xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision e8356fd2333369c126e2d6529a5a43f87e85ef18)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk_cunit.h"
35 
36 #include "common/lib/ut_multithread.c"
37 #include "unit/lib/json_mock.c"
38 
39 #include "spdk/config.h"
40 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
41 #undef SPDK_CONFIG_VTUNE
42 
43 #include "bdev/bdev.c"
44 
45 DEFINE_STUB(spdk_conf_find_section, struct spdk_conf_section *, (struct spdk_conf *cp,
46 		const char *name), NULL);
47 DEFINE_STUB(spdk_conf_section_get_nmval, char *,
48 	    (struct spdk_conf_section *sp, const char *key, int idx1, int idx2), NULL);
49 DEFINE_STUB(spdk_conf_section_get_intval, int, (struct spdk_conf_section *sp, const char *key), -1);
50 
51 struct spdk_trace_histories *g_trace_histories;
52 DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
53 DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix));
54 DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
55 DEFINE_STUB_V(spdk_trace_register_description, (const char *name,
56 		uint16_t tpoint_id, uint8_t owner_type,
57 		uint8_t object_type, uint8_t new_object,
58 		uint8_t arg1_type, const char *arg1_name));
59 DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
60 				   uint32_t size, uint64_t object_id, uint64_t arg1));
61 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
62 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
63 
64 
65 int g_status;
66 int g_count;
67 struct spdk_histogram_data *g_histogram;
68 
69 void
70 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
71 			 int *sc, int *sk, int *asc, int *ascq)
72 {
73 }
74 
75 static int
76 null_init(void)
77 {
78 	return 0;
79 }
80 
81 static int
82 null_clean(void)
83 {
84 	return 0;
85 }
86 
87 static int
88 stub_destruct(void *ctx)
89 {
90 	return 0;
91 }
92 
93 struct ut_expected_io {
94 	uint8_t				type;
95 	uint64_t			offset;
96 	uint64_t			length;
97 	int				iovcnt;
98 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
99 	void				*md_buf;
100 	TAILQ_ENTRY(ut_expected_io)	link;
101 };
102 
103 struct bdev_ut_channel {
104 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
105 	uint32_t			outstanding_io_count;
106 	TAILQ_HEAD(, ut_expected_io)	expected_io;
107 };
108 
109 static bool g_io_done;
110 static struct spdk_bdev_io *g_bdev_io;
111 static enum spdk_bdev_io_status g_io_status;
112 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
113 static uint32_t g_bdev_ut_io_device;
114 static struct bdev_ut_channel *g_bdev_ut_channel;
115 
116 static struct ut_expected_io *
117 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
118 {
119 	struct ut_expected_io *expected_io;
120 
121 	expected_io = calloc(1, sizeof(*expected_io));
122 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
123 
124 	expected_io->type = type;
125 	expected_io->offset = offset;
126 	expected_io->length = length;
127 	expected_io->iovcnt = iovcnt;
128 
129 	return expected_io;
130 }
131 
132 static void
133 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
134 {
135 	expected_io->iov[pos].iov_base = base;
136 	expected_io->iov[pos].iov_len = len;
137 }
138 
139 static void
140 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
141 {
142 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
143 	struct ut_expected_io *expected_io;
144 	struct iovec *iov, *expected_iov;
145 	int i;
146 
147 	g_bdev_io = bdev_io;
148 
149 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
150 	ch->outstanding_io_count++;
151 
152 	expected_io = TAILQ_FIRST(&ch->expected_io);
153 	if (expected_io == NULL) {
154 		return;
155 	}
156 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
157 
158 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
159 		CU_ASSERT(bdev_io->type == expected_io->type);
160 	}
161 
162 	if (expected_io->md_buf != NULL) {
163 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
164 	}
165 
166 	if (expected_io->length == 0) {
167 		free(expected_io);
168 		return;
169 	}
170 
171 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
172 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
173 
174 	if (expected_io->iovcnt == 0) {
175 		free(expected_io);
176 		/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
177 		return;
178 	}
179 
180 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
181 	for (i = 0; i < expected_io->iovcnt; i++) {
182 		iov = &bdev_io->u.bdev.iovs[i];
183 		expected_iov = &expected_io->iov[i];
184 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
185 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
186 	}
187 
188 	free(expected_io);
189 }
190 
191 static void
192 stub_submit_request_aligned_buffer_cb(struct spdk_io_channel *_ch,
193 				      struct spdk_bdev_io *bdev_io, bool success)
194 {
195 	CU_ASSERT(success == true);
196 
197 	stub_submit_request(_ch, bdev_io);
198 }
199 
200 static void
201 stub_submit_request_aligned_buffer(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
202 {
203 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_aligned_buffer_cb,
204 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
205 }
206 
207 static uint32_t
208 stub_complete_io(uint32_t num_to_complete)
209 {
210 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
211 	struct spdk_bdev_io *bdev_io;
212 	static enum spdk_bdev_io_status io_status;
213 	uint32_t num_completed = 0;
214 
215 	while (num_completed < num_to_complete) {
216 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
217 			break;
218 		}
219 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
220 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
221 		ch->outstanding_io_count--;
222 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
223 			    g_io_exp_status;
224 		spdk_bdev_io_complete(bdev_io, io_status);
225 		num_completed++;
226 	}
227 
228 	return num_completed;
229 }
230 
231 static struct spdk_io_channel *
232 bdev_ut_get_io_channel(void *ctx)
233 {
234 	return spdk_get_io_channel(&g_bdev_ut_io_device);
235 }
236 
237 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
238 	[SPDK_BDEV_IO_TYPE_READ]		= true,
239 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
240 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
241 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
242 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
243 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
244 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
245 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
246 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
247 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
248 };
249 
250 static void
251 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
252 {
253 	g_io_types_supported[io_type] = enable;
254 }
255 
256 static bool
257 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
258 {
259 	return g_io_types_supported[io_type];
260 }
261 
262 static struct spdk_bdev_fn_table fn_table = {
263 	.destruct = stub_destruct,
264 	.submit_request = stub_submit_request,
265 	.get_io_channel = bdev_ut_get_io_channel,
266 	.io_type_supported = stub_io_type_supported,
267 };
268 
269 static int
270 bdev_ut_create_ch(void *io_device, void *ctx_buf)
271 {
272 	struct bdev_ut_channel *ch = ctx_buf;
273 
274 	CU_ASSERT(g_bdev_ut_channel == NULL);
275 	g_bdev_ut_channel = ch;
276 
277 	TAILQ_INIT(&ch->outstanding_io);
278 	ch->outstanding_io_count = 0;
279 	TAILQ_INIT(&ch->expected_io);
280 	return 0;
281 }
282 
283 static void
284 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
285 {
286 	CU_ASSERT(g_bdev_ut_channel != NULL);
287 	g_bdev_ut_channel = NULL;
288 }
289 
290 struct spdk_bdev_module bdev_ut_if;
291 
292 static int
293 bdev_ut_module_init(void)
294 {
295 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
296 				sizeof(struct bdev_ut_channel), NULL);
297 	spdk_bdev_module_init_done(&bdev_ut_if);
298 	return 0;
299 }
300 
301 static void
302 bdev_ut_module_fini(void)
303 {
304 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
305 }
306 
307 struct spdk_bdev_module bdev_ut_if = {
308 	.name = "bdev_ut",
309 	.module_init = bdev_ut_module_init,
310 	.module_fini = bdev_ut_module_fini,
311 	.async_init = true,
312 };
313 
314 static void vbdev_ut_examine(struct spdk_bdev *bdev);
315 
316 static int
317 vbdev_ut_module_init(void)
318 {
319 	return 0;
320 }
321 
322 static void
323 vbdev_ut_module_fini(void)
324 {
325 }
326 
327 struct spdk_bdev_module vbdev_ut_if = {
328 	.name = "vbdev_ut",
329 	.module_init = vbdev_ut_module_init,
330 	.module_fini = vbdev_ut_module_fini,
331 	.examine_config = vbdev_ut_examine,
332 };
333 
334 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
335 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
336 
337 static void
338 vbdev_ut_examine(struct spdk_bdev *bdev)
339 {
340 	spdk_bdev_module_examine_done(&vbdev_ut_if);
341 }
342 
343 static struct spdk_bdev *
344 allocate_bdev(char *name)
345 {
346 	struct spdk_bdev *bdev;
347 	int rc;
348 
349 	bdev = calloc(1, sizeof(*bdev));
350 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
351 
352 	bdev->name = name;
353 	bdev->fn_table = &fn_table;
354 	bdev->module = &bdev_ut_if;
355 	bdev->blockcnt = 1024;
356 	bdev->blocklen = 512;
357 
358 	rc = spdk_bdev_register(bdev);
359 	CU_ASSERT(rc == 0);
360 
361 	return bdev;
362 }
363 
364 static struct spdk_bdev *
365 allocate_vbdev(char *name)
366 {
367 	struct spdk_bdev *bdev;
368 	int rc;
369 
370 	bdev = calloc(1, sizeof(*bdev));
371 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
372 
373 	bdev->name = name;
374 	bdev->fn_table = &fn_table;
375 	bdev->module = &vbdev_ut_if;
376 
377 	rc = spdk_bdev_register(bdev);
378 	CU_ASSERT(rc == 0);
379 
380 	return bdev;
381 }
382 
383 static void
384 free_bdev(struct spdk_bdev *bdev)
385 {
386 	spdk_bdev_unregister(bdev, NULL, NULL);
387 	poll_threads();
388 	memset(bdev, 0xFF, sizeof(*bdev));
389 	free(bdev);
390 }
391 
392 static void
393 free_vbdev(struct spdk_bdev *bdev)
394 {
395 	spdk_bdev_unregister(bdev, NULL, NULL);
396 	poll_threads();
397 	memset(bdev, 0xFF, sizeof(*bdev));
398 	free(bdev);
399 }
400 
401 static void
402 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
403 {
404 	const char *bdev_name;
405 
406 	CU_ASSERT(bdev != NULL);
407 	CU_ASSERT(rc == 0);
408 	bdev_name = spdk_bdev_get_name(bdev);
409 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
410 
411 	free(stat);
412 	free_bdev(bdev);
413 
414 	*(bool *)cb_arg = true;
415 }
416 
417 static void
418 get_device_stat_test(void)
419 {
420 	struct spdk_bdev *bdev;
421 	struct spdk_bdev_io_stat *stat;
422 	bool done;
423 
424 	bdev = allocate_bdev("bdev0");
425 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
426 	if (stat == NULL) {
427 		free_bdev(bdev);
428 		return;
429 	}
430 
431 	done = false;
432 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
433 	while (!done) { poll_threads(); }
434 
435 
436 }
437 
438 static void
439 open_write_test(void)
440 {
441 	struct spdk_bdev *bdev[9];
442 	struct spdk_bdev_desc *desc[9] = {};
443 	int rc;
444 
445 	/*
446 	 * Create a tree of bdevs to test various open w/ write cases.
447 	 *
448 	 * bdev0 through bdev3 are physical block devices, such as NVMe
449 	 * namespaces or Ceph block devices.
450 	 *
451 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
452 	 * caching or RAID use cases.
453 	 *
454 	 * bdev5 through bdev7 are all virtual bdevs with the same base
455 	 * bdev (except bdev7). This models partitioning or logical volume
456 	 * use cases.
457 	 *
458 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
459 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
460 	 * models caching, RAID, partitioning or logical volumes use cases.
461 	 *
462 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
463 	 * base bdevs are themselves virtual bdevs.
464 	 *
465 	 *                bdev8
466 	 *                  |
467 	 *            +----------+
468 	 *            |          |
469 	 *          bdev4      bdev5   bdev6   bdev7
470 	 *            |          |       |       |
471 	 *        +---+---+      +---+   +   +---+---+
472 	 *        |       |           \  |  /         \
473 	 *      bdev0   bdev1          bdev2         bdev3
474 	 */
475 
476 	bdev[0] = allocate_bdev("bdev0");
477 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
478 	CU_ASSERT(rc == 0);
479 
480 	bdev[1] = allocate_bdev("bdev1");
481 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
482 	CU_ASSERT(rc == 0);
483 
484 	bdev[2] = allocate_bdev("bdev2");
485 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
486 	CU_ASSERT(rc == 0);
487 
488 	bdev[3] = allocate_bdev("bdev3");
489 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
490 	CU_ASSERT(rc == 0);
491 
492 	bdev[4] = allocate_vbdev("bdev4");
493 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
494 	CU_ASSERT(rc == 0);
495 
496 	bdev[5] = allocate_vbdev("bdev5");
497 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
498 	CU_ASSERT(rc == 0);
499 
500 	bdev[6] = allocate_vbdev("bdev6");
501 
502 	bdev[7] = allocate_vbdev("bdev7");
503 
504 	bdev[8] = allocate_vbdev("bdev8");
505 
506 	/* Open bdev0 read-only.  This should succeed. */
507 	rc = spdk_bdev_open(bdev[0], false, NULL, NULL, &desc[0]);
508 	CU_ASSERT(rc == 0);
509 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
510 	spdk_bdev_close(desc[0]);
511 
512 	/*
513 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
514 	 * by a vbdev module.
515 	 */
516 	rc = spdk_bdev_open(bdev[1], true, NULL, NULL, &desc[1]);
517 	CU_ASSERT(rc == -EPERM);
518 
519 	/*
520 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
521 	 * by a vbdev module.
522 	 */
523 	rc = spdk_bdev_open(bdev[4], true, NULL, NULL, &desc[4]);
524 	CU_ASSERT(rc == -EPERM);
525 
526 	/* Open bdev4 read-only.  This should succeed. */
527 	rc = spdk_bdev_open(bdev[4], false, NULL, NULL, &desc[4]);
528 	CU_ASSERT(rc == 0);
529 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
530 	spdk_bdev_close(desc[4]);
531 
532 	/*
533 	 * Open bdev8 read/write.  This should succeed since it is a leaf
534 	 * bdev.
535 	 */
536 	rc = spdk_bdev_open(bdev[8], true, NULL, NULL, &desc[8]);
537 	CU_ASSERT(rc == 0);
538 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
539 	spdk_bdev_close(desc[8]);
540 
541 	/*
542 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
543 	 * by a vbdev module.
544 	 */
545 	rc = spdk_bdev_open(bdev[5], true, NULL, NULL, &desc[5]);
546 	CU_ASSERT(rc == -EPERM);
547 
548 	/* Open bdev4 read-only.  This should succeed. */
549 	rc = spdk_bdev_open(bdev[5], false, NULL, NULL, &desc[5]);
550 	CU_ASSERT(rc == 0);
551 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
552 	spdk_bdev_close(desc[5]);
553 
554 	free_vbdev(bdev[8]);
555 
556 	free_vbdev(bdev[5]);
557 	free_vbdev(bdev[6]);
558 	free_vbdev(bdev[7]);
559 
560 	free_vbdev(bdev[4]);
561 
562 	free_bdev(bdev[0]);
563 	free_bdev(bdev[1]);
564 	free_bdev(bdev[2]);
565 	free_bdev(bdev[3]);
566 }
567 
568 static void
569 bytes_to_blocks_test(void)
570 {
571 	struct spdk_bdev bdev;
572 	uint64_t offset_blocks, num_blocks;
573 
574 	memset(&bdev, 0, sizeof(bdev));
575 
576 	bdev.blocklen = 512;
577 
578 	/* All parameters valid */
579 	offset_blocks = 0;
580 	num_blocks = 0;
581 	CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
582 	CU_ASSERT(offset_blocks == 1);
583 	CU_ASSERT(num_blocks == 2);
584 
585 	/* Offset not a block multiple */
586 	CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
587 
588 	/* Length not a block multiple */
589 	CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
590 
591 	/* In case blocklen not the power of two */
592 	bdev.blocklen = 100;
593 	CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
594 	CU_ASSERT(offset_blocks == 1);
595 	CU_ASSERT(num_blocks == 2);
596 
597 	/* Offset not a block multiple */
598 	CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
599 
600 	/* Length not a block multiple */
601 	CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
602 }
603 
604 static void
605 num_blocks_test(void)
606 {
607 	struct spdk_bdev bdev;
608 	struct spdk_bdev_desc *desc = NULL;
609 	int rc;
610 
611 	memset(&bdev, 0, sizeof(bdev));
612 	bdev.name = "num_blocks";
613 	bdev.fn_table = &fn_table;
614 	bdev.module = &bdev_ut_if;
615 	spdk_bdev_register(&bdev);
616 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
617 
618 	/* Growing block number */
619 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
620 	/* Shrinking block number */
621 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
622 
623 	/* In case bdev opened */
624 	rc = spdk_bdev_open(&bdev, false, NULL, NULL, &desc);
625 	CU_ASSERT(rc == 0);
626 	SPDK_CU_ASSERT_FATAL(desc != NULL);
627 
628 	/* Growing block number */
629 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
630 	/* Shrinking block number */
631 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
632 
633 	spdk_bdev_close(desc);
634 	spdk_bdev_unregister(&bdev, NULL, NULL);
635 
636 	poll_threads();
637 }
638 
639 static void
640 io_valid_test(void)
641 {
642 	struct spdk_bdev bdev;
643 
644 	memset(&bdev, 0, sizeof(bdev));
645 
646 	bdev.blocklen = 512;
647 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
648 
649 	/* All parameters valid */
650 	CU_ASSERT(spdk_bdev_io_valid_blocks(&bdev, 1, 2) == true);
651 
652 	/* Last valid block */
653 	CU_ASSERT(spdk_bdev_io_valid_blocks(&bdev, 99, 1) == true);
654 
655 	/* Offset past end of bdev */
656 	CU_ASSERT(spdk_bdev_io_valid_blocks(&bdev, 100, 1) == false);
657 
658 	/* Offset + length past end of bdev */
659 	CU_ASSERT(spdk_bdev_io_valid_blocks(&bdev, 99, 2) == false);
660 
661 	/* Offset near end of uint64_t range (2^64 - 1) */
662 	CU_ASSERT(spdk_bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
663 }
664 
665 static void
666 alias_add_del_test(void)
667 {
668 	struct spdk_bdev *bdev[3];
669 	int rc;
670 
671 	/* Creating and registering bdevs */
672 	bdev[0] = allocate_bdev("bdev0");
673 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
674 
675 	bdev[1] = allocate_bdev("bdev1");
676 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
677 
678 	bdev[2] = allocate_bdev("bdev2");
679 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
680 
681 	poll_threads();
682 
683 	/*
684 	 * Trying adding an alias identical to name.
685 	 * Alias is identical to name, so it can not be added to aliases list
686 	 */
687 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
688 	CU_ASSERT(rc == -EEXIST);
689 
690 	/*
691 	 * Trying to add empty alias,
692 	 * this one should fail
693 	 */
694 	rc = spdk_bdev_alias_add(bdev[0], NULL);
695 	CU_ASSERT(rc == -EINVAL);
696 
697 	/* Trying adding same alias to two different registered bdevs */
698 
699 	/* Alias is used first time, so this one should pass */
700 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
701 	CU_ASSERT(rc == 0);
702 
703 	/* Alias was added to another bdev, so this one should fail */
704 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
705 	CU_ASSERT(rc == -EEXIST);
706 
707 	/* Alias is used first time, so this one should pass */
708 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
709 	CU_ASSERT(rc == 0);
710 
711 	/* Trying removing an alias from registered bdevs */
712 
713 	/* Alias is not on a bdev aliases list, so this one should fail */
714 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
715 	CU_ASSERT(rc == -ENOENT);
716 
717 	/* Alias is present on a bdev aliases list, so this one should pass */
718 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
719 	CU_ASSERT(rc == 0);
720 
721 	/* Alias is present on a bdev aliases list, so this one should pass */
722 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
723 	CU_ASSERT(rc == 0);
724 
725 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
726 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
727 	CU_ASSERT(rc != 0);
728 
729 	/* Trying to del all alias from empty alias list */
730 	spdk_bdev_alias_del_all(bdev[2]);
731 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
732 
733 	/* Trying to del all alias from non-empty alias list */
734 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
735 	CU_ASSERT(rc == 0);
736 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
737 	CU_ASSERT(rc == 0);
738 	spdk_bdev_alias_del_all(bdev[2]);
739 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
740 
741 	/* Unregister and free bdevs */
742 	spdk_bdev_unregister(bdev[0], NULL, NULL);
743 	spdk_bdev_unregister(bdev[1], NULL, NULL);
744 	spdk_bdev_unregister(bdev[2], NULL, NULL);
745 
746 	poll_threads();
747 
748 	free(bdev[0]);
749 	free(bdev[1]);
750 	free(bdev[2]);
751 }
752 
753 static void
754 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
755 {
756 	g_io_done = true;
757 	g_io_status = bdev_io->internal.status;
758 	spdk_bdev_free_io(bdev_io);
759 }
760 
761 static void
762 bdev_init_cb(void *arg, int rc)
763 {
764 	CU_ASSERT(rc == 0);
765 }
766 
767 static void
768 bdev_fini_cb(void *arg)
769 {
770 }
771 
772 struct bdev_ut_io_wait_entry {
773 	struct spdk_bdev_io_wait_entry	entry;
774 	struct spdk_io_channel		*io_ch;
775 	struct spdk_bdev_desc		*desc;
776 	bool				submitted;
777 };
778 
779 static void
780 io_wait_cb(void *arg)
781 {
782 	struct bdev_ut_io_wait_entry *entry = arg;
783 	int rc;
784 
785 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
786 	CU_ASSERT(rc == 0);
787 	entry->submitted = true;
788 }
789 
790 static void
791 bdev_io_types_test(void)
792 {
793 	struct spdk_bdev *bdev;
794 	struct spdk_bdev_desc *desc = NULL;
795 	struct spdk_io_channel *io_ch;
796 	struct spdk_bdev_opts bdev_opts = {
797 		.bdev_io_pool_size = 4,
798 		.bdev_io_cache_size = 2,
799 	};
800 	int rc;
801 
802 	rc = spdk_bdev_set_opts(&bdev_opts);
803 	CU_ASSERT(rc == 0);
804 	spdk_bdev_initialize(bdev_init_cb, NULL);
805 	poll_threads();
806 
807 	bdev = allocate_bdev("bdev0");
808 
809 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
810 	CU_ASSERT(rc == 0);
811 	poll_threads();
812 	SPDK_CU_ASSERT_FATAL(desc != NULL);
813 	io_ch = spdk_bdev_get_io_channel(desc);
814 	CU_ASSERT(io_ch != NULL);
815 
816 	/* WRITE and WRITE ZEROES are not supported */
817 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
818 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
819 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
820 	CU_ASSERT(rc == -ENOTSUP);
821 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
822 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
823 
824 	spdk_put_io_channel(io_ch);
825 	spdk_bdev_close(desc);
826 	free_bdev(bdev);
827 	spdk_bdev_finish(bdev_fini_cb, NULL);
828 	poll_threads();
829 }
830 
831 static void
832 bdev_io_wait_test(void)
833 {
834 	struct spdk_bdev *bdev;
835 	struct spdk_bdev_desc *desc = NULL;
836 	struct spdk_io_channel *io_ch;
837 	struct spdk_bdev_opts bdev_opts = {
838 		.bdev_io_pool_size = 4,
839 		.bdev_io_cache_size = 2,
840 	};
841 	struct bdev_ut_io_wait_entry io_wait_entry;
842 	struct bdev_ut_io_wait_entry io_wait_entry2;
843 	int rc;
844 
845 	rc = spdk_bdev_set_opts(&bdev_opts);
846 	CU_ASSERT(rc == 0);
847 	spdk_bdev_initialize(bdev_init_cb, NULL);
848 	poll_threads();
849 
850 	bdev = allocate_bdev("bdev0");
851 
852 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
853 	CU_ASSERT(rc == 0);
854 	poll_threads();
855 	SPDK_CU_ASSERT_FATAL(desc != NULL);
856 	io_ch = spdk_bdev_get_io_channel(desc);
857 	CU_ASSERT(io_ch != NULL);
858 
859 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
860 	CU_ASSERT(rc == 0);
861 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
862 	CU_ASSERT(rc == 0);
863 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
864 	CU_ASSERT(rc == 0);
865 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
866 	CU_ASSERT(rc == 0);
867 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
868 
869 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
870 	CU_ASSERT(rc == -ENOMEM);
871 
872 	io_wait_entry.entry.bdev = bdev;
873 	io_wait_entry.entry.cb_fn = io_wait_cb;
874 	io_wait_entry.entry.cb_arg = &io_wait_entry;
875 	io_wait_entry.io_ch = io_ch;
876 	io_wait_entry.desc = desc;
877 	io_wait_entry.submitted = false;
878 	/* Cannot use the same io_wait_entry for two different calls. */
879 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
880 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
881 
882 	/* Queue two I/O waits. */
883 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
884 	CU_ASSERT(rc == 0);
885 	CU_ASSERT(io_wait_entry.submitted == false);
886 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
887 	CU_ASSERT(rc == 0);
888 	CU_ASSERT(io_wait_entry2.submitted == false);
889 
890 	stub_complete_io(1);
891 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
892 	CU_ASSERT(io_wait_entry.submitted == true);
893 	CU_ASSERT(io_wait_entry2.submitted == false);
894 
895 	stub_complete_io(1);
896 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
897 	CU_ASSERT(io_wait_entry2.submitted == true);
898 
899 	stub_complete_io(4);
900 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
901 
902 	spdk_put_io_channel(io_ch);
903 	spdk_bdev_close(desc);
904 	free_bdev(bdev);
905 	spdk_bdev_finish(bdev_fini_cb, NULL);
906 	poll_threads();
907 }
908 
909 static void
910 bdev_io_spans_boundary_test(void)
911 {
912 	struct spdk_bdev bdev;
913 	struct spdk_bdev_io bdev_io;
914 
915 	memset(&bdev, 0, sizeof(bdev));
916 
917 	bdev.optimal_io_boundary = 0;
918 	bdev_io.bdev = &bdev;
919 
920 	/* bdev has no optimal_io_boundary set - so this should return false. */
921 	CU_ASSERT(_spdk_bdev_io_should_split(&bdev_io) == false);
922 
923 	bdev.optimal_io_boundary = 32;
924 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
925 
926 	/* RESETs are not based on LBAs - so this should return false. */
927 	CU_ASSERT(_spdk_bdev_io_should_split(&bdev_io) == false);
928 
929 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
930 	bdev_io.u.bdev.offset_blocks = 0;
931 	bdev_io.u.bdev.num_blocks = 32;
932 
933 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
934 	CU_ASSERT(_spdk_bdev_io_should_split(&bdev_io) == false);
935 
936 	bdev_io.u.bdev.num_blocks = 33;
937 
938 	/* This I/O spans a boundary. */
939 	CU_ASSERT(_spdk_bdev_io_should_split(&bdev_io) == true);
940 }
941 
942 static void
943 bdev_io_split(void)
944 {
945 	struct spdk_bdev *bdev;
946 	struct spdk_bdev_desc *desc = NULL;
947 	struct spdk_io_channel *io_ch;
948 	struct spdk_bdev_opts bdev_opts = {
949 		.bdev_io_pool_size = 512,
950 		.bdev_io_cache_size = 64,
951 	};
952 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
953 	struct ut_expected_io *expected_io;
954 	uint64_t i;
955 	int rc;
956 
957 	rc = spdk_bdev_set_opts(&bdev_opts);
958 	CU_ASSERT(rc == 0);
959 	spdk_bdev_initialize(bdev_init_cb, NULL);
960 
961 	bdev = allocate_bdev("bdev0");
962 
963 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
964 	CU_ASSERT(rc == 0);
965 	SPDK_CU_ASSERT_FATAL(desc != NULL);
966 	io_ch = spdk_bdev_get_io_channel(desc);
967 	CU_ASSERT(io_ch != NULL);
968 
969 	bdev->optimal_io_boundary = 16;
970 	bdev->split_on_optimal_io_boundary = false;
971 
972 	g_io_done = false;
973 
974 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
975 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
976 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
977 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
978 
979 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
980 	CU_ASSERT(rc == 0);
981 	CU_ASSERT(g_io_done == false);
982 
983 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
984 	stub_complete_io(1);
985 	CU_ASSERT(g_io_done == true);
986 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
987 
988 	bdev->split_on_optimal_io_boundary = true;
989 
990 	/* Now test that a single-vector command is split correctly.
991 	 * Offset 14, length 8, payload 0xF000
992 	 *  Child - Offset 14, length 2, payload 0xF000
993 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
994 	 *
995 	 * Set up the expected values before calling spdk_bdev_read_blocks
996 	 */
997 	g_io_done = false;
998 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
999 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1000 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1001 
1002 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1003 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1004 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1005 
1006 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1007 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1008 	CU_ASSERT(rc == 0);
1009 	CU_ASSERT(g_io_done == false);
1010 
1011 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1012 	stub_complete_io(2);
1013 	CU_ASSERT(g_io_done == true);
1014 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1015 
1016 	/* Now set up a more complex, multi-vector command that needs to be split,
1017 	 *  including splitting iovecs.
1018 	 */
1019 	iov[0].iov_base = (void *)0x10000;
1020 	iov[0].iov_len = 512;
1021 	iov[1].iov_base = (void *)0x20000;
1022 	iov[1].iov_len = 20 * 512;
1023 	iov[2].iov_base = (void *)0x30000;
1024 	iov[2].iov_len = 11 * 512;
1025 
1026 	g_io_done = false;
1027 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1028 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1029 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1030 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1031 
1032 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1033 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1034 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1035 
1036 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1037 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1038 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1039 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1040 
1041 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
1042 	CU_ASSERT(rc == 0);
1043 	CU_ASSERT(g_io_done == false);
1044 
1045 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1046 	stub_complete_io(3);
1047 	CU_ASSERT(g_io_done == true);
1048 
1049 	/* Test multi vector command that needs to be split by strip and then needs to be
1050 	 * split further due to the capacity of child iovs.
1051 	 */
1052 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1053 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1054 		iov[i].iov_len = 512;
1055 	}
1056 
1057 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1058 	g_io_done = false;
1059 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1060 					   BDEV_IO_NUM_CHILD_IOV);
1061 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1062 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1063 	}
1064 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1065 
1066 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1067 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1068 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1069 		ut_expected_io_set_iov(expected_io, i,
1070 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1071 	}
1072 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1073 
1074 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1075 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1076 	CU_ASSERT(rc == 0);
1077 	CU_ASSERT(g_io_done == false);
1078 
1079 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1080 	stub_complete_io(1);
1081 	CU_ASSERT(g_io_done == false);
1082 
1083 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1084 	stub_complete_io(1);
1085 	CU_ASSERT(g_io_done == true);
1086 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1087 
1088 	/* Test multi vector command that needs to be split by strip and then needs to be
1089 	 * split further due to the capacity of child iovs. In this case, the length of
1090 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1091 	 */
1092 
1093 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1094 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1095 	 */
1096 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1097 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1098 		iov[i].iov_len = 512;
1099 	}
1100 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1101 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1102 		iov[i].iov_len = 256;
1103 	}
1104 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1105 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1106 
1107 	/* Add an extra iovec to trigger split */
1108 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1109 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1110 
1111 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1112 	g_io_done = false;
1113 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1114 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1115 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1116 		ut_expected_io_set_iov(expected_io, i,
1117 				       (void *)((i + 1) * 0x10000), 512);
1118 	}
1119 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1120 		ut_expected_io_set_iov(expected_io, i,
1121 				       (void *)((i + 1) * 0x10000), 256);
1122 	}
1123 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1124 
1125 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1126 					   1, 1);
1127 	ut_expected_io_set_iov(expected_io, 0,
1128 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1129 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1130 
1131 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1132 					   1, 1);
1133 	ut_expected_io_set_iov(expected_io, 0,
1134 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1135 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1136 
1137 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
1138 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1139 	CU_ASSERT(rc == 0);
1140 	CU_ASSERT(g_io_done == false);
1141 
1142 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1143 	stub_complete_io(1);
1144 	CU_ASSERT(g_io_done == false);
1145 
1146 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1147 	stub_complete_io(2);
1148 	CU_ASSERT(g_io_done == true);
1149 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1150 
1151 	/* Test multi vector command that needs to be split by strip and then needs to be
1152 	 * split further due to the capacity of child iovs, but fails to split. The cause
1153 	 * of failure of split is that the length of an iovec is not multiple of block size.
1154 	 */
1155 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1156 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1157 		iov[i].iov_len = 512;
1158 	}
1159 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1160 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1161 
1162 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1163 	g_io_done = false;
1164 	g_io_status = 0;
1165 
1166 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1167 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1168 	CU_ASSERT(rc == 0);
1169 	CU_ASSERT(g_io_done == true);
1170 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1171 
1172 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1173 	 * split, so test that.
1174 	 */
1175 	bdev->optimal_io_boundary = 15;
1176 	g_io_done = false;
1177 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1178 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1179 
1180 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1181 	CU_ASSERT(rc == 0);
1182 	CU_ASSERT(g_io_done == false);
1183 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1184 	stub_complete_io(1);
1185 	CU_ASSERT(g_io_done == true);
1186 
1187 	/* Test an UNMAP.  This should also not be split. */
1188 	bdev->optimal_io_boundary = 16;
1189 	g_io_done = false;
1190 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1191 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1192 
1193 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1194 	CU_ASSERT(rc == 0);
1195 	CU_ASSERT(g_io_done == false);
1196 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1197 	stub_complete_io(1);
1198 	CU_ASSERT(g_io_done == true);
1199 
1200 	/* Test a FLUSH.  This should also not be split. */
1201 	bdev->optimal_io_boundary = 16;
1202 	g_io_done = false;
1203 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1204 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1205 
1206 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1207 	CU_ASSERT(rc == 0);
1208 	CU_ASSERT(g_io_done == false);
1209 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1210 	stub_complete_io(1);
1211 	CU_ASSERT(g_io_done == true);
1212 
1213 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1214 
1215 	/* Children requests return an error status */
1216 	bdev->optimal_io_boundary = 16;
1217 	iov[0].iov_base = (void *)0x10000;
1218 	iov[0].iov_len = 512 * 64;
1219 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1220 	g_io_done = false;
1221 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1222 
1223 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1224 	CU_ASSERT(rc == 0);
1225 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1226 	stub_complete_io(4);
1227 	CU_ASSERT(g_io_done == false);
1228 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1229 	stub_complete_io(1);
1230 	CU_ASSERT(g_io_done == true);
1231 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1232 
1233 	spdk_put_io_channel(io_ch);
1234 	spdk_bdev_close(desc);
1235 	free_bdev(bdev);
1236 	spdk_bdev_finish(bdev_fini_cb, NULL);
1237 	poll_threads();
1238 }
1239 
1240 static void
1241 bdev_io_split_with_io_wait(void)
1242 {
1243 	struct spdk_bdev *bdev;
1244 	struct spdk_bdev_desc *desc;
1245 	struct spdk_io_channel *io_ch;
1246 	struct spdk_bdev_channel *channel;
1247 	struct spdk_bdev_mgmt_channel *mgmt_ch;
1248 	struct spdk_bdev_opts bdev_opts = {
1249 		.bdev_io_pool_size = 2,
1250 		.bdev_io_cache_size = 1,
1251 	};
1252 	struct iovec iov[3];
1253 	struct ut_expected_io *expected_io;
1254 	int rc;
1255 
1256 	rc = spdk_bdev_set_opts(&bdev_opts);
1257 	CU_ASSERT(rc == 0);
1258 	spdk_bdev_initialize(bdev_init_cb, NULL);
1259 
1260 	bdev = allocate_bdev("bdev0");
1261 
1262 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
1263 	CU_ASSERT(rc == 0);
1264 	CU_ASSERT(desc != NULL);
1265 	io_ch = spdk_bdev_get_io_channel(desc);
1266 	CU_ASSERT(io_ch != NULL);
1267 	channel = spdk_io_channel_get_ctx(io_ch);
1268 	mgmt_ch = channel->shared_resource->mgmt_ch;
1269 
1270 	bdev->optimal_io_boundary = 16;
1271 	bdev->split_on_optimal_io_boundary = true;
1272 
1273 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1274 	CU_ASSERT(rc == 0);
1275 
1276 	/* Now test that a single-vector command is split correctly.
1277 	 * Offset 14, length 8, payload 0xF000
1278 	 *  Child - Offset 14, length 2, payload 0xF000
1279 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1280 	 *
1281 	 * Set up the expected values before calling spdk_bdev_read_blocks
1282 	 */
1283 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1284 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1285 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1286 
1287 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1288 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1289 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1290 
1291 	/* The following children will be submitted sequentially due to the capacity of
1292 	 * spdk_bdev_io.
1293 	 */
1294 
1295 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
1296 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1297 	CU_ASSERT(rc == 0);
1298 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
1299 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1300 
1301 	/* Completing the first read I/O will submit the first child */
1302 	stub_complete_io(1);
1303 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
1304 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1305 
1306 	/* Completing the first child will submit the second child */
1307 	stub_complete_io(1);
1308 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1309 
1310 	/* Complete the second child I/O.  This should result in our callback getting
1311 	 * invoked since the parent I/O is now complete.
1312 	 */
1313 	stub_complete_io(1);
1314 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1315 
1316 	/* Now set up a more complex, multi-vector command that needs to be split,
1317 	 *  including splitting iovecs.
1318 	 */
1319 	iov[0].iov_base = (void *)0x10000;
1320 	iov[0].iov_len = 512;
1321 	iov[1].iov_base = (void *)0x20000;
1322 	iov[1].iov_len = 20 * 512;
1323 	iov[2].iov_base = (void *)0x30000;
1324 	iov[2].iov_len = 11 * 512;
1325 
1326 	g_io_done = false;
1327 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1328 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1329 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1330 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1331 
1332 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1333 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1334 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1335 
1336 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1337 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1338 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1339 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1340 
1341 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
1342 	CU_ASSERT(rc == 0);
1343 	CU_ASSERT(g_io_done == false);
1344 
1345 	/* The following children will be submitted sequentially due to the capacity of
1346 	 * spdk_bdev_io.
1347 	 */
1348 
1349 	/* Completing the first child will submit the second child */
1350 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1351 	stub_complete_io(1);
1352 	CU_ASSERT(g_io_done == false);
1353 
1354 	/* Completing the second child will submit the third child */
1355 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1356 	stub_complete_io(1);
1357 	CU_ASSERT(g_io_done == false);
1358 
1359 	/* Completing the third child will result in our callback getting invoked
1360 	 * since the parent I/O is now complete.
1361 	 */
1362 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1363 	stub_complete_io(1);
1364 	CU_ASSERT(g_io_done == true);
1365 
1366 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1367 
1368 	spdk_put_io_channel(io_ch);
1369 	spdk_bdev_close(desc);
1370 	free_bdev(bdev);
1371 	spdk_bdev_finish(bdev_fini_cb, NULL);
1372 	poll_threads();
1373 }
1374 
1375 static void
1376 bdev_io_alignment(void)
1377 {
1378 	struct spdk_bdev *bdev;
1379 	struct spdk_bdev_desc *desc;
1380 	struct spdk_io_channel *io_ch;
1381 	struct spdk_bdev_opts bdev_opts = {
1382 		.bdev_io_pool_size = 20,
1383 		.bdev_io_cache_size = 2,
1384 	};
1385 	int rc;
1386 	void *buf;
1387 	struct iovec iovs[2];
1388 	int iovcnt;
1389 	uint64_t alignment;
1390 
1391 	rc = spdk_bdev_set_opts(&bdev_opts);
1392 	CU_ASSERT(rc == 0);
1393 	spdk_bdev_initialize(bdev_init_cb, NULL);
1394 
1395 	fn_table.submit_request = stub_submit_request_aligned_buffer;
1396 	bdev = allocate_bdev("bdev0");
1397 
1398 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
1399 	CU_ASSERT(rc == 0);
1400 	CU_ASSERT(desc != NULL);
1401 	io_ch = spdk_bdev_get_io_channel(desc);
1402 	CU_ASSERT(io_ch != NULL);
1403 
1404 	/* Create aligned buffer */
1405 	rc = posix_memalign(&buf, 4096, 8192);
1406 	SPDK_CU_ASSERT_FATAL(rc == 0);
1407 
1408 	/* Pass aligned single buffer with no alignment required */
1409 	alignment = 1;
1410 	bdev->required_alignment = spdk_u32log2(alignment);
1411 
1412 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
1413 	CU_ASSERT(rc == 0);
1414 	stub_complete_io(1);
1415 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1416 				    alignment));
1417 
1418 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
1419 	CU_ASSERT(rc == 0);
1420 	stub_complete_io(1);
1421 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1422 				    alignment));
1423 
1424 	/* Pass unaligned single buffer with no alignment required */
1425 	alignment = 1;
1426 	bdev->required_alignment = spdk_u32log2(alignment);
1427 
1428 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1429 	CU_ASSERT(rc == 0);
1430 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1431 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
1432 	stub_complete_io(1);
1433 
1434 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1435 	CU_ASSERT(rc == 0);
1436 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1437 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
1438 	stub_complete_io(1);
1439 
1440 	/* Pass unaligned single buffer with 512 alignment required */
1441 	alignment = 512;
1442 	bdev->required_alignment = spdk_u32log2(alignment);
1443 
1444 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1445 	CU_ASSERT(rc == 0);
1446 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1447 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1448 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1449 				    alignment));
1450 	stub_complete_io(1);
1451 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1452 
1453 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1454 	CU_ASSERT(rc == 0);
1455 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1456 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1457 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1458 				    alignment));
1459 	stub_complete_io(1);
1460 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1461 
1462 	/* Pass unaligned single buffer with 4096 alignment required */
1463 	alignment = 4096;
1464 	bdev->required_alignment = spdk_u32log2(alignment);
1465 
1466 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
1467 	CU_ASSERT(rc == 0);
1468 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1469 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1470 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1471 				    alignment));
1472 	stub_complete_io(1);
1473 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1474 
1475 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
1476 	CU_ASSERT(rc == 0);
1477 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1478 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1479 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1480 				    alignment));
1481 	stub_complete_io(1);
1482 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1483 
1484 	/* Pass aligned iovs with no alignment required */
1485 	alignment = 1;
1486 	bdev->required_alignment = spdk_u32log2(alignment);
1487 
1488 	iovcnt = 1;
1489 	iovs[0].iov_base = buf;
1490 	iovs[0].iov_len = 512;
1491 
1492 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1493 	CU_ASSERT(rc == 0);
1494 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1495 	stub_complete_io(1);
1496 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1497 
1498 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1499 	CU_ASSERT(rc == 0);
1500 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1501 	stub_complete_io(1);
1502 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1503 
1504 	/* Pass unaligned iovs with no alignment required */
1505 	alignment = 1;
1506 	bdev->required_alignment = spdk_u32log2(alignment);
1507 
1508 	iovcnt = 2;
1509 	iovs[0].iov_base = buf + 16;
1510 	iovs[0].iov_len = 256;
1511 	iovs[1].iov_base = buf + 16 + 256 + 32;
1512 	iovs[1].iov_len = 256;
1513 
1514 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1515 	CU_ASSERT(rc == 0);
1516 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1517 	stub_complete_io(1);
1518 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1519 
1520 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1521 	CU_ASSERT(rc == 0);
1522 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1523 	stub_complete_io(1);
1524 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1525 
1526 	/* Pass unaligned iov with 2048 alignment required */
1527 	alignment = 2048;
1528 	bdev->required_alignment = spdk_u32log2(alignment);
1529 
1530 	iovcnt = 2;
1531 	iovs[0].iov_base = buf + 16;
1532 	iovs[0].iov_len = 256;
1533 	iovs[1].iov_base = buf + 16 + 256 + 32;
1534 	iovs[1].iov_len = 256;
1535 
1536 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1537 	CU_ASSERT(rc == 0);
1538 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
1539 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1540 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1541 				    alignment));
1542 	stub_complete_io(1);
1543 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1544 
1545 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1546 	CU_ASSERT(rc == 0);
1547 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
1548 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1549 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1550 				    alignment));
1551 	stub_complete_io(1);
1552 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1553 
1554 	/* Pass iov without allocated buffer without alignment required */
1555 	alignment = 1;
1556 	bdev->required_alignment = spdk_u32log2(alignment);
1557 
1558 	iovcnt = 1;
1559 	iovs[0].iov_base = NULL;
1560 	iovs[0].iov_len = 0;
1561 
1562 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1563 	CU_ASSERT(rc == 0);
1564 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1565 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1566 				    alignment));
1567 	stub_complete_io(1);
1568 
1569 	/* Pass iov without allocated buffer with 1024 alignment required */
1570 	alignment = 1024;
1571 	bdev->required_alignment = spdk_u32log2(alignment);
1572 
1573 	iovcnt = 1;
1574 	iovs[0].iov_base = NULL;
1575 	iovs[0].iov_len = 0;
1576 
1577 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1578 	CU_ASSERT(rc == 0);
1579 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1580 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1581 				    alignment));
1582 	stub_complete_io(1);
1583 
1584 	spdk_put_io_channel(io_ch);
1585 	spdk_bdev_close(desc);
1586 	free_bdev(bdev);
1587 	spdk_bdev_finish(bdev_fini_cb, NULL);
1588 	poll_threads();
1589 
1590 	free(buf);
1591 }
1592 
1593 static void
1594 bdev_io_alignment_with_boundary(void)
1595 {
1596 	struct spdk_bdev *bdev;
1597 	struct spdk_bdev_desc *desc;
1598 	struct spdk_io_channel *io_ch;
1599 	struct spdk_bdev_opts bdev_opts = {
1600 		.bdev_io_pool_size = 20,
1601 		.bdev_io_cache_size = 2,
1602 	};
1603 	int rc;
1604 	void *buf;
1605 	struct iovec iovs[2];
1606 	int iovcnt;
1607 	uint64_t alignment;
1608 
1609 	rc = spdk_bdev_set_opts(&bdev_opts);
1610 	CU_ASSERT(rc == 0);
1611 	spdk_bdev_initialize(bdev_init_cb, NULL);
1612 
1613 	fn_table.submit_request = stub_submit_request_aligned_buffer;
1614 	bdev = allocate_bdev("bdev0");
1615 
1616 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
1617 	CU_ASSERT(rc == 0);
1618 	CU_ASSERT(desc != NULL);
1619 	io_ch = spdk_bdev_get_io_channel(desc);
1620 	CU_ASSERT(io_ch != NULL);
1621 
1622 	/* Create aligned buffer */
1623 	rc = posix_memalign(&buf, 4096, 131072);
1624 	SPDK_CU_ASSERT_FATAL(rc == 0);
1625 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1626 
1627 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
1628 	alignment = 512;
1629 	bdev->required_alignment = spdk_u32log2(alignment);
1630 	bdev->optimal_io_boundary = 2;
1631 	bdev->split_on_optimal_io_boundary = true;
1632 
1633 	iovcnt = 1;
1634 	iovs[0].iov_base = NULL;
1635 	iovs[0].iov_len = 512 * 3;
1636 
1637 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
1638 	CU_ASSERT(rc == 0);
1639 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1640 	stub_complete_io(2);
1641 
1642 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
1643 	alignment = 512;
1644 	bdev->required_alignment = spdk_u32log2(alignment);
1645 	bdev->optimal_io_boundary = 16;
1646 	bdev->split_on_optimal_io_boundary = true;
1647 
1648 	iovcnt = 1;
1649 	iovs[0].iov_base = NULL;
1650 	iovs[0].iov_len = 512 * 16;
1651 
1652 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
1653 	CU_ASSERT(rc == 0);
1654 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1655 	stub_complete_io(2);
1656 
1657 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
1658 	alignment = 512;
1659 	bdev->required_alignment = spdk_u32log2(alignment);
1660 	bdev->optimal_io_boundary = 128;
1661 	bdev->split_on_optimal_io_boundary = true;
1662 
1663 	iovcnt = 1;
1664 	iovs[0].iov_base = buf + 16;
1665 	iovs[0].iov_len = 512 * 160;
1666 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
1667 	CU_ASSERT(rc == 0);
1668 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1669 	stub_complete_io(2);
1670 
1671 	/* 512 * 3 with 2 IO boundary */
1672 	alignment = 512;
1673 	bdev->required_alignment = spdk_u32log2(alignment);
1674 	bdev->optimal_io_boundary = 2;
1675 	bdev->split_on_optimal_io_boundary = true;
1676 
1677 	iovcnt = 2;
1678 	iovs[0].iov_base = buf + 16;
1679 	iovs[0].iov_len = 512;
1680 	iovs[1].iov_base = buf + 16 + 512 + 32;
1681 	iovs[1].iov_len = 1024;
1682 
1683 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
1684 	CU_ASSERT(rc == 0);
1685 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1686 	stub_complete_io(2);
1687 
1688 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
1689 	CU_ASSERT(rc == 0);
1690 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1691 	stub_complete_io(2);
1692 
1693 	/* 512 * 64 with 32 IO boundary */
1694 	bdev->optimal_io_boundary = 32;
1695 	iovcnt = 2;
1696 	iovs[0].iov_base = buf + 16;
1697 	iovs[0].iov_len = 16384;
1698 	iovs[1].iov_base = buf + 16 + 16384 + 32;
1699 	iovs[1].iov_len = 16384;
1700 
1701 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
1702 	CU_ASSERT(rc == 0);
1703 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1704 	stub_complete_io(3);
1705 
1706 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
1707 	CU_ASSERT(rc == 0);
1708 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1709 	stub_complete_io(3);
1710 
1711 	/* 512 * 160 with 32 IO boundary */
1712 	iovcnt = 1;
1713 	iovs[0].iov_base = buf + 16;
1714 	iovs[0].iov_len = 16384 + 65536;
1715 
1716 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
1717 	CU_ASSERT(rc == 0);
1718 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
1719 	stub_complete_io(6);
1720 
1721 	spdk_put_io_channel(io_ch);
1722 	spdk_bdev_close(desc);
1723 	free_bdev(bdev);
1724 	spdk_bdev_finish(bdev_fini_cb, NULL);
1725 	poll_threads();
1726 
1727 	free(buf);
1728 }
1729 
1730 static void
1731 histogram_status_cb(void *cb_arg, int status)
1732 {
1733 	g_status = status;
1734 }
1735 
1736 static void
1737 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
1738 {
1739 	g_status = status;
1740 	g_histogram = histogram;
1741 }
1742 
1743 static void
1744 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
1745 		   uint64_t total, uint64_t so_far)
1746 {
1747 	g_count += count;
1748 }
1749 
1750 static void
1751 bdev_histograms(void)
1752 {
1753 	struct spdk_bdev *bdev;
1754 	struct spdk_bdev_desc *desc;
1755 	struct spdk_io_channel *ch;
1756 	struct spdk_histogram_data *histogram;
1757 	uint8_t buf[4096];
1758 	int rc;
1759 
1760 	spdk_bdev_initialize(bdev_init_cb, NULL);
1761 
1762 	bdev = allocate_bdev("bdev");
1763 
1764 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
1765 	CU_ASSERT(rc == 0);
1766 	CU_ASSERT(desc != NULL);
1767 
1768 	ch = spdk_bdev_get_io_channel(desc);
1769 	CU_ASSERT(ch != NULL);
1770 
1771 	/* Enable histogram */
1772 	g_status = -1;
1773 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
1774 	poll_threads();
1775 	CU_ASSERT(g_status == 0);
1776 	CU_ASSERT(bdev->internal.histogram_enabled == true);
1777 
1778 	/* Allocate histogram */
1779 	histogram = spdk_histogram_data_alloc();
1780 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
1781 
1782 	/* Check if histogram is zeroed */
1783 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
1784 	poll_threads();
1785 	CU_ASSERT(g_status == 0);
1786 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
1787 
1788 	g_count = 0;
1789 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
1790 
1791 	CU_ASSERT(g_count == 0);
1792 
1793 	rc = spdk_bdev_write_blocks(desc, ch, &buf, 0, 1, io_done, NULL);
1794 	CU_ASSERT(rc == 0);
1795 
1796 	spdk_delay_us(10);
1797 	stub_complete_io(1);
1798 	poll_threads();
1799 
1800 	rc = spdk_bdev_read_blocks(desc, ch, &buf, 0, 1, io_done, NULL);
1801 	CU_ASSERT(rc == 0);
1802 
1803 	spdk_delay_us(10);
1804 	stub_complete_io(1);
1805 	poll_threads();
1806 
1807 	/* Check if histogram gathered data from all I/O channels */
1808 	g_histogram = NULL;
1809 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
1810 	poll_threads();
1811 	CU_ASSERT(g_status == 0);
1812 	CU_ASSERT(bdev->internal.histogram_enabled == true);
1813 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
1814 
1815 	g_count = 0;
1816 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
1817 	CU_ASSERT(g_count == 2);
1818 
1819 	/* Disable histogram */
1820 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
1821 	poll_threads();
1822 	CU_ASSERT(g_status == 0);
1823 	CU_ASSERT(bdev->internal.histogram_enabled == false);
1824 
1825 	/* Try to run histogram commands on disabled bdev */
1826 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
1827 	poll_threads();
1828 	CU_ASSERT(g_status == -EFAULT);
1829 
1830 	spdk_histogram_data_free(g_histogram);
1831 	spdk_put_io_channel(ch);
1832 	spdk_bdev_close(desc);
1833 	free_bdev(bdev);
1834 	spdk_bdev_finish(bdev_fini_cb, NULL);
1835 	poll_threads();
1836 }
1837 
1838 static void
1839 bdev_write_zeroes(void)
1840 {
1841 	struct spdk_bdev *bdev;
1842 	struct spdk_bdev_desc *desc = NULL;
1843 	struct spdk_io_channel *ioch;
1844 	struct ut_expected_io *expected_io;
1845 	uint64_t offset, num_io_blocks, num_blocks;
1846 	uint32_t num_completed, num_requests;
1847 	int rc;
1848 
1849 	spdk_bdev_initialize(bdev_init_cb, NULL);
1850 	bdev = allocate_bdev("bdev");
1851 
1852 	rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
1853 	CU_ASSERT_EQUAL(rc, 0);
1854 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1855 	ioch = spdk_bdev_get_io_channel(desc);
1856 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
1857 
1858 	fn_table.submit_request = stub_submit_request;
1859 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1860 
1861 	/* First test that if the bdev supports write_zeroes, the request won't be split */
1862 	bdev->md_len = 0;
1863 	bdev->blocklen = 4096;
1864 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
1865 
1866 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
1867 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1868 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
1869 	CU_ASSERT_EQUAL(rc, 0);
1870 	num_completed = stub_complete_io(1);
1871 	CU_ASSERT_EQUAL(num_completed, 1);
1872 
1873 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
1874 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1875 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
1876 	num_requests = 2;
1877 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
1878 
1879 	for (offset = 0; offset < num_requests; ++offset) {
1880 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
1881 						   offset * num_io_blocks, num_io_blocks, 0);
1882 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1883 	}
1884 
1885 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
1886 	CU_ASSERT_EQUAL(rc, 0);
1887 	num_completed = stub_complete_io(num_requests);
1888 	CU_ASSERT_EQUAL(num_completed, num_requests);
1889 
1890 	/* Check that the splitting is correct if bdev has interleaved metadata */
1891 	bdev->md_interleave = true;
1892 	bdev->md_len = 64;
1893 	bdev->blocklen = 4096 + 64;
1894 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
1895 
1896 	num_requests = offset = 0;
1897 	while (offset < num_blocks) {
1898 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
1899 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
1900 						   offset, num_io_blocks, 0);
1901 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1902 		offset += num_io_blocks;
1903 		num_requests++;
1904 	}
1905 
1906 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
1907 	CU_ASSERT_EQUAL(rc, 0);
1908 	num_completed = stub_complete_io(num_requests);
1909 	CU_ASSERT_EQUAL(num_completed, num_requests);
1910 	num_completed = stub_complete_io(num_requests);
1911 	assert(num_completed == 0);
1912 
1913 	/* Check the the same for separate metadata buffer */
1914 	bdev->md_interleave = false;
1915 	bdev->md_len = 64;
1916 	bdev->blocklen = 4096;
1917 
1918 	num_requests = offset = 0;
1919 	while (offset < num_blocks) {
1920 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
1921 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
1922 						   offset, num_io_blocks, 0);
1923 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
1924 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1925 		offset += num_io_blocks;
1926 		num_requests++;
1927 	}
1928 
1929 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
1930 	CU_ASSERT_EQUAL(rc, 0);
1931 	num_completed = stub_complete_io(num_requests);
1932 	CU_ASSERT_EQUAL(num_completed, num_requests);
1933 
1934 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1935 	spdk_put_io_channel(ioch);
1936 	spdk_bdev_close(desc);
1937 	free_bdev(bdev);
1938 	spdk_bdev_finish(bdev_fini_cb, NULL);
1939 	poll_threads();
1940 }
1941 
1942 int
1943 main(int argc, char **argv)
1944 {
1945 	CU_pSuite		suite = NULL;
1946 	unsigned int		num_failures;
1947 
1948 	if (CU_initialize_registry() != CUE_SUCCESS) {
1949 		return CU_get_error();
1950 	}
1951 
1952 	suite = CU_add_suite("bdev", null_init, null_clean);
1953 	if (suite == NULL) {
1954 		CU_cleanup_registry();
1955 		return CU_get_error();
1956 	}
1957 
1958 	if (
1959 		CU_add_test(suite, "bytes_to_blocks_test", bytes_to_blocks_test) == NULL ||
1960 		CU_add_test(suite, "num_blocks_test", num_blocks_test) == NULL ||
1961 		CU_add_test(suite, "io_valid", io_valid_test) == NULL ||
1962 		CU_add_test(suite, "open_write", open_write_test) == NULL ||
1963 		CU_add_test(suite, "alias_add_del", alias_add_del_test) == NULL ||
1964 		CU_add_test(suite, "get_device_stat", get_device_stat_test) == NULL ||
1965 		CU_add_test(suite, "bdev_io_types", bdev_io_types_test) == NULL ||
1966 		CU_add_test(suite, "bdev_io_wait", bdev_io_wait_test) == NULL ||
1967 		CU_add_test(suite, "bdev_io_spans_boundary", bdev_io_spans_boundary_test) == NULL ||
1968 		CU_add_test(suite, "bdev_io_split", bdev_io_split) == NULL ||
1969 		CU_add_test(suite, "bdev_io_split_with_io_wait", bdev_io_split_with_io_wait) == NULL ||
1970 		CU_add_test(suite, "bdev_io_alignment_with_boundary", bdev_io_alignment_with_boundary) == NULL ||
1971 		CU_add_test(suite, "bdev_io_alignment", bdev_io_alignment) == NULL ||
1972 		CU_add_test(suite, "bdev_histograms", bdev_histograms) == NULL ||
1973 		CU_add_test(suite, "bdev_write_zeroes", bdev_write_zeroes) == NULL
1974 	) {
1975 		CU_cleanup_registry();
1976 		return CU_get_error();
1977 	}
1978 
1979 	allocate_threads(1);
1980 	set_thread(0);
1981 
1982 	CU_basic_set_mode(CU_BRM_VERBOSE);
1983 	CU_basic_run_tests();
1984 	num_failures = CU_get_number_of_failures();
1985 	CU_cleanup_registry();
1986 
1987 	free_threads();
1988 
1989 	return num_failures;
1990 }
1991