_id) 228 { 229 struct spdk_mempool *tmp; 230 231 tmp = spdk_mempool_create("mbuf_mp", 1024, sizeof(struct rte_mbuf), 232 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, 233 SPDK_ENV_SOCKET_ID_ANY); 234 235 return (struct rte_mempool *)tmp; 236 } 237 238 void 239 rte_mempool_free(struct rte_mempool *mp) 240 { 241 if (mp) { 242 spdk_mempool_free((struct spdk_mempool *)mp); 243 } 244 } 245 246 static int ut_spdk_reduce_vol_op_complete_err = 0; 247 void 248 spdk_reduce_vol_writev(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt, 249 uint64_t offset, uint64_t length, spdk_reduce_vol_op_complete cb_fn, 250 void *cb_arg) 251 { 252 cb_fn(cb_arg, ut_spdk_reduce_vol_op_complete_err); 253 } 254 255 void 256 spdk_reduce_vol_readv(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt, 257 uint64_t offset, uint64_t length, spdk_reduce_vol_op_complete cb_fn, 258 void *cb_arg) 259 { 260 cb_fn(cb_arg, ut_spdk_reduce_vol_op_complete_err); 261 } 262 263 #include "bdev/compress/vbdev_compress.c" 264 265 /* SPDK stubs */ 266 DEFINE_STUB(spdk_bdev_get_aliases, const struct spdk_bdev_aliases_list *, 267 (const struct spdk_bdev *bdev), NULL); 268 DEFINE_STUB_V(spdk_bdev_module_list_add, (struct spdk_bdev_module *bdev_module)); 269 DEFINE_STUB_V(spdk_bdev_free_io, (struct spdk_bdev_io *g_bdev_io)); 270 DEFINE_STUB(spdk_bdev_io_type_supported, bool, (struct spdk_bdev *bdev, 271 enum spdk_bdev_io_type io_type), 0); 272 DEFINE_STUB_V(spdk_bdev_module_release_bdev, (struct spdk_bdev *bdev)); 273 DEFINE_STUB_V(spdk_bdev_close, (struct spdk_bdev_desc *desc)); 274 DEFINE_STUB(spdk_bdev_get_name, const char *, (const struct spdk_bdev *bdev), 0); 275 DEFINE_STUB(spdk_bdev_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_desc *desc), 0); 276 DEFINE_STUB_V(spdk_bdev_unregister, (struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, 277 void *cb_arg)); 278 DEFINE_STUB(spdk_bdev_open_ext, int, (const char *bdev_name, bool write, 279 spdk_bdev_event_cb_t event_cb, 280 void *event_ctx, struct spdk_bdev_desc **_desc), 0); 281 DEFINE_STUB(spdk_bdev_desc_get_bdev, struct spdk_bdev *, (struct spdk_bdev_desc *desc), NULL); 282 DEFINE_STUB(spdk_bdev_module_claim_bdev, int, (struct spdk_bdev *bdev, struct spdk_bdev_desc *desc, 283 struct spdk_bdev_module *module), 0); 284 DEFINE_STUB_V(spdk_bdev_module_examine_done, (struct spdk_bdev_module *module)); 285 DEFINE_STUB(spdk_bdev_register, int, (struct spdk_bdev *bdev), 0); 286 DEFINE_STUB(spdk_bdev_get_by_name, struct spdk_bdev *, (const char *bdev_name), NULL); 287 DEFINE_STUB(spdk_bdev_io_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_io *bdev_io), 288 0); 289 DEFINE_STUB(spdk_bdev_queue_io_wait, int, (struct spdk_bdev *bdev, struct spdk_io_channel *ch, 290 struct spdk_bdev_io_wait_entry *entry), 0); 291 DEFINE_STUB_V(spdk_reduce_vol_unload, (struct spdk_reduce_vol *vol, 292 spdk_reduce_vol_op_complete cb_fn, void *cb_arg)); 293 DEFINE_STUB_V(spdk_reduce_vol_load, (struct spdk_reduce_backing_dev *backing_dev, 294 spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg)); 295 DEFINE_STUB(spdk_reduce_vol_get_params, const struct spdk_reduce_vol_params *, 296 (struct spdk_reduce_vol *vol), NULL); 297 DEFINE_STUB_V(spdk_reduce_vol_init, (struct spdk_reduce_vol_params *params, 298 struct spdk_reduce_backing_dev *backing_dev, 299 const char *pm_file_dir, 300 spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg)); 301 DEFINE_STUB_V(spdk_reduce_vol_destroy, (struct spdk_reduce_backing_dev *backing_dev, 302 spdk_reduce_vol_op_complete cb_fn, void *cb_arg)); 303 304 /* DPDK stubs */ 305 #define DPDK_DYNFIELD_OFFSET offsetof(struct rte_mbuf, dynfield1[1]) 306 DEFINE_STUB(rte_mbuf_dynfield_register, int, (const struct rte_mbuf_dynfield *params), 307 DPDK_DYNFIELD_OFFSET); 308 DEFINE_STUB(rte_socket_id, unsigned, (void), 0); 309 DEFINE_STUB(rte_vdev_init, int, (const char *name, const char *args), 0); 310 DEFINE_STUB_V(rte_comp_op_free, (struct rte_comp_op *op)); 311 DEFINE_STUB(rte_comp_op_alloc, struct rte_comp_op *, (struct rte_mempool *mempool), NULL); 312 313 int g_small_size_counter = 0; 314 int g_small_size_modify = 0; 315 uint64_t g_small_size = 0; 316 uint64_t 317 spdk_vtophys(const void *buf, uint64_t *size) 318 { 319 g_small_size_counter++; 320 if (g_small_size_counter == g_small_size_modify) { 321 *size = g_small_size; 322 g_small_size_counter = 0; 323 g_small_size_modify = 0; 324 } 325 return (uint64_t)buf; 326 } 327 328 void 329 spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len) 330 { 331 cb(g_io_ch, g_bdev_io, true); 332 } 333 334 /* Mock these functions to call the callback and then return the value we require */ 335 int ut_spdk_bdev_readv_blocks = 0; 336 int 337 spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 338 struct iovec *iov, int iovcnt, 339 uint64_t offset_blocks, uint64_t num_blocks, 340 spdk_bdev_io_completion_cb cb, void *cb_arg) 341 { 342 cb(g_bdev_io, !ut_spdk_bdev_readv_blocks, cb_arg); 343 return ut_spdk_bdev_readv_blocks; 344 } 345 346 int ut_spdk_bdev_writev_blocks = 0; 347 bool ut_spdk_bdev_writev_blocks_mocked = false; 348 int 349 spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 350 struct iovec *iov, int iovcnt, 351 uint64_t offset_blocks, uint64_t num_blocks, 352 spdk_bdev_io_completion_cb cb, void *cb_arg) 353 { 354 cb(g_bdev_io, !ut_spdk_bdev_writev_blocks, cb_arg); 355 return ut_spdk_bdev_writev_blocks; 356 } 357 358 int ut_spdk_bdev_unmap_blocks = 0; 359 bool ut_spdk_bdev_unmap_blocks_mocked = false; 360 int 361 spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 362 uint64_t offset_blocks, uint64_t num_blocks, 363 spdk_bdev_io_completion_cb cb, void *cb_arg) 364 { 365 cb(g_bdev_io, !ut_spdk_bdev_unmap_blocks, cb_arg); 366 return ut_spdk_bdev_unmap_blocks; 367 } 368 369 int ut_spdk_bdev_flush_blocks = 0; 370 bool ut_spdk_bdev_flush_blocks_mocked = false; 371 int 372 spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 373 uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, 374 void *cb_arg) 375 { 376 cb(g_bdev_io, !ut_spdk_bdev_flush_blocks, cb_arg); 377 return ut_spdk_bdev_flush_blocks; 378 } 379 380 int ut_spdk_bdev_reset = 0; 381 bool ut_spdk_bdev_reset_mocked = false; 382 int 383 spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 384 spdk_bdev_io_completion_cb cb, void *cb_arg) 385 { 386 cb(g_bdev_io, !ut_spdk_bdev_reset, cb_arg); 387 return ut_spdk_bdev_reset; 388 } 389 390 bool g_completion_called = false; 391 void 392 spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status) 393 { 394 bdev_io->internal.status = status; 395 g_completion_called = true; 396 } 397 398 static uint16_t ut_rte_compressdev_dequeue_burst = 0; 399 uint16_t 400 rte_compressdev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops, 401 uint16_t nb_op) 402 { 403 if (ut_rte_compressdev_dequeue_burst == 0) { 404 return 0; 405 } 406 407 ops[0] = &g_comp_op[0]; 408 ops[1] = &g_comp_op[1]; 409 410 return ut_rte_compressdev_dequeue_burst; 411 } 412 413 static int ut_compress_done[2]; 414 /* done_count and done_idx together control which expected assertion 415 * value to use when dequeuing 2 operations. 416 */ 417 static uint16_t done_count = 1; 418 static uint16_t done_idx = 0; 419 static void 420 _compress_done(void *_req, int reduce_errno) 421 { 422 if (done_count == 1) { 423 CU_ASSERT(reduce_errno == ut_compress_done[0]); 424 } else if (done_count == 2) { 425 CU_ASSERT(reduce_errno == ut_compress_done[done_idx++]); 426 } 427 } 428 429 static void 430 _get_mbuf_array(struct rte_mbuf **mbuf_array, struct rte_mbuf *mbuf_head, 431 int mbuf_count, bool null_final) 432 { 433 int i; 434 435 for (i = 0; i < mbuf_count; i++) { 436 mbuf_array[i] = mbuf_head; 437 if (mbuf_head) { 438 mbuf_head = mbuf_head->next; 439 } 440 } 441 if (null_final) { 442 mbuf_array[i - 1] = NULL; 443 } 444 } 445 446 #define FAKE_ENQUEUE_SUCCESS 255 447 #define FAKE_ENQUEUE_ERROR 128 448 #define FAKE_ENQUEUE_BUSY 64 449 static uint16_t ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 450 static struct rte_comp_op ut_expected_op; 451 uint16_t 452 rte_compressdev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops, 453 uint16_t nb_ops) 454 { 455 struct rte_comp_op *op = *ops; 456 struct rte_mbuf *op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 457 struct rte_mbuf *exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 458 int i, num_src_mbufs = UT_MBUFS_PER_OP; 459 460 switch (ut_enqueue_value) { 461 case FAKE_ENQUEUE_BUSY: 462 op->status = RTE_COMP_OP_STATUS_NOT_PROCESSED; 463 return 0; 464 break; 465 case FAKE_ENQUEUE_SUCCESS: 466 op->status = RTE_COMP_OP_STATUS_SUCCESS; 467 return 1; 468 break; 469 case FAKE_ENQUEUE_ERROR: 470 op->status = RTE_COMP_OP_STATUS_ERROR; 471 return 0; 472 break; 473 default: 474 break; 475 } 476 477 /* by design the compress module will never send more than 1 op at a time */ 478 CU_ASSERT(op->private_xform == ut_expected_op.private_xform); 479 480 /* setup our local pointers to the chained mbufs, those pointed to in the 481 * operation struct and the expected values. 482 */ 483 _get_mbuf_array(op_mbuf, op->m_src, SPDK_COUNTOF(op_mbuf), true); 484 _get_mbuf_array(exp_mbuf, ut_expected_op.m_src, SPDK_COUNTOF(exp_mbuf), true); 485 486 if (ut_boundary_alloc == true) { 487 /* if we crossed a boundary, we need to check the 4th src mbuf and 488 * reset the global that is used to identify whether we crossed 489 * or not 490 */ 491 num_src_mbufs = UT_MBUFS_PER_OP_BOUND_TEST; 492 exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = ut_expected_op.m_src->next->next->next; 493 op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = op->m_src->next->next->next; 494 ut_boundary_alloc = false; 495 } 496 497 498 for (i = 0; i < num_src_mbufs; i++) { 499 CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr); 500 CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova); 501 CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len); 502 CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len); 503 } 504 505 /* if only 3 mbufs were used in the test, the 4th should be zeroed */ 506 if (num_src_mbufs == UT_MBUFS_PER_OP) { 507 CU_ASSERT(op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL); 508 CU_ASSERT(exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL); 509 } 510 CU_ASSERT(*RTE_MBUF_DYNFIELD(op->m_src, g_mbuf_offset, uint64_t *) == 511 *RTE_MBUF_DYNFIELD(ut_expected_op.m_src, g_mbuf_offset, uint64_t *)); 512 CU_ASSERT(op->src.offset == ut_expected_op.src.offset); 513 CU_ASSERT(op->src.length == ut_expected_op.src.length); 514 515 /* check dst mbuf values */ 516 _get_mbuf_array(op_mbuf, op->m_dst, SPDK_COUNTOF(op_mbuf), true); 517 _get_mbuf_array(exp_mbuf, ut_expected_op.m_dst, SPDK_COUNTOF(exp_mbuf), true); 518 519 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 520 CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr); 521 CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova); 522 CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len); 523 CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len); 524 } 525 CU_ASSERT(op->dst.offset == ut_expected_op.dst.offset); 526 527 return ut_enqueue_value; 528 } 529 530 /* Global setup for all tests that share a bunch of preparation... */ 531 static int 532 test_setup(void) 533 { 534 struct spdk_thread *thread; 535 int i; 536 537 spdk_thread_lib_init(NULL, 0); 538 539 thread = spdk_thread_create(NULL, NULL); 540 spdk_set_thread(thread); 541 542 g_comp_bdev.reduce_thread = thread; 543 g_comp_bdev.backing_dev.unmap = _comp_reduce_unmap; 544 g_comp_bdev.backing_dev.readv = _comp_reduce_readv; 545 g_comp_bdev.backing_dev.writev = _comp_reduce_writev; 546 g_comp_bdev.backing_dev.compress = _comp_reduce_compress; 547 g_comp_bdev.backing_dev.decompress = _comp_reduce_decompress; 548 g_comp_bdev.backing_dev.blocklen = 512; 549 g_comp_bdev.backing_dev.blockcnt = 1024 * 16; 550 551 g_comp_bdev.device_qp = &g_device_qp; 552 g_comp_bdev.device_qp->device = &g_device; 553 554 TAILQ_INIT(&g_comp_bdev.queued_comp_ops); 555 556 g_comp_xform = (struct rte_comp_xform) { 557 .type = RTE_COMP_COMPRESS, 558 .compress = { 559 .algo = RTE_COMP_ALGO_DEFLATE, 560 .deflate.huffman = RTE_COMP_HUFFMAN_DEFAULT, 561 .level = RTE_COMP_LEVEL_MAX, 562 .window_size = DEFAULT_WINDOW_SIZE, 563 .chksum = RTE_COMP_CHECKSUM_NONE, 564 .hash_algo = RTE_COMP_HASH_ALGO_NONE 565 } 566 }; 567 568 g_decomp_xform = (struct rte_comp_xform) { 569 .type = RTE_COMP_DECOMPRESS, 570 .decompress = { 571 .algo = RTE_COMP_ALGO_DEFLATE, 572 .chksum = RTE_COMP_CHECKSUM_NONE, 573 .window_size = DEFAULT_WINDOW_SIZE, 574 .hash_algo = RTE_COMP_HASH_ALGO_NONE 575 } 576 }; 577 g_device.comp_xform = &g_comp_xform; 578 g_device.decomp_xform = &g_decomp_xform; 579 g_cdev_cap.comp_feature_flags = RTE_COMP_FF_SHAREABLE_PRIV_XFORM; 580 g_device.cdev_info.driver_name = "compress_isal"; 581 g_device.cdev_info.capabilities = &g_cdev_cap; 582 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) { 583 g_src_mbufs[i] = calloc(1, sizeof(struct rte_mbuf)); 584 } 585 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 586 g_dst_mbufs[i] = calloc(1, sizeof(struct rte_mbuf)); 587 } 588 589 g_bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct comp_bdev_io)); 590 g_bdev_io->u.bdev.iovs = calloc(128, sizeof(struct iovec)); 591 g_bdev_io->bdev = &g_comp_bdev.comp_bdev; 592 g_io_ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct comp_io_channel)); 593 g_io_ch->thread = thread; 594 g_comp_ch = (struct comp_io_channel *)spdk_io_channel_get_ctx(g_io_ch); 595 g_io_ctx = (struct comp_bdev_io *)g_bdev_io->driver_ctx; 596 597 g_io_ctx->comp_ch = g_comp_ch; 598 g_io_ctx->comp_bdev = &g_comp_bdev; 599 g_comp_bdev.device_qp = &g_device_qp; 600 601 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) { 602 g_expected_src_mbufs[i].next = &g_expected_src_mbufs[i + 1]; 603 } 604 g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1].next = NULL; 605 606 /* we only test w/4 mbufs on src side */ 607 for (i = 0; i < UT_MBUFS_PER_OP - 1; i++) { 608 g_expected_dst_mbufs[i].next = &g_expected_dst_mbufs[i + 1]; 609 } 610 g_expected_dst_mbufs[UT_MBUFS_PER_OP - 1].next = NULL; 611 g_mbuf_offset = DPDK_DYNFIELD_OFFSET; 612 613 return 0; 614 } 615 616 /* Global teardown for all tests */ 617 static int 618 test_cleanup(void) 619 { 620 struct spdk_thread *thread; 621 int i; 622 623 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) { 624 free(g_src_mbufs[i]); 625 } 626 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 627 free(g_dst_mbufs[i]); 628 } 629 free(g_bdev_io->u.bdev.iovs); 630 free(g_bdev_io); 631 free(g_io_ch); 632 633 thread = spdk_get_thread(); 634 spdk_thread_exit(thread); 635 while (!spdk_thread_is_exited(thread)) { 636 spdk_thread_poll(thread, 0, 0); 637 } 638 spdk_thread_destroy(thread); 639 640 spdk_thread_lib_fini(); 641 642 return 0; 643 } 644 645 static void 646 test_compress_operation(void) 647 { 648 struct iovec src_iovs[3] = {}; 649 int src_iovcnt; 650 struct iovec dst_iovs[3] = {}; 651 int dst_iovcnt; 652 struct spdk_reduce_vol_cb_args cb_arg; 653 int rc, i; 654 struct vbdev_comp_op *op; 655 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP]; 656 struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP]; 657 658 src_iovcnt = dst_iovcnt = 3; 659 for (i = 0; i < dst_iovcnt; i++) { 660 src_iovs[i].iov_len = 0x1000; 661 dst_iovs[i].iov_len = 0x1000; 662 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 663 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 664 } 665 666 /* test rte_comp_op_alloc failure */ 667 MOCK_SET(rte_comp_op_alloc, NULL); 668 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 669 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 670 &dst_iovs[0], dst_iovcnt, true, &cb_arg); 671 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false); 672 while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) { 673 op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops); 674 TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link); 675 free(op); 676 } 677 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 678 CU_ASSERT(rc == 0); 679 MOCK_SET(rte_comp_op_alloc, &g_comp_op[0]); 680 681 /* test mempool get failure */ 682 ut_rte_pktmbuf_alloc_bulk = -1; 683 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 684 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 685 &dst_iovs[0], dst_iovcnt, true, &cb_arg); 686 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false); 687 while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) { 688 op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops); 689 TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link); 690 free(op); 691 } 692 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 693 CU_ASSERT(rc == 0); 694 ut_rte_pktmbuf_alloc_bulk = 0; 695 696 /* test enqueue failure busy */ 697 ut_enqueue_value = FAKE_ENQUEUE_BUSY; 698 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 699 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 700 &dst_iovs[0], dst_iovcnt, true, &cb_arg); 701 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false); 702 while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) { 703 op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops); 704 TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link); 705 free(op); 706 } 707 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 708 CU_ASSERT(rc == 0); 709 ut_enqueue_value = 1; 710 711 /* test enqueue failure error */ 712 ut_enqueue_value = FAKE_ENQUEUE_ERROR; 713 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 714 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 715 &dst_iovs[0], dst_iovcnt, true, &cb_arg); 716 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 717 CU_ASSERT(rc == -EINVAL); 718 ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 719 720 /* test success with 3 vector iovec */ 721 ut_expected_op.private_xform = &g_decomp_xform; 722 ut_expected_op.src.offset = 0; 723 ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len; 724 725 /* setup the src expected values */ 726 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false); 727 ut_expected_op.m_src = exp_src_mbuf[0]; 728 729 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 730 *RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&cb_arg; 731 exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base; 732 exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len); 733 exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len; 734 exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len; 735 } 736 737 /* setup the dst expected values */ 738 _get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false); 739 ut_expected_op.dst.offset = 0; 740 ut_expected_op.m_dst = exp_dst_mbuf[0]; 741 742 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 743 exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base; 744 exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len); 745 exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len; 746 exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len; 747 } 748 749 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 750 &dst_iovs[0], dst_iovcnt, false, &cb_arg); 751 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 752 CU_ASSERT(rc == 0); 753 754 } 755 756 static void 757 test_compress_operation_cross_boundary(void) 758 { 759 struct iovec src_iovs[3] = {}; 760 int src_iovcnt; 761 struct iovec dst_iovs[3] = {}; 762 int dst_iovcnt; 763 struct spdk_reduce_vol_cb_args cb_arg; 764 int rc, i; 765 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 766 struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP_BOUND_TEST]; 767 768 /* Setup the same basic 3 IOV test as used in the simple success case 769 * but then we'll start testing a vtophy boundary crossing at each 770 * position. 771 */ 772 src_iovcnt = dst_iovcnt = 3; 773 for (i = 0; i < dst_iovcnt; i++) { 774 src_iovs[i].iov_len = 0x1000; 775 dst_iovs[i].iov_len = 0x1000; 776 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 777 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 778 } 779 780 ut_expected_op.private_xform = &g_decomp_xform; 781 ut_expected_op.src.offset = 0; 782 ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len; 783 784 /* setup the src expected values */ 785 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false); 786 ut_expected_op.m_src = exp_src_mbuf[0]; 787 788 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 789 *RTE_MBUF_DYNFIELD(exp_src_mbuf[i], g_mbuf_offset, uint64_t *) = (uint64_t)&cb_arg; 790 exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base; 791 exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len); 792 exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len; 793 exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len; 794 } 795 796 /* setup the dst expected values, we don't test needing a 4th dst mbuf */ 797 _get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false); 798 ut_expected_op.dst.offset = 0; 799 ut_expected_op.m_dst = exp_dst_mbuf[0]; 800 801 for (i = 0; i < UT_MBUFS_PER_OP; i++) { 802 exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base; 803 exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len); 804 exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len; 805 exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len; 806 } 807 808 /* force the 1st IOV to get partial length from spdk_vtophys */ 809 g_small_size_counter = 0; 810 g_small_size_modify = 1; 811 g_small_size = 0x800; 812 *RTE_MBUF_DYNFIELD(exp_src_mbuf[3], g_mbuf_offset, uint64_t *) = (uint64_t)&cb_arg; 813 814 /* first only has shorter length */ 815 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x800; 816 817 /* 2nd was inserted by the boundary crossing condition and finishes off 818 * the length from the first */ 819 exp_src_mbuf[1]->buf_addr = (void *)0x10000800; 820 exp_src_mbuf[1]->buf_iova = 0x10000800; 821 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800; 822 823 /* 3rd looks like that the 2nd would have */ 824 exp_src_mbuf[2]->buf_addr = (void *)0x10001000; 825 exp_src_mbuf[2]->buf_iova = 0x10001000; 826 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x1000; 827 828 /* a new 4th looks like what the 3rd would have */ 829 exp_src_mbuf[3]->buf_addr = (void *)0x10002000; 830 exp_src_mbuf[3]->buf_iova = 0x10002000; 831 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000; 832 833 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 834 &dst_iovs[0], dst_iovcnt, false, &cb_arg); 835 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 836 CU_ASSERT(rc == 0); 837 838 /* Now force the 2nd IOV to get partial length from spdk_vtophys */ 839 g_small_size_counter = 0; 840 g_small_size_modify = 2; 841 g_small_size = 0x800; 842 843 /* first is normal */ 844 exp_src_mbuf[0]->buf_addr = (void *)0x10000000; 845 exp_src_mbuf[0]->buf_iova = 0x10000000; 846 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000; 847 848 /* second only has shorter length */ 849 exp_src_mbuf[1]->buf_addr = (void *)0x10001000; 850 exp_src_mbuf[1]->buf_iova = 0x10001000; 851 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800; 852 853 /* 3rd was inserted by the boundary crossing condition and finishes off 854 * the length from the first */ 855 exp_src_mbuf[2]->buf_addr = (void *)0x10001800; 856 exp_src_mbuf[2]->buf_iova = 0x10001800; 857 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800; 858 859 /* a new 4th looks like what the 3rd would have */ 860 exp_src_mbuf[3]->buf_addr = (void *)0x10002000; 861 exp_src_mbuf[3]->buf_iova = 0x10002000; 862 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000; 863 864 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 865 &dst_iovs[0], dst_iovcnt, false, &cb_arg); 866 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 867 CU_ASSERT(rc == 0); 868 869 /* Finally force the 3rd IOV to get partial length from spdk_vtophys */ 870 g_small_size_counter = 0; 871 g_small_size_modify = 3; 872 g_small_size = 0x800; 873 874 /* first is normal */ 875 exp_src_mbuf[0]->buf_addr = (void *)0x10000000; 876 exp_src_mbuf[0]->buf_iova = 0x10000000; 877 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000; 878 879 /* second is normal */ 880 exp_src_mbuf[1]->buf_addr = (void *)0x10001000; 881 exp_src_mbuf[1]->buf_iova = 0x10001000; 882 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x1000; 883 884 /* 3rd has shorter length */ 885 exp_src_mbuf[2]->buf_addr = (void *)0x10002000; 886 exp_src_mbuf[2]->buf_iova = 0x10002000; 887 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800; 888 889 /* a new 4th handles the remainder from the 3rd */ 890 exp_src_mbuf[3]->buf_addr = (void *)0x10002800; 891 exp_src_mbuf[3]->buf_iova = 0x10002800; 892 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x800; 893 894 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt, 895 &dst_iovs[0], dst_iovcnt, false, &cb_arg); 896 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 897 CU_ASSERT(rc == 0); 898 } 899 900 static void 901 test_poller(void) 902 { 903 int rc; 904 struct spdk_reduce_vol_cb_args *cb_args; 905 struct rte_mbuf mbuf[4]; /* one src, one dst, 2 ops */ 906 struct vbdev_comp_op *op_to_queue; 907 struct iovec src_iovs[3] = {}; 908 struct iovec dst_iovs[3] = {}; 909 int i; 910 911 cb_args = calloc(1, sizeof(*cb_args)); 912 SPDK_CU_ASSERT_FATAL(cb_args != NULL); 913 cb_args->cb_fn = _compress_done; 914 memset(&g_comp_op[0], 0, sizeof(struct rte_comp_op)); 915 g_comp_op[0].m_src = &mbuf[0]; 916 g_comp_op[1].m_src = &mbuf[1]; 917 g_comp_op[0].m_dst = &mbuf[2]; 918 g_comp_op[1].m_dst = &mbuf[3]; 919 for (i = 0; i < 3; i++) { 920 src_iovs[i].iov_len = 0x1000; 921 dst_iovs[i].iov_len = 0x1000; 922 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i; 923 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i; 924 } 925 926 /* Error from dequeue, nothing needing to be resubmitted. 927 */ 928 ut_rte_compressdev_dequeue_burst = 1; 929 /* setup what we want dequeue to return for the op */ 930 *RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args; 931 g_comp_op[0].produced = 1; 932 g_comp_op[0].status = 1; 933 /* value asserted in the reduce callback */ 934 ut_compress_done[0] = -EINVAL; 935 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 936 rc = comp_dev_poller((void *)&g_comp_bdev); 937 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 938 CU_ASSERT(rc == SPDK_POLLER_BUSY); 939 940 /* Success from dequeue, 2 ops. nothing needing to be resubmitted. 941 */ 942 ut_rte_compressdev_dequeue_burst = 2; 943 /* setup what we want dequeue to return for the op */ 944 *RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args; 945 g_comp_op[0].produced = 16; 946 g_comp_op[0].status = 0; 947 *RTE_MBUF_DYNFIELD(g_comp_op[1].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args; 948 g_comp_op[1].produced = 32; 949 g_comp_op[1].status = 0; 950 /* value asserted in the reduce callback */ 951 ut_compress_done[0] = 16; 952 ut_compress_done[1] = 32; 953 done_count = 2; 954 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 955 rc = comp_dev_poller((void *)&g_comp_bdev); 956 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 957 CU_ASSERT(rc == SPDK_POLLER_BUSY); 958 959 /* Success from dequeue, one op to be resubmitted. 960 */ 961 ut_rte_compressdev_dequeue_burst = 1; 962 /* setup what we want dequeue to return for the op */ 963 *RTE_MBUF_DYNFIELD(g_comp_op[0].m_src, g_mbuf_offset, uint64_t *) = (uint64_t)cb_args; 964 g_comp_op[0].produced = 16; 965 g_comp_op[0].status = 0; 966 /* value asserted in the reduce callback */ 967 ut_compress_done[0] = 16; 968 done_count = 1; 969 op_to_queue = calloc(1, sizeof(struct vbdev_comp_op)); 970 SPDK_CU_ASSERT_FATAL(op_to_queue != NULL); 971 op_to_queue->backing_dev = &g_comp_bdev.backing_dev; 972 op_to_queue->src_iovs = &src_iovs[0]; 973 op_to_queue->src_iovcnt = 3; 974 op_to_queue->dst_iovs = &dst_iovs[0]; 975 op_to_queue->dst_iovcnt = 3; 976 op_to_queue->compress = true; 977 op_to_queue->cb_arg = cb_args; 978 ut_enqueue_value = FAKE_ENQUEUE_SUCCESS; 979 TAILQ_INSERT_TAIL(&g_comp_bdev.queued_comp_ops, 980 op_to_queue, 981 link); 982 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false); 983 rc = comp_dev_poller((void *)&g_comp_bdev); 984 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true); 985 CU_ASSERT(rc == SPDK_POLLER_BUSY); 986 987 /* op_to_queue is freed in code under test */ 988 free(cb_args); 989 } 990 991 static void 992 test_vbdev_compress_submit_request(void) 993 { 994 /* Single element block size write */ 995 g_bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 996 g_bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE; 997 g_completion_called = false; 998 vbdev_compress_submit_request(g_io_ch, g_bdev_io); 999 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS); 1000 CU_ASSERT(g_completion_called == true); 1001 CU_ASSERT(g_io_ctx->orig_io == g_bdev_io); 1002 CU_ASSERT(g_io_ctx->comp_bdev == &g_comp_bdev); 1003 CU_ASSERT(g_io_ctx->comp_ch == g_comp_ch); 1004 1005 /* same write but now fail it */ 1006 ut_spdk_reduce_vol_op_complete_err = 1; 1007 g_completion_called = false; 1008 vbdev_compress_submit_request(g_io_ch, g_bdev_io); 1009 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FAILED); 1010 CU_ASSERT(g_completion_called == true); 1011 1012 /* test a read success */ 1013 g_bdev_io->type = SPDK_BDEV_IO_TYPE_READ; 1014 ut_spdk_reduce_vol_op_complete_err = 0; 1015 g_completion_called = false; 1016 vbdev_compress_submit_request(g_io_ch, g_bdev_io); 1017 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS); 1018 CU_ASSERT(g_completion_called == true); 1019 1020 /* test a read failure */ 1021 ut_spdk_reduce_vol_op_complete_err = 1; 1022 g_completion_called = false; 1023 vbdev_compress_submit_request(g_io_ch, g_bdev_io); 1024 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FAILED); 1025 CU_ASSERT(g_completion_called == true); 1026 } 1027 1028 static void 1029 test_passthru(void) 1030 { 1031 1032 } 1033 1034 static void 1035 test_reset(void) 1036 { 1037 /* TODO: There are a few different ways to do this given that 1038 * the code uses spdk_for_each_channel() to implement reset 1039 * handling. SUbmitting w/o UT for this function for now and 1040 * will follow up with something shortly. 1041 */ 1042 } 1043 1044 static void 1045 test_initdrivers(void) 1046 { 1047 int rc; 1048 1049 /* test return values from rte_vdev_init() */ 1050 MOCK_SET(rte_vdev_init, -EEXIST); 1051 rc = vbdev_init_compress_drivers(); 1052 /* This is not an error condition, we already have one */ 1053 CU_ASSERT(rc == 0); 1054 1055 /* error */ 1056 MOCK_SET(rte_vdev_init, -2); 1057 rc = vbdev_init_compress_drivers(); 1058 CU_ASSERT(rc == -EINVAL); 1059 CU_ASSERT(g_mbuf_mp == NULL); 1060 CU_ASSERT(g_comp_op_mp == NULL); 1061 1062 /* compressdev count 0 */ 1063 ut_rte_compressdev_count = 0; 1064 MOCK_SET(rte_vdev_init, 0); 1065 rc = vbdev_init_compress_drivers(); 1066 CU_ASSERT(rc == 0); 1067 1068 /* bogus count */ 1069 ut_rte_compressdev_count = RTE_COMPRESS_MAX_DEVS + 1; 1070 rc = vbdev_init_compress_drivers(); 1071 CU_ASSERT(rc == -EINVAL); 1072 1073 /* can't get mbuf pool */ 1074 ut_rte_compressdev_count = 1; 1075 MOCK_SET(spdk_mempool_create, NULL); 1076 rc = vbdev_init_compress_drivers(); 1077 CU_ASSERT(rc == -ENOMEM); 1078 MOCK_CLEAR(spdk_mempool_create); 1079 1080 /* can't get comp op pool */ 1081 ut_rte_comp_op_pool_create = NULL; 1082 rc = vbdev_init_compress_drivers(); 1083 CU_ASSERT(rc == -ENOMEM); 1084 1085 /* error on create_compress_dev() */ 1086 ut_rte_comp_op_pool_create = (struct rte_mempool *)&test_initdrivers; 1087 ut_rte_compressdev_configure = -1; 1088 rc = vbdev_init_compress_drivers(); 1089 CU_ASSERT(rc == -1); 1090 1091 /* error on create_compress_dev() but coverage for large num queues */ 1092 ut_max_nb_queue_pairs = 99; 1093 rc = vbdev_init_compress_drivers(); 1094 CU_ASSERT(rc == -1); 1095 1096 /* qpair setup fails */ 1097 ut_rte_compressdev_configure = 0; 1098 ut_max_nb_queue_pairs = 0; 1099 ut_rte_compressdev_queue_pair_setup = -1; 1100 rc = vbdev_init_compress_drivers(); 1101 CU_ASSERT(rc == -EINVAL); 1102 1103 /* rte_compressdev_start fails */ 1104 ut_rte_compressdev_queue_pair_setup = 0; 1105 ut_rte_compressdev_start = -1; 1106 rc = vbdev_init_compress_drivers(); 1107 CU_ASSERT(rc == -1); 1108 1109 /* rte_compressdev_private_xform_create() fails */ 1110 ut_rte_compressdev_start = 0; 1111 ut_rte_compressdev_private_xform_create = -2; 1112 rc = vbdev_init_compress_drivers(); 1113 CU_ASSERT(rc == -2); 1114 1115 /* success */ 1116 ut_rte_compressdev_private_xform_create = 0; 1117 rc = vbdev_init_compress_drivers(); 1118 CU_ASSERT(rc == 0); 1119 CU_ASSERT(g_mbuf_offset == DPDK_DYNFIELD_OFFSET); 1120 spdk_mempool_free((struct spdk_mempool *)g_mbuf_mp); 1121 } 1122 1123 static void 1124 test_supported_io(void) 1125 { 1126 1127 } 1128 1129 int 1130 main(int argc, char **argv) 1131 { 1132 CU_pSuite suite = NULL; 1133 unsigned int num_failures; 1134 1135 CU_set_error_action(CUEA_ABORT); 1136 CU_initialize_registry(); 1137 1138 suite = CU_add_suite("compress", test_setup, test_cleanup); 1139 CU_ADD_TEST(suite, test_compress_operation); 1140 CU_ADD_TEST(suite, test_compress_operation_cross_boundary); 1141 CU_ADD_TEST(suite, test_vbdev_compress_submit_request); 1142 CU_ADD_TEST(suite, test_passthru); 1143 CU_ADD_TEST(suite, test_initdrivers); 1144 CU_ADD_TEST(suite, test_supported_io); 1145 CU_ADD_TEST(suite, test_poller); 1146 CU_ADD_TEST(suite, test_reset); 1147 1148 CU_basic_set_mode(CU_BRM_VERBOSE); 1149 CU_basic_run_tests(); 1150 num_failures = CU_get_number_of_failures(); 1151 CU_cleanup_registry(); 1152 return num_failures; 1153 } 1154