xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision f6866117acb32c78d5ea7bd76ba330284655af35)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2017 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 
25 static bool g_memory_domain_pull_data_called;
26 static bool g_memory_domain_push_data_called;
27 
28 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
29 int
30 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
31 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
32 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
33 {
34 	g_memory_domain_pull_data_called = true;
35 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
36 	cpl_cb(cpl_cb_arg, 0);
37 	return 0;
38 }
39 
40 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
41 int
42 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
43 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
44 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
45 {
46 	g_memory_domain_push_data_called = true;
47 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
48 	cpl_cb(cpl_cb_arg, 0);
49 	return 0;
50 }
51 
52 int g_status;
53 int g_count;
54 enum spdk_bdev_event_type g_event_type1;
55 enum spdk_bdev_event_type g_event_type2;
56 enum spdk_bdev_event_type g_event_type3;
57 enum spdk_bdev_event_type g_event_type4;
58 struct spdk_histogram_data *g_histogram;
59 void *g_unregister_arg;
60 int g_unregister_rc;
61 
62 void
63 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
64 			 int *sc, int *sk, int *asc, int *ascq)
65 {
66 }
67 
68 static int
69 null_init(void)
70 {
71 	return 0;
72 }
73 
74 static int
75 null_clean(void)
76 {
77 	return 0;
78 }
79 
80 static int
81 stub_destruct(void *ctx)
82 {
83 	return 0;
84 }
85 
86 struct ut_expected_io {
87 	uint8_t				type;
88 	uint64_t			offset;
89 	uint64_t			src_offset;
90 	uint64_t			length;
91 	int				iovcnt;
92 	struct iovec			iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
93 	void				*md_buf;
94 	TAILQ_ENTRY(ut_expected_io)	link;
95 };
96 
97 struct bdev_ut_channel {
98 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
99 	uint32_t			outstanding_io_count;
100 	TAILQ_HEAD(, ut_expected_io)	expected_io;
101 };
102 
103 static bool g_io_done;
104 static struct spdk_bdev_io *g_bdev_io;
105 static enum spdk_bdev_io_status g_io_status;
106 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
107 static uint32_t g_bdev_ut_io_device;
108 static struct bdev_ut_channel *g_bdev_ut_channel;
109 static void *g_compare_read_buf;
110 static uint32_t g_compare_read_buf_len;
111 static void *g_compare_write_buf;
112 static uint32_t g_compare_write_buf_len;
113 static void *g_compare_md_buf;
114 static bool g_abort_done;
115 static enum spdk_bdev_io_status g_abort_status;
116 static void *g_zcopy_read_buf;
117 static uint32_t g_zcopy_read_buf_len;
118 static void *g_zcopy_write_buf;
119 static uint32_t g_zcopy_write_buf_len;
120 static struct spdk_bdev_io *g_zcopy_bdev_io;
121 static uint64_t g_seek_data_offset;
122 static uint64_t g_seek_hole_offset;
123 static uint64_t g_seek_offset;
124 
125 static struct ut_expected_io *
126 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
127 {
128 	struct ut_expected_io *expected_io;
129 
130 	expected_io = calloc(1, sizeof(*expected_io));
131 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
132 
133 	expected_io->type = type;
134 	expected_io->offset = offset;
135 	expected_io->length = length;
136 	expected_io->iovcnt = iovcnt;
137 
138 	return expected_io;
139 }
140 
141 static struct ut_expected_io *
142 ut_alloc_expected_copy_io(uint8_t type, uint64_t offset, uint64_t src_offset, uint64_t length)
143 {
144 	struct ut_expected_io *expected_io;
145 
146 	expected_io = calloc(1, sizeof(*expected_io));
147 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
148 
149 	expected_io->type = type;
150 	expected_io->offset = offset;
151 	expected_io->src_offset = src_offset;
152 	expected_io->length = length;
153 
154 	return expected_io;
155 }
156 
157 static void
158 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
159 {
160 	expected_io->iov[pos].iov_base = base;
161 	expected_io->iov[pos].iov_len = len;
162 }
163 
164 static void
165 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
166 {
167 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
168 	struct ut_expected_io *expected_io;
169 	struct iovec *iov, *expected_iov;
170 	struct spdk_bdev_io *bio_to_abort;
171 	int i;
172 
173 	g_bdev_io = bdev_io;
174 
175 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
176 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
177 
178 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
179 		CU_ASSERT(g_compare_read_buf_len == len);
180 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
181 		if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
182 			memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
183 			       bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
184 		}
185 	}
186 
187 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
188 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
189 
190 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
191 		CU_ASSERT(g_compare_write_buf_len == len);
192 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
193 	}
194 
195 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
196 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
197 
198 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
199 		CU_ASSERT(g_compare_read_buf_len == len);
200 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
201 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
202 		}
203 		if (bdev_io->u.bdev.md_buf &&
204 		    memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
205 			   bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
206 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
207 		}
208 	}
209 
210 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
211 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
212 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
213 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
214 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
215 					ch->outstanding_io_count--;
216 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
217 					break;
218 				}
219 			}
220 		}
221 	}
222 
223 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
224 		if (bdev_io->u.bdev.zcopy.start) {
225 			g_zcopy_bdev_io = bdev_io;
226 			if (bdev_io->u.bdev.zcopy.populate) {
227 				/* Start of a read */
228 				CU_ASSERT(g_zcopy_read_buf != NULL);
229 				CU_ASSERT(g_zcopy_read_buf_len > 0);
230 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
231 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
232 				bdev_io->u.bdev.iovcnt = 1;
233 			} else {
234 				/* Start of a write */
235 				CU_ASSERT(g_zcopy_write_buf != NULL);
236 				CU_ASSERT(g_zcopy_write_buf_len > 0);
237 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
238 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
239 				bdev_io->u.bdev.iovcnt = 1;
240 			}
241 		} else {
242 			if (bdev_io->u.bdev.zcopy.commit) {
243 				/* End of write */
244 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
245 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
246 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
247 				g_zcopy_write_buf = NULL;
248 				g_zcopy_write_buf_len = 0;
249 			} else {
250 				/* End of read */
251 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
252 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
253 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
254 				g_zcopy_read_buf = NULL;
255 				g_zcopy_read_buf_len = 0;
256 			}
257 		}
258 	}
259 
260 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
261 		bdev_io->u.bdev.seek.offset = g_seek_data_offset;
262 	}
263 
264 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) {
265 		bdev_io->u.bdev.seek.offset = g_seek_hole_offset;
266 	}
267 
268 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
269 	ch->outstanding_io_count++;
270 
271 	expected_io = TAILQ_FIRST(&ch->expected_io);
272 	if (expected_io == NULL) {
273 		return;
274 	}
275 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
276 
277 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
278 		CU_ASSERT(bdev_io->type == expected_io->type);
279 	}
280 
281 	if (expected_io->md_buf != NULL) {
282 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
283 	}
284 
285 	if (expected_io->length == 0) {
286 		free(expected_io);
287 		return;
288 	}
289 
290 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
291 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
292 	if (expected_io->type == SPDK_BDEV_IO_TYPE_COPY) {
293 		CU_ASSERT(expected_io->src_offset == bdev_io->u.bdev.copy.src_offset_blocks);
294 	}
295 
296 	if (expected_io->iovcnt == 0) {
297 		free(expected_io);
298 		/* UNMAP, WRITE_ZEROES, FLUSH and COPY don't have iovs, so we can just return now. */
299 		return;
300 	}
301 
302 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
303 	for (i = 0; i < expected_io->iovcnt; i++) {
304 		expected_iov = &expected_io->iov[i];
305 		if (bdev_io->internal.orig_iovcnt == 0) {
306 			iov = &bdev_io->u.bdev.iovs[i];
307 		} else {
308 			iov = bdev_io->internal.orig_iovs;
309 		}
310 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
311 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
312 	}
313 
314 	free(expected_io);
315 }
316 
317 static void
318 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
319 			       struct spdk_bdev_io *bdev_io, bool success)
320 {
321 	CU_ASSERT(success == true);
322 
323 	stub_submit_request(_ch, bdev_io);
324 }
325 
326 static void
327 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
328 {
329 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
330 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
331 }
332 
333 static uint32_t
334 stub_complete_io(uint32_t num_to_complete)
335 {
336 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
337 	struct spdk_bdev_io *bdev_io;
338 	static enum spdk_bdev_io_status io_status;
339 	uint32_t num_completed = 0;
340 
341 	while (num_completed < num_to_complete) {
342 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
343 			break;
344 		}
345 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
346 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
347 		ch->outstanding_io_count--;
348 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
349 			    g_io_exp_status;
350 		spdk_bdev_io_complete(bdev_io, io_status);
351 		num_completed++;
352 	}
353 
354 	return num_completed;
355 }
356 
357 static struct spdk_io_channel *
358 bdev_ut_get_io_channel(void *ctx)
359 {
360 	return spdk_get_io_channel(&g_bdev_ut_io_device);
361 }
362 
363 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
364 	[SPDK_BDEV_IO_TYPE_READ]		= true,
365 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
366 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
367 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
368 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
369 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
370 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
371 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
372 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
373 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
374 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
375 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
376 	[SPDK_BDEV_IO_TYPE_SEEK_HOLE]		= true,
377 	[SPDK_BDEV_IO_TYPE_SEEK_DATA]		= true,
378 	[SPDK_BDEV_IO_TYPE_COPY]		= true,
379 };
380 
381 static void
382 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
383 {
384 	g_io_types_supported[io_type] = enable;
385 }
386 
387 static bool
388 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
389 {
390 	return g_io_types_supported[io_type];
391 }
392 
393 static struct spdk_bdev_fn_table fn_table = {
394 	.destruct = stub_destruct,
395 	.submit_request = stub_submit_request,
396 	.get_io_channel = bdev_ut_get_io_channel,
397 	.io_type_supported = stub_io_type_supported,
398 };
399 
400 static int
401 bdev_ut_create_ch(void *io_device, void *ctx_buf)
402 {
403 	struct bdev_ut_channel *ch = ctx_buf;
404 
405 	CU_ASSERT(g_bdev_ut_channel == NULL);
406 	g_bdev_ut_channel = ch;
407 
408 	TAILQ_INIT(&ch->outstanding_io);
409 	ch->outstanding_io_count = 0;
410 	TAILQ_INIT(&ch->expected_io);
411 	return 0;
412 }
413 
414 static void
415 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
416 {
417 	CU_ASSERT(g_bdev_ut_channel != NULL);
418 	g_bdev_ut_channel = NULL;
419 }
420 
421 struct spdk_bdev_module bdev_ut_if;
422 
423 static int
424 bdev_ut_module_init(void)
425 {
426 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
427 				sizeof(struct bdev_ut_channel), NULL);
428 	spdk_bdev_module_init_done(&bdev_ut_if);
429 	return 0;
430 }
431 
432 static void
433 bdev_ut_module_fini(void)
434 {
435 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
436 }
437 
438 struct spdk_bdev_module bdev_ut_if = {
439 	.name = "bdev_ut",
440 	.module_init = bdev_ut_module_init,
441 	.module_fini = bdev_ut_module_fini,
442 	.async_init = true,
443 };
444 
445 static void vbdev_ut_examine_config(struct spdk_bdev *bdev);
446 static void vbdev_ut_examine_disk(struct spdk_bdev *bdev);
447 
448 static int
449 vbdev_ut_module_init(void)
450 {
451 	return 0;
452 }
453 
454 static void
455 vbdev_ut_module_fini(void)
456 {
457 }
458 
459 struct spdk_bdev_module vbdev_ut_if = {
460 	.name = "vbdev_ut",
461 	.module_init = vbdev_ut_module_init,
462 	.module_fini = vbdev_ut_module_fini,
463 	.examine_config = vbdev_ut_examine_config,
464 	.examine_disk = vbdev_ut_examine_disk,
465 };
466 
467 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
468 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
469 
470 struct ut_examine_ctx {
471 	void (*examine_config)(struct spdk_bdev *bdev);
472 	void (*examine_disk)(struct spdk_bdev *bdev);
473 	uint32_t examine_config_count;
474 	uint32_t examine_disk_count;
475 };
476 
477 static void
478 vbdev_ut_examine_config(struct spdk_bdev *bdev)
479 {
480 	struct ut_examine_ctx *ctx = bdev->ctxt;
481 
482 	if (ctx != NULL) {
483 		ctx->examine_config_count++;
484 		if (ctx->examine_config != NULL) {
485 			ctx->examine_config(bdev);
486 		}
487 	}
488 
489 	spdk_bdev_module_examine_done(&vbdev_ut_if);
490 }
491 
492 static void
493 vbdev_ut_examine_disk(struct spdk_bdev *bdev)
494 {
495 	struct ut_examine_ctx *ctx = bdev->ctxt;
496 
497 	if (ctx != NULL) {
498 		ctx->examine_disk_count++;
499 		if (ctx->examine_disk != NULL) {
500 			ctx->examine_disk(bdev);
501 		}
502 	}
503 
504 	spdk_bdev_module_examine_done(&vbdev_ut_if);
505 }
506 
507 static struct spdk_bdev *
508 allocate_bdev_ctx(char *name, void *ctx)
509 {
510 	struct spdk_bdev *bdev;
511 	int rc;
512 
513 	bdev = calloc(1, sizeof(*bdev));
514 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
515 
516 	bdev->ctxt = ctx;
517 	bdev->name = name;
518 	bdev->fn_table = &fn_table;
519 	bdev->module = &bdev_ut_if;
520 	bdev->blockcnt = 1024;
521 	bdev->blocklen = 512;
522 
523 	spdk_uuid_generate(&bdev->uuid);
524 
525 	rc = spdk_bdev_register(bdev);
526 	poll_threads();
527 	CU_ASSERT(rc == 0);
528 
529 	return bdev;
530 }
531 
532 static struct spdk_bdev *
533 allocate_bdev(char *name)
534 {
535 	return allocate_bdev_ctx(name, NULL);
536 }
537 
538 static struct spdk_bdev *
539 allocate_vbdev(char *name)
540 {
541 	struct spdk_bdev *bdev;
542 	int rc;
543 
544 	bdev = calloc(1, sizeof(*bdev));
545 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
546 
547 	bdev->name = name;
548 	bdev->fn_table = &fn_table;
549 	bdev->module = &vbdev_ut_if;
550 
551 	rc = spdk_bdev_register(bdev);
552 	poll_threads();
553 	CU_ASSERT(rc == 0);
554 
555 	return bdev;
556 }
557 
558 static void
559 free_bdev(struct spdk_bdev *bdev)
560 {
561 	spdk_bdev_unregister(bdev, NULL, NULL);
562 	poll_threads();
563 	memset(bdev, 0xFF, sizeof(*bdev));
564 	free(bdev);
565 }
566 
567 static void
568 free_vbdev(struct spdk_bdev *bdev)
569 {
570 	spdk_bdev_unregister(bdev, NULL, NULL);
571 	poll_threads();
572 	memset(bdev, 0xFF, sizeof(*bdev));
573 	free(bdev);
574 }
575 
576 static void
577 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
578 {
579 	const char *bdev_name;
580 
581 	CU_ASSERT(bdev != NULL);
582 	CU_ASSERT(rc == 0);
583 	bdev_name = spdk_bdev_get_name(bdev);
584 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
585 
586 	free(stat);
587 
588 	*(bool *)cb_arg = true;
589 }
590 
591 static void
592 bdev_unregister_cb(void *cb_arg, int rc)
593 {
594 	g_unregister_arg = cb_arg;
595 	g_unregister_rc = rc;
596 }
597 
598 static void
599 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
600 {
601 }
602 
603 static void
604 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
605 {
606 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
607 
608 	g_event_type1 = type;
609 	if (SPDK_BDEV_EVENT_REMOVE == type) {
610 		spdk_bdev_close(desc);
611 	}
612 }
613 
614 static void
615 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
616 {
617 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
618 
619 	g_event_type2 = type;
620 	if (SPDK_BDEV_EVENT_REMOVE == type) {
621 		spdk_bdev_close(desc);
622 	}
623 }
624 
625 static void
626 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
627 {
628 	g_event_type3 = type;
629 }
630 
631 static void
632 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
633 {
634 	g_event_type4 = type;
635 }
636 
637 static void
638 bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
639 {
640 	g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io);
641 	spdk_bdev_free_io(bdev_io);
642 }
643 
644 static void
645 get_device_stat_test(void)
646 {
647 	struct spdk_bdev *bdev;
648 	struct spdk_bdev_io_stat *stat;
649 	bool done;
650 
651 	bdev = allocate_bdev("bdev0");
652 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
653 	if (stat == NULL) {
654 		free_bdev(bdev);
655 		return;
656 	}
657 
658 	done = false;
659 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
660 	while (!done) { poll_threads(); }
661 
662 	free_bdev(bdev);
663 }
664 
665 static void
666 open_write_test(void)
667 {
668 	struct spdk_bdev *bdev[9];
669 	struct spdk_bdev_desc *desc[9] = {};
670 	int rc;
671 
672 	/*
673 	 * Create a tree of bdevs to test various open w/ write cases.
674 	 *
675 	 * bdev0 through bdev3 are physical block devices, such as NVMe
676 	 * namespaces or Ceph block devices.
677 	 *
678 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
679 	 * caching or RAID use cases.
680 	 *
681 	 * bdev5 through bdev7 are all virtual bdevs with the same base
682 	 * bdev (except bdev7). This models partitioning or logical volume
683 	 * use cases.
684 	 *
685 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
686 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
687 	 * models caching, RAID, partitioning or logical volumes use cases.
688 	 *
689 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
690 	 * base bdevs are themselves virtual bdevs.
691 	 *
692 	 *                bdev8
693 	 *                  |
694 	 *            +----------+
695 	 *            |          |
696 	 *          bdev4      bdev5   bdev6   bdev7
697 	 *            |          |       |       |
698 	 *        +---+---+      +---+   +   +---+---+
699 	 *        |       |           \  |  /         \
700 	 *      bdev0   bdev1          bdev2         bdev3
701 	 */
702 
703 	bdev[0] = allocate_bdev("bdev0");
704 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
705 	CU_ASSERT(rc == 0);
706 
707 	bdev[1] = allocate_bdev("bdev1");
708 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
709 	CU_ASSERT(rc == 0);
710 
711 	bdev[2] = allocate_bdev("bdev2");
712 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
713 	CU_ASSERT(rc == 0);
714 
715 	bdev[3] = allocate_bdev("bdev3");
716 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
717 	CU_ASSERT(rc == 0);
718 
719 	bdev[4] = allocate_vbdev("bdev4");
720 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
721 	CU_ASSERT(rc == 0);
722 
723 	bdev[5] = allocate_vbdev("bdev5");
724 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
725 	CU_ASSERT(rc == 0);
726 
727 	bdev[6] = allocate_vbdev("bdev6");
728 
729 	bdev[7] = allocate_vbdev("bdev7");
730 
731 	bdev[8] = allocate_vbdev("bdev8");
732 
733 	/* Open bdev0 read-only.  This should succeed. */
734 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
735 	CU_ASSERT(rc == 0);
736 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
737 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
738 	spdk_bdev_close(desc[0]);
739 
740 	/*
741 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
742 	 * by a vbdev module.
743 	 */
744 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
745 	CU_ASSERT(rc == -EPERM);
746 
747 	/*
748 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
749 	 * by a vbdev module.
750 	 */
751 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
752 	CU_ASSERT(rc == -EPERM);
753 
754 	/* Open bdev4 read-only.  This should succeed. */
755 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
756 	CU_ASSERT(rc == 0);
757 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
758 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
759 	spdk_bdev_close(desc[4]);
760 
761 	/*
762 	 * Open bdev8 read/write.  This should succeed since it is a leaf
763 	 * bdev.
764 	 */
765 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
766 	CU_ASSERT(rc == 0);
767 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
768 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
769 	spdk_bdev_close(desc[8]);
770 
771 	/*
772 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
773 	 * by a vbdev module.
774 	 */
775 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
776 	CU_ASSERT(rc == -EPERM);
777 
778 	/* Open bdev4 read-only.  This should succeed. */
779 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
780 	CU_ASSERT(rc == 0);
781 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
782 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
783 	spdk_bdev_close(desc[5]);
784 
785 	free_vbdev(bdev[8]);
786 
787 	free_vbdev(bdev[5]);
788 	free_vbdev(bdev[6]);
789 	free_vbdev(bdev[7]);
790 
791 	free_vbdev(bdev[4]);
792 
793 	free_bdev(bdev[0]);
794 	free_bdev(bdev[1]);
795 	free_bdev(bdev[2]);
796 	free_bdev(bdev[3]);
797 }
798 
799 static void
800 claim_test(void)
801 {
802 	struct spdk_bdev *bdev;
803 	struct spdk_bdev_desc *desc, *open_desc;
804 	int rc;
805 	uint32_t count;
806 
807 	/*
808 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
809 	 * To do so, it opens the bdev read-only, then claims it without
810 	 * passing a spdk_bdev_desc.
811 	 */
812 	bdev = allocate_bdev("bdev0");
813 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
814 	CU_ASSERT(rc == 0);
815 	CU_ASSERT(desc->write == false);
816 
817 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
818 	CU_ASSERT(rc == 0);
819 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
820 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
821 
822 	/* There should be only one open descriptor and it should still be ro */
823 	count = 0;
824 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
825 		CU_ASSERT(open_desc == desc);
826 		CU_ASSERT(!open_desc->write);
827 		count++;
828 	}
829 	CU_ASSERT(count == 1);
830 
831 	/* A read-only bdev is upgraded to read-write if desc is passed. */
832 	spdk_bdev_module_release_bdev(bdev);
833 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
834 	CU_ASSERT(rc == 0);
835 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
836 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
837 
838 	/* There should be only one open descriptor and it should be rw */
839 	count = 0;
840 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
841 		CU_ASSERT(open_desc == desc);
842 		CU_ASSERT(open_desc->write);
843 		count++;
844 	}
845 	CU_ASSERT(count == 1);
846 
847 	spdk_bdev_close(desc);
848 	free_bdev(bdev);
849 }
850 
851 static void
852 bytes_to_blocks_test(void)
853 {
854 	struct spdk_bdev bdev;
855 	uint64_t offset_blocks, num_blocks;
856 
857 	memset(&bdev, 0, sizeof(bdev));
858 
859 	bdev.blocklen = 512;
860 
861 	/* All parameters valid */
862 	offset_blocks = 0;
863 	num_blocks = 0;
864 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
865 	CU_ASSERT(offset_blocks == 1);
866 	CU_ASSERT(num_blocks == 2);
867 
868 	/* Offset not a block multiple */
869 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
870 
871 	/* Length not a block multiple */
872 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
873 
874 	/* In case blocklen not the power of two */
875 	bdev.blocklen = 100;
876 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
877 	CU_ASSERT(offset_blocks == 1);
878 	CU_ASSERT(num_blocks == 2);
879 
880 	/* Offset not a block multiple */
881 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
882 
883 	/* Length not a block multiple */
884 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
885 }
886 
887 static void
888 num_blocks_test(void)
889 {
890 	struct spdk_bdev bdev;
891 	struct spdk_bdev_desc *desc = NULL;
892 	int rc;
893 
894 	memset(&bdev, 0, sizeof(bdev));
895 	bdev.name = "num_blocks";
896 	bdev.fn_table = &fn_table;
897 	bdev.module = &bdev_ut_if;
898 	spdk_bdev_register(&bdev);
899 	poll_threads();
900 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
901 
902 	/* Growing block number */
903 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
904 	/* Shrinking block number */
905 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
906 
907 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
908 	CU_ASSERT(rc == 0);
909 	SPDK_CU_ASSERT_FATAL(desc != NULL);
910 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc));
911 
912 	/* Growing block number */
913 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
914 	/* Shrinking block number */
915 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
916 
917 	g_event_type1 = 0xFF;
918 	/* Growing block number */
919 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
920 
921 	poll_threads();
922 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
923 
924 	g_event_type1 = 0xFF;
925 	/* Growing block number and closing */
926 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
927 
928 	spdk_bdev_close(desc);
929 	spdk_bdev_unregister(&bdev, NULL, NULL);
930 
931 	poll_threads();
932 
933 	/* Callback is not called for closed device */
934 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
935 }
936 
937 static void
938 io_valid_test(void)
939 {
940 	struct spdk_bdev bdev;
941 
942 	memset(&bdev, 0, sizeof(bdev));
943 
944 	bdev.blocklen = 512;
945 	spdk_spin_init(&bdev.internal.spinlock);
946 
947 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
948 
949 	/* All parameters valid */
950 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
951 
952 	/* Last valid block */
953 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
954 
955 	/* Offset past end of bdev */
956 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
957 
958 	/* Offset + length past end of bdev */
959 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
960 
961 	/* Offset near end of uint64_t range (2^64 - 1) */
962 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
963 
964 	spdk_spin_destroy(&bdev.internal.spinlock);
965 }
966 
967 static void
968 alias_add_del_test(void)
969 {
970 	struct spdk_bdev *bdev[3];
971 	int rc;
972 
973 	/* Creating and registering bdevs */
974 	bdev[0] = allocate_bdev("bdev0");
975 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
976 
977 	bdev[1] = allocate_bdev("bdev1");
978 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
979 
980 	bdev[2] = allocate_bdev("bdev2");
981 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
982 
983 	poll_threads();
984 
985 	/*
986 	 * Trying adding an alias identical to name.
987 	 * Alias is identical to name, so it can not be added to aliases list
988 	 */
989 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
990 	CU_ASSERT(rc == -EEXIST);
991 
992 	/*
993 	 * Trying to add empty alias,
994 	 * this one should fail
995 	 */
996 	rc = spdk_bdev_alias_add(bdev[0], NULL);
997 	CU_ASSERT(rc == -EINVAL);
998 
999 	/* Trying adding same alias to two different registered bdevs */
1000 
1001 	/* Alias is used first time, so this one should pass */
1002 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
1003 	CU_ASSERT(rc == 0);
1004 
1005 	/* Alias was added to another bdev, so this one should fail */
1006 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
1007 	CU_ASSERT(rc == -EEXIST);
1008 
1009 	/* Alias is used first time, so this one should pass */
1010 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
1011 	CU_ASSERT(rc == 0);
1012 
1013 	/* Trying removing an alias from registered bdevs */
1014 
1015 	/* Alias is not on a bdev aliases list, so this one should fail */
1016 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
1017 	CU_ASSERT(rc == -ENOENT);
1018 
1019 	/* Alias is present on a bdev aliases list, so this one should pass */
1020 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
1021 	CU_ASSERT(rc == 0);
1022 
1023 	/* Alias is present on a bdev aliases list, so this one should pass */
1024 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
1025 	CU_ASSERT(rc == 0);
1026 
1027 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
1028 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
1029 	CU_ASSERT(rc != 0);
1030 
1031 	/* Trying to del all alias from empty alias list */
1032 	spdk_bdev_alias_del_all(bdev[2]);
1033 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
1034 
1035 	/* Trying to del all alias from non-empty alias list */
1036 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
1037 	CU_ASSERT(rc == 0);
1038 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
1039 	CU_ASSERT(rc == 0);
1040 	spdk_bdev_alias_del_all(bdev[2]);
1041 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
1042 
1043 	/* Unregister and free bdevs */
1044 	spdk_bdev_unregister(bdev[0], NULL, NULL);
1045 	spdk_bdev_unregister(bdev[1], NULL, NULL);
1046 	spdk_bdev_unregister(bdev[2], NULL, NULL);
1047 
1048 	poll_threads();
1049 
1050 	free(bdev[0]);
1051 	free(bdev[1]);
1052 	free(bdev[2]);
1053 }
1054 
1055 static void
1056 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1057 {
1058 	g_io_done = true;
1059 	g_io_status = bdev_io->internal.status;
1060 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
1061 	    (bdev_io->u.bdev.zcopy.start)) {
1062 		g_zcopy_bdev_io = bdev_io;
1063 	} else {
1064 		spdk_bdev_free_io(bdev_io);
1065 		g_zcopy_bdev_io = NULL;
1066 	}
1067 }
1068 
1069 static void
1070 bdev_init_cb(void *arg, int rc)
1071 {
1072 	CU_ASSERT(rc == 0);
1073 }
1074 
1075 static void
1076 bdev_fini_cb(void *arg)
1077 {
1078 }
1079 
1080 static void
1081 ut_init_bdev(struct spdk_bdev_opts *opts)
1082 {
1083 	int rc;
1084 
1085 	if (opts != NULL) {
1086 		rc = spdk_bdev_set_opts(opts);
1087 		CU_ASSERT(rc == 0);
1088 	}
1089 	rc = spdk_iobuf_initialize();
1090 	CU_ASSERT(rc == 0);
1091 	spdk_bdev_initialize(bdev_init_cb, NULL);
1092 	poll_threads();
1093 }
1094 
1095 static void
1096 ut_fini_bdev(void)
1097 {
1098 	spdk_bdev_finish(bdev_fini_cb, NULL);
1099 	spdk_iobuf_finish(bdev_fini_cb, NULL);
1100 	poll_threads();
1101 }
1102 
1103 struct bdev_ut_io_wait_entry {
1104 	struct spdk_bdev_io_wait_entry	entry;
1105 	struct spdk_io_channel		*io_ch;
1106 	struct spdk_bdev_desc		*desc;
1107 	bool				submitted;
1108 };
1109 
1110 static void
1111 io_wait_cb(void *arg)
1112 {
1113 	struct bdev_ut_io_wait_entry *entry = arg;
1114 	int rc;
1115 
1116 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1117 	CU_ASSERT(rc == 0);
1118 	entry->submitted = true;
1119 }
1120 
1121 static void
1122 bdev_io_types_test(void)
1123 {
1124 	struct spdk_bdev *bdev;
1125 	struct spdk_bdev_desc *desc = NULL;
1126 	struct spdk_io_channel *io_ch;
1127 	struct spdk_bdev_opts bdev_opts = {};
1128 	int rc;
1129 
1130 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1131 	bdev_opts.bdev_io_pool_size = 4;
1132 	bdev_opts.bdev_io_cache_size = 2;
1133 	ut_init_bdev(&bdev_opts);
1134 
1135 	bdev = allocate_bdev("bdev0");
1136 
1137 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1138 	CU_ASSERT(rc == 0);
1139 	poll_threads();
1140 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1141 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1142 	io_ch = spdk_bdev_get_io_channel(desc);
1143 	CU_ASSERT(io_ch != NULL);
1144 
1145 	/* WRITE and WRITE ZEROES are not supported */
1146 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1147 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1148 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1149 	CU_ASSERT(rc == -ENOTSUP);
1150 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1151 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1152 
1153 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1154 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1155 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1156 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1157 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1158 	CU_ASSERT(rc == -ENOTSUP);
1159 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1160 	CU_ASSERT(rc == -ENOTSUP);
1161 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1162 	CU_ASSERT(rc == -ENOTSUP);
1163 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1164 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1165 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1166 
1167 	spdk_put_io_channel(io_ch);
1168 	spdk_bdev_close(desc);
1169 	free_bdev(bdev);
1170 	ut_fini_bdev();
1171 }
1172 
1173 static void
1174 bdev_io_wait_test(void)
1175 {
1176 	struct spdk_bdev *bdev;
1177 	struct spdk_bdev_desc *desc = NULL;
1178 	struct spdk_io_channel *io_ch;
1179 	struct spdk_bdev_opts bdev_opts = {};
1180 	struct bdev_ut_io_wait_entry io_wait_entry;
1181 	struct bdev_ut_io_wait_entry io_wait_entry2;
1182 	int rc;
1183 
1184 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1185 	bdev_opts.bdev_io_pool_size = 4;
1186 	bdev_opts.bdev_io_cache_size = 2;
1187 	ut_init_bdev(&bdev_opts);
1188 
1189 	bdev = allocate_bdev("bdev0");
1190 
1191 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1192 	CU_ASSERT(rc == 0);
1193 	poll_threads();
1194 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1195 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1196 	io_ch = spdk_bdev_get_io_channel(desc);
1197 	CU_ASSERT(io_ch != NULL);
1198 
1199 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1200 	CU_ASSERT(rc == 0);
1201 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1202 	CU_ASSERT(rc == 0);
1203 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1204 	CU_ASSERT(rc == 0);
1205 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1206 	CU_ASSERT(rc == 0);
1207 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1208 
1209 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1210 	CU_ASSERT(rc == -ENOMEM);
1211 
1212 	io_wait_entry.entry.bdev = bdev;
1213 	io_wait_entry.entry.cb_fn = io_wait_cb;
1214 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1215 	io_wait_entry.io_ch = io_ch;
1216 	io_wait_entry.desc = desc;
1217 	io_wait_entry.submitted = false;
1218 	/* Cannot use the same io_wait_entry for two different calls. */
1219 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1220 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1221 
1222 	/* Queue two I/O waits. */
1223 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1224 	CU_ASSERT(rc == 0);
1225 	CU_ASSERT(io_wait_entry.submitted == false);
1226 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1227 	CU_ASSERT(rc == 0);
1228 	CU_ASSERT(io_wait_entry2.submitted == false);
1229 
1230 	stub_complete_io(1);
1231 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1232 	CU_ASSERT(io_wait_entry.submitted == true);
1233 	CU_ASSERT(io_wait_entry2.submitted == false);
1234 
1235 	stub_complete_io(1);
1236 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1237 	CU_ASSERT(io_wait_entry2.submitted == true);
1238 
1239 	stub_complete_io(4);
1240 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1241 
1242 	spdk_put_io_channel(io_ch);
1243 	spdk_bdev_close(desc);
1244 	free_bdev(bdev);
1245 	ut_fini_bdev();
1246 }
1247 
1248 static void
1249 bdev_io_spans_split_test(void)
1250 {
1251 	struct spdk_bdev bdev;
1252 	struct spdk_bdev_io bdev_io;
1253 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
1254 
1255 	memset(&bdev, 0, sizeof(bdev));
1256 	bdev_io.u.bdev.iovs = iov;
1257 
1258 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1259 	bdev.optimal_io_boundary = 0;
1260 	bdev.max_segment_size = 0;
1261 	bdev.max_num_segments = 0;
1262 	bdev_io.bdev = &bdev;
1263 
1264 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1265 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1266 
1267 	bdev.split_on_optimal_io_boundary = true;
1268 	bdev.optimal_io_boundary = 32;
1269 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1270 
1271 	/* RESETs are not based on LBAs - so this should return false. */
1272 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1273 
1274 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1275 	bdev_io.u.bdev.offset_blocks = 0;
1276 	bdev_io.u.bdev.num_blocks = 32;
1277 
1278 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1279 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1280 
1281 	bdev_io.u.bdev.num_blocks = 33;
1282 
1283 	/* This I/O spans a boundary. */
1284 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1285 
1286 	bdev_io.u.bdev.num_blocks = 32;
1287 	bdev.max_segment_size = 512 * 32;
1288 	bdev.max_num_segments = 1;
1289 	bdev_io.u.bdev.iovcnt = 1;
1290 	iov[0].iov_len = 512;
1291 
1292 	/* Does not cross and exceed max_size or max_segs */
1293 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1294 
1295 	bdev.split_on_optimal_io_boundary = false;
1296 	bdev.max_segment_size = 512;
1297 	bdev.max_num_segments = 1;
1298 	bdev_io.u.bdev.iovcnt = 2;
1299 
1300 	/* Exceed max_segs */
1301 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1302 
1303 	bdev.max_num_segments = 2;
1304 	iov[0].iov_len = 513;
1305 	iov[1].iov_len = 512;
1306 
1307 	/* Exceed max_sizes */
1308 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1309 
1310 	bdev.max_segment_size = 0;
1311 	bdev.write_unit_size = 32;
1312 	bdev.split_on_write_unit = true;
1313 	bdev_io.type = SPDK_BDEV_IO_TYPE_WRITE;
1314 
1315 	/* This I/O is one write unit */
1316 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1317 
1318 	bdev_io.u.bdev.num_blocks = 32 * 2;
1319 
1320 	/* This I/O is more than one write unit */
1321 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1322 
1323 	bdev_io.u.bdev.offset_blocks = 1;
1324 	bdev_io.u.bdev.num_blocks = 32;
1325 
1326 	/* This I/O is not aligned to write unit size */
1327 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1328 }
1329 
1330 static void
1331 bdev_io_boundary_split_test(void)
1332 {
1333 	struct spdk_bdev *bdev;
1334 	struct spdk_bdev_desc *desc = NULL;
1335 	struct spdk_io_channel *io_ch;
1336 	struct spdk_bdev_opts bdev_opts = {};
1337 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
1338 	struct ut_expected_io *expected_io;
1339 	void *md_buf = (void *)0xFF000000;
1340 	uint64_t i;
1341 	int rc;
1342 
1343 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1344 	bdev_opts.bdev_io_pool_size = 512;
1345 	bdev_opts.bdev_io_cache_size = 64;
1346 	ut_init_bdev(&bdev_opts);
1347 
1348 	bdev = allocate_bdev("bdev0");
1349 
1350 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1351 	CU_ASSERT(rc == 0);
1352 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1353 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1354 	io_ch = spdk_bdev_get_io_channel(desc);
1355 	CU_ASSERT(io_ch != NULL);
1356 
1357 	bdev->optimal_io_boundary = 16;
1358 	bdev->split_on_optimal_io_boundary = false;
1359 
1360 	g_io_done = false;
1361 
1362 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1363 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1364 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1365 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1366 
1367 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1368 	CU_ASSERT(rc == 0);
1369 	CU_ASSERT(g_io_done == false);
1370 
1371 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1372 	stub_complete_io(1);
1373 	CU_ASSERT(g_io_done == true);
1374 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1375 
1376 	bdev->split_on_optimal_io_boundary = true;
1377 	bdev->md_interleave = false;
1378 	bdev->md_len = 8;
1379 
1380 	/* Now test that a single-vector command is split correctly.
1381 	 * Offset 14, length 8, payload 0xF000
1382 	 *  Child - Offset 14, length 2, payload 0xF000
1383 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1384 	 *
1385 	 * Set up the expected values before calling spdk_bdev_read_blocks
1386 	 */
1387 	g_io_done = false;
1388 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1389 	expected_io->md_buf = md_buf;
1390 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1391 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1392 
1393 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1394 	expected_io->md_buf = md_buf + 2 * 8;
1395 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1396 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1397 
1398 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1399 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1400 					   14, 8, io_done, NULL);
1401 	CU_ASSERT(rc == 0);
1402 	CU_ASSERT(g_io_done == false);
1403 
1404 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1405 	stub_complete_io(2);
1406 	CU_ASSERT(g_io_done == true);
1407 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1408 
1409 	/* Now set up a more complex, multi-vector command that needs to be split,
1410 	 *  including splitting iovecs.
1411 	 */
1412 	iov[0].iov_base = (void *)0x10000;
1413 	iov[0].iov_len = 512;
1414 	iov[1].iov_base = (void *)0x20000;
1415 	iov[1].iov_len = 20 * 512;
1416 	iov[2].iov_base = (void *)0x30000;
1417 	iov[2].iov_len = 11 * 512;
1418 
1419 	g_io_done = false;
1420 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1421 	expected_io->md_buf = md_buf;
1422 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1423 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1424 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1425 
1426 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1427 	expected_io->md_buf = md_buf + 2 * 8;
1428 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1429 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1430 
1431 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1432 	expected_io->md_buf = md_buf + 18 * 8;
1433 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1434 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1435 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1436 
1437 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1438 					     14, 32, io_done, NULL);
1439 	CU_ASSERT(rc == 0);
1440 	CU_ASSERT(g_io_done == false);
1441 
1442 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1443 	stub_complete_io(3);
1444 	CU_ASSERT(g_io_done == true);
1445 
1446 	/* Test multi vector command that needs to be split by strip and then needs to be
1447 	 * split further due to the capacity of child iovs.
1448 	 */
1449 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1450 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1451 		iov[i].iov_len = 512;
1452 	}
1453 
1454 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1455 	g_io_done = false;
1456 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1457 					   SPDK_BDEV_IO_NUM_CHILD_IOV);
1458 	expected_io->md_buf = md_buf;
1459 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1460 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1461 	}
1462 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1463 
1464 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1465 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
1466 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1467 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1468 		ut_expected_io_set_iov(expected_io, i,
1469 				       (void *)((i + 1 + SPDK_BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1470 	}
1471 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1472 
1473 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1474 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1475 	CU_ASSERT(rc == 0);
1476 	CU_ASSERT(g_io_done == false);
1477 
1478 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1479 	stub_complete_io(1);
1480 	CU_ASSERT(g_io_done == false);
1481 
1482 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1483 	stub_complete_io(1);
1484 	CU_ASSERT(g_io_done == true);
1485 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1486 
1487 	/* Test multi vector command that needs to be split by strip and then needs to be
1488 	 * split further due to the capacity of child iovs. In this case, the length of
1489 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1490 	 */
1491 
1492 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1493 	 * is SPDK_BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1494 	 */
1495 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1496 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1497 		iov[i].iov_len = 512;
1498 	}
1499 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1500 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1501 		iov[i].iov_len = 256;
1502 	}
1503 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1504 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1505 
1506 	/* Add an extra iovec to trigger split */
1507 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1508 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1509 
1510 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1511 	g_io_done = false;
1512 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1513 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV);
1514 	expected_io->md_buf = md_buf;
1515 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1516 		ut_expected_io_set_iov(expected_io, i,
1517 				       (void *)((i + 1) * 0x10000), 512);
1518 	}
1519 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1520 		ut_expected_io_set_iov(expected_io, i,
1521 				       (void *)((i + 1) * 0x10000), 256);
1522 	}
1523 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1524 
1525 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1526 					   1, 1);
1527 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1528 	ut_expected_io_set_iov(expected_io, 0,
1529 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1530 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1531 
1532 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1533 					   1, 1);
1534 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1535 	ut_expected_io_set_iov(expected_io, 0,
1536 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1537 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1538 
1539 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1540 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1541 	CU_ASSERT(rc == 0);
1542 	CU_ASSERT(g_io_done == false);
1543 
1544 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1545 	stub_complete_io(1);
1546 	CU_ASSERT(g_io_done == false);
1547 
1548 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1549 	stub_complete_io(2);
1550 	CU_ASSERT(g_io_done == true);
1551 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1552 
1553 	/* Test multi vector command that needs to be split by strip and then needs to be
1554 	 * split further due to the capacity of child iovs, the child request offset should
1555 	 * be rewind to last aligned offset and go success without error.
1556 	 */
1557 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1558 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1559 		iov[i].iov_len = 512;
1560 	}
1561 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1562 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1563 
1564 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1565 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1566 
1567 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1568 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1569 
1570 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1571 	g_io_done = false;
1572 	g_io_status = 0;
1573 	/* The first expected io should be start from offset 0 to SPDK_BDEV_IO_NUM_CHILD_IOV - 1 */
1574 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1575 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1576 	expected_io->md_buf = md_buf;
1577 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1578 		ut_expected_io_set_iov(expected_io, i,
1579 				       (void *)((i + 1) * 0x10000), 512);
1580 	}
1581 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1582 	/* The second expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV - 1 to SPDK_BDEV_IO_NUM_CHILD_IOV */
1583 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1584 					   1, 2);
1585 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1586 	ut_expected_io_set_iov(expected_io, 0,
1587 			       (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1588 	ut_expected_io_set_iov(expected_io, 1,
1589 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1590 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1591 	/* The third expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV to SPDK_BDEV_IO_NUM_CHILD_IOV + 1 */
1592 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1593 					   1, 1);
1594 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1595 	ut_expected_io_set_iov(expected_io, 0,
1596 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1597 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1598 
1599 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1600 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1601 	CU_ASSERT(rc == 0);
1602 	CU_ASSERT(g_io_done == false);
1603 
1604 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1605 	stub_complete_io(1);
1606 	CU_ASSERT(g_io_done == false);
1607 
1608 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1609 	stub_complete_io(2);
1610 	CU_ASSERT(g_io_done == true);
1611 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1612 
1613 	/* Test multi vector command that needs to be split due to the IO boundary and
1614 	 * the capacity of child iovs. Especially test the case when the command is
1615 	 * split due to the capacity of child iovs, the tail address is not aligned with
1616 	 * block size and is rewinded to the aligned address.
1617 	 *
1618 	 * The iovecs used in read request is complex but is based on the data
1619 	 * collected in the real issue. We change the base addresses but keep the lengths
1620 	 * not to loose the credibility of the test.
1621 	 */
1622 	bdev->optimal_io_boundary = 128;
1623 	g_io_done = false;
1624 	g_io_status = 0;
1625 
1626 	for (i = 0; i < 31; i++) {
1627 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1628 		iov[i].iov_len = 1024;
1629 	}
1630 	iov[31].iov_base = (void *)0xFEED1F00000;
1631 	iov[31].iov_len = 32768;
1632 	iov[32].iov_base = (void *)0xFEED2000000;
1633 	iov[32].iov_len = 160;
1634 	iov[33].iov_base = (void *)0xFEED2100000;
1635 	iov[33].iov_len = 4096;
1636 	iov[34].iov_base = (void *)0xFEED2200000;
1637 	iov[34].iov_len = 4096;
1638 	iov[35].iov_base = (void *)0xFEED2300000;
1639 	iov[35].iov_len = 4096;
1640 	iov[36].iov_base = (void *)0xFEED2400000;
1641 	iov[36].iov_len = 4096;
1642 	iov[37].iov_base = (void *)0xFEED2500000;
1643 	iov[37].iov_len = 4096;
1644 	iov[38].iov_base = (void *)0xFEED2600000;
1645 	iov[38].iov_len = 4096;
1646 	iov[39].iov_base = (void *)0xFEED2700000;
1647 	iov[39].iov_len = 4096;
1648 	iov[40].iov_base = (void *)0xFEED2800000;
1649 	iov[40].iov_len = 4096;
1650 	iov[41].iov_base = (void *)0xFEED2900000;
1651 	iov[41].iov_len = 4096;
1652 	iov[42].iov_base = (void *)0xFEED2A00000;
1653 	iov[42].iov_len = 4096;
1654 	iov[43].iov_base = (void *)0xFEED2B00000;
1655 	iov[43].iov_len = 12288;
1656 	iov[44].iov_base = (void *)0xFEED2C00000;
1657 	iov[44].iov_len = 8192;
1658 	iov[45].iov_base = (void *)0xFEED2F00000;
1659 	iov[45].iov_len = 4096;
1660 	iov[46].iov_base = (void *)0xFEED3000000;
1661 	iov[46].iov_len = 4096;
1662 	iov[47].iov_base = (void *)0xFEED3100000;
1663 	iov[47].iov_len = 4096;
1664 	iov[48].iov_base = (void *)0xFEED3200000;
1665 	iov[48].iov_len = 24576;
1666 	iov[49].iov_base = (void *)0xFEED3300000;
1667 	iov[49].iov_len = 16384;
1668 	iov[50].iov_base = (void *)0xFEED3400000;
1669 	iov[50].iov_len = 12288;
1670 	iov[51].iov_base = (void *)0xFEED3500000;
1671 	iov[51].iov_len = 4096;
1672 	iov[52].iov_base = (void *)0xFEED3600000;
1673 	iov[52].iov_len = 4096;
1674 	iov[53].iov_base = (void *)0xFEED3700000;
1675 	iov[53].iov_len = 4096;
1676 	iov[54].iov_base = (void *)0xFEED3800000;
1677 	iov[54].iov_len = 28672;
1678 	iov[55].iov_base = (void *)0xFEED3900000;
1679 	iov[55].iov_len = 20480;
1680 	iov[56].iov_base = (void *)0xFEED3A00000;
1681 	iov[56].iov_len = 4096;
1682 	iov[57].iov_base = (void *)0xFEED3B00000;
1683 	iov[57].iov_len = 12288;
1684 	iov[58].iov_base = (void *)0xFEED3C00000;
1685 	iov[58].iov_len = 4096;
1686 	iov[59].iov_base = (void *)0xFEED3D00000;
1687 	iov[59].iov_len = 4096;
1688 	iov[60].iov_base = (void *)0xFEED3E00000;
1689 	iov[60].iov_len = 352;
1690 
1691 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1692 	 * of child iovs,
1693 	 */
1694 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1695 	expected_io->md_buf = md_buf;
1696 	for (i = 0; i < 32; i++) {
1697 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1698 	}
1699 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1700 
1701 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1702 	 * split by the IO boundary requirement.
1703 	 */
1704 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1705 	expected_io->md_buf = md_buf + 126 * 8;
1706 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1707 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1708 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1709 
1710 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1711 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1712 	 */
1713 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1714 	expected_io->md_buf = md_buf + 128 * 8;
1715 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1716 			       iov[33].iov_len - 864);
1717 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1718 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1719 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1720 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1721 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1722 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1723 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1724 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1725 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1726 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1727 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1728 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1729 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1730 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1731 
1732 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1733 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1734 	 */
1735 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1736 	expected_io->md_buf = md_buf + 256 * 8;
1737 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1738 			       iov[46].iov_len - 864);
1739 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1740 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1741 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1742 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1743 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1744 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1745 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1746 
1747 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1748 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1749 	 */
1750 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1751 	expected_io->md_buf = md_buf + 384 * 8;
1752 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1753 			       iov[52].iov_len - 864);
1754 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1755 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1756 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1757 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1758 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1759 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1760 
1761 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1762 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1763 	 */
1764 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1765 	expected_io->md_buf = md_buf + 512 * 8;
1766 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1767 			       iov[57].iov_len - 4960);
1768 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1769 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1770 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1771 
1772 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1773 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1774 	expected_io->md_buf = md_buf + 542 * 8;
1775 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1776 			       iov[59].iov_len - 3936);
1777 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1778 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1779 
1780 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1781 					    0, 543, io_done, NULL);
1782 	CU_ASSERT(rc == 0);
1783 	CU_ASSERT(g_io_done == false);
1784 
1785 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1786 	stub_complete_io(1);
1787 	CU_ASSERT(g_io_done == false);
1788 
1789 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1790 	stub_complete_io(5);
1791 	CU_ASSERT(g_io_done == false);
1792 
1793 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1794 	stub_complete_io(1);
1795 	CU_ASSERT(g_io_done == true);
1796 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1797 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1798 
1799 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1800 	 * split, so test that.
1801 	 */
1802 	bdev->optimal_io_boundary = 15;
1803 	g_io_done = false;
1804 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1805 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1806 
1807 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1808 	CU_ASSERT(rc == 0);
1809 	CU_ASSERT(g_io_done == false);
1810 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1811 	stub_complete_io(1);
1812 	CU_ASSERT(g_io_done == true);
1813 
1814 	/* Test an UNMAP.  This should also not be split. */
1815 	bdev->optimal_io_boundary = 16;
1816 	g_io_done = false;
1817 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1818 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1819 
1820 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1821 	CU_ASSERT(rc == 0);
1822 	CU_ASSERT(g_io_done == false);
1823 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1824 	stub_complete_io(1);
1825 	CU_ASSERT(g_io_done == true);
1826 
1827 	/* Test a FLUSH.  This should also not be split. */
1828 	bdev->optimal_io_boundary = 16;
1829 	g_io_done = false;
1830 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1831 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1832 
1833 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1834 	CU_ASSERT(rc == 0);
1835 	CU_ASSERT(g_io_done == false);
1836 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1837 	stub_complete_io(1);
1838 	CU_ASSERT(g_io_done == true);
1839 
1840 	/* Test a COPY.  This should also not be split. */
1841 	bdev->optimal_io_boundary = 15;
1842 	g_io_done = false;
1843 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
1844 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1845 
1846 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
1847 	CU_ASSERT(rc == 0);
1848 	CU_ASSERT(g_io_done == false);
1849 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1850 	stub_complete_io(1);
1851 	CU_ASSERT(g_io_done == true);
1852 
1853 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1854 
1855 	/* Children requests return an error status */
1856 	bdev->optimal_io_boundary = 16;
1857 	iov[0].iov_base = (void *)0x10000;
1858 	iov[0].iov_len = 512 * 64;
1859 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1860 	g_io_done = false;
1861 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1862 
1863 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1864 	CU_ASSERT(rc == 0);
1865 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1866 	stub_complete_io(4);
1867 	CU_ASSERT(g_io_done == false);
1868 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1869 	stub_complete_io(1);
1870 	CU_ASSERT(g_io_done == true);
1871 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1872 
1873 	/* Test if a multi vector command terminated with failure before continuing
1874 	 * splitting process when one of child I/O failed.
1875 	 * The multi vector command is as same as the above that needs to be split by strip
1876 	 * and then needs to be split further due to the capacity of child iovs.
1877 	 */
1878 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1879 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1880 		iov[i].iov_len = 512;
1881 	}
1882 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1883 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1884 
1885 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1886 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1887 
1888 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1889 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1890 
1891 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1892 
1893 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1894 	g_io_done = false;
1895 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1896 
1897 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
1898 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1899 	CU_ASSERT(rc == 0);
1900 	CU_ASSERT(g_io_done == false);
1901 
1902 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1903 	stub_complete_io(1);
1904 	CU_ASSERT(g_io_done == true);
1905 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1906 
1907 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1908 
1909 	/* for this test we will create the following conditions to hit the code path where
1910 	 * we are trying to send and IO following a split that has no iovs because we had to
1911 	 * trim them for alignment reasons.
1912 	 *
1913 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1914 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1915 	 *   position 30 and overshoot by 0x2e.
1916 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1917 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1918 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1919 	 *   and let the completion pick up the last 2 vectors.
1920 	 */
1921 	bdev->optimal_io_boundary = 32;
1922 	bdev->split_on_optimal_io_boundary = true;
1923 	g_io_done = false;
1924 
1925 	/* Init all parent IOVs to 0x212 */
1926 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1927 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1928 		iov[i].iov_len = 0x212;
1929 	}
1930 
1931 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1932 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1933 	/* expect 0-29 to be 1:1 with the parent iov */
1934 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1935 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1936 	}
1937 
1938 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1939 	 * where 0x1e is the amount we overshot the 16K boundary
1940 	 */
1941 	ut_expected_io_set_iov(expected_io, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
1942 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1943 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1944 
1945 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1946 	 * shortened that take it to the next boundary and then a final one to get us to
1947 	 * 0x4200 bytes for the IO.
1948 	 */
1949 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1950 					   SPDK_BDEV_IO_NUM_CHILD_IOV, 2);
1951 	/* position 30 picked up the remaining bytes to the next boundary */
1952 	ut_expected_io_set_iov(expected_io, 0,
1953 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1954 
1955 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
1956 	ut_expected_io_set_iov(expected_io, 1,
1957 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1958 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1959 
1960 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, 0,
1961 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1962 	CU_ASSERT(rc == 0);
1963 	CU_ASSERT(g_io_done == false);
1964 
1965 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1966 	stub_complete_io(1);
1967 	CU_ASSERT(g_io_done == false);
1968 
1969 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1970 	stub_complete_io(1);
1971 	CU_ASSERT(g_io_done == true);
1972 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1973 
1974 	spdk_put_io_channel(io_ch);
1975 	spdk_bdev_close(desc);
1976 	free_bdev(bdev);
1977 	ut_fini_bdev();
1978 }
1979 
1980 static void
1981 bdev_io_max_size_and_segment_split_test(void)
1982 {
1983 	struct spdk_bdev *bdev;
1984 	struct spdk_bdev_desc *desc = NULL;
1985 	struct spdk_io_channel *io_ch;
1986 	struct spdk_bdev_opts bdev_opts = {};
1987 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
1988 	struct ut_expected_io *expected_io;
1989 	uint64_t i;
1990 	int rc;
1991 
1992 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1993 	bdev_opts.bdev_io_pool_size = 512;
1994 	bdev_opts.bdev_io_cache_size = 64;
1995 	bdev_opts.opts_size = sizeof(bdev_opts);
1996 	ut_init_bdev(&bdev_opts);
1997 
1998 	bdev = allocate_bdev("bdev0");
1999 
2000 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2001 	CU_ASSERT(rc == 0);
2002 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2003 	io_ch = spdk_bdev_get_io_channel(desc);
2004 	CU_ASSERT(io_ch != NULL);
2005 
2006 	bdev->split_on_optimal_io_boundary = false;
2007 	bdev->optimal_io_boundary = 0;
2008 
2009 	/* Case 0 max_num_segments == 0.
2010 	 * but segment size 2 * 512 > 512
2011 	 */
2012 	bdev->max_segment_size = 512;
2013 	bdev->max_num_segments = 0;
2014 	g_io_done = false;
2015 
2016 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2017 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2018 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2019 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2020 
2021 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2022 	CU_ASSERT(rc == 0);
2023 	CU_ASSERT(g_io_done == false);
2024 
2025 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2026 	stub_complete_io(1);
2027 	CU_ASSERT(g_io_done == true);
2028 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2029 
2030 	/* Case 1 max_segment_size == 0
2031 	 * but iov num 2 > 1.
2032 	 */
2033 	bdev->max_segment_size = 0;
2034 	bdev->max_num_segments = 1;
2035 	g_io_done = false;
2036 
2037 	iov[0].iov_base = (void *)0x10000;
2038 	iov[0].iov_len = 512;
2039 	iov[1].iov_base = (void *)0x20000;
2040 	iov[1].iov_len = 8 * 512;
2041 
2042 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2043 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
2044 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2045 
2046 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
2047 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
2048 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2049 
2050 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
2051 	CU_ASSERT(rc == 0);
2052 	CU_ASSERT(g_io_done == false);
2053 
2054 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2055 	stub_complete_io(2);
2056 	CU_ASSERT(g_io_done == true);
2057 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2058 
2059 	/* Test that a non-vector command is split correctly.
2060 	 * Set up the expected values before calling spdk_bdev_read_blocks
2061 	 */
2062 	bdev->max_segment_size = 512;
2063 	bdev->max_num_segments = 1;
2064 	g_io_done = false;
2065 
2066 	/* Child IO 0 */
2067 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2068 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2069 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2070 
2071 	/* Child IO 1 */
2072 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2073 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
2074 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2075 
2076 	/* spdk_bdev_read_blocks will submit the first child immediately. */
2077 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2078 	CU_ASSERT(rc == 0);
2079 	CU_ASSERT(g_io_done == false);
2080 
2081 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2082 	stub_complete_io(2);
2083 	CU_ASSERT(g_io_done == true);
2084 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2085 
2086 	/* Now set up a more complex, multi-vector command that needs to be split,
2087 	 * including splitting iovecs.
2088 	 */
2089 	bdev->max_segment_size = 2 * 512;
2090 	bdev->max_num_segments = 1;
2091 	g_io_done = false;
2092 
2093 	iov[0].iov_base = (void *)0x10000;
2094 	iov[0].iov_len = 2 * 512;
2095 	iov[1].iov_base = (void *)0x20000;
2096 	iov[1].iov_len = 4 * 512;
2097 	iov[2].iov_base = (void *)0x30000;
2098 	iov[2].iov_len = 6 * 512;
2099 
2100 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2101 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2102 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2103 
2104 	/* Split iov[1].size to 2 iov entries then split the segments */
2105 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2106 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2107 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2108 
2109 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2110 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2111 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2112 
2113 	/* Split iov[2].size to 3 iov entries then split the segments */
2114 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2115 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2116 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2117 
2118 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2119 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2120 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2121 
2122 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2123 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2124 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2125 
2126 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2127 	CU_ASSERT(rc == 0);
2128 	CU_ASSERT(g_io_done == false);
2129 
2130 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2131 	stub_complete_io(6);
2132 	CU_ASSERT(g_io_done == true);
2133 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2134 
2135 	/* Test multi vector command that needs to be split by strip and then needs to be
2136 	 * split further due to the capacity of parent IO child iovs.
2137 	 */
2138 	bdev->max_segment_size = 512;
2139 	bdev->max_num_segments = 1;
2140 	g_io_done = false;
2141 
2142 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2143 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2144 		iov[i].iov_len = 512 * 2;
2145 	}
2146 
2147 	/* Each input iov.size is split into 2 iovs,
2148 	 * half of the input iov can fill all child iov entries of a single IO.
2149 	 */
2150 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2151 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2152 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2153 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2154 
2155 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2156 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2157 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2158 	}
2159 
2160 	/* The remaining iov is split in the second round */
2161 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2162 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2163 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2164 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2165 
2166 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2167 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2168 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2169 	}
2170 
2171 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2172 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2173 	CU_ASSERT(rc == 0);
2174 	CU_ASSERT(g_io_done == false);
2175 
2176 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2177 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2178 	CU_ASSERT(g_io_done == false);
2179 
2180 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2181 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2182 	CU_ASSERT(g_io_done == true);
2183 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2184 
2185 	/* A wrong case, a child IO that is divided does
2186 	 * not meet the principle of multiples of block size,
2187 	 * and exits with error
2188 	 */
2189 	bdev->max_segment_size = 512;
2190 	bdev->max_num_segments = 1;
2191 	g_io_done = false;
2192 
2193 	iov[0].iov_base = (void *)0x10000;
2194 	iov[0].iov_len = 512 + 256;
2195 	iov[1].iov_base = (void *)0x20000;
2196 	iov[1].iov_len = 256;
2197 
2198 	/* iov[0] is split to 512 and 256.
2199 	 * 256 is less than a block size, and it is found
2200 	 * in the next round of split that it is the first child IO smaller than
2201 	 * the block size, so the error exit
2202 	 */
2203 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2204 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2205 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2206 
2207 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2208 	CU_ASSERT(rc == 0);
2209 	CU_ASSERT(g_io_done == false);
2210 
2211 	/* First child IO is OK */
2212 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2213 	stub_complete_io(1);
2214 	CU_ASSERT(g_io_done == true);
2215 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2216 
2217 	/* error exit */
2218 	stub_complete_io(1);
2219 	CU_ASSERT(g_io_done == true);
2220 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2221 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2222 
2223 	/* Test multi vector command that needs to be split by strip and then needs to be
2224 	 * split further due to the capacity of child iovs.
2225 	 *
2226 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2227 	 * of child iovs, so it needs to wait until the first batch completed.
2228 	 */
2229 	bdev->max_segment_size = 512;
2230 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2231 	g_io_done = false;
2232 
2233 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2234 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2235 		iov[i].iov_len = 512;
2236 	}
2237 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2238 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2239 		iov[i].iov_len = 512 * 2;
2240 	}
2241 
2242 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2243 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
2244 	/* 0 ~ (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2245 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2246 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2247 	}
2248 	/* (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) is split */
2249 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2250 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2251 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2252 
2253 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2254 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 2, 2);
2255 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2256 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2257 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2258 
2259 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2260 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2261 	CU_ASSERT(rc == 0);
2262 	CU_ASSERT(g_io_done == false);
2263 
2264 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2265 	stub_complete_io(1);
2266 	CU_ASSERT(g_io_done == false);
2267 
2268 	/* Next round */
2269 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2270 	stub_complete_io(1);
2271 	CU_ASSERT(g_io_done == true);
2272 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2273 
2274 	/* This case is similar to the previous one, but the io composed of
2275 	 * the last few entries of child iov is not enough for a blocklen, so they
2276 	 * cannot be put into this IO, but wait until the next time.
2277 	 */
2278 	bdev->max_segment_size = 512;
2279 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2280 	g_io_done = false;
2281 
2282 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2283 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2284 		iov[i].iov_len = 512;
2285 	}
2286 
2287 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2288 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2289 		iov[i].iov_len = 128;
2290 	}
2291 
2292 	/* First child iovcnt is't SPDK_BDEV_IO_NUM_CHILD_IOV but SPDK_BDEV_IO_NUM_CHILD_IOV - 2.
2293 	 * Because the left 2 iov is not enough for a blocklen.
2294 	 */
2295 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2296 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 2, SPDK_BDEV_IO_NUM_CHILD_IOV - 2);
2297 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2298 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2299 	}
2300 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2301 
2302 	/* The second child io waits until the end of the first child io before executing.
2303 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2304 	 * SPDK_BDEV_IO_NUM_CHILD_IOV - 2 to SPDK_BDEV_IO_NUM_CHILD_IOV + 2
2305 	 */
2306 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
2307 					   1, 4);
2308 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2309 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2310 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2311 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2312 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2313 
2314 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2315 				    SPDK_BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2316 	CU_ASSERT(rc == 0);
2317 	CU_ASSERT(g_io_done == false);
2318 
2319 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2320 	stub_complete_io(1);
2321 	CU_ASSERT(g_io_done == false);
2322 
2323 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2324 	stub_complete_io(1);
2325 	CU_ASSERT(g_io_done == true);
2326 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2327 
2328 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2329 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2330 	 * At the same time, child iovcnt exceeds parent iovcnt.
2331 	 */
2332 	bdev->max_segment_size = 512 + 128;
2333 	bdev->max_num_segments = 3;
2334 	g_io_done = false;
2335 
2336 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2337 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2338 		iov[i].iov_len = 512 + 256;
2339 	}
2340 
2341 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2342 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2343 		iov[i].iov_len = 512 + 128;
2344 	}
2345 
2346 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2347 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2348 	 * Generate 9 child IOs.
2349 	 */
2350 	for (i = 0; i < 3; i++) {
2351 		uint32_t j = i * 4;
2352 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2353 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2354 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2355 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2356 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2357 
2358 		/* Child io must be a multiple of blocklen
2359 		 * iov[j + 2] must be split. If the third entry is also added,
2360 		 * the multiple of blocklen cannot be guaranteed. But it still
2361 		 * occupies one iov entry of the parent child iov.
2362 		 */
2363 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2364 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2365 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2366 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2367 
2368 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2369 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2370 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2371 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2372 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2373 	}
2374 
2375 	/* Child iov position at 27, the 10th child IO
2376 	 * iov entry index is 3 * 4 and offset is 3 * 6
2377 	 */
2378 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2379 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2380 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2381 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2382 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2383 
2384 	/* Child iov position at 30, the 11th child IO */
2385 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2386 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2387 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2388 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2389 
2390 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2391 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2392 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2393 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2394 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2395 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2396 
2397 	/* Consume 9 child IOs and 27 child iov entries.
2398 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2399 	 * Parent IO iov index start from 16 and block offset start from 24
2400 	 */
2401 	for (i = 0; i < 3; i++) {
2402 		uint32_t j = i * 4 + 16;
2403 		uint32_t offset = i * 6 + 24;
2404 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2405 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2406 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2407 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2408 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2409 
2410 		/* Child io must be a multiple of blocklen
2411 		 * iov[j + 2] must be split. If the third entry is also added,
2412 		 * the multiple of blocklen cannot be guaranteed. But it still
2413 		 * occupies one iov entry of the parent child iov.
2414 		 */
2415 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2416 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2417 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2418 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2419 
2420 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2421 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2422 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2423 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2424 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2425 	}
2426 
2427 	/* The 22th child IO, child iov position at 30 */
2428 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2429 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2430 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2431 
2432 	/* The third round */
2433 	/* Here is the 23nd child IO and child iovpos is 0 */
2434 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2435 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2436 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2437 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2438 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2439 
2440 	/* The 24th child IO */
2441 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2442 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2443 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2444 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2445 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2446 
2447 	/* The 25th child IO */
2448 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2449 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2450 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2451 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2452 
2453 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2454 				    50, io_done, NULL);
2455 	CU_ASSERT(rc == 0);
2456 	CU_ASSERT(g_io_done == false);
2457 
2458 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2459 	 * a maximum of 11 IOs can be split at a time, and the
2460 	 * splitting will continue after the first batch is over.
2461 	 */
2462 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2463 	stub_complete_io(11);
2464 	CU_ASSERT(g_io_done == false);
2465 
2466 	/* The 2nd round */
2467 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2468 	stub_complete_io(11);
2469 	CU_ASSERT(g_io_done == false);
2470 
2471 	/* The last round */
2472 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2473 	stub_complete_io(3);
2474 	CU_ASSERT(g_io_done == true);
2475 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2476 
2477 	/* Test an WRITE_ZEROES.  This should also not be split. */
2478 	bdev->max_segment_size = 512;
2479 	bdev->max_num_segments = 1;
2480 	g_io_done = false;
2481 
2482 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2483 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2484 
2485 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2486 	CU_ASSERT(rc == 0);
2487 	CU_ASSERT(g_io_done == false);
2488 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2489 	stub_complete_io(1);
2490 	CU_ASSERT(g_io_done == true);
2491 
2492 	/* Test an UNMAP.  This should also not be split. */
2493 	g_io_done = false;
2494 
2495 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2496 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2497 
2498 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2499 	CU_ASSERT(rc == 0);
2500 	CU_ASSERT(g_io_done == false);
2501 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2502 	stub_complete_io(1);
2503 	CU_ASSERT(g_io_done == true);
2504 
2505 	/* Test a FLUSH.  This should also not be split. */
2506 	g_io_done = false;
2507 
2508 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2509 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2510 
2511 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2512 	CU_ASSERT(rc == 0);
2513 	CU_ASSERT(g_io_done == false);
2514 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2515 	stub_complete_io(1);
2516 	CU_ASSERT(g_io_done == true);
2517 
2518 	/* Test a COPY.  This should also not be split. */
2519 	g_io_done = false;
2520 
2521 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
2522 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2523 
2524 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
2525 	CU_ASSERT(rc == 0);
2526 	CU_ASSERT(g_io_done == false);
2527 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2528 	stub_complete_io(1);
2529 	CU_ASSERT(g_io_done == true);
2530 
2531 	spdk_put_io_channel(io_ch);
2532 	spdk_bdev_close(desc);
2533 	free_bdev(bdev);
2534 	ut_fini_bdev();
2535 }
2536 
2537 static void
2538 bdev_io_mix_split_test(void)
2539 {
2540 	struct spdk_bdev *bdev;
2541 	struct spdk_bdev_desc *desc = NULL;
2542 	struct spdk_io_channel *io_ch;
2543 	struct spdk_bdev_opts bdev_opts = {};
2544 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2545 	struct ut_expected_io *expected_io;
2546 	uint64_t i;
2547 	int rc;
2548 
2549 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2550 	bdev_opts.bdev_io_pool_size = 512;
2551 	bdev_opts.bdev_io_cache_size = 64;
2552 	ut_init_bdev(&bdev_opts);
2553 
2554 	bdev = allocate_bdev("bdev0");
2555 
2556 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2557 	CU_ASSERT(rc == 0);
2558 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2559 	io_ch = spdk_bdev_get_io_channel(desc);
2560 	CU_ASSERT(io_ch != NULL);
2561 
2562 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2563 	bdev->split_on_optimal_io_boundary = true;
2564 	bdev->optimal_io_boundary = 16;
2565 
2566 	bdev->max_segment_size = 512;
2567 	bdev->max_num_segments = 16;
2568 	g_io_done = false;
2569 
2570 	/* IO crossing the IO boundary requires split
2571 	 * Total 2 child IOs.
2572 	 */
2573 
2574 	/* The 1st child IO split the segment_size to multiple segment entry */
2575 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2576 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2577 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2578 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2579 
2580 	/* The 2nd child IO split the segment_size to multiple segment entry */
2581 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2582 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2583 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2584 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2585 
2586 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2587 	CU_ASSERT(rc == 0);
2588 	CU_ASSERT(g_io_done == false);
2589 
2590 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2591 	stub_complete_io(2);
2592 	CU_ASSERT(g_io_done == true);
2593 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2594 
2595 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2596 	bdev->max_segment_size = 15 * 512;
2597 	bdev->max_num_segments = 1;
2598 	g_io_done = false;
2599 
2600 	/* IO crossing the IO boundary requires split.
2601 	 * The 1st child IO segment size exceeds the max_segment_size,
2602 	 * So 1st child IO will be split to multiple segment entry.
2603 	 * Then it split to 2 child IOs because of the max_num_segments.
2604 	 * Total 3 child IOs.
2605 	 */
2606 
2607 	/* The first 2 IOs are in an IO boundary.
2608 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2609 	 * So it split to the first 2 IOs.
2610 	 */
2611 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2612 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2613 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2614 
2615 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2616 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2617 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2618 
2619 	/* The 3rd Child IO is because of the io boundary */
2620 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2621 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2622 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2623 
2624 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2625 	CU_ASSERT(rc == 0);
2626 	CU_ASSERT(g_io_done == false);
2627 
2628 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2629 	stub_complete_io(3);
2630 	CU_ASSERT(g_io_done == true);
2631 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2632 
2633 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2634 	bdev->max_segment_size = 17 * 512;
2635 	bdev->max_num_segments = 1;
2636 	g_io_done = false;
2637 
2638 	/* IO crossing the IO boundary requires split.
2639 	 * Child IO does not split.
2640 	 * Total 2 child IOs.
2641 	 */
2642 
2643 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2644 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2645 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2646 
2647 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2648 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2649 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2650 
2651 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2652 	CU_ASSERT(rc == 0);
2653 	CU_ASSERT(g_io_done == false);
2654 
2655 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2656 	stub_complete_io(2);
2657 	CU_ASSERT(g_io_done == true);
2658 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2659 
2660 	/* Now set up a more complex, multi-vector command that needs to be split,
2661 	 * including splitting iovecs.
2662 	 * optimal_io_boundary < max_segment_size * max_num_segments
2663 	 */
2664 	bdev->max_segment_size = 3 * 512;
2665 	bdev->max_num_segments = 6;
2666 	g_io_done = false;
2667 
2668 	iov[0].iov_base = (void *)0x10000;
2669 	iov[0].iov_len = 4 * 512;
2670 	iov[1].iov_base = (void *)0x20000;
2671 	iov[1].iov_len = 4 * 512;
2672 	iov[2].iov_base = (void *)0x30000;
2673 	iov[2].iov_len = 10 * 512;
2674 
2675 	/* IO crossing the IO boundary requires split.
2676 	 * The 1st child IO segment size exceeds the max_segment_size and after
2677 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2678 	 * So 1st child IO will be split to 2 child IOs.
2679 	 * Total 3 child IOs.
2680 	 */
2681 
2682 	/* The first 2 IOs are in an IO boundary.
2683 	 * After splitting segment size the segment num exceeds.
2684 	 * So it splits to 2 child IOs.
2685 	 */
2686 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2687 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2688 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2689 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2690 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2691 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2692 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2693 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2694 
2695 	/* The 2nd child IO has the left segment entry */
2696 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2697 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2698 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2699 
2700 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2701 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2702 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2703 
2704 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2705 	CU_ASSERT(rc == 0);
2706 	CU_ASSERT(g_io_done == false);
2707 
2708 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2709 	stub_complete_io(3);
2710 	CU_ASSERT(g_io_done == true);
2711 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2712 
2713 	/* A very complicated case. Each sg entry exceeds max_segment_size
2714 	 * and split on io boundary.
2715 	 * optimal_io_boundary < max_segment_size * max_num_segments
2716 	 */
2717 	bdev->max_segment_size = 3 * 512;
2718 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2719 	g_io_done = false;
2720 
2721 	for (i = 0; i < 20; i++) {
2722 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2723 		iov[i].iov_len = 512 * 4;
2724 	}
2725 
2726 	/* IO crossing the IO boundary requires split.
2727 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2728 	 * Each iov entry needs to be split to 2 entries because of max_segment_size
2729 	 * Total 5 child IOs.
2730 	 */
2731 
2732 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2733 	 * So each child IO occupies 8 child iov entries.
2734 	 */
2735 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2736 	for (i = 0; i < 4; i++) {
2737 		int iovcnt = i * 2;
2738 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2739 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2740 	}
2741 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2742 
2743 	/* 2nd child IO and total 16 child iov entries of parent IO */
2744 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2745 	for (i = 4; i < 8; i++) {
2746 		int iovcnt = (i - 4) * 2;
2747 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2748 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2749 	}
2750 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2751 
2752 	/* 3rd child IO and total 24 child iov entries of parent IO */
2753 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2754 	for (i = 8; i < 12; i++) {
2755 		int iovcnt = (i - 8) * 2;
2756 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2757 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2758 	}
2759 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2760 
2761 	/* 4th child IO and total 32 child iov entries of parent IO */
2762 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2763 	for (i = 12; i < 16; i++) {
2764 		int iovcnt = (i - 12) * 2;
2765 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2766 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2767 	}
2768 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2769 
2770 	/* 5th child IO and because of the child iov entry it should be split
2771 	 * in next round.
2772 	 */
2773 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2774 	for (i = 16; i < 20; i++) {
2775 		int iovcnt = (i - 16) * 2;
2776 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2777 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2778 	}
2779 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2780 
2781 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2782 	CU_ASSERT(rc == 0);
2783 	CU_ASSERT(g_io_done == false);
2784 
2785 	/* First split round */
2786 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2787 	stub_complete_io(4);
2788 	CU_ASSERT(g_io_done == false);
2789 
2790 	/* Second split round */
2791 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2792 	stub_complete_io(1);
2793 	CU_ASSERT(g_io_done == true);
2794 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2795 
2796 	spdk_put_io_channel(io_ch);
2797 	spdk_bdev_close(desc);
2798 	free_bdev(bdev);
2799 	ut_fini_bdev();
2800 }
2801 
2802 static void
2803 bdev_io_split_with_io_wait(void)
2804 {
2805 	struct spdk_bdev *bdev;
2806 	struct spdk_bdev_desc *desc = NULL;
2807 	struct spdk_io_channel *io_ch;
2808 	struct spdk_bdev_channel *channel;
2809 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2810 	struct spdk_bdev_opts bdev_opts = {};
2811 	struct iovec iov[3];
2812 	struct ut_expected_io *expected_io;
2813 	int rc;
2814 
2815 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2816 	bdev_opts.bdev_io_pool_size = 2;
2817 	bdev_opts.bdev_io_cache_size = 1;
2818 	ut_init_bdev(&bdev_opts);
2819 
2820 	bdev = allocate_bdev("bdev0");
2821 
2822 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2823 	CU_ASSERT(rc == 0);
2824 	CU_ASSERT(desc != NULL);
2825 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2826 	io_ch = spdk_bdev_get_io_channel(desc);
2827 	CU_ASSERT(io_ch != NULL);
2828 	channel = spdk_io_channel_get_ctx(io_ch);
2829 	mgmt_ch = channel->shared_resource->mgmt_ch;
2830 
2831 	bdev->optimal_io_boundary = 16;
2832 	bdev->split_on_optimal_io_boundary = true;
2833 
2834 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2835 	CU_ASSERT(rc == 0);
2836 
2837 	/* Now test that a single-vector command is split correctly.
2838 	 * Offset 14, length 8, payload 0xF000
2839 	 *  Child - Offset 14, length 2, payload 0xF000
2840 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2841 	 *
2842 	 * Set up the expected values before calling spdk_bdev_read_blocks
2843 	 */
2844 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2845 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2846 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2847 
2848 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2849 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2850 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2851 
2852 	/* The following children will be submitted sequentially due to the capacity of
2853 	 * spdk_bdev_io.
2854 	 */
2855 
2856 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2857 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2858 	CU_ASSERT(rc == 0);
2859 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2860 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2861 
2862 	/* Completing the first read I/O will submit the first child */
2863 	stub_complete_io(1);
2864 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2865 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2866 
2867 	/* Completing the first child will submit the second child */
2868 	stub_complete_io(1);
2869 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2870 
2871 	/* Complete the second child I/O.  This should result in our callback getting
2872 	 * invoked since the parent I/O is now complete.
2873 	 */
2874 	stub_complete_io(1);
2875 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2876 
2877 	/* Now set up a more complex, multi-vector command that needs to be split,
2878 	 *  including splitting iovecs.
2879 	 */
2880 	iov[0].iov_base = (void *)0x10000;
2881 	iov[0].iov_len = 512;
2882 	iov[1].iov_base = (void *)0x20000;
2883 	iov[1].iov_len = 20 * 512;
2884 	iov[2].iov_base = (void *)0x30000;
2885 	iov[2].iov_len = 11 * 512;
2886 
2887 	g_io_done = false;
2888 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2889 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2890 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2891 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2892 
2893 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2894 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2895 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2896 
2897 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2898 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2899 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2900 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2901 
2902 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2903 	CU_ASSERT(rc == 0);
2904 	CU_ASSERT(g_io_done == false);
2905 
2906 	/* The following children will be submitted sequentially due to the capacity of
2907 	 * spdk_bdev_io.
2908 	 */
2909 
2910 	/* Completing the first child will submit the second child */
2911 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2912 	stub_complete_io(1);
2913 	CU_ASSERT(g_io_done == false);
2914 
2915 	/* Completing the second child will submit the third child */
2916 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2917 	stub_complete_io(1);
2918 	CU_ASSERT(g_io_done == false);
2919 
2920 	/* Completing the third child will result in our callback getting invoked
2921 	 * since the parent I/O is now complete.
2922 	 */
2923 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2924 	stub_complete_io(1);
2925 	CU_ASSERT(g_io_done == true);
2926 
2927 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2928 
2929 	spdk_put_io_channel(io_ch);
2930 	spdk_bdev_close(desc);
2931 	free_bdev(bdev);
2932 	ut_fini_bdev();
2933 }
2934 
2935 static void
2936 bdev_io_write_unit_split_test(void)
2937 {
2938 	struct spdk_bdev *bdev;
2939 	struct spdk_bdev_desc *desc = NULL;
2940 	struct spdk_io_channel *io_ch;
2941 	struct spdk_bdev_opts bdev_opts = {};
2942 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 4];
2943 	struct ut_expected_io *expected_io;
2944 	uint64_t i;
2945 	int rc;
2946 
2947 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2948 	bdev_opts.bdev_io_pool_size = 512;
2949 	bdev_opts.bdev_io_cache_size = 64;
2950 	ut_init_bdev(&bdev_opts);
2951 
2952 	bdev = allocate_bdev("bdev0");
2953 
2954 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2955 	CU_ASSERT(rc == 0);
2956 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2957 	io_ch = spdk_bdev_get_io_channel(desc);
2958 	CU_ASSERT(io_ch != NULL);
2959 
2960 	/* Write I/O 2x larger than write_unit_size should get split into 2 I/Os */
2961 	bdev->write_unit_size = 32;
2962 	bdev->split_on_write_unit = true;
2963 	g_io_done = false;
2964 
2965 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 32, 1);
2966 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 32 * 512);
2967 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2968 
2969 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 32, 1);
2970 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 32 * 512), 32 * 512);
2971 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2972 
2973 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
2974 	CU_ASSERT(rc == 0);
2975 	CU_ASSERT(g_io_done == false);
2976 
2977 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2978 	stub_complete_io(2);
2979 	CU_ASSERT(g_io_done == true);
2980 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2981 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2982 
2983 	/* Same as above but with optimal_io_boundary < write_unit_size - the I/O should be split
2984 	 * based on write_unit_size, not optimal_io_boundary */
2985 	bdev->split_on_optimal_io_boundary = true;
2986 	bdev->optimal_io_boundary = 16;
2987 	g_io_done = false;
2988 
2989 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
2990 	CU_ASSERT(rc == 0);
2991 	CU_ASSERT(g_io_done == false);
2992 
2993 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2994 	stub_complete_io(2);
2995 	CU_ASSERT(g_io_done == true);
2996 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2997 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2998 
2999 	/* Write I/O should fail if it is smaller than write_unit_size */
3000 	g_io_done = false;
3001 
3002 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 31, io_done, NULL);
3003 	CU_ASSERT(rc == 0);
3004 	CU_ASSERT(g_io_done == false);
3005 
3006 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3007 	poll_threads();
3008 	CU_ASSERT(g_io_done == true);
3009 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3010 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3011 
3012 	/* Same for I/O not aligned to write_unit_size */
3013 	g_io_done = false;
3014 
3015 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 1, 32, io_done, NULL);
3016 	CU_ASSERT(rc == 0);
3017 	CU_ASSERT(g_io_done == false);
3018 
3019 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3020 	poll_threads();
3021 	CU_ASSERT(g_io_done == true);
3022 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3023 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3024 
3025 	/* Write should fail if it needs to be split but there are not enough iovs to submit
3026 	 * an entire write unit */
3027 	bdev->write_unit_size = SPDK_COUNTOF(iov) / 2;
3028 	g_io_done = false;
3029 
3030 	for (i = 0; i < SPDK_COUNTOF(iov); i++) {
3031 		iov[i].iov_base = (void *)(0x1000 + 512 * i);
3032 		iov[i].iov_len = 512;
3033 	}
3034 
3035 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, SPDK_COUNTOF(iov), 0, SPDK_COUNTOF(iov),
3036 				     io_done, NULL);
3037 	CU_ASSERT(rc == 0);
3038 	CU_ASSERT(g_io_done == false);
3039 
3040 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3041 	poll_threads();
3042 	CU_ASSERT(g_io_done == true);
3043 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3044 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3045 
3046 	spdk_put_io_channel(io_ch);
3047 	spdk_bdev_close(desc);
3048 	free_bdev(bdev);
3049 	ut_fini_bdev();
3050 }
3051 
3052 static void
3053 bdev_io_alignment(void)
3054 {
3055 	struct spdk_bdev *bdev;
3056 	struct spdk_bdev_desc *desc = NULL;
3057 	struct spdk_io_channel *io_ch;
3058 	struct spdk_bdev_opts bdev_opts = {};
3059 	int rc;
3060 	void *buf = NULL;
3061 	struct iovec iovs[2];
3062 	int iovcnt;
3063 	uint64_t alignment;
3064 
3065 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3066 	bdev_opts.bdev_io_pool_size = 20;
3067 	bdev_opts.bdev_io_cache_size = 2;
3068 	ut_init_bdev(&bdev_opts);
3069 
3070 	fn_table.submit_request = stub_submit_request_get_buf;
3071 	bdev = allocate_bdev("bdev0");
3072 
3073 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3074 	CU_ASSERT(rc == 0);
3075 	CU_ASSERT(desc != NULL);
3076 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3077 	io_ch = spdk_bdev_get_io_channel(desc);
3078 	CU_ASSERT(io_ch != NULL);
3079 
3080 	/* Create aligned buffer */
3081 	rc = posix_memalign(&buf, 4096, 8192);
3082 	SPDK_CU_ASSERT_FATAL(rc == 0);
3083 
3084 	/* Pass aligned single buffer with no alignment required */
3085 	alignment = 1;
3086 	bdev->required_alignment = spdk_u32log2(alignment);
3087 
3088 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3089 	CU_ASSERT(rc == 0);
3090 	stub_complete_io(1);
3091 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3092 				    alignment));
3093 
3094 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3095 	CU_ASSERT(rc == 0);
3096 	stub_complete_io(1);
3097 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3098 				    alignment));
3099 
3100 	/* Pass unaligned single buffer with no alignment required */
3101 	alignment = 1;
3102 	bdev->required_alignment = spdk_u32log2(alignment);
3103 
3104 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3105 	CU_ASSERT(rc == 0);
3106 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3107 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3108 	stub_complete_io(1);
3109 
3110 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3111 	CU_ASSERT(rc == 0);
3112 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3113 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3114 	stub_complete_io(1);
3115 
3116 	/* Pass unaligned single buffer with 512 alignment required */
3117 	alignment = 512;
3118 	bdev->required_alignment = spdk_u32log2(alignment);
3119 
3120 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3121 	CU_ASSERT(rc == 0);
3122 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3123 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3124 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3125 				    alignment));
3126 	stub_complete_io(1);
3127 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3128 
3129 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3130 	CU_ASSERT(rc == 0);
3131 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3132 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3133 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3134 				    alignment));
3135 	stub_complete_io(1);
3136 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3137 
3138 	/* Pass unaligned single buffer with 4096 alignment required */
3139 	alignment = 4096;
3140 	bdev->required_alignment = spdk_u32log2(alignment);
3141 
3142 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3143 	CU_ASSERT(rc == 0);
3144 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3145 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3146 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3147 				    alignment));
3148 	stub_complete_io(1);
3149 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3150 
3151 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3152 	CU_ASSERT(rc == 0);
3153 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3154 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3155 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3156 				    alignment));
3157 	stub_complete_io(1);
3158 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3159 
3160 	/* Pass aligned iovs with no alignment required */
3161 	alignment = 1;
3162 	bdev->required_alignment = spdk_u32log2(alignment);
3163 
3164 	iovcnt = 1;
3165 	iovs[0].iov_base = buf;
3166 	iovs[0].iov_len = 512;
3167 
3168 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3169 	CU_ASSERT(rc == 0);
3170 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3171 	stub_complete_io(1);
3172 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3173 
3174 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3175 	CU_ASSERT(rc == 0);
3176 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3177 	stub_complete_io(1);
3178 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3179 
3180 	/* Pass unaligned iovs with no alignment required */
3181 	alignment = 1;
3182 	bdev->required_alignment = spdk_u32log2(alignment);
3183 
3184 	iovcnt = 2;
3185 	iovs[0].iov_base = buf + 16;
3186 	iovs[0].iov_len = 256;
3187 	iovs[1].iov_base = buf + 16 + 256 + 32;
3188 	iovs[1].iov_len = 256;
3189 
3190 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3191 	CU_ASSERT(rc == 0);
3192 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3193 	stub_complete_io(1);
3194 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3195 
3196 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3197 	CU_ASSERT(rc == 0);
3198 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3199 	stub_complete_io(1);
3200 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3201 
3202 	/* Pass unaligned iov with 2048 alignment required */
3203 	alignment = 2048;
3204 	bdev->required_alignment = spdk_u32log2(alignment);
3205 
3206 	iovcnt = 2;
3207 	iovs[0].iov_base = buf + 16;
3208 	iovs[0].iov_len = 256;
3209 	iovs[1].iov_base = buf + 16 + 256 + 32;
3210 	iovs[1].iov_len = 256;
3211 
3212 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3213 	CU_ASSERT(rc == 0);
3214 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3215 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3216 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3217 				    alignment));
3218 	stub_complete_io(1);
3219 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3220 
3221 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3222 	CU_ASSERT(rc == 0);
3223 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3224 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3225 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3226 				    alignment));
3227 	stub_complete_io(1);
3228 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3229 
3230 	/* Pass iov without allocated buffer without alignment required */
3231 	alignment = 1;
3232 	bdev->required_alignment = spdk_u32log2(alignment);
3233 
3234 	iovcnt = 1;
3235 	iovs[0].iov_base = NULL;
3236 	iovs[0].iov_len = 0;
3237 
3238 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3239 	CU_ASSERT(rc == 0);
3240 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3241 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3242 				    alignment));
3243 	stub_complete_io(1);
3244 
3245 	/* Pass iov without allocated buffer with 1024 alignment required */
3246 	alignment = 1024;
3247 	bdev->required_alignment = spdk_u32log2(alignment);
3248 
3249 	iovcnt = 1;
3250 	iovs[0].iov_base = NULL;
3251 	iovs[0].iov_len = 0;
3252 
3253 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3254 	CU_ASSERT(rc == 0);
3255 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3256 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3257 				    alignment));
3258 	stub_complete_io(1);
3259 
3260 	spdk_put_io_channel(io_ch);
3261 	spdk_bdev_close(desc);
3262 	free_bdev(bdev);
3263 	fn_table.submit_request = stub_submit_request;
3264 	ut_fini_bdev();
3265 
3266 	free(buf);
3267 }
3268 
3269 static void
3270 bdev_io_alignment_with_boundary(void)
3271 {
3272 	struct spdk_bdev *bdev;
3273 	struct spdk_bdev_desc *desc = NULL;
3274 	struct spdk_io_channel *io_ch;
3275 	struct spdk_bdev_opts bdev_opts = {};
3276 	int rc;
3277 	void *buf = NULL;
3278 	struct iovec iovs[2];
3279 	int iovcnt;
3280 	uint64_t alignment;
3281 
3282 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3283 	bdev_opts.bdev_io_pool_size = 20;
3284 	bdev_opts.bdev_io_cache_size = 2;
3285 	bdev_opts.opts_size = sizeof(bdev_opts);
3286 	ut_init_bdev(&bdev_opts);
3287 
3288 	fn_table.submit_request = stub_submit_request_get_buf;
3289 	bdev = allocate_bdev("bdev0");
3290 
3291 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3292 	CU_ASSERT(rc == 0);
3293 	CU_ASSERT(desc != NULL);
3294 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3295 	io_ch = spdk_bdev_get_io_channel(desc);
3296 	CU_ASSERT(io_ch != NULL);
3297 
3298 	/* Create aligned buffer */
3299 	rc = posix_memalign(&buf, 4096, 131072);
3300 	SPDK_CU_ASSERT_FATAL(rc == 0);
3301 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3302 
3303 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3304 	alignment = 512;
3305 	bdev->required_alignment = spdk_u32log2(alignment);
3306 	bdev->optimal_io_boundary = 2;
3307 	bdev->split_on_optimal_io_boundary = true;
3308 
3309 	iovcnt = 1;
3310 	iovs[0].iov_base = NULL;
3311 	iovs[0].iov_len = 512 * 3;
3312 
3313 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3314 	CU_ASSERT(rc == 0);
3315 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3316 	stub_complete_io(2);
3317 
3318 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3319 	alignment = 512;
3320 	bdev->required_alignment = spdk_u32log2(alignment);
3321 	bdev->optimal_io_boundary = 16;
3322 	bdev->split_on_optimal_io_boundary = true;
3323 
3324 	iovcnt = 1;
3325 	iovs[0].iov_base = NULL;
3326 	iovs[0].iov_len = 512 * 16;
3327 
3328 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3329 	CU_ASSERT(rc == 0);
3330 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3331 	stub_complete_io(2);
3332 
3333 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3334 	alignment = 512;
3335 	bdev->required_alignment = spdk_u32log2(alignment);
3336 	bdev->optimal_io_boundary = 128;
3337 	bdev->split_on_optimal_io_boundary = true;
3338 
3339 	iovcnt = 1;
3340 	iovs[0].iov_base = buf + 16;
3341 	iovs[0].iov_len = 512 * 160;
3342 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3343 	CU_ASSERT(rc == 0);
3344 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3345 	stub_complete_io(2);
3346 
3347 	/* 512 * 3 with 2 IO boundary */
3348 	alignment = 512;
3349 	bdev->required_alignment = spdk_u32log2(alignment);
3350 	bdev->optimal_io_boundary = 2;
3351 	bdev->split_on_optimal_io_boundary = true;
3352 
3353 	iovcnt = 2;
3354 	iovs[0].iov_base = buf + 16;
3355 	iovs[0].iov_len = 512;
3356 	iovs[1].iov_base = buf + 16 + 512 + 32;
3357 	iovs[1].iov_len = 1024;
3358 
3359 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3360 	CU_ASSERT(rc == 0);
3361 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3362 	stub_complete_io(2);
3363 
3364 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3365 	CU_ASSERT(rc == 0);
3366 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3367 	stub_complete_io(2);
3368 
3369 	/* 512 * 64 with 32 IO boundary */
3370 	bdev->optimal_io_boundary = 32;
3371 	iovcnt = 2;
3372 	iovs[0].iov_base = buf + 16;
3373 	iovs[0].iov_len = 16384;
3374 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3375 	iovs[1].iov_len = 16384;
3376 
3377 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3378 	CU_ASSERT(rc == 0);
3379 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3380 	stub_complete_io(3);
3381 
3382 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3383 	CU_ASSERT(rc == 0);
3384 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3385 	stub_complete_io(3);
3386 
3387 	/* 512 * 160 with 32 IO boundary */
3388 	iovcnt = 1;
3389 	iovs[0].iov_base = buf + 16;
3390 	iovs[0].iov_len = 16384 + 65536;
3391 
3392 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3393 	CU_ASSERT(rc == 0);
3394 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3395 	stub_complete_io(6);
3396 
3397 	spdk_put_io_channel(io_ch);
3398 	spdk_bdev_close(desc);
3399 	free_bdev(bdev);
3400 	fn_table.submit_request = stub_submit_request;
3401 	ut_fini_bdev();
3402 
3403 	free(buf);
3404 }
3405 
3406 static void
3407 histogram_status_cb(void *cb_arg, int status)
3408 {
3409 	g_status = status;
3410 }
3411 
3412 static void
3413 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3414 {
3415 	g_status = status;
3416 	g_histogram = histogram;
3417 }
3418 
3419 static void
3420 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3421 		   uint64_t total, uint64_t so_far)
3422 {
3423 	g_count += count;
3424 }
3425 
3426 static void
3427 histogram_channel_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3428 {
3429 	spdk_histogram_data_fn cb_fn = cb_arg;
3430 
3431 	g_status = status;
3432 
3433 	if (status == 0) {
3434 		spdk_histogram_data_iterate(histogram, cb_fn, NULL);
3435 	}
3436 }
3437 
3438 static void
3439 bdev_histograms(void)
3440 {
3441 	struct spdk_bdev *bdev;
3442 	struct spdk_bdev_desc *desc = NULL;
3443 	struct spdk_io_channel *ch;
3444 	struct spdk_histogram_data *histogram;
3445 	uint8_t buf[4096];
3446 	int rc;
3447 
3448 	ut_init_bdev(NULL);
3449 
3450 	bdev = allocate_bdev("bdev");
3451 
3452 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3453 	CU_ASSERT(rc == 0);
3454 	CU_ASSERT(desc != NULL);
3455 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3456 
3457 	ch = spdk_bdev_get_io_channel(desc);
3458 	CU_ASSERT(ch != NULL);
3459 
3460 	/* Enable histogram */
3461 	g_status = -1;
3462 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3463 	poll_threads();
3464 	CU_ASSERT(g_status == 0);
3465 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3466 
3467 	/* Allocate histogram */
3468 	histogram = spdk_histogram_data_alloc();
3469 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3470 
3471 	/* Check if histogram is zeroed */
3472 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3473 	poll_threads();
3474 	CU_ASSERT(g_status == 0);
3475 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3476 
3477 	g_count = 0;
3478 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3479 
3480 	CU_ASSERT(g_count == 0);
3481 
3482 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3483 	CU_ASSERT(rc == 0);
3484 
3485 	spdk_delay_us(10);
3486 	stub_complete_io(1);
3487 	poll_threads();
3488 
3489 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3490 	CU_ASSERT(rc == 0);
3491 
3492 	spdk_delay_us(10);
3493 	stub_complete_io(1);
3494 	poll_threads();
3495 
3496 	/* Check if histogram gathered data from all I/O channels */
3497 	g_histogram = NULL;
3498 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3499 	poll_threads();
3500 	CU_ASSERT(g_status == 0);
3501 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3502 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3503 
3504 	g_count = 0;
3505 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3506 	CU_ASSERT(g_count == 2);
3507 
3508 	g_count = 0;
3509 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, histogram_io_count);
3510 	CU_ASSERT(g_status == 0);
3511 	CU_ASSERT(g_count == 2);
3512 
3513 	/* Disable histogram */
3514 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3515 	poll_threads();
3516 	CU_ASSERT(g_status == 0);
3517 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3518 
3519 	/* Try to run histogram commands on disabled bdev */
3520 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3521 	poll_threads();
3522 	CU_ASSERT(g_status == -EFAULT);
3523 
3524 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, NULL);
3525 	CU_ASSERT(g_status == -EFAULT);
3526 
3527 	spdk_histogram_data_free(histogram);
3528 	spdk_put_io_channel(ch);
3529 	spdk_bdev_close(desc);
3530 	free_bdev(bdev);
3531 	ut_fini_bdev();
3532 }
3533 
3534 static void
3535 _bdev_compare(bool emulated)
3536 {
3537 	struct spdk_bdev *bdev;
3538 	struct spdk_bdev_desc *desc = NULL;
3539 	struct spdk_io_channel *ioch;
3540 	struct ut_expected_io *expected_io;
3541 	uint64_t offset, num_blocks;
3542 	uint32_t num_completed;
3543 	char aa_buf[512];
3544 	char bb_buf[512];
3545 	struct iovec compare_iov;
3546 	uint8_t expected_io_type;
3547 	int rc;
3548 
3549 	if (emulated) {
3550 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3551 	} else {
3552 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3553 	}
3554 
3555 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3556 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3557 
3558 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3559 
3560 	ut_init_bdev(NULL);
3561 	fn_table.submit_request = stub_submit_request_get_buf;
3562 	bdev = allocate_bdev("bdev");
3563 
3564 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3565 	CU_ASSERT_EQUAL(rc, 0);
3566 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3567 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3568 	ioch = spdk_bdev_get_io_channel(desc);
3569 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3570 
3571 	fn_table.submit_request = stub_submit_request_get_buf;
3572 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3573 
3574 	offset = 50;
3575 	num_blocks = 1;
3576 	compare_iov.iov_base = aa_buf;
3577 	compare_iov.iov_len = sizeof(aa_buf);
3578 
3579 	/* 1. successful compare */
3580 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3581 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3582 
3583 	g_io_done = false;
3584 	g_compare_read_buf = aa_buf;
3585 	g_compare_read_buf_len = sizeof(aa_buf);
3586 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3587 	CU_ASSERT_EQUAL(rc, 0);
3588 	num_completed = stub_complete_io(1);
3589 	CU_ASSERT_EQUAL(num_completed, 1);
3590 	CU_ASSERT(g_io_done == true);
3591 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3592 
3593 	/* 2. miscompare */
3594 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3595 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3596 
3597 	g_io_done = false;
3598 	g_compare_read_buf = bb_buf;
3599 	g_compare_read_buf_len = sizeof(bb_buf);
3600 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3601 	CU_ASSERT_EQUAL(rc, 0);
3602 	num_completed = stub_complete_io(1);
3603 	CU_ASSERT_EQUAL(num_completed, 1);
3604 	CU_ASSERT(g_io_done == true);
3605 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3606 
3607 	spdk_put_io_channel(ioch);
3608 	spdk_bdev_close(desc);
3609 	free_bdev(bdev);
3610 	fn_table.submit_request = stub_submit_request;
3611 	ut_fini_bdev();
3612 
3613 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3614 
3615 	g_compare_read_buf = NULL;
3616 }
3617 
3618 static void
3619 _bdev_compare_with_md(bool emulated)
3620 {
3621 	struct spdk_bdev *bdev;
3622 	struct spdk_bdev_desc *desc = NULL;
3623 	struct spdk_io_channel *ioch;
3624 	struct ut_expected_io *expected_io;
3625 	uint64_t offset, num_blocks;
3626 	uint32_t num_completed;
3627 	char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3628 	char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3629 	char buf_miscompare[1024 /* 2 * blocklen */];
3630 	char md_buf[16];
3631 	char md_buf_miscompare[16];
3632 	struct iovec compare_iov;
3633 	uint8_t expected_io_type;
3634 	int rc;
3635 
3636 	if (emulated) {
3637 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3638 	} else {
3639 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3640 	}
3641 
3642 	memset(buf, 0xaa, sizeof(buf));
3643 	memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
3644 	/* make last md different */
3645 	memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
3646 	memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
3647 	memset(md_buf, 0xaa, 16);
3648 	memset(md_buf_miscompare, 0xbb, 16);
3649 
3650 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3651 
3652 	ut_init_bdev(NULL);
3653 	fn_table.submit_request = stub_submit_request_get_buf;
3654 	bdev = allocate_bdev("bdev");
3655 
3656 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3657 	CU_ASSERT_EQUAL(rc, 0);
3658 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3659 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3660 	ioch = spdk_bdev_get_io_channel(desc);
3661 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3662 
3663 	fn_table.submit_request = stub_submit_request_get_buf;
3664 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3665 
3666 	offset = 50;
3667 	num_blocks = 2;
3668 
3669 	/* interleaved md & data */
3670 	bdev->md_interleave = true;
3671 	bdev->md_len = 8;
3672 	bdev->blocklen = 512 + 8;
3673 	compare_iov.iov_base = buf;
3674 	compare_iov.iov_len = sizeof(buf);
3675 
3676 	/* 1. successful compare with md interleaved */
3677 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3678 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3679 
3680 	g_io_done = false;
3681 	g_compare_read_buf = buf;
3682 	g_compare_read_buf_len = sizeof(buf);
3683 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3684 	CU_ASSERT_EQUAL(rc, 0);
3685 	num_completed = stub_complete_io(1);
3686 	CU_ASSERT_EQUAL(num_completed, 1);
3687 	CU_ASSERT(g_io_done == true);
3688 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3689 
3690 	/* 2. miscompare with md interleaved */
3691 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3692 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3693 
3694 	g_io_done = false;
3695 	g_compare_read_buf = buf_interleaved_miscompare;
3696 	g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
3697 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3698 	CU_ASSERT_EQUAL(rc, 0);
3699 	num_completed = stub_complete_io(1);
3700 	CU_ASSERT_EQUAL(num_completed, 1);
3701 	CU_ASSERT(g_io_done == true);
3702 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3703 
3704 	/* Separate data & md buffers */
3705 	bdev->md_interleave = false;
3706 	bdev->blocklen = 512;
3707 	compare_iov.iov_base = buf;
3708 	compare_iov.iov_len = 1024;
3709 
3710 	/* 3. successful compare with md separated */
3711 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3712 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3713 
3714 	g_io_done = false;
3715 	g_compare_read_buf = buf;
3716 	g_compare_read_buf_len = 1024;
3717 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3718 	g_compare_md_buf = md_buf;
3719 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3720 					       offset, num_blocks, io_done, NULL);
3721 	CU_ASSERT_EQUAL(rc, 0);
3722 	num_completed = stub_complete_io(1);
3723 	CU_ASSERT_EQUAL(num_completed, 1);
3724 	CU_ASSERT(g_io_done == true);
3725 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3726 
3727 	/* 4. miscompare with md separated where md buf is different */
3728 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3729 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3730 
3731 	g_io_done = false;
3732 	g_compare_read_buf = buf;
3733 	g_compare_read_buf_len = 1024;
3734 	g_compare_md_buf = md_buf_miscompare;
3735 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3736 					       offset, num_blocks, io_done, NULL);
3737 	CU_ASSERT_EQUAL(rc, 0);
3738 	num_completed = stub_complete_io(1);
3739 	CU_ASSERT_EQUAL(num_completed, 1);
3740 	CU_ASSERT(g_io_done == true);
3741 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3742 
3743 	/* 5. miscompare with md separated where buf is different */
3744 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3745 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3746 
3747 	g_io_done = false;
3748 	g_compare_read_buf = buf_miscompare;
3749 	g_compare_read_buf_len = sizeof(buf_miscompare);
3750 	g_compare_md_buf = md_buf;
3751 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3752 					       offset, num_blocks, io_done, NULL);
3753 	CU_ASSERT_EQUAL(rc, 0);
3754 	num_completed = stub_complete_io(1);
3755 	CU_ASSERT_EQUAL(num_completed, 1);
3756 	CU_ASSERT(g_io_done == true);
3757 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3758 
3759 	bdev->md_len = 0;
3760 	g_compare_md_buf = NULL;
3761 
3762 	spdk_put_io_channel(ioch);
3763 	spdk_bdev_close(desc);
3764 	free_bdev(bdev);
3765 	fn_table.submit_request = stub_submit_request;
3766 	ut_fini_bdev();
3767 
3768 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3769 
3770 	g_compare_read_buf = NULL;
3771 }
3772 
3773 static void
3774 bdev_compare(void)
3775 {
3776 	_bdev_compare(false);
3777 	_bdev_compare_with_md(false);
3778 }
3779 
3780 static void
3781 bdev_compare_emulated(void)
3782 {
3783 	_bdev_compare(true);
3784 	_bdev_compare_with_md(true);
3785 }
3786 
3787 static void
3788 bdev_compare_and_write(void)
3789 {
3790 	struct spdk_bdev *bdev;
3791 	struct spdk_bdev_desc *desc = NULL;
3792 	struct spdk_io_channel *ioch;
3793 	struct ut_expected_io *expected_io;
3794 	uint64_t offset, num_blocks;
3795 	uint32_t num_completed;
3796 	char aa_buf[512];
3797 	char bb_buf[512];
3798 	char cc_buf[512];
3799 	char write_buf[512];
3800 	struct iovec compare_iov;
3801 	struct iovec write_iov;
3802 	int rc;
3803 
3804 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3805 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3806 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3807 
3808 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3809 
3810 	ut_init_bdev(NULL);
3811 	fn_table.submit_request = stub_submit_request_get_buf;
3812 	bdev = allocate_bdev("bdev");
3813 
3814 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3815 	CU_ASSERT_EQUAL(rc, 0);
3816 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3817 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3818 	ioch = spdk_bdev_get_io_channel(desc);
3819 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3820 
3821 	fn_table.submit_request = stub_submit_request_get_buf;
3822 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3823 
3824 	offset = 50;
3825 	num_blocks = 1;
3826 	compare_iov.iov_base = aa_buf;
3827 	compare_iov.iov_len = sizeof(aa_buf);
3828 	write_iov.iov_base = bb_buf;
3829 	write_iov.iov_len = sizeof(bb_buf);
3830 
3831 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3832 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3833 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3834 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3835 
3836 	g_io_done = false;
3837 	g_compare_read_buf = aa_buf;
3838 	g_compare_read_buf_len = sizeof(aa_buf);
3839 	memset(write_buf, 0, sizeof(write_buf));
3840 	g_compare_write_buf = write_buf;
3841 	g_compare_write_buf_len = sizeof(write_buf);
3842 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3843 			offset, num_blocks, io_done, NULL);
3844 	/* Trigger range locking */
3845 	poll_threads();
3846 	CU_ASSERT_EQUAL(rc, 0);
3847 	num_completed = stub_complete_io(1);
3848 	CU_ASSERT_EQUAL(num_completed, 1);
3849 	CU_ASSERT(g_io_done == false);
3850 	num_completed = stub_complete_io(1);
3851 	/* Trigger range unlocking */
3852 	poll_threads();
3853 	CU_ASSERT_EQUAL(num_completed, 1);
3854 	CU_ASSERT(g_io_done == true);
3855 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3856 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3857 
3858 	/* Test miscompare */
3859 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3860 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3861 
3862 	g_io_done = false;
3863 	g_compare_read_buf = cc_buf;
3864 	g_compare_read_buf_len = sizeof(cc_buf);
3865 	memset(write_buf, 0, sizeof(write_buf));
3866 	g_compare_write_buf = write_buf;
3867 	g_compare_write_buf_len = sizeof(write_buf);
3868 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3869 			offset, num_blocks, io_done, NULL);
3870 	/* Trigger range locking */
3871 	poll_threads();
3872 	CU_ASSERT_EQUAL(rc, 0);
3873 	num_completed = stub_complete_io(1);
3874 	/* Trigger range unlocking earlier because we expect error here */
3875 	poll_threads();
3876 	CU_ASSERT_EQUAL(num_completed, 1);
3877 	CU_ASSERT(g_io_done == true);
3878 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3879 	num_completed = stub_complete_io(1);
3880 	CU_ASSERT_EQUAL(num_completed, 0);
3881 
3882 	spdk_put_io_channel(ioch);
3883 	spdk_bdev_close(desc);
3884 	free_bdev(bdev);
3885 	fn_table.submit_request = stub_submit_request;
3886 	ut_fini_bdev();
3887 
3888 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3889 
3890 	g_compare_read_buf = NULL;
3891 	g_compare_write_buf = NULL;
3892 }
3893 
3894 static void
3895 bdev_write_zeroes(void)
3896 {
3897 	struct spdk_bdev *bdev;
3898 	struct spdk_bdev_desc *desc = NULL;
3899 	struct spdk_io_channel *ioch;
3900 	struct ut_expected_io *expected_io;
3901 	uint64_t offset, num_io_blocks, num_blocks;
3902 	uint32_t num_completed, num_requests;
3903 	int rc;
3904 
3905 	ut_init_bdev(NULL);
3906 	bdev = allocate_bdev("bdev");
3907 
3908 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3909 	CU_ASSERT_EQUAL(rc, 0);
3910 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3911 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3912 	ioch = spdk_bdev_get_io_channel(desc);
3913 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3914 
3915 	fn_table.submit_request = stub_submit_request;
3916 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3917 
3918 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3919 	bdev->md_len = 0;
3920 	bdev->blocklen = 4096;
3921 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3922 
3923 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3924 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3925 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3926 	CU_ASSERT_EQUAL(rc, 0);
3927 	num_completed = stub_complete_io(1);
3928 	CU_ASSERT_EQUAL(num_completed, 1);
3929 
3930 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3931 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3932 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3933 	num_requests = 2;
3934 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3935 
3936 	for (offset = 0; offset < num_requests; ++offset) {
3937 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3938 						   offset * num_io_blocks, num_io_blocks, 0);
3939 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3940 	}
3941 
3942 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3943 	CU_ASSERT_EQUAL(rc, 0);
3944 	num_completed = stub_complete_io(num_requests);
3945 	CU_ASSERT_EQUAL(num_completed, num_requests);
3946 
3947 	/* Check that the splitting is correct if bdev has interleaved metadata */
3948 	bdev->md_interleave = true;
3949 	bdev->md_len = 64;
3950 	bdev->blocklen = 4096 + 64;
3951 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3952 
3953 	num_requests = offset = 0;
3954 	while (offset < num_blocks) {
3955 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
3956 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3957 						   offset, num_io_blocks, 0);
3958 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3959 		offset += num_io_blocks;
3960 		num_requests++;
3961 	}
3962 
3963 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3964 	CU_ASSERT_EQUAL(rc, 0);
3965 	num_completed = stub_complete_io(num_requests);
3966 	CU_ASSERT_EQUAL(num_completed, num_requests);
3967 	num_completed = stub_complete_io(num_requests);
3968 	assert(num_completed == 0);
3969 
3970 	/* Check the the same for separate metadata buffer */
3971 	bdev->md_interleave = false;
3972 	bdev->md_len = 64;
3973 	bdev->blocklen = 4096;
3974 
3975 	num_requests = offset = 0;
3976 	while (offset < num_blocks) {
3977 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
3978 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3979 						   offset, num_io_blocks, 0);
3980 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
3981 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3982 		offset += num_io_blocks;
3983 		num_requests++;
3984 	}
3985 
3986 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3987 	CU_ASSERT_EQUAL(rc, 0);
3988 	num_completed = stub_complete_io(num_requests);
3989 	CU_ASSERT_EQUAL(num_completed, num_requests);
3990 
3991 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
3992 	spdk_put_io_channel(ioch);
3993 	spdk_bdev_close(desc);
3994 	free_bdev(bdev);
3995 	ut_fini_bdev();
3996 }
3997 
3998 static void
3999 bdev_zcopy_write(void)
4000 {
4001 	struct spdk_bdev *bdev;
4002 	struct spdk_bdev_desc *desc = NULL;
4003 	struct spdk_io_channel *ioch;
4004 	struct ut_expected_io *expected_io;
4005 	uint64_t offset, num_blocks;
4006 	uint32_t num_completed;
4007 	char aa_buf[512];
4008 	struct iovec iov;
4009 	int rc;
4010 	const bool populate = false;
4011 	const bool commit = true;
4012 
4013 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4014 
4015 	ut_init_bdev(NULL);
4016 	bdev = allocate_bdev("bdev");
4017 
4018 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4019 	CU_ASSERT_EQUAL(rc, 0);
4020 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4021 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4022 	ioch = spdk_bdev_get_io_channel(desc);
4023 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4024 
4025 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4026 
4027 	offset = 50;
4028 	num_blocks = 1;
4029 	iov.iov_base = NULL;
4030 	iov.iov_len = 0;
4031 
4032 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
4033 	g_zcopy_read_buf_len = (uint32_t) -1;
4034 	/* Do a zcopy start for a write (populate=false) */
4035 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4036 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4037 	g_io_done = false;
4038 	g_zcopy_write_buf = aa_buf;
4039 	g_zcopy_write_buf_len = sizeof(aa_buf);
4040 	g_zcopy_bdev_io = NULL;
4041 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4042 	CU_ASSERT_EQUAL(rc, 0);
4043 	num_completed = stub_complete_io(1);
4044 	CU_ASSERT_EQUAL(num_completed, 1);
4045 	CU_ASSERT(g_io_done == true);
4046 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4047 	/* Check that the iov has been set up */
4048 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
4049 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
4050 	/* Check that the bdev_io has been saved */
4051 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4052 	/* Now do the zcopy end for a write (commit=true) */
4053 	g_io_done = false;
4054 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4055 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4056 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4057 	CU_ASSERT_EQUAL(rc, 0);
4058 	num_completed = stub_complete_io(1);
4059 	CU_ASSERT_EQUAL(num_completed, 1);
4060 	CU_ASSERT(g_io_done == true);
4061 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4062 	/* Check the g_zcopy are reset by io_done */
4063 	CU_ASSERT(g_zcopy_write_buf == NULL);
4064 	CU_ASSERT(g_zcopy_write_buf_len == 0);
4065 	/* Check that io_done has freed the g_zcopy_bdev_io */
4066 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4067 
4068 	/* Check the zcopy read buffer has not been touched which
4069 	 * ensures that the correct buffers were used.
4070 	 */
4071 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
4072 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
4073 
4074 	spdk_put_io_channel(ioch);
4075 	spdk_bdev_close(desc);
4076 	free_bdev(bdev);
4077 	ut_fini_bdev();
4078 }
4079 
4080 static void
4081 bdev_zcopy_read(void)
4082 {
4083 	struct spdk_bdev *bdev;
4084 	struct spdk_bdev_desc *desc = NULL;
4085 	struct spdk_io_channel *ioch;
4086 	struct ut_expected_io *expected_io;
4087 	uint64_t offset, num_blocks;
4088 	uint32_t num_completed;
4089 	char aa_buf[512];
4090 	struct iovec iov;
4091 	int rc;
4092 	const bool populate = true;
4093 	const bool commit = false;
4094 
4095 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4096 
4097 	ut_init_bdev(NULL);
4098 	bdev = allocate_bdev("bdev");
4099 
4100 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4101 	CU_ASSERT_EQUAL(rc, 0);
4102 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4103 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4104 	ioch = spdk_bdev_get_io_channel(desc);
4105 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4106 
4107 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4108 
4109 	offset = 50;
4110 	num_blocks = 1;
4111 	iov.iov_base = NULL;
4112 	iov.iov_len = 0;
4113 
4114 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
4115 	g_zcopy_write_buf_len = (uint32_t) -1;
4116 
4117 	/* Do a zcopy start for a read (populate=true) */
4118 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4119 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4120 	g_io_done = false;
4121 	g_zcopy_read_buf = aa_buf;
4122 	g_zcopy_read_buf_len = sizeof(aa_buf);
4123 	g_zcopy_bdev_io = NULL;
4124 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4125 	CU_ASSERT_EQUAL(rc, 0);
4126 	num_completed = stub_complete_io(1);
4127 	CU_ASSERT_EQUAL(num_completed, 1);
4128 	CU_ASSERT(g_io_done == true);
4129 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4130 	/* Check that the iov has been set up */
4131 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
4132 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
4133 	/* Check that the bdev_io has been saved */
4134 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4135 
4136 	/* Now do the zcopy end for a read (commit=false) */
4137 	g_io_done = false;
4138 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4139 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4140 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4141 	CU_ASSERT_EQUAL(rc, 0);
4142 	num_completed = stub_complete_io(1);
4143 	CU_ASSERT_EQUAL(num_completed, 1);
4144 	CU_ASSERT(g_io_done == true);
4145 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4146 	/* Check the g_zcopy are reset by io_done */
4147 	CU_ASSERT(g_zcopy_read_buf == NULL);
4148 	CU_ASSERT(g_zcopy_read_buf_len == 0);
4149 	/* Check that io_done has freed the g_zcopy_bdev_io */
4150 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4151 
4152 	/* Check the zcopy write buffer has not been touched which
4153 	 * ensures that the correct buffers were used.
4154 	 */
4155 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
4156 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
4157 
4158 	spdk_put_io_channel(ioch);
4159 	spdk_bdev_close(desc);
4160 	free_bdev(bdev);
4161 	ut_fini_bdev();
4162 }
4163 
4164 static void
4165 bdev_open_while_hotremove(void)
4166 {
4167 	struct spdk_bdev *bdev;
4168 	struct spdk_bdev_desc *desc[2] = {};
4169 	int rc;
4170 
4171 	bdev = allocate_bdev("bdev");
4172 
4173 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
4174 	CU_ASSERT(rc == 0);
4175 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
4176 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
4177 
4178 	spdk_bdev_unregister(bdev, NULL, NULL);
4179 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
4180 	poll_threads();
4181 
4182 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
4183 	CU_ASSERT(rc == -ENODEV);
4184 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
4185 
4186 	spdk_bdev_close(desc[0]);
4187 	free_bdev(bdev);
4188 }
4189 
4190 static void
4191 bdev_close_while_hotremove(void)
4192 {
4193 	struct spdk_bdev *bdev;
4194 	struct spdk_bdev_desc *desc = NULL;
4195 	int rc = 0;
4196 
4197 	bdev = allocate_bdev("bdev");
4198 
4199 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
4200 	CU_ASSERT_EQUAL(rc, 0);
4201 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4202 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4203 
4204 	/* Simulate hot-unplug by unregistering bdev */
4205 	g_event_type1 = 0xFF;
4206 	g_unregister_arg = NULL;
4207 	g_unregister_rc = -1;
4208 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4209 	/* Close device while remove event is in flight */
4210 	spdk_bdev_close(desc);
4211 
4212 	/* Ensure that unregister callback is delayed */
4213 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
4214 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
4215 
4216 	poll_threads();
4217 
4218 	/* Event callback shall not be issued because device was closed */
4219 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
4220 	/* Unregister callback is issued */
4221 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
4222 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
4223 
4224 	free_bdev(bdev);
4225 }
4226 
4227 static void
4228 bdev_open_ext(void)
4229 {
4230 	struct spdk_bdev *bdev;
4231 	struct spdk_bdev_desc *desc1 = NULL;
4232 	struct spdk_bdev_desc *desc2 = NULL;
4233 	int rc = 0;
4234 
4235 	bdev = allocate_bdev("bdev");
4236 
4237 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4238 	CU_ASSERT_EQUAL(rc, -EINVAL);
4239 
4240 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4241 	CU_ASSERT_EQUAL(rc, 0);
4242 
4243 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4244 	CU_ASSERT_EQUAL(rc, 0);
4245 
4246 	g_event_type1 = 0xFF;
4247 	g_event_type2 = 0xFF;
4248 
4249 	/* Simulate hot-unplug by unregistering bdev */
4250 	spdk_bdev_unregister(bdev, NULL, NULL);
4251 	poll_threads();
4252 
4253 	/* Check if correct events have been triggered in event callback fn */
4254 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4255 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4256 
4257 	free_bdev(bdev);
4258 	poll_threads();
4259 }
4260 
4261 static void
4262 bdev_open_ext_unregister(void)
4263 {
4264 	struct spdk_bdev *bdev;
4265 	struct spdk_bdev_desc *desc1 = NULL;
4266 	struct spdk_bdev_desc *desc2 = NULL;
4267 	struct spdk_bdev_desc *desc3 = NULL;
4268 	struct spdk_bdev_desc *desc4 = NULL;
4269 	int rc = 0;
4270 
4271 	bdev = allocate_bdev("bdev");
4272 
4273 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4274 	CU_ASSERT_EQUAL(rc, -EINVAL);
4275 
4276 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4277 	CU_ASSERT_EQUAL(rc, 0);
4278 
4279 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4280 	CU_ASSERT_EQUAL(rc, 0);
4281 
4282 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
4283 	CU_ASSERT_EQUAL(rc, 0);
4284 
4285 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
4286 	CU_ASSERT_EQUAL(rc, 0);
4287 
4288 	g_event_type1 = 0xFF;
4289 	g_event_type2 = 0xFF;
4290 	g_event_type3 = 0xFF;
4291 	g_event_type4 = 0xFF;
4292 
4293 	g_unregister_arg = NULL;
4294 	g_unregister_rc = -1;
4295 
4296 	/* Simulate hot-unplug by unregistering bdev */
4297 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4298 
4299 	/*
4300 	 * Unregister is handled asynchronously and event callback
4301 	 * (i.e., above bdev_open_cbN) will be called.
4302 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
4303 	 * close the desc3 and desc4 so that the bdev is not closed.
4304 	 */
4305 	poll_threads();
4306 
4307 	/* Check if correct events have been triggered in event callback fn */
4308 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4309 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4310 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
4311 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
4312 
4313 	/* Check that unregister callback is delayed */
4314 	CU_ASSERT(g_unregister_arg == NULL);
4315 	CU_ASSERT(g_unregister_rc == -1);
4316 
4317 	/*
4318 	 * Explicitly close desc3. As desc4 is still opened there, the
4319 	 * unergister callback is still delayed to execute.
4320 	 */
4321 	spdk_bdev_close(desc3);
4322 	CU_ASSERT(g_unregister_arg == NULL);
4323 	CU_ASSERT(g_unregister_rc == -1);
4324 
4325 	/*
4326 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
4327 	 * operation after last desc is closed.
4328 	 */
4329 	spdk_bdev_close(desc4);
4330 
4331 	/* Poll the thread for the async unregister operation */
4332 	poll_threads();
4333 
4334 	/* Check that unregister callback is executed */
4335 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
4336 	CU_ASSERT(g_unregister_rc == 0);
4337 
4338 	free_bdev(bdev);
4339 	poll_threads();
4340 }
4341 
4342 struct timeout_io_cb_arg {
4343 	struct iovec iov;
4344 	uint8_t type;
4345 };
4346 
4347 static int
4348 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
4349 {
4350 	struct spdk_bdev_io *bdev_io;
4351 	int n = 0;
4352 
4353 	if (!ch) {
4354 		return -1;
4355 	}
4356 
4357 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
4358 		n++;
4359 	}
4360 
4361 	return n;
4362 }
4363 
4364 static void
4365 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
4366 {
4367 	struct timeout_io_cb_arg *ctx = cb_arg;
4368 
4369 	ctx->type = bdev_io->type;
4370 	ctx->iov.iov_base = bdev_io->iov.iov_base;
4371 	ctx->iov.iov_len = bdev_io->iov.iov_len;
4372 }
4373 
4374 static void
4375 bdev_set_io_timeout(void)
4376 {
4377 	struct spdk_bdev *bdev;
4378 	struct spdk_bdev_desc *desc = NULL;
4379 	struct spdk_io_channel *io_ch = NULL;
4380 	struct spdk_bdev_channel *bdev_ch = NULL;
4381 	struct timeout_io_cb_arg cb_arg;
4382 
4383 	ut_init_bdev(NULL);
4384 	bdev = allocate_bdev("bdev");
4385 
4386 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4387 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4388 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4389 
4390 	io_ch = spdk_bdev_get_io_channel(desc);
4391 	CU_ASSERT(io_ch != NULL);
4392 
4393 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4394 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4395 
4396 	/* This is the part1.
4397 	 * We will check the bdev_ch->io_submitted list
4398 	 * TO make sure that it can link IOs and only the user submitted IOs
4399 	 */
4400 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4401 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4402 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4403 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4404 	stub_complete_io(1);
4405 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4406 	stub_complete_io(1);
4407 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4408 
4409 	/* Split IO */
4410 	bdev->optimal_io_boundary = 16;
4411 	bdev->split_on_optimal_io_boundary = true;
4412 
4413 	/* Now test that a single-vector command is split correctly.
4414 	 * Offset 14, length 8, payload 0xF000
4415 	 *  Child - Offset 14, length 2, payload 0xF000
4416 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4417 	 *
4418 	 * Set up the expected values before calling spdk_bdev_read_blocks
4419 	 */
4420 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4421 	/* We count all submitted IOs including IO that are generated by splitting. */
4422 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4423 	stub_complete_io(1);
4424 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4425 	stub_complete_io(1);
4426 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4427 
4428 	/* Also include the reset IO */
4429 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4430 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4431 	poll_threads();
4432 	stub_complete_io(1);
4433 	poll_threads();
4434 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4435 
4436 	/* This is part2
4437 	 * Test the desc timeout poller register
4438 	 */
4439 
4440 	/* Successfully set the timeout */
4441 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4442 	CU_ASSERT(desc->io_timeout_poller != NULL);
4443 	CU_ASSERT(desc->timeout_in_sec == 30);
4444 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4445 	CU_ASSERT(desc->cb_arg == &cb_arg);
4446 
4447 	/* Change the timeout limit */
4448 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4449 	CU_ASSERT(desc->io_timeout_poller != NULL);
4450 	CU_ASSERT(desc->timeout_in_sec == 20);
4451 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4452 	CU_ASSERT(desc->cb_arg == &cb_arg);
4453 
4454 	/* Disable the timeout */
4455 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4456 	CU_ASSERT(desc->io_timeout_poller == NULL);
4457 
4458 	/* This the part3
4459 	 * We will test to catch timeout IO and check whether the IO is
4460 	 * the submitted one.
4461 	 */
4462 	memset(&cb_arg, 0, sizeof(cb_arg));
4463 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4464 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4465 
4466 	/* Don't reach the limit */
4467 	spdk_delay_us(15 * spdk_get_ticks_hz());
4468 	poll_threads();
4469 	CU_ASSERT(cb_arg.type == 0);
4470 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4471 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4472 
4473 	/* 15 + 15 = 30 reach the limit */
4474 	spdk_delay_us(15 * spdk_get_ticks_hz());
4475 	poll_threads();
4476 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4477 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4478 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4479 	stub_complete_io(1);
4480 
4481 	/* Use the same split IO above and check the IO */
4482 	memset(&cb_arg, 0, sizeof(cb_arg));
4483 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4484 
4485 	/* The first child complete in time */
4486 	spdk_delay_us(15 * spdk_get_ticks_hz());
4487 	poll_threads();
4488 	stub_complete_io(1);
4489 	CU_ASSERT(cb_arg.type == 0);
4490 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4491 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4492 
4493 	/* The second child reach the limit */
4494 	spdk_delay_us(15 * spdk_get_ticks_hz());
4495 	poll_threads();
4496 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4497 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4498 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4499 	stub_complete_io(1);
4500 
4501 	/* Also include the reset IO */
4502 	memset(&cb_arg, 0, sizeof(cb_arg));
4503 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4504 	spdk_delay_us(30 * spdk_get_ticks_hz());
4505 	poll_threads();
4506 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4507 	stub_complete_io(1);
4508 	poll_threads();
4509 
4510 	spdk_put_io_channel(io_ch);
4511 	spdk_bdev_close(desc);
4512 	free_bdev(bdev);
4513 	ut_fini_bdev();
4514 }
4515 
4516 static void
4517 bdev_set_qd_sampling(void)
4518 {
4519 	struct spdk_bdev *bdev;
4520 	struct spdk_bdev_desc *desc = NULL;
4521 	struct spdk_io_channel *io_ch = NULL;
4522 	struct spdk_bdev_channel *bdev_ch = NULL;
4523 	struct timeout_io_cb_arg cb_arg;
4524 
4525 	ut_init_bdev(NULL);
4526 	bdev = allocate_bdev("bdev");
4527 
4528 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4529 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4530 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4531 
4532 	io_ch = spdk_bdev_get_io_channel(desc);
4533 	CU_ASSERT(io_ch != NULL);
4534 
4535 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4536 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4537 
4538 	/* This is the part1.
4539 	 * We will check the bdev_ch->io_submitted list
4540 	 * TO make sure that it can link IOs and only the user submitted IOs
4541 	 */
4542 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4543 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4544 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4545 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4546 	stub_complete_io(1);
4547 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4548 	stub_complete_io(1);
4549 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4550 
4551 	/* This is the part2.
4552 	 * Test the bdev's qd poller register
4553 	 */
4554 	/* 1st Successfully set the qd sampling period */
4555 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4556 	CU_ASSERT(bdev->internal.new_period == 10);
4557 	CU_ASSERT(bdev->internal.period == 10);
4558 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4559 	poll_threads();
4560 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4561 
4562 	/* 2nd Change the qd sampling period */
4563 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4564 	CU_ASSERT(bdev->internal.new_period == 20);
4565 	CU_ASSERT(bdev->internal.period == 10);
4566 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4567 	poll_threads();
4568 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4569 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4570 
4571 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4572 	spdk_delay_us(20);
4573 	poll_thread_times(0, 1);
4574 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4575 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4576 	CU_ASSERT(bdev->internal.new_period == 30);
4577 	CU_ASSERT(bdev->internal.period == 20);
4578 	poll_threads();
4579 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4580 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4581 
4582 	/* 4th Disable the qd sampling period */
4583 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4584 	CU_ASSERT(bdev->internal.new_period == 0);
4585 	CU_ASSERT(bdev->internal.period == 30);
4586 	poll_threads();
4587 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4588 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4589 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4590 
4591 	/* This is the part3.
4592 	 * We will test the submitted IO and reset works
4593 	 * properly with the qd sampling.
4594 	 */
4595 	memset(&cb_arg, 0, sizeof(cb_arg));
4596 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4597 	poll_threads();
4598 
4599 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4600 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4601 
4602 	/* Also include the reset IO */
4603 	memset(&cb_arg, 0, sizeof(cb_arg));
4604 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4605 	poll_threads();
4606 
4607 	/* Close the desc */
4608 	spdk_put_io_channel(io_ch);
4609 	spdk_bdev_close(desc);
4610 
4611 	/* Complete the submitted IO and reset */
4612 	stub_complete_io(2);
4613 	poll_threads();
4614 
4615 	free_bdev(bdev);
4616 	ut_fini_bdev();
4617 }
4618 
4619 static void
4620 lba_range_overlap(void)
4621 {
4622 	struct lba_range r1, r2;
4623 
4624 	r1.offset = 100;
4625 	r1.length = 50;
4626 
4627 	r2.offset = 0;
4628 	r2.length = 1;
4629 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4630 
4631 	r2.offset = 0;
4632 	r2.length = 100;
4633 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4634 
4635 	r2.offset = 0;
4636 	r2.length = 110;
4637 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4638 
4639 	r2.offset = 100;
4640 	r2.length = 10;
4641 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4642 
4643 	r2.offset = 110;
4644 	r2.length = 20;
4645 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4646 
4647 	r2.offset = 140;
4648 	r2.length = 150;
4649 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4650 
4651 	r2.offset = 130;
4652 	r2.length = 200;
4653 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4654 
4655 	r2.offset = 150;
4656 	r2.length = 100;
4657 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4658 
4659 	r2.offset = 110;
4660 	r2.length = 0;
4661 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4662 }
4663 
4664 static bool g_lock_lba_range_done;
4665 static bool g_unlock_lba_range_done;
4666 
4667 static void
4668 lock_lba_range_done(void *ctx, int status)
4669 {
4670 	g_lock_lba_range_done = true;
4671 }
4672 
4673 static void
4674 unlock_lba_range_done(void *ctx, int status)
4675 {
4676 	g_unlock_lba_range_done = true;
4677 }
4678 
4679 static void
4680 lock_lba_range_check_ranges(void)
4681 {
4682 	struct spdk_bdev *bdev;
4683 	struct spdk_bdev_desc *desc = NULL;
4684 	struct spdk_io_channel *io_ch;
4685 	struct spdk_bdev_channel *channel;
4686 	struct lba_range *range;
4687 	int ctx1;
4688 	int rc;
4689 
4690 	ut_init_bdev(NULL);
4691 	bdev = allocate_bdev("bdev0");
4692 
4693 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4694 	CU_ASSERT(rc == 0);
4695 	CU_ASSERT(desc != NULL);
4696 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4697 	io_ch = spdk_bdev_get_io_channel(desc);
4698 	CU_ASSERT(io_ch != NULL);
4699 	channel = spdk_io_channel_get_ctx(io_ch);
4700 
4701 	g_lock_lba_range_done = false;
4702 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4703 	CU_ASSERT(rc == 0);
4704 	poll_threads();
4705 
4706 	CU_ASSERT(g_lock_lba_range_done == true);
4707 	range = TAILQ_FIRST(&channel->locked_ranges);
4708 	SPDK_CU_ASSERT_FATAL(range != NULL);
4709 	CU_ASSERT(range->offset == 20);
4710 	CU_ASSERT(range->length == 10);
4711 	CU_ASSERT(range->owner_ch == channel);
4712 
4713 	/* Unlocks must exactly match a lock. */
4714 	g_unlock_lba_range_done = false;
4715 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4716 	CU_ASSERT(rc == -EINVAL);
4717 	CU_ASSERT(g_unlock_lba_range_done == false);
4718 
4719 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4720 	CU_ASSERT(rc == 0);
4721 	spdk_delay_us(100);
4722 	poll_threads();
4723 
4724 	CU_ASSERT(g_unlock_lba_range_done == true);
4725 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4726 
4727 	spdk_put_io_channel(io_ch);
4728 	spdk_bdev_close(desc);
4729 	free_bdev(bdev);
4730 	ut_fini_bdev();
4731 }
4732 
4733 static void
4734 lock_lba_range_with_io_outstanding(void)
4735 {
4736 	struct spdk_bdev *bdev;
4737 	struct spdk_bdev_desc *desc = NULL;
4738 	struct spdk_io_channel *io_ch;
4739 	struct spdk_bdev_channel *channel;
4740 	struct lba_range *range;
4741 	char buf[4096];
4742 	int ctx1;
4743 	int rc;
4744 
4745 	ut_init_bdev(NULL);
4746 	bdev = allocate_bdev("bdev0");
4747 
4748 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4749 	CU_ASSERT(rc == 0);
4750 	CU_ASSERT(desc != NULL);
4751 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4752 	io_ch = spdk_bdev_get_io_channel(desc);
4753 	CU_ASSERT(io_ch != NULL);
4754 	channel = spdk_io_channel_get_ctx(io_ch);
4755 
4756 	g_io_done = false;
4757 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4758 	CU_ASSERT(rc == 0);
4759 
4760 	g_lock_lba_range_done = false;
4761 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4762 	CU_ASSERT(rc == 0);
4763 	poll_threads();
4764 
4765 	/* The lock should immediately become valid, since there are no outstanding
4766 	 * write I/O.
4767 	 */
4768 	CU_ASSERT(g_io_done == false);
4769 	CU_ASSERT(g_lock_lba_range_done == true);
4770 	range = TAILQ_FIRST(&channel->locked_ranges);
4771 	SPDK_CU_ASSERT_FATAL(range != NULL);
4772 	CU_ASSERT(range->offset == 20);
4773 	CU_ASSERT(range->length == 10);
4774 	CU_ASSERT(range->owner_ch == channel);
4775 	CU_ASSERT(range->locked_ctx == &ctx1);
4776 
4777 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4778 	CU_ASSERT(rc == 0);
4779 	stub_complete_io(1);
4780 	spdk_delay_us(100);
4781 	poll_threads();
4782 
4783 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4784 
4785 	/* Now try again, but with a write I/O. */
4786 	g_io_done = false;
4787 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4788 	CU_ASSERT(rc == 0);
4789 
4790 	g_lock_lba_range_done = false;
4791 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4792 	CU_ASSERT(rc == 0);
4793 	poll_threads();
4794 
4795 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
4796 	 * But note that the range should be on the channel's locked_list, to make sure no
4797 	 * new write I/O are started.
4798 	 */
4799 	CU_ASSERT(g_io_done == false);
4800 	CU_ASSERT(g_lock_lba_range_done == false);
4801 	range = TAILQ_FIRST(&channel->locked_ranges);
4802 	SPDK_CU_ASSERT_FATAL(range != NULL);
4803 	CU_ASSERT(range->offset == 20);
4804 	CU_ASSERT(range->length == 10);
4805 
4806 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
4807 	 * our callback was invoked).
4808 	 */
4809 	stub_complete_io(1);
4810 	spdk_delay_us(100);
4811 	poll_threads();
4812 	CU_ASSERT(g_io_done == true);
4813 	CU_ASSERT(g_lock_lba_range_done == true);
4814 
4815 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4816 	CU_ASSERT(rc == 0);
4817 	poll_threads();
4818 
4819 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4820 
4821 	spdk_put_io_channel(io_ch);
4822 	spdk_bdev_close(desc);
4823 	free_bdev(bdev);
4824 	ut_fini_bdev();
4825 }
4826 
4827 static void
4828 lock_lba_range_overlapped(void)
4829 {
4830 	struct spdk_bdev *bdev;
4831 	struct spdk_bdev_desc *desc = NULL;
4832 	struct spdk_io_channel *io_ch;
4833 	struct spdk_bdev_channel *channel;
4834 	struct lba_range *range;
4835 	int ctx1;
4836 	int rc;
4837 
4838 	ut_init_bdev(NULL);
4839 	bdev = allocate_bdev("bdev0");
4840 
4841 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4842 	CU_ASSERT(rc == 0);
4843 	CU_ASSERT(desc != NULL);
4844 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4845 	io_ch = spdk_bdev_get_io_channel(desc);
4846 	CU_ASSERT(io_ch != NULL);
4847 	channel = spdk_io_channel_get_ctx(io_ch);
4848 
4849 	/* Lock range 20-29. */
4850 	g_lock_lba_range_done = false;
4851 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4852 	CU_ASSERT(rc == 0);
4853 	poll_threads();
4854 
4855 	CU_ASSERT(g_lock_lba_range_done == true);
4856 	range = TAILQ_FIRST(&channel->locked_ranges);
4857 	SPDK_CU_ASSERT_FATAL(range != NULL);
4858 	CU_ASSERT(range->offset == 20);
4859 	CU_ASSERT(range->length == 10);
4860 
4861 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
4862 	 * 20-29.
4863 	 */
4864 	g_lock_lba_range_done = false;
4865 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
4866 	CU_ASSERT(rc == 0);
4867 	poll_threads();
4868 
4869 	CU_ASSERT(g_lock_lba_range_done == false);
4870 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4871 	SPDK_CU_ASSERT_FATAL(range != NULL);
4872 	CU_ASSERT(range->offset == 25);
4873 	CU_ASSERT(range->length == 15);
4874 
4875 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
4876 	 * no longer overlaps with an active lock.
4877 	 */
4878 	g_unlock_lba_range_done = false;
4879 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4880 	CU_ASSERT(rc == 0);
4881 	poll_threads();
4882 
4883 	CU_ASSERT(g_unlock_lba_range_done == true);
4884 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4885 	range = TAILQ_FIRST(&channel->locked_ranges);
4886 	SPDK_CU_ASSERT_FATAL(range != NULL);
4887 	CU_ASSERT(range->offset == 25);
4888 	CU_ASSERT(range->length == 15);
4889 
4890 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
4891 	 * currently active 25-39 lock.
4892 	 */
4893 	g_lock_lba_range_done = false;
4894 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
4895 	CU_ASSERT(rc == 0);
4896 	poll_threads();
4897 
4898 	CU_ASSERT(g_lock_lba_range_done == true);
4899 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4900 	SPDK_CU_ASSERT_FATAL(range != NULL);
4901 	range = TAILQ_NEXT(range, tailq);
4902 	SPDK_CU_ASSERT_FATAL(range != NULL);
4903 	CU_ASSERT(range->offset == 40);
4904 	CU_ASSERT(range->length == 20);
4905 
4906 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4907 	g_lock_lba_range_done = false;
4908 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4909 	CU_ASSERT(rc == 0);
4910 	poll_threads();
4911 
4912 	CU_ASSERT(g_lock_lba_range_done == false);
4913 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4914 	SPDK_CU_ASSERT_FATAL(range != NULL);
4915 	CU_ASSERT(range->offset == 35);
4916 	CU_ASSERT(range->length == 10);
4917 
4918 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4919 	 * the 40-59 lock is still active.
4920 	 */
4921 	g_unlock_lba_range_done = false;
4922 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4923 	CU_ASSERT(rc == 0);
4924 	poll_threads();
4925 
4926 	CU_ASSERT(g_unlock_lba_range_done == true);
4927 	CU_ASSERT(g_lock_lba_range_done == false);
4928 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4929 	SPDK_CU_ASSERT_FATAL(range != NULL);
4930 	CU_ASSERT(range->offset == 35);
4931 	CU_ASSERT(range->length == 10);
4932 
4933 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4934 	 * no longer any active overlapping locks.
4935 	 */
4936 	g_unlock_lba_range_done = false;
4937 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4938 	CU_ASSERT(rc == 0);
4939 	poll_threads();
4940 
4941 	CU_ASSERT(g_unlock_lba_range_done == true);
4942 	CU_ASSERT(g_lock_lba_range_done == true);
4943 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4944 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4945 	SPDK_CU_ASSERT_FATAL(range != NULL);
4946 	CU_ASSERT(range->offset == 35);
4947 	CU_ASSERT(range->length == 10);
4948 
4949 	/* Finally, unlock 35-44. */
4950 	g_unlock_lba_range_done = false;
4951 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
4952 	CU_ASSERT(rc == 0);
4953 	poll_threads();
4954 
4955 	CU_ASSERT(g_unlock_lba_range_done == true);
4956 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
4957 
4958 	spdk_put_io_channel(io_ch);
4959 	spdk_bdev_close(desc);
4960 	free_bdev(bdev);
4961 	ut_fini_bdev();
4962 }
4963 
4964 static void
4965 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4966 {
4967 	g_abort_done = true;
4968 	g_abort_status = bdev_io->internal.status;
4969 	spdk_bdev_free_io(bdev_io);
4970 }
4971 
4972 static void
4973 bdev_io_abort(void)
4974 {
4975 	struct spdk_bdev *bdev;
4976 	struct spdk_bdev_desc *desc = NULL;
4977 	struct spdk_io_channel *io_ch;
4978 	struct spdk_bdev_channel *channel;
4979 	struct spdk_bdev_mgmt_channel *mgmt_ch;
4980 	struct spdk_bdev_opts bdev_opts = {};
4981 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
4982 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
4983 	int rc;
4984 
4985 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4986 	bdev_opts.bdev_io_pool_size = 7;
4987 	bdev_opts.bdev_io_cache_size = 2;
4988 	ut_init_bdev(&bdev_opts);
4989 
4990 	bdev = allocate_bdev("bdev0");
4991 
4992 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4993 	CU_ASSERT(rc == 0);
4994 	CU_ASSERT(desc != NULL);
4995 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4996 	io_ch = spdk_bdev_get_io_channel(desc);
4997 	CU_ASSERT(io_ch != NULL);
4998 	channel = spdk_io_channel_get_ctx(io_ch);
4999 	mgmt_ch = channel->shared_resource->mgmt_ch;
5000 
5001 	g_abort_done = false;
5002 
5003 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
5004 
5005 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5006 	CU_ASSERT(rc == -ENOTSUP);
5007 
5008 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
5009 
5010 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
5011 	CU_ASSERT(rc == 0);
5012 	CU_ASSERT(g_abort_done == true);
5013 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
5014 
5015 	/* Test the case that the target I/O was successfully aborted. */
5016 	g_io_done = false;
5017 
5018 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5019 	CU_ASSERT(rc == 0);
5020 	CU_ASSERT(g_io_done == false);
5021 
5022 	g_abort_done = false;
5023 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5024 
5025 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5026 	CU_ASSERT(rc == 0);
5027 	CU_ASSERT(g_io_done == true);
5028 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5029 	stub_complete_io(1);
5030 	CU_ASSERT(g_abort_done == true);
5031 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5032 
5033 	/* Test the case that the target I/O was not aborted because it completed
5034 	 * in the middle of execution of the abort.
5035 	 */
5036 	g_io_done = false;
5037 
5038 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5039 	CU_ASSERT(rc == 0);
5040 	CU_ASSERT(g_io_done == false);
5041 
5042 	g_abort_done = false;
5043 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5044 
5045 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5046 	CU_ASSERT(rc == 0);
5047 	CU_ASSERT(g_io_done == false);
5048 
5049 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5050 	stub_complete_io(1);
5051 	CU_ASSERT(g_io_done == true);
5052 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5053 
5054 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5055 	stub_complete_io(1);
5056 	CU_ASSERT(g_abort_done == true);
5057 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5058 
5059 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5060 
5061 	bdev->optimal_io_boundary = 16;
5062 	bdev->split_on_optimal_io_boundary = true;
5063 
5064 	/* Test that a single-vector command which is split is aborted correctly.
5065 	 * Offset 14, length 8, payload 0xF000
5066 	 *  Child - Offset 14, length 2, payload 0xF000
5067 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5068 	 */
5069 	g_io_done = false;
5070 
5071 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
5072 	CU_ASSERT(rc == 0);
5073 	CU_ASSERT(g_io_done == false);
5074 
5075 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5076 
5077 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5078 
5079 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5080 	CU_ASSERT(rc == 0);
5081 	CU_ASSERT(g_io_done == true);
5082 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5083 	stub_complete_io(2);
5084 	CU_ASSERT(g_abort_done == true);
5085 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5086 
5087 	/* Test that a multi-vector command that needs to be split by strip and then
5088 	 * needs to be split is aborted correctly. Abort is requested before the second
5089 	 * child I/O was submitted. The parent I/O should complete with failure without
5090 	 * submitting the second child I/O.
5091 	 */
5092 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
5093 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
5094 		iov[i].iov_len = 512;
5095 	}
5096 
5097 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
5098 	g_io_done = false;
5099 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
5100 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
5101 	CU_ASSERT(rc == 0);
5102 	CU_ASSERT(g_io_done == false);
5103 
5104 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5105 
5106 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5107 
5108 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5109 	CU_ASSERT(rc == 0);
5110 	CU_ASSERT(g_io_done == true);
5111 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5112 	stub_complete_io(1);
5113 	CU_ASSERT(g_abort_done == true);
5114 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5115 
5116 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5117 
5118 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5119 
5120 	bdev->optimal_io_boundary = 16;
5121 	g_io_done = false;
5122 
5123 	/* Test that a ingle-vector command which is split is aborted correctly.
5124 	 * Differently from the above, the child abort request will be submitted
5125 	 * sequentially due to the capacity of spdk_bdev_io.
5126 	 */
5127 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
5128 	CU_ASSERT(rc == 0);
5129 	CU_ASSERT(g_io_done == false);
5130 
5131 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5132 
5133 	g_abort_done = false;
5134 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5135 
5136 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5137 	CU_ASSERT(rc == 0);
5138 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
5139 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5140 
5141 	stub_complete_io(1);
5142 	CU_ASSERT(g_io_done == true);
5143 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5144 	stub_complete_io(3);
5145 	CU_ASSERT(g_abort_done == true);
5146 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5147 
5148 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5149 
5150 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5151 
5152 	spdk_put_io_channel(io_ch);
5153 	spdk_bdev_close(desc);
5154 	free_bdev(bdev);
5155 	ut_fini_bdev();
5156 }
5157 
5158 static void
5159 bdev_unmap(void)
5160 {
5161 	struct spdk_bdev *bdev;
5162 	struct spdk_bdev_desc *desc = NULL;
5163 	struct spdk_io_channel *ioch;
5164 	struct spdk_bdev_channel *bdev_ch;
5165 	struct ut_expected_io *expected_io;
5166 	struct spdk_bdev_opts bdev_opts = {};
5167 	uint32_t i, num_outstanding;
5168 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
5169 	int rc;
5170 
5171 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5172 	bdev_opts.bdev_io_pool_size = 512;
5173 	bdev_opts.bdev_io_cache_size = 64;
5174 	ut_init_bdev(&bdev_opts);
5175 
5176 	bdev = allocate_bdev("bdev");
5177 
5178 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5179 	CU_ASSERT_EQUAL(rc, 0);
5180 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5181 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5182 	ioch = spdk_bdev_get_io_channel(desc);
5183 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5184 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5185 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5186 
5187 	fn_table.submit_request = stub_submit_request;
5188 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5189 
5190 	/* Case 1: First test the request won't be split */
5191 	num_blocks = 32;
5192 
5193 	g_io_done = false;
5194 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
5195 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5196 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5197 	CU_ASSERT_EQUAL(rc, 0);
5198 	CU_ASSERT(g_io_done == false);
5199 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5200 	stub_complete_io(1);
5201 	CU_ASSERT(g_io_done == true);
5202 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5203 
5204 	/* Case 2: Test the split with 2 children requests */
5205 	bdev->max_unmap = 8;
5206 	bdev->max_unmap_segments = 2;
5207 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
5208 	num_blocks = max_unmap_blocks * 2;
5209 	offset = 0;
5210 
5211 	g_io_done = false;
5212 	for (i = 0; i < 2; i++) {
5213 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5214 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5215 		offset += max_unmap_blocks;
5216 	}
5217 
5218 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5219 	CU_ASSERT_EQUAL(rc, 0);
5220 	CU_ASSERT(g_io_done == false);
5221 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5222 	stub_complete_io(2);
5223 	CU_ASSERT(g_io_done == true);
5224 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5225 
5226 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5227 	num_children = 15;
5228 	num_blocks = max_unmap_blocks * num_children;
5229 	g_io_done = false;
5230 	offset = 0;
5231 	for (i = 0; i < num_children; i++) {
5232 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5233 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5234 		offset += max_unmap_blocks;
5235 	}
5236 
5237 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5238 	CU_ASSERT_EQUAL(rc, 0);
5239 	CU_ASSERT(g_io_done == false);
5240 
5241 	while (num_children > 0) {
5242 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5243 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5244 		stub_complete_io(num_outstanding);
5245 		num_children -= num_outstanding;
5246 	}
5247 	CU_ASSERT(g_io_done == true);
5248 
5249 	spdk_put_io_channel(ioch);
5250 	spdk_bdev_close(desc);
5251 	free_bdev(bdev);
5252 	ut_fini_bdev();
5253 }
5254 
5255 static void
5256 bdev_write_zeroes_split_test(void)
5257 {
5258 	struct spdk_bdev *bdev;
5259 	struct spdk_bdev_desc *desc = NULL;
5260 	struct spdk_io_channel *ioch;
5261 	struct spdk_bdev_channel *bdev_ch;
5262 	struct ut_expected_io *expected_io;
5263 	struct spdk_bdev_opts bdev_opts = {};
5264 	uint32_t i, num_outstanding;
5265 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
5266 	int rc;
5267 
5268 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5269 	bdev_opts.bdev_io_pool_size = 512;
5270 	bdev_opts.bdev_io_cache_size = 64;
5271 	ut_init_bdev(&bdev_opts);
5272 
5273 	bdev = allocate_bdev("bdev");
5274 
5275 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5276 	CU_ASSERT_EQUAL(rc, 0);
5277 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5278 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5279 	ioch = spdk_bdev_get_io_channel(desc);
5280 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5281 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5282 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5283 
5284 	fn_table.submit_request = stub_submit_request;
5285 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5286 
5287 	/* Case 1: First test the request won't be split */
5288 	num_blocks = 32;
5289 
5290 	g_io_done = false;
5291 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
5292 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5293 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5294 	CU_ASSERT_EQUAL(rc, 0);
5295 	CU_ASSERT(g_io_done == false);
5296 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5297 	stub_complete_io(1);
5298 	CU_ASSERT(g_io_done == true);
5299 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5300 
5301 	/* Case 2: Test the split with 2 children requests */
5302 	max_write_zeroes_blocks = 8;
5303 	bdev->max_write_zeroes = max_write_zeroes_blocks;
5304 	num_blocks = max_write_zeroes_blocks * 2;
5305 	offset = 0;
5306 
5307 	g_io_done = false;
5308 	for (i = 0; i < 2; i++) {
5309 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5310 						   0);
5311 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5312 		offset += max_write_zeroes_blocks;
5313 	}
5314 
5315 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5316 	CU_ASSERT_EQUAL(rc, 0);
5317 	CU_ASSERT(g_io_done == false);
5318 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5319 	stub_complete_io(2);
5320 	CU_ASSERT(g_io_done == true);
5321 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5322 
5323 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5324 	num_children = 15;
5325 	num_blocks = max_write_zeroes_blocks * num_children;
5326 	g_io_done = false;
5327 	offset = 0;
5328 	for (i = 0; i < num_children; i++) {
5329 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5330 						   0);
5331 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5332 		offset += max_write_zeroes_blocks;
5333 	}
5334 
5335 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5336 	CU_ASSERT_EQUAL(rc, 0);
5337 	CU_ASSERT(g_io_done == false);
5338 
5339 	while (num_children > 0) {
5340 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5341 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5342 		stub_complete_io(num_outstanding);
5343 		num_children -= num_outstanding;
5344 	}
5345 	CU_ASSERT(g_io_done == true);
5346 
5347 	spdk_put_io_channel(ioch);
5348 	spdk_bdev_close(desc);
5349 	free_bdev(bdev);
5350 	ut_fini_bdev();
5351 }
5352 
5353 static void
5354 bdev_set_options_test(void)
5355 {
5356 	struct spdk_bdev_opts bdev_opts = {};
5357 	int rc;
5358 
5359 	/* Case1: Do not set opts_size */
5360 	rc = spdk_bdev_set_opts(&bdev_opts);
5361 	CU_ASSERT(rc == -1);
5362 
5363 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5364 	bdev_opts.bdev_io_pool_size = 4;
5365 	bdev_opts.bdev_io_cache_size = 2;
5366 	bdev_opts.small_buf_pool_size = 4;
5367 
5368 	/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
5369 	rc = spdk_bdev_set_opts(&bdev_opts);
5370 	CU_ASSERT(rc == -1);
5371 
5372 	/* Case 3: Do not set valid large_buf_pool_size */
5373 	bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
5374 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
5375 	rc = spdk_bdev_set_opts(&bdev_opts);
5376 	CU_ASSERT(rc == -1);
5377 
5378 	/* Case4: set valid large buf_pool_size */
5379 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
5380 	rc = spdk_bdev_set_opts(&bdev_opts);
5381 	CU_ASSERT(rc == 0);
5382 
5383 	/* Case5: Set different valid value for small and large buf pool */
5384 	bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
5385 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
5386 	rc = spdk_bdev_set_opts(&bdev_opts);
5387 	CU_ASSERT(rc == 0);
5388 }
5389 
5390 static uint64_t
5391 get_ns_time(void)
5392 {
5393 	int rc;
5394 	struct timespec ts;
5395 
5396 	rc = clock_gettime(CLOCK_MONOTONIC, &ts);
5397 	CU_ASSERT(rc == 0);
5398 	return ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
5399 }
5400 
5401 static int
5402 rb_tree_get_height(struct spdk_bdev_name *bdev_name)
5403 {
5404 	int h1, h2;
5405 
5406 	if (bdev_name == NULL) {
5407 		return -1;
5408 	} else {
5409 		h1 = rb_tree_get_height(RB_LEFT(bdev_name, node));
5410 		h2 = rb_tree_get_height(RB_RIGHT(bdev_name, node));
5411 
5412 		return spdk_max(h1, h2) + 1;
5413 	}
5414 }
5415 
5416 static void
5417 bdev_multi_allocation(void)
5418 {
5419 	const int max_bdev_num = 1024 * 16;
5420 	char name[max_bdev_num][16];
5421 	char noexist_name[] = "invalid_bdev";
5422 	struct spdk_bdev *bdev[max_bdev_num];
5423 	int i, j;
5424 	uint64_t last_time;
5425 	int bdev_num;
5426 	int height;
5427 
5428 	for (j = 0; j < max_bdev_num; j++) {
5429 		snprintf(name[j], sizeof(name[j]), "bdev%d", j);
5430 	}
5431 
5432 	for (i = 0; i < 16; i++) {
5433 		last_time = get_ns_time();
5434 		bdev_num = 1024 * (i + 1);
5435 		for (j = 0; j < bdev_num; j++) {
5436 			bdev[j] = allocate_bdev(name[j]);
5437 			height = rb_tree_get_height(&bdev[j]->internal.bdev_name);
5438 			CU_ASSERT(height <= (int)(spdk_u32log2(2 * j + 2)));
5439 		}
5440 		SPDK_NOTICELOG("alloc bdev num %d takes %" PRIu64 " ms\n", bdev_num,
5441 			       (get_ns_time() - last_time) / 1000 / 1000);
5442 		for (j = 0; j < bdev_num; j++) {
5443 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) != NULL);
5444 		}
5445 		CU_ASSERT(spdk_bdev_get_by_name(noexist_name) == NULL);
5446 
5447 		for (j = 0; j < bdev_num; j++) {
5448 			free_bdev(bdev[j]);
5449 		}
5450 		for (j = 0; j < bdev_num; j++) {
5451 			CU_ASSERT(spdk_bdev_get_by_name(name[j]) == NULL);
5452 		}
5453 	}
5454 }
5455 
5456 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5457 
5458 static int
5459 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5460 		int array_size)
5461 {
5462 	if (array_size > 0 && domains) {
5463 		domains[0] = g_bdev_memory_domain;
5464 	}
5465 
5466 	return 1;
5467 }
5468 
5469 static void
5470 bdev_get_memory_domains(void)
5471 {
5472 	struct spdk_bdev_fn_table fn_table = {
5473 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5474 	};
5475 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5476 	struct spdk_memory_domain *domains[2] = {};
5477 	int rc;
5478 
5479 	/* bdev is NULL */
5480 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5481 	CU_ASSERT(rc == -EINVAL);
5482 
5483 	/* domains is NULL */
5484 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5485 	CU_ASSERT(rc == 1);
5486 
5487 	/* array size is 0 */
5488 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5489 	CU_ASSERT(rc == 1);
5490 
5491 	/* get_supported_dma_device_types op is set */
5492 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5493 	CU_ASSERT(rc == 1);
5494 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5495 
5496 	/* get_supported_dma_device_types op is not set */
5497 	fn_table.get_memory_domains = NULL;
5498 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5499 	CU_ASSERT(rc == 0);
5500 }
5501 
5502 static void
5503 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
5504 {
5505 	struct spdk_bdev *bdev;
5506 	struct spdk_bdev_desc *desc = NULL;
5507 	struct spdk_io_channel *io_ch;
5508 	char io_buf[512];
5509 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5510 	struct ut_expected_io *expected_io;
5511 	int rc;
5512 
5513 	ut_init_bdev(NULL);
5514 
5515 	bdev = allocate_bdev("bdev0");
5516 	bdev->md_interleave = false;
5517 	bdev->md_len = 8;
5518 
5519 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5520 	CU_ASSERT(rc == 0);
5521 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5522 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5523 	io_ch = spdk_bdev_get_io_channel(desc);
5524 	CU_ASSERT(io_ch != NULL);
5525 
5526 	/* read */
5527 	g_io_done = false;
5528 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5529 	if (ext_io_opts) {
5530 		expected_io->md_buf = ext_io_opts->metadata;
5531 	}
5532 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5533 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5534 
5535 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5536 
5537 	CU_ASSERT(rc == 0);
5538 	CU_ASSERT(g_io_done == false);
5539 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5540 	stub_complete_io(1);
5541 	CU_ASSERT(g_io_done == true);
5542 
5543 	/* write */
5544 	g_io_done = false;
5545 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5546 	if (ext_io_opts) {
5547 		expected_io->md_buf = ext_io_opts->metadata;
5548 	}
5549 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5550 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5551 
5552 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5553 
5554 	CU_ASSERT(rc == 0);
5555 	CU_ASSERT(g_io_done == false);
5556 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5557 	stub_complete_io(1);
5558 	CU_ASSERT(g_io_done == true);
5559 
5560 	spdk_put_io_channel(io_ch);
5561 	spdk_bdev_close(desc);
5562 	free_bdev(bdev);
5563 	ut_fini_bdev();
5564 
5565 }
5566 
5567 static void
5568 bdev_io_ext(void)
5569 {
5570 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5571 		.metadata = (void *)0xFF000000,
5572 		.size = sizeof(ext_io_opts)
5573 	};
5574 
5575 	_bdev_io_ext(&ext_io_opts);
5576 }
5577 
5578 static void
5579 bdev_io_ext_no_opts(void)
5580 {
5581 	_bdev_io_ext(NULL);
5582 }
5583 
5584 static void
5585 bdev_io_ext_invalid_opts(void)
5586 {
5587 	struct spdk_bdev *bdev;
5588 	struct spdk_bdev_desc *desc = NULL;
5589 	struct spdk_io_channel *io_ch;
5590 	char io_buf[512];
5591 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5592 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5593 		.metadata = (void *)0xFF000000,
5594 		.size = sizeof(ext_io_opts)
5595 	};
5596 	int rc;
5597 
5598 	ut_init_bdev(NULL);
5599 
5600 	bdev = allocate_bdev("bdev0");
5601 	bdev->md_interleave = false;
5602 	bdev->md_len = 8;
5603 
5604 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5605 	CU_ASSERT(rc == 0);
5606 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5607 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5608 	io_ch = spdk_bdev_get_io_channel(desc);
5609 	CU_ASSERT(io_ch != NULL);
5610 
5611 	/* Test invalid ext_opts size */
5612 	ext_io_opts.size = 0;
5613 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5614 	CU_ASSERT(rc == -EINVAL);
5615 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5616 	CU_ASSERT(rc == -EINVAL);
5617 
5618 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
5619 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5620 	CU_ASSERT(rc == -EINVAL);
5621 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5622 	CU_ASSERT(rc == -EINVAL);
5623 
5624 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
5625 			   sizeof(ext_io_opts.metadata) - 1;
5626 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5627 	CU_ASSERT(rc == -EINVAL);
5628 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5629 	CU_ASSERT(rc == -EINVAL);
5630 
5631 	spdk_put_io_channel(io_ch);
5632 	spdk_bdev_close(desc);
5633 	free_bdev(bdev);
5634 	ut_fini_bdev();
5635 }
5636 
5637 static void
5638 bdev_io_ext_split(void)
5639 {
5640 	struct spdk_bdev *bdev;
5641 	struct spdk_bdev_desc *desc = NULL;
5642 	struct spdk_io_channel *io_ch;
5643 	char io_buf[512];
5644 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5645 	struct ut_expected_io *expected_io;
5646 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5647 		.metadata = (void *)0xFF000000,
5648 		.size = sizeof(ext_io_opts)
5649 	};
5650 	int rc;
5651 
5652 	ut_init_bdev(NULL);
5653 
5654 	bdev = allocate_bdev("bdev0");
5655 	bdev->md_interleave = false;
5656 	bdev->md_len = 8;
5657 
5658 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5659 	CU_ASSERT(rc == 0);
5660 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5661 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5662 	io_ch = spdk_bdev_get_io_channel(desc);
5663 	CU_ASSERT(io_ch != NULL);
5664 
5665 	/* Check that IO request with ext_opts and metadata is split correctly
5666 	 * Offset 14, length 8, payload 0xF000
5667 	 *  Child - Offset 14, length 2, payload 0xF000
5668 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5669 	 */
5670 	bdev->optimal_io_boundary = 16;
5671 	bdev->split_on_optimal_io_boundary = true;
5672 	bdev->md_interleave = false;
5673 	bdev->md_len = 8;
5674 
5675 	iov.iov_base = (void *)0xF000;
5676 	iov.iov_len = 4096;
5677 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5678 	ext_io_opts.metadata = (void *)0xFF000000;
5679 	ext_io_opts.size = sizeof(ext_io_opts);
5680 	g_io_done = false;
5681 
5682 	/* read */
5683 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5684 	expected_io->md_buf = ext_io_opts.metadata;
5685 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5686 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5687 
5688 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5689 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5690 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5691 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5692 
5693 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5694 	CU_ASSERT(rc == 0);
5695 	CU_ASSERT(g_io_done == false);
5696 
5697 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5698 	stub_complete_io(2);
5699 	CU_ASSERT(g_io_done == true);
5700 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5701 
5702 	/* write */
5703 	g_io_done = false;
5704 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5705 	expected_io->md_buf = ext_io_opts.metadata;
5706 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5707 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5708 
5709 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5710 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5711 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5712 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5713 
5714 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5715 	CU_ASSERT(rc == 0);
5716 	CU_ASSERT(g_io_done == false);
5717 
5718 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5719 	stub_complete_io(2);
5720 	CU_ASSERT(g_io_done == true);
5721 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5722 
5723 	spdk_put_io_channel(io_ch);
5724 	spdk_bdev_close(desc);
5725 	free_bdev(bdev);
5726 	ut_fini_bdev();
5727 }
5728 
5729 static void
5730 bdev_io_ext_bounce_buffer(void)
5731 {
5732 	struct spdk_bdev *bdev;
5733 	struct spdk_bdev_desc *desc = NULL;
5734 	struct spdk_io_channel *io_ch;
5735 	char io_buf[512];
5736 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5737 	struct ut_expected_io *expected_io;
5738 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5739 		.metadata = (void *)0xFF000000,
5740 		.size = sizeof(ext_io_opts)
5741 	};
5742 	int rc;
5743 
5744 	ut_init_bdev(NULL);
5745 
5746 	bdev = allocate_bdev("bdev0");
5747 	bdev->md_interleave = false;
5748 	bdev->md_len = 8;
5749 
5750 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5751 	CU_ASSERT(rc == 0);
5752 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5753 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5754 	io_ch = spdk_bdev_get_io_channel(desc);
5755 	CU_ASSERT(io_ch != NULL);
5756 
5757 	/* Verify data pull/push
5758 	 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
5759 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
5760 
5761 	/* read */
5762 	g_io_done = false;
5763 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5764 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5765 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5766 
5767 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5768 
5769 	CU_ASSERT(rc == 0);
5770 	CU_ASSERT(g_io_done == false);
5771 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5772 	stub_complete_io(1);
5773 	CU_ASSERT(g_memory_domain_push_data_called == true);
5774 	CU_ASSERT(g_io_done == true);
5775 
5776 	/* write */
5777 	g_io_done = false;
5778 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5779 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5780 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5781 
5782 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5783 
5784 	CU_ASSERT(rc == 0);
5785 	CU_ASSERT(g_memory_domain_pull_data_called == true);
5786 	CU_ASSERT(g_io_done == false);
5787 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5788 	stub_complete_io(1);
5789 	CU_ASSERT(g_io_done == true);
5790 
5791 	spdk_put_io_channel(io_ch);
5792 	spdk_bdev_close(desc);
5793 	free_bdev(bdev);
5794 	ut_fini_bdev();
5795 }
5796 
5797 static void
5798 bdev_register_uuid_alias(void)
5799 {
5800 	struct spdk_bdev *bdev, *second;
5801 	char uuid[SPDK_UUID_STRING_LEN];
5802 	int rc;
5803 
5804 	ut_init_bdev(NULL);
5805 	bdev = allocate_bdev("bdev0");
5806 
5807 	/* Make sure an UUID was generated  */
5808 	CU_ASSERT_FALSE(spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid)));
5809 
5810 	/* Check that an UUID alias was registered */
5811 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5812 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5813 
5814 	/* Unregister the bdev */
5815 	spdk_bdev_unregister(bdev, NULL, NULL);
5816 	poll_threads();
5817 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5818 
5819 	/* Check the same, but this time register the bdev with non-zero UUID */
5820 	rc = spdk_bdev_register(bdev);
5821 	CU_ASSERT_EQUAL(rc, 0);
5822 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5823 
5824 	/* Unregister the bdev */
5825 	spdk_bdev_unregister(bdev, NULL, NULL);
5826 	poll_threads();
5827 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5828 
5829 	/* Regiser the bdev using UUID as the name */
5830 	bdev->name = uuid;
5831 	rc = spdk_bdev_register(bdev);
5832 	CU_ASSERT_EQUAL(rc, 0);
5833 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5834 
5835 	/* Unregister the bdev */
5836 	spdk_bdev_unregister(bdev, NULL, NULL);
5837 	poll_threads();
5838 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
5839 
5840 	/* Check that it's not possible to register two bdevs with the same UUIDs */
5841 	bdev->name = "bdev0";
5842 	second = allocate_bdev("bdev1");
5843 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
5844 	rc = spdk_bdev_register(bdev);
5845 	CU_ASSERT_EQUAL(rc, -EEXIST);
5846 
5847 	/* Regenerate the UUID and re-check */
5848 	spdk_uuid_generate(&bdev->uuid);
5849 	rc = spdk_bdev_register(bdev);
5850 	CU_ASSERT_EQUAL(rc, 0);
5851 
5852 	/* And check that both bdevs can be retrieved through their UUIDs */
5853 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
5854 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
5855 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
5856 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
5857 
5858 	free_bdev(second);
5859 	free_bdev(bdev);
5860 	ut_fini_bdev();
5861 }
5862 
5863 static void
5864 bdev_unregister_by_name(void)
5865 {
5866 	struct spdk_bdev *bdev;
5867 	int rc;
5868 
5869 	bdev = allocate_bdev("bdev");
5870 
5871 	g_event_type1 = 0xFF;
5872 	g_unregister_arg = NULL;
5873 	g_unregister_rc = -1;
5874 
5875 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5876 	CU_ASSERT(rc == -ENODEV);
5877 
5878 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5879 	CU_ASSERT(rc == -ENODEV);
5880 
5881 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
5882 	CU_ASSERT(rc == 0);
5883 
5884 	/* Check that unregister callback is delayed */
5885 	CU_ASSERT(g_unregister_arg == NULL);
5886 	CU_ASSERT(g_unregister_rc == -1);
5887 
5888 	poll_threads();
5889 
5890 	/* Event callback shall not be issued because device was closed */
5891 	CU_ASSERT(g_event_type1 == 0xFF);
5892 	/* Unregister callback is issued */
5893 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
5894 	CU_ASSERT(g_unregister_rc == 0);
5895 
5896 	free_bdev(bdev);
5897 }
5898 
5899 static int
5900 count_bdevs(void *ctx, struct spdk_bdev *bdev)
5901 {
5902 	int *count = ctx;
5903 
5904 	(*count)++;
5905 
5906 	return 0;
5907 }
5908 
5909 static void
5910 for_each_bdev_test(void)
5911 {
5912 	struct spdk_bdev *bdev[8];
5913 	int rc, count;
5914 
5915 	bdev[0] = allocate_bdev("bdev0");
5916 	bdev[0]->internal.status = SPDK_BDEV_STATUS_REMOVING;
5917 
5918 	bdev[1] = allocate_bdev("bdev1");
5919 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
5920 	CU_ASSERT(rc == 0);
5921 
5922 	bdev[2] = allocate_bdev("bdev2");
5923 
5924 	bdev[3] = allocate_bdev("bdev3");
5925 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
5926 	CU_ASSERT(rc == 0);
5927 
5928 	bdev[4] = allocate_bdev("bdev4");
5929 
5930 	bdev[5] = allocate_bdev("bdev5");
5931 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
5932 	CU_ASSERT(rc == 0);
5933 
5934 	bdev[6] = allocate_bdev("bdev6");
5935 
5936 	bdev[7] = allocate_bdev("bdev7");
5937 
5938 	count = 0;
5939 	rc = spdk_for_each_bdev(&count, count_bdevs);
5940 	CU_ASSERT(rc == 0);
5941 	CU_ASSERT(count == 7);
5942 
5943 	count = 0;
5944 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
5945 	CU_ASSERT(rc == 0);
5946 	CU_ASSERT(count == 4);
5947 
5948 	bdev[0]->internal.status = SPDK_BDEV_STATUS_READY;
5949 	free_bdev(bdev[0]);
5950 	free_bdev(bdev[1]);
5951 	free_bdev(bdev[2]);
5952 	free_bdev(bdev[3]);
5953 	free_bdev(bdev[4]);
5954 	free_bdev(bdev[5]);
5955 	free_bdev(bdev[6]);
5956 	free_bdev(bdev[7]);
5957 }
5958 
5959 static void
5960 bdev_seek_test(void)
5961 {
5962 	struct spdk_bdev *bdev;
5963 	struct spdk_bdev_desc *desc = NULL;
5964 	struct spdk_io_channel *io_ch;
5965 	int rc;
5966 
5967 	ut_init_bdev(NULL);
5968 	poll_threads();
5969 
5970 	bdev = allocate_bdev("bdev0");
5971 
5972 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5973 	CU_ASSERT(rc == 0);
5974 	poll_threads();
5975 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5976 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5977 	io_ch = spdk_bdev_get_io_channel(desc);
5978 	CU_ASSERT(io_ch != NULL);
5979 
5980 	/* Seek data not supported */
5981 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false);
5982 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
5983 	CU_ASSERT(rc == 0);
5984 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5985 	poll_threads();
5986 	CU_ASSERT(g_seek_offset == 0);
5987 
5988 	/* Seek hole not supported */
5989 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false);
5990 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
5991 	CU_ASSERT(rc == 0);
5992 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5993 	poll_threads();
5994 	CU_ASSERT(g_seek_offset == UINT64_MAX);
5995 
5996 	/* Seek data supported */
5997 	g_seek_data_offset = 12345;
5998 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true);
5999 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6000 	CU_ASSERT(rc == 0);
6001 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6002 	stub_complete_io(1);
6003 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6004 	CU_ASSERT(g_seek_offset == 12345);
6005 
6006 	/* Seek hole supported */
6007 	g_seek_hole_offset = 67890;
6008 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true);
6009 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6010 	CU_ASSERT(rc == 0);
6011 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6012 	stub_complete_io(1);
6013 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6014 	CU_ASSERT(g_seek_offset == 67890);
6015 
6016 	spdk_put_io_channel(io_ch);
6017 	spdk_bdev_close(desc);
6018 	free_bdev(bdev);
6019 	ut_fini_bdev();
6020 }
6021 
6022 static void
6023 bdev_copy(void)
6024 {
6025 	struct spdk_bdev *bdev;
6026 	struct spdk_bdev_desc *desc = NULL;
6027 	struct spdk_io_channel *ioch;
6028 	struct ut_expected_io *expected_io;
6029 	uint64_t src_offset, num_blocks;
6030 	uint32_t num_completed;
6031 	int rc;
6032 
6033 	ut_init_bdev(NULL);
6034 	bdev = allocate_bdev("bdev");
6035 
6036 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6037 	CU_ASSERT_EQUAL(rc, 0);
6038 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6039 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6040 	ioch = spdk_bdev_get_io_channel(desc);
6041 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6042 
6043 	fn_table.submit_request = stub_submit_request;
6044 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6045 
6046 	/* First test that if the bdev supports copy, the request won't be split */
6047 	bdev->md_len = 0;
6048 	bdev->blocklen = 512;
6049 	num_blocks = 128;
6050 	src_offset = bdev->blockcnt - num_blocks;
6051 
6052 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6053 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6054 
6055 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6056 	CU_ASSERT_EQUAL(rc, 0);
6057 	num_completed = stub_complete_io(1);
6058 	CU_ASSERT_EQUAL(num_completed, 1);
6059 
6060 	/* Check that if copy is not supported it'll still work */
6061 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset, num_blocks, 0);
6062 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6063 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, num_blocks, 0);
6064 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6065 
6066 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6067 
6068 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6069 	CU_ASSERT_EQUAL(rc, 0);
6070 	num_completed = stub_complete_io(1);
6071 	CU_ASSERT_EQUAL(num_completed, 1);
6072 	num_completed = stub_complete_io(1);
6073 	CU_ASSERT_EQUAL(num_completed, 1);
6074 
6075 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6076 	spdk_put_io_channel(ioch);
6077 	spdk_bdev_close(desc);
6078 	free_bdev(bdev);
6079 	ut_fini_bdev();
6080 }
6081 
6082 static void
6083 bdev_copy_split_test(void)
6084 {
6085 	struct spdk_bdev *bdev;
6086 	struct spdk_bdev_desc *desc = NULL;
6087 	struct spdk_io_channel *ioch;
6088 	struct spdk_bdev_channel *bdev_ch;
6089 	struct ut_expected_io *expected_io;
6090 	struct spdk_bdev_opts bdev_opts = {};
6091 	uint32_t i, num_outstanding;
6092 	uint64_t offset, src_offset, num_blocks, max_copy_blocks, num_children;
6093 	int rc;
6094 
6095 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
6096 	bdev_opts.bdev_io_pool_size = 512;
6097 	bdev_opts.bdev_io_cache_size = 64;
6098 	rc = spdk_bdev_set_opts(&bdev_opts);
6099 	CU_ASSERT(rc == 0);
6100 
6101 	ut_init_bdev(NULL);
6102 	bdev = allocate_bdev("bdev");
6103 
6104 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6105 	CU_ASSERT_EQUAL(rc, 0);
6106 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6107 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6108 	ioch = spdk_bdev_get_io_channel(desc);
6109 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6110 	bdev_ch = spdk_io_channel_get_ctx(ioch);
6111 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
6112 
6113 	fn_table.submit_request = stub_submit_request;
6114 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6115 
6116 	/* Case 1: First test the request won't be split */
6117 	num_blocks = 32;
6118 	src_offset = bdev->blockcnt - num_blocks;
6119 
6120 	g_io_done = false;
6121 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6122 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6123 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6124 	CU_ASSERT_EQUAL(rc, 0);
6125 	CU_ASSERT(g_io_done == false);
6126 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6127 	stub_complete_io(1);
6128 	CU_ASSERT(g_io_done == true);
6129 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6130 
6131 	/* Case 2: Test the split with 2 children requests */
6132 	max_copy_blocks = 8;
6133 	bdev->max_copy = max_copy_blocks;
6134 	num_children = 2;
6135 	num_blocks = max_copy_blocks * num_children;
6136 	offset = 0;
6137 	src_offset = bdev->blockcnt - num_blocks;
6138 
6139 	g_io_done = false;
6140 	for (i = 0; i < num_children; i++) {
6141 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6142 							src_offset + offset, max_copy_blocks);
6143 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6144 		offset += max_copy_blocks;
6145 	}
6146 
6147 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6148 	CU_ASSERT_EQUAL(rc, 0);
6149 	CU_ASSERT(g_io_done == false);
6150 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_children);
6151 	stub_complete_io(num_children);
6152 	CU_ASSERT(g_io_done == true);
6153 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6154 
6155 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
6156 	num_children = 15;
6157 	num_blocks = max_copy_blocks * num_children;
6158 	offset = 0;
6159 	src_offset = bdev->blockcnt - num_blocks;
6160 
6161 	g_io_done = false;
6162 	for (i = 0; i < num_children; i++) {
6163 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6164 							src_offset + offset, max_copy_blocks);
6165 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6166 		offset += max_copy_blocks;
6167 	}
6168 
6169 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6170 	CU_ASSERT_EQUAL(rc, 0);
6171 	CU_ASSERT(g_io_done == false);
6172 
6173 	while (num_children > 0) {
6174 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6175 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6176 		stub_complete_io(num_outstanding);
6177 		num_children -= num_outstanding;
6178 	}
6179 	CU_ASSERT(g_io_done == true);
6180 
6181 	spdk_put_io_channel(ioch);
6182 	spdk_bdev_close(desc);
6183 	free_bdev(bdev);
6184 	ut_fini_bdev();
6185 }
6186 
6187 static void
6188 examine_claim_v1(struct spdk_bdev *bdev)
6189 {
6190 	int rc;
6191 
6192 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &vbdev_ut_if);
6193 	CU_ASSERT(rc == 0);
6194 }
6195 
6196 static void
6197 examine_no_lock_held(struct spdk_bdev *bdev)
6198 {
6199 	CU_ASSERT(!spdk_spin_held(&g_bdev_mgr.spinlock));
6200 	CU_ASSERT(!spdk_spin_held(&bdev->internal.spinlock));
6201 }
6202 
6203 struct examine_claim_v2_ctx {
6204 	struct ut_examine_ctx examine_ctx;
6205 	enum spdk_bdev_claim_type claim_type;
6206 	struct spdk_bdev_desc *desc;
6207 };
6208 
6209 static void
6210 examine_claim_v2(struct spdk_bdev *bdev)
6211 {
6212 	struct examine_claim_v2_ctx *ctx = bdev->ctxt;
6213 	int rc;
6214 
6215 	rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, NULL, &ctx->desc);
6216 	CU_ASSERT(rc == 0);
6217 
6218 	rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, &vbdev_ut_if);
6219 	CU_ASSERT(rc == 0);
6220 }
6221 
6222 static void
6223 examine_locks(void)
6224 {
6225 	struct spdk_bdev *bdev;
6226 	struct ut_examine_ctx ctx = { 0 };
6227 	struct examine_claim_v2_ctx v2_ctx;
6228 
6229 	/* Without any claims, one code path is taken */
6230 	ctx.examine_config = examine_no_lock_held;
6231 	ctx.examine_disk = examine_no_lock_held;
6232 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6233 	CU_ASSERT(ctx.examine_config_count == 1);
6234 	CU_ASSERT(ctx.examine_disk_count == 1);
6235 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6236 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6237 	free_bdev(bdev);
6238 
6239 	/* Exercise another path that is taken when examine_config() takes a v1 claim. */
6240 	memset(&ctx, 0, sizeof(ctx));
6241 	ctx.examine_config = examine_claim_v1;
6242 	ctx.examine_disk = examine_no_lock_held;
6243 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6244 	CU_ASSERT(ctx.examine_config_count == 1);
6245 	CU_ASSERT(ctx.examine_disk_count == 1);
6246 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6247 	CU_ASSERT(bdev->internal.claim.v1.module == &vbdev_ut_if);
6248 	spdk_bdev_module_release_bdev(bdev);
6249 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6250 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6251 	free_bdev(bdev);
6252 
6253 	/* Exercise the final path that comes with v2 claims. */
6254 	memset(&v2_ctx, 0, sizeof(v2_ctx));
6255 	v2_ctx.examine_ctx.examine_config = examine_claim_v2;
6256 	v2_ctx.examine_ctx.examine_disk = examine_no_lock_held;
6257 	v2_ctx.claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
6258 	bdev = allocate_bdev_ctx("bdev0", &v2_ctx);
6259 	CU_ASSERT(v2_ctx.examine_ctx.examine_config_count == 1);
6260 	CU_ASSERT(v2_ctx.examine_ctx.examine_disk_count == 1);
6261 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6262 	spdk_bdev_close(v2_ctx.desc);
6263 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6264 	free_bdev(bdev);
6265 }
6266 
6267 #define UT_ASSERT_CLAIM_V2_COUNT(bdev, expect) \
6268 	do { \
6269 		uint32_t len = 0; \
6270 		struct spdk_bdev_module_claim *claim; \
6271 		TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) { \
6272 			len++; \
6273 		} \
6274 		CU_ASSERT(len == expect); \
6275 	} while (0)
6276 
6277 static void
6278 claim_v2_rwo(void)
6279 {
6280 	struct spdk_bdev *bdev;
6281 	struct spdk_bdev_desc *desc;
6282 	struct spdk_bdev_desc *desc2;
6283 	struct spdk_bdev_claim_opts opts;
6284 	int rc;
6285 
6286 	bdev = allocate_bdev("bdev0");
6287 
6288 	/* Claim without options */
6289 	desc = NULL;
6290 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6291 	CU_ASSERT(rc == 0);
6292 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6293 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6294 					      &bdev_ut_if);
6295 	CU_ASSERT(rc == 0);
6296 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6297 	CU_ASSERT(desc->claim != NULL);
6298 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6299 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6300 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6301 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6302 
6303 	/* Release the claim by closing the descriptor */
6304 	spdk_bdev_close(desc);
6305 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6306 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6307 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6308 
6309 	/* Claim with options */
6310 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6311 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6312 	desc = NULL;
6313 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6314 	CU_ASSERT(rc == 0);
6315 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6316 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6317 					      &bdev_ut_if);
6318 	CU_ASSERT(rc == 0);
6319 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6320 	CU_ASSERT(desc->claim != NULL);
6321 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6322 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6323 	memset(&opts, 0, sizeof(opts));
6324 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6325 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6326 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6327 
6328 	/* The claim blocks new writers. */
6329 	desc2 = NULL;
6330 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6331 	CU_ASSERT(rc == -EPERM);
6332 	CU_ASSERT(desc2 == NULL);
6333 
6334 	/* New readers are allowed */
6335 	desc2 = NULL;
6336 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6337 	CU_ASSERT(rc == 0);
6338 	CU_ASSERT(desc2 != NULL);
6339 	CU_ASSERT(!desc2->write);
6340 
6341 	/* No new v2 RWO claims are allowed */
6342 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6343 					      &bdev_ut_if);
6344 	CU_ASSERT(rc == -EPERM);
6345 
6346 	/* No new v2 ROM claims are allowed */
6347 	CU_ASSERT(!desc2->write);
6348 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6349 					      &bdev_ut_if);
6350 	CU_ASSERT(rc == -EPERM);
6351 	CU_ASSERT(!desc2->write);
6352 
6353 	/* No new v2 RWM claims are allowed */
6354 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6355 	opts.shared_claim_key = (uint64_t)&opts;
6356 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6357 					      &bdev_ut_if);
6358 	CU_ASSERT(rc == -EPERM);
6359 	CU_ASSERT(!desc2->write);
6360 
6361 	/* No new v1 claims are allowed */
6362 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6363 	CU_ASSERT(rc == -EPERM);
6364 
6365 	/* None of the above changed the existing claim */
6366 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6367 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6368 
6369 	/* Closing the first descriptor now allows a new claim and it is promoted to rw. */
6370 	spdk_bdev_close(desc);
6371 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6372 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6373 	CU_ASSERT(!desc2->write);
6374 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6375 					      &bdev_ut_if);
6376 	CU_ASSERT(rc == 0);
6377 	CU_ASSERT(desc2->claim != NULL);
6378 	CU_ASSERT(desc2->write);
6379 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6380 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6381 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6382 	spdk_bdev_close(desc2);
6383 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6384 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6385 
6386 	/* Cannot claim with a key */
6387 	desc = NULL;
6388 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6389 	CU_ASSERT(rc == 0);
6390 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6391 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6392 	opts.shared_claim_key = (uint64_t)&opts;
6393 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6394 					      &bdev_ut_if);
6395 	CU_ASSERT(rc == -EINVAL);
6396 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6397 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6398 	spdk_bdev_close(desc);
6399 
6400 	/* Clean up */
6401 	free_bdev(bdev);
6402 }
6403 
6404 static void
6405 claim_v2_rom(void)
6406 {
6407 	struct spdk_bdev *bdev;
6408 	struct spdk_bdev_desc *desc;
6409 	struct spdk_bdev_desc *desc2;
6410 	struct spdk_bdev_claim_opts opts;
6411 	int rc;
6412 
6413 	bdev = allocate_bdev("bdev0");
6414 
6415 	/* Claim without options */
6416 	desc = NULL;
6417 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6418 	CU_ASSERT(rc == 0);
6419 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6420 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6421 					      &bdev_ut_if);
6422 	CU_ASSERT(rc == 0);
6423 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6424 	CU_ASSERT(desc->claim != NULL);
6425 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6426 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6427 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6428 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6429 
6430 	/* Release the claim by closing the descriptor */
6431 	spdk_bdev_close(desc);
6432 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6433 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6434 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6435 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6436 
6437 	/* Claim with options */
6438 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6439 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6440 	desc = NULL;
6441 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6442 	CU_ASSERT(rc == 0);
6443 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6444 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6445 					      &bdev_ut_if);
6446 	CU_ASSERT(rc == 0);
6447 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6448 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6449 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6450 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6451 	memset(&opts, 0, sizeof(opts));
6452 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6453 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6454 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6455 
6456 	/* The claim blocks new writers. */
6457 	desc2 = NULL;
6458 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6459 	CU_ASSERT(rc == -EPERM);
6460 	CU_ASSERT(desc2 == NULL);
6461 
6462 	/* New readers are allowed */
6463 	desc2 = NULL;
6464 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6465 	CU_ASSERT(rc == 0);
6466 	CU_ASSERT(desc2 != NULL);
6467 	CU_ASSERT(!desc2->write);
6468 
6469 	/* No new v2 RWO claims are allowed */
6470 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6471 					      &bdev_ut_if);
6472 	CU_ASSERT(rc == -EPERM);
6473 
6474 	/* No new v2 RWM claims are allowed */
6475 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6476 	opts.shared_claim_key = (uint64_t)&opts;
6477 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6478 					      &bdev_ut_if);
6479 	CU_ASSERT(rc == -EPERM);
6480 	CU_ASSERT(!desc2->write);
6481 
6482 	/* No new v1 claims are allowed */
6483 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6484 	CU_ASSERT(rc == -EPERM);
6485 
6486 	/* None of the above messed up the existing claim */
6487 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6488 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6489 
6490 	/* New v2 ROM claims are allowed and the descriptor stays read-only. */
6491 	CU_ASSERT(!desc2->write);
6492 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6493 					      &bdev_ut_if);
6494 	CU_ASSERT(rc == 0);
6495 	CU_ASSERT(!desc2->write);
6496 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6497 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
6498 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
6499 
6500 	/* Claim remains when closing the first descriptor */
6501 	spdk_bdev_close(desc);
6502 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6503 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
6504 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6505 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6506 
6507 	/* Claim removed when closing the other descriptor */
6508 	spdk_bdev_close(desc2);
6509 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6510 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6511 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6512 
6513 	/* Cannot claim with a key */
6514 	desc = NULL;
6515 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6516 	CU_ASSERT(rc == 0);
6517 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6518 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6519 	opts.shared_claim_key = (uint64_t)&opts;
6520 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6521 					      &bdev_ut_if);
6522 	CU_ASSERT(rc == -EINVAL);
6523 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6524 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6525 	spdk_bdev_close(desc);
6526 
6527 	/* Cannot claim with a read-write descriptor */
6528 	desc = NULL;
6529 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6530 	CU_ASSERT(rc == 0);
6531 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6532 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6533 					      &bdev_ut_if);
6534 	CU_ASSERT(rc == -EINVAL);
6535 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6536 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6537 	spdk_bdev_close(desc);
6538 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6539 
6540 	/* Clean up */
6541 	free_bdev(bdev);
6542 }
6543 
6544 static void
6545 claim_v2_rwm(void)
6546 {
6547 	struct spdk_bdev *bdev;
6548 	struct spdk_bdev_desc *desc;
6549 	struct spdk_bdev_desc *desc2;
6550 	struct spdk_bdev_claim_opts opts;
6551 	char good_key, bad_key;
6552 	int rc;
6553 
6554 	bdev = allocate_bdev("bdev0");
6555 
6556 	/* Claim without options should fail */
6557 	desc = NULL;
6558 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6559 	CU_ASSERT(rc == 0);
6560 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6561 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, NULL,
6562 					      &bdev_ut_if);
6563 	CU_ASSERT(rc == -EINVAL);
6564 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6565 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6566 	CU_ASSERT(desc->claim == NULL);
6567 
6568 	/* Claim with options */
6569 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6570 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6571 	opts.shared_claim_key = (uint64_t)&good_key;
6572 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6573 					      &bdev_ut_if);
6574 	CU_ASSERT(rc == 0);
6575 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
6576 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6577 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6578 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6579 	memset(&opts, 0, sizeof(opts));
6580 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6581 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6582 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6583 
6584 	/* The claim blocks new writers. */
6585 	desc2 = NULL;
6586 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6587 	CU_ASSERT(rc == -EPERM);
6588 	CU_ASSERT(desc2 == NULL);
6589 
6590 	/* New readers are allowed */
6591 	desc2 = NULL;
6592 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6593 	CU_ASSERT(rc == 0);
6594 	CU_ASSERT(desc2 != NULL);
6595 	CU_ASSERT(!desc2->write);
6596 
6597 	/* No new v2 RWO claims are allowed */
6598 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6599 					      &bdev_ut_if);
6600 	CU_ASSERT(rc == -EPERM);
6601 
6602 	/* No new v2 ROM claims are allowed and the descriptor stays read-only. */
6603 	CU_ASSERT(!desc2->write);
6604 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6605 					      &bdev_ut_if);
6606 	CU_ASSERT(rc == -EPERM);
6607 	CU_ASSERT(!desc2->write);
6608 
6609 	/* No new v1 claims are allowed */
6610 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6611 	CU_ASSERT(rc == -EPERM);
6612 
6613 	/* No new v2 RWM claims are allowed if the key does not match */
6614 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6615 	opts.shared_claim_key = (uint64_t)&bad_key;
6616 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6617 					      &bdev_ut_if);
6618 	CU_ASSERT(rc == -EPERM);
6619 	CU_ASSERT(!desc2->write);
6620 
6621 	/* None of the above messed up the existing claim */
6622 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6623 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6624 
6625 	/* New v2 RWM claims are allowed and the descriptor is promoted if the key matches. */
6626 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6627 	opts.shared_claim_key = (uint64_t)&good_key;
6628 	CU_ASSERT(!desc2->write);
6629 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6630 					      &bdev_ut_if);
6631 	CU_ASSERT(rc == 0);
6632 	CU_ASSERT(desc2->write);
6633 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
6634 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
6635 
6636 	/* Claim remains when closing the first descriptor */
6637 	spdk_bdev_close(desc);
6638 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
6639 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
6640 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6641 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6642 
6643 	/* Claim removed when closing the other descriptor */
6644 	spdk_bdev_close(desc2);
6645 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6646 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6647 
6648 	/* Cannot claim without a key */
6649 	desc = NULL;
6650 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6651 	CU_ASSERT(rc == 0);
6652 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6653 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6654 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6655 					      &bdev_ut_if);
6656 	CU_ASSERT(rc == -EINVAL);
6657 	spdk_bdev_close(desc);
6658 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6659 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6660 
6661 	/* Clean up */
6662 	free_bdev(bdev);
6663 }
6664 
6665 static void
6666 claim_v2_existing_writer(void)
6667 {
6668 	struct spdk_bdev *bdev;
6669 	struct spdk_bdev_desc *desc;
6670 	struct spdk_bdev_desc *desc2;
6671 	struct spdk_bdev_claim_opts opts;
6672 	enum spdk_bdev_claim_type type;
6673 	enum spdk_bdev_claim_type types[] = {
6674 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
6675 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
6676 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
6677 	};
6678 	size_t i;
6679 	int rc;
6680 
6681 	bdev = allocate_bdev("bdev0");
6682 
6683 	desc = NULL;
6684 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6685 	CU_ASSERT(rc == 0);
6686 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6687 	desc2 = NULL;
6688 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6689 	CU_ASSERT(rc == 0);
6690 	SPDK_CU_ASSERT_FATAL(desc2 != NULL);
6691 
6692 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
6693 		type = types[i];
6694 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6695 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
6696 			opts.shared_claim_key = (uint64_t)&opts;
6697 		}
6698 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
6699 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
6700 			CU_ASSERT(rc == -EINVAL);
6701 		} else {
6702 			CU_ASSERT(rc == -EPERM);
6703 		}
6704 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6705 		rc = spdk_bdev_module_claim_bdev_desc(desc2, type, &opts, &bdev_ut_if);
6706 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
6707 			CU_ASSERT(rc == -EINVAL);
6708 		} else {
6709 			CU_ASSERT(rc == -EPERM);
6710 		}
6711 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6712 	}
6713 
6714 	spdk_bdev_close(desc);
6715 	spdk_bdev_close(desc2);
6716 
6717 	/* Clean up */
6718 	free_bdev(bdev);
6719 }
6720 
6721 static void
6722 claim_v2_existing_v1(void)
6723 {
6724 	struct spdk_bdev *bdev;
6725 	struct spdk_bdev_desc *desc;
6726 	struct spdk_bdev_claim_opts opts;
6727 	enum spdk_bdev_claim_type type;
6728 	enum spdk_bdev_claim_type types[] = {
6729 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
6730 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
6731 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
6732 	};
6733 	size_t i;
6734 	int rc;
6735 
6736 	bdev = allocate_bdev("bdev0");
6737 
6738 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6739 	CU_ASSERT(rc == 0);
6740 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6741 
6742 	desc = NULL;
6743 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6744 	CU_ASSERT(rc == 0);
6745 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6746 
6747 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
6748 		type = types[i];
6749 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6750 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
6751 			opts.shared_claim_key = (uint64_t)&opts;
6752 		}
6753 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
6754 		CU_ASSERT(rc == -EPERM);
6755 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6756 	}
6757 
6758 	spdk_bdev_module_release_bdev(bdev);
6759 	spdk_bdev_close(desc);
6760 
6761 	/* Clean up */
6762 	free_bdev(bdev);
6763 }
6764 
6765 static void
6766 claim_v1_existing_v2(void)
6767 {
6768 	struct spdk_bdev *bdev;
6769 	struct spdk_bdev_desc *desc;
6770 	struct spdk_bdev_claim_opts opts;
6771 	enum spdk_bdev_claim_type type;
6772 	enum spdk_bdev_claim_type types[] = {
6773 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
6774 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
6775 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
6776 	};
6777 	size_t i;
6778 	int rc;
6779 
6780 	bdev = allocate_bdev("bdev0");
6781 
6782 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
6783 		type = types[i];
6784 
6785 		desc = NULL;
6786 		rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6787 		CU_ASSERT(rc == 0);
6788 		SPDK_CU_ASSERT_FATAL(desc != NULL);
6789 
6790 		/* Get a v2 claim */
6791 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6792 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
6793 			opts.shared_claim_key = (uint64_t)&opts;
6794 		}
6795 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
6796 		CU_ASSERT(rc == 0);
6797 
6798 		/* Fail to get a v1 claim */
6799 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6800 		CU_ASSERT(rc == -EPERM);
6801 
6802 		spdk_bdev_close(desc);
6803 
6804 		/* Now v1 succeeds */
6805 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6806 		CU_ASSERT(rc == 0)
6807 		spdk_bdev_module_release_bdev(bdev);
6808 	}
6809 
6810 	/* Clean up */
6811 	free_bdev(bdev);
6812 }
6813 
6814 static void ut_examine_claimed_config0(struct spdk_bdev *bdev);
6815 static void ut_examine_claimed_disk0(struct spdk_bdev *bdev);
6816 static void ut_examine_claimed_config1(struct spdk_bdev *bdev);
6817 static void ut_examine_claimed_disk1(struct spdk_bdev *bdev);
6818 
6819 #define UT_MAX_EXAMINE_MODS 2
6820 struct spdk_bdev_module examine_claimed_mods[UT_MAX_EXAMINE_MODS] = {
6821 	{
6822 		.name = "vbdev_ut_examine0",
6823 		.module_init = vbdev_ut_module_init,
6824 		.module_fini = vbdev_ut_module_fini,
6825 		.examine_config = ut_examine_claimed_config0,
6826 		.examine_disk = ut_examine_claimed_disk0,
6827 	},
6828 	{
6829 		.name = "vbdev_ut_examine1",
6830 		.module_init = vbdev_ut_module_init,
6831 		.module_fini = vbdev_ut_module_fini,
6832 		.examine_config = ut_examine_claimed_config1,
6833 		.examine_disk = ut_examine_claimed_disk1,
6834 	}
6835 };
6836 
6837 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed0, &examine_claimed_mods[0])
6838 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed1, &examine_claimed_mods[1])
6839 
6840 struct ut_examine_claimed_ctx {
6841 	uint32_t examine_config_count;
6842 	uint32_t examine_disk_count;
6843 
6844 	/* Claim type to take, with these options */
6845 	enum spdk_bdev_claim_type claim_type;
6846 	struct spdk_bdev_claim_opts claim_opts;
6847 
6848 	/* Expected return value from spdk_bdev_module_claim_bdev_desc() */
6849 	int expect_claim_err;
6850 
6851 	/* Descriptor used for a claim */
6852 	struct spdk_bdev_desc *desc;
6853 } examine_claimed_ctx[UT_MAX_EXAMINE_MODS];
6854 
6855 bool ut_testing_examine_claimed;
6856 
6857 static void
6858 reset_examine_claimed_ctx(void)
6859 {
6860 	struct ut_examine_claimed_ctx *ctx;
6861 	uint32_t i;
6862 
6863 	for (i = 0; i < SPDK_COUNTOF(examine_claimed_ctx); i++) {
6864 		ctx = &examine_claimed_ctx[i];
6865 		if (ctx->desc != NULL) {
6866 			spdk_bdev_close(ctx->desc);
6867 		}
6868 		memset(ctx, 0, sizeof(*ctx));
6869 		spdk_bdev_claim_opts_init(&ctx->claim_opts, sizeof(ctx->claim_opts));
6870 	}
6871 }
6872 
6873 static void
6874 examine_claimed_config(struct spdk_bdev *bdev, uint32_t modnum)
6875 {
6876 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
6877 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
6878 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
6879 	int rc;
6880 
6881 	if (!ut_testing_examine_claimed) {
6882 		spdk_bdev_module_examine_done(module);
6883 		return;
6884 	}
6885 
6886 	ctx->examine_config_count++;
6887 
6888 	if (ctx->claim_type != SPDK_BDEV_CLAIM_NONE) {
6889 		rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, &ctx->claim_opts,
6890 					&ctx->desc);
6891 		CU_ASSERT(rc == 0);
6892 
6893 		rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, module);
6894 		CU_ASSERT(rc == ctx->expect_claim_err);
6895 	}
6896 	spdk_bdev_module_examine_done(module);
6897 }
6898 
6899 static void
6900 ut_examine_claimed_config0(struct spdk_bdev *bdev)
6901 {
6902 	examine_claimed_config(bdev, 0);
6903 }
6904 
6905 static void
6906 ut_examine_claimed_config1(struct spdk_bdev *bdev)
6907 {
6908 	examine_claimed_config(bdev, 1);
6909 }
6910 
6911 static void
6912 examine_claimed_disk(struct spdk_bdev *bdev, uint32_t modnum)
6913 {
6914 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
6915 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
6916 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
6917 
6918 	if (!ut_testing_examine_claimed) {
6919 		spdk_bdev_module_examine_done(module);
6920 		return;
6921 	}
6922 
6923 	ctx->examine_disk_count++;
6924 
6925 	spdk_bdev_module_examine_done(module);
6926 }
6927 
6928 static void
6929 ut_examine_claimed_disk0(struct spdk_bdev *bdev)
6930 {
6931 	examine_claimed_disk(bdev, 0);
6932 }
6933 
6934 static void
6935 ut_examine_claimed_disk1(struct spdk_bdev *bdev)
6936 {
6937 	examine_claimed_disk(bdev, 1);
6938 }
6939 
6940 static void
6941 examine_claimed(void)
6942 {
6943 	struct spdk_bdev *bdev;
6944 	struct spdk_bdev_module *mod = examine_claimed_mods;
6945 	struct ut_examine_claimed_ctx *ctx = examine_claimed_ctx;
6946 
6947 	ut_testing_examine_claimed = true;
6948 	reset_examine_claimed_ctx();
6949 
6950 	/*
6951 	 * With one module claiming, both modules' examine_config should be called, but only the
6952 	 * claiming module's examine_disk should be called.
6953 	 */
6954 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
6955 	bdev = allocate_bdev("bdev0");
6956 	CU_ASSERT(ctx[0].examine_config_count == 1);
6957 	CU_ASSERT(ctx[0].examine_disk_count == 1);
6958 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
6959 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
6960 	CU_ASSERT(ctx[1].examine_config_count == 1);
6961 	CU_ASSERT(ctx[1].examine_disk_count == 0);
6962 	CU_ASSERT(ctx[1].desc == NULL);
6963 	reset_examine_claimed_ctx();
6964 	free_bdev(bdev);
6965 
6966 	/*
6967 	 * With two modules claiming, both modules' examine_config and examine_disk should be
6968 	 * called.
6969 	 */
6970 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
6971 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
6972 	bdev = allocate_bdev("bdev0");
6973 	CU_ASSERT(ctx[0].examine_config_count == 1);
6974 	CU_ASSERT(ctx[0].examine_disk_count == 1);
6975 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
6976 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
6977 	CU_ASSERT(ctx[1].examine_config_count == 1);
6978 	CU_ASSERT(ctx[1].examine_disk_count == 1);
6979 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
6980 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
6981 	reset_examine_claimed_ctx();
6982 	free_bdev(bdev);
6983 
6984 	/*
6985 	 * If two vbdev modules try to claim with conflicting claim types, the module that was added
6986 	 * last wins. The winner gets the claim and is the only one that has its examine_disk
6987 	 * callback invoked.
6988 	 */
6989 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
6990 	ctx[0].expect_claim_err = -EPERM;
6991 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE;
6992 	bdev = allocate_bdev("bdev0");
6993 	CU_ASSERT(ctx[0].examine_config_count == 1);
6994 	CU_ASSERT(ctx[0].examine_disk_count == 0);
6995 	CU_ASSERT(ctx[1].examine_config_count == 1);
6996 	CU_ASSERT(ctx[1].examine_disk_count == 1);
6997 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
6998 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
6999 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
7000 	reset_examine_claimed_ctx();
7001 	free_bdev(bdev);
7002 
7003 	ut_testing_examine_claimed = false;
7004 }
7005 
7006 int
7007 main(int argc, char **argv)
7008 {
7009 	CU_pSuite		suite = NULL;
7010 	unsigned int		num_failures;
7011 
7012 	CU_set_error_action(CUEA_ABORT);
7013 	CU_initialize_registry();
7014 
7015 	suite = CU_add_suite("bdev", null_init, null_clean);
7016 
7017 	CU_ADD_TEST(suite, bytes_to_blocks_test);
7018 	CU_ADD_TEST(suite, num_blocks_test);
7019 	CU_ADD_TEST(suite, io_valid_test);
7020 	CU_ADD_TEST(suite, open_write_test);
7021 	CU_ADD_TEST(suite, claim_test);
7022 	CU_ADD_TEST(suite, alias_add_del_test);
7023 	CU_ADD_TEST(suite, get_device_stat_test);
7024 	CU_ADD_TEST(suite, bdev_io_types_test);
7025 	CU_ADD_TEST(suite, bdev_io_wait_test);
7026 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
7027 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
7028 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
7029 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
7030 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
7031 	CU_ADD_TEST(suite, bdev_io_write_unit_split_test);
7032 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
7033 	CU_ADD_TEST(suite, bdev_io_alignment);
7034 	CU_ADD_TEST(suite, bdev_histograms);
7035 	CU_ADD_TEST(suite, bdev_write_zeroes);
7036 	CU_ADD_TEST(suite, bdev_compare_and_write);
7037 	CU_ADD_TEST(suite, bdev_compare);
7038 	CU_ADD_TEST(suite, bdev_compare_emulated);
7039 	CU_ADD_TEST(suite, bdev_zcopy_write);
7040 	CU_ADD_TEST(suite, bdev_zcopy_read);
7041 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
7042 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
7043 	CU_ADD_TEST(suite, bdev_open_ext);
7044 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
7045 	CU_ADD_TEST(suite, bdev_set_io_timeout);
7046 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
7047 	CU_ADD_TEST(suite, lba_range_overlap);
7048 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
7049 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
7050 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
7051 	CU_ADD_TEST(suite, bdev_io_abort);
7052 	CU_ADD_TEST(suite, bdev_unmap);
7053 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
7054 	CU_ADD_TEST(suite, bdev_set_options_test);
7055 	CU_ADD_TEST(suite, bdev_multi_allocation);
7056 	CU_ADD_TEST(suite, bdev_get_memory_domains);
7057 	CU_ADD_TEST(suite, bdev_io_ext);
7058 	CU_ADD_TEST(suite, bdev_io_ext_no_opts);
7059 	CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
7060 	CU_ADD_TEST(suite, bdev_io_ext_split);
7061 	CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
7062 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
7063 	CU_ADD_TEST(suite, bdev_unregister_by_name);
7064 	CU_ADD_TEST(suite, for_each_bdev_test);
7065 	CU_ADD_TEST(suite, bdev_seek_test);
7066 	CU_ADD_TEST(suite, bdev_copy);
7067 	CU_ADD_TEST(suite, bdev_copy_split_test);
7068 	CU_ADD_TEST(suite, examine_locks);
7069 	CU_ADD_TEST(suite, claim_v2_rwo);
7070 	CU_ADD_TEST(suite, claim_v2_rom);
7071 	CU_ADD_TEST(suite, claim_v2_rwm);
7072 	CU_ADD_TEST(suite, claim_v2_existing_writer);
7073 	CU_ADD_TEST(suite, claim_v2_existing_v1);
7074 	CU_ADD_TEST(suite, claim_v1_existing_v2);
7075 	CU_ADD_TEST(suite, examine_claimed);
7076 
7077 	allocate_cores(1);
7078 	allocate_threads(1);
7079 	set_thread(0);
7080 
7081 	CU_basic_set_mode(CU_BRM_VERBOSE);
7082 	CU_basic_run_tests();
7083 	num_failures = CU_get_number_of_failures();
7084 	CU_cleanup_registry();
7085 
7086 	free_threads();
7087 	free_cores();
7088 
7089 	return num_failures;
7090 }
7091