1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk_cunit.h" 35 36 #include "common/lib/ut_multithread.c" 37 #include "unit/lib/json_mock.c" 38 39 #include "spdk/config.h" 40 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */ 41 #undef SPDK_CONFIG_VTUNE 42 43 #include "bdev/bdev.c" 44 45 DEFINE_STUB(spdk_conf_find_section, struct spdk_conf_section *, (struct spdk_conf *cp, 46 const char *name), NULL); 47 DEFINE_STUB(spdk_conf_section_get_nmval, char *, 48 (struct spdk_conf_section *sp, const char *key, int idx1, int idx2), NULL); 49 DEFINE_STUB(spdk_conf_section_get_intval, int, (struct spdk_conf_section *sp, const char *key), -1); 50 51 struct spdk_trace_histories *g_trace_histories; 52 DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn)); 53 DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix)); 54 DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix)); 55 DEFINE_STUB_V(spdk_trace_register_description, (const char *name, 56 uint16_t tpoint_id, uint8_t owner_type, 57 uint8_t object_type, uint8_t new_object, 58 uint8_t arg1_type, const char *arg1_name)); 59 DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id, 60 uint32_t size, uint64_t object_id, uint64_t arg1)); 61 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0); 62 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL); 63 64 65 int g_status; 66 int g_count; 67 struct spdk_histogram_data *g_histogram; 68 69 void 70 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io, 71 int *sc, int *sk, int *asc, int *ascq) 72 { 73 } 74 75 static int 76 null_init(void) 77 { 78 return 0; 79 } 80 81 static int 82 null_clean(void) 83 { 84 return 0; 85 } 86 87 static int 88 stub_destruct(void *ctx) 89 { 90 return 0; 91 } 92 93 struct ut_expected_io { 94 uint8_t type; 95 uint64_t offset; 96 uint64_t length; 97 int iovcnt; 98 struct iovec iov[BDEV_IO_NUM_CHILD_IOV]; 99 void *md_buf; 100 TAILQ_ENTRY(ut_expected_io) link; 101 }; 102 103 struct bdev_ut_channel { 104 TAILQ_HEAD(, spdk_bdev_io) outstanding_io; 105 uint32_t outstanding_io_count; 106 TAILQ_HEAD(, ut_expected_io) expected_io; 107 }; 108 109 static bool g_io_done; 110 static struct spdk_bdev_io *g_bdev_io; 111 static enum spdk_bdev_io_status g_io_status; 112 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 113 static uint32_t g_bdev_ut_io_device; 114 static struct bdev_ut_channel *g_bdev_ut_channel; 115 116 static struct ut_expected_io * 117 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt) 118 { 119 struct ut_expected_io *expected_io; 120 121 expected_io = calloc(1, sizeof(*expected_io)); 122 SPDK_CU_ASSERT_FATAL(expected_io != NULL); 123 124 expected_io->type = type; 125 expected_io->offset = offset; 126 expected_io->length = length; 127 expected_io->iovcnt = iovcnt; 128 129 return expected_io; 130 } 131 132 static void 133 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len) 134 { 135 expected_io->iov[pos].iov_base = base; 136 expected_io->iov[pos].iov_len = len; 137 } 138 139 static void 140 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io) 141 { 142 struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch); 143 struct ut_expected_io *expected_io; 144 struct iovec *iov, *expected_iov; 145 int i; 146 147 g_bdev_io = bdev_io; 148 149 TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link); 150 ch->outstanding_io_count++; 151 152 expected_io = TAILQ_FIRST(&ch->expected_io); 153 if (expected_io == NULL) { 154 return; 155 } 156 TAILQ_REMOVE(&ch->expected_io, expected_io, link); 157 158 if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) { 159 CU_ASSERT(bdev_io->type == expected_io->type); 160 } 161 162 if (expected_io->md_buf != NULL) { 163 CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf); 164 } 165 166 if (expected_io->length == 0) { 167 free(expected_io); 168 return; 169 } 170 171 CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks); 172 CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks); 173 174 if (expected_io->iovcnt == 0) { 175 free(expected_io); 176 /* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */ 177 return; 178 } 179 180 CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt); 181 for (i = 0; i < expected_io->iovcnt; i++) { 182 iov = &bdev_io->u.bdev.iovs[i]; 183 expected_iov = &expected_io->iov[i]; 184 CU_ASSERT(iov->iov_len == expected_iov->iov_len); 185 CU_ASSERT(iov->iov_base == expected_iov->iov_base); 186 } 187 188 free(expected_io); 189 } 190 191 static void 192 stub_submit_request_aligned_buffer_cb(struct spdk_io_channel *_ch, 193 struct spdk_bdev_io *bdev_io, bool success) 194 { 195 CU_ASSERT(success == true); 196 197 stub_submit_request(_ch, bdev_io); 198 } 199 200 static void 201 stub_submit_request_aligned_buffer(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io) 202 { 203 spdk_bdev_io_get_buf(bdev_io, stub_submit_request_aligned_buffer_cb, 204 bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen); 205 } 206 207 static uint32_t 208 stub_complete_io(uint32_t num_to_complete) 209 { 210 struct bdev_ut_channel *ch = g_bdev_ut_channel; 211 struct spdk_bdev_io *bdev_io; 212 static enum spdk_bdev_io_status io_status; 213 uint32_t num_completed = 0; 214 215 while (num_completed < num_to_complete) { 216 if (TAILQ_EMPTY(&ch->outstanding_io)) { 217 break; 218 } 219 bdev_io = TAILQ_FIRST(&ch->outstanding_io); 220 TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link); 221 ch->outstanding_io_count--; 222 io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS : 223 g_io_exp_status; 224 spdk_bdev_io_complete(bdev_io, io_status); 225 num_completed++; 226 } 227 228 return num_completed; 229 } 230 231 static struct spdk_io_channel * 232 bdev_ut_get_io_channel(void *ctx) 233 { 234 return spdk_get_io_channel(&g_bdev_ut_io_device); 235 } 236 237 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = { 238 [SPDK_BDEV_IO_TYPE_READ] = true, 239 [SPDK_BDEV_IO_TYPE_WRITE] = true, 240 [SPDK_BDEV_IO_TYPE_UNMAP] = true, 241 [SPDK_BDEV_IO_TYPE_FLUSH] = true, 242 [SPDK_BDEV_IO_TYPE_RESET] = true, 243 [SPDK_BDEV_IO_TYPE_NVME_ADMIN] = true, 244 [SPDK_BDEV_IO_TYPE_NVME_IO] = true, 245 [SPDK_BDEV_IO_TYPE_NVME_IO_MD] = true, 246 [SPDK_BDEV_IO_TYPE_WRITE_ZEROES] = true, 247 [SPDK_BDEV_IO_TYPE_ZCOPY] = true, 248 }; 249 250 static void 251 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable) 252 { 253 g_io_types_supported[io_type] = enable; 254 } 255 256 static bool 257 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type) 258 { 259 return g_io_types_supported[io_type]; 260 } 261 262 static struct spdk_bdev_fn_table fn_table = { 263 .destruct = stub_destruct, 264 .submit_request = stub_submit_request, 265 .get_io_channel = bdev_ut_get_io_channel, 266 .io_type_supported = stub_io_type_supported, 267 }; 268 269 static int 270 bdev_ut_create_ch(void *io_device, void *ctx_buf) 271 { 272 struct bdev_ut_channel *ch = ctx_buf; 273 274 CU_ASSERT(g_bdev_ut_channel == NULL); 275 g_bdev_ut_channel = ch; 276 277 TAILQ_INIT(&ch->outstanding_io); 278 ch->outstanding_io_count = 0; 279 TAILQ_INIT(&ch->expected_io); 280 return 0; 281 } 282 283 static void 284 bdev_ut_destroy_ch(void *io_device, void *ctx_buf) 285 { 286 CU_ASSERT(g_bdev_ut_channel != NULL); 287 g_bdev_ut_channel = NULL; 288 } 289 290 struct spdk_bdev_module bdev_ut_if; 291 292 static int 293 bdev_ut_module_init(void) 294 { 295 spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch, 296 sizeof(struct bdev_ut_channel), NULL); 297 spdk_bdev_module_init_done(&bdev_ut_if); 298 return 0; 299 } 300 301 static void 302 bdev_ut_module_fini(void) 303 { 304 spdk_io_device_unregister(&g_bdev_ut_io_device, NULL); 305 } 306 307 struct spdk_bdev_module bdev_ut_if = { 308 .name = "bdev_ut", 309 .module_init = bdev_ut_module_init, 310 .module_fini = bdev_ut_module_fini, 311 .async_init = true, 312 }; 313 314 static void vbdev_ut_examine(struct spdk_bdev *bdev); 315 316 static int 317 vbdev_ut_module_init(void) 318 { 319 return 0; 320 } 321 322 static void 323 vbdev_ut_module_fini(void) 324 { 325 } 326 327 struct spdk_bdev_module vbdev_ut_if = { 328 .name = "vbdev_ut", 329 .module_init = vbdev_ut_module_init, 330 .module_fini = vbdev_ut_module_fini, 331 .examine_config = vbdev_ut_examine, 332 }; 333 334 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if) 335 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if) 336 337 static void 338 vbdev_ut_examine(struct spdk_bdev *bdev) 339 { 340 spdk_bdev_module_examine_done(&vbdev_ut_if); 341 } 342 343 static struct spdk_bdev * 344 allocate_bdev(char *name) 345 { 346 struct spdk_bdev *bdev; 347 int rc; 348 349 bdev = calloc(1, sizeof(*bdev)); 350 SPDK_CU_ASSERT_FATAL(bdev != NULL); 351 352 bdev->name = name; 353 bdev->fn_table = &fn_table; 354 bdev->module = &bdev_ut_if; 355 bdev->blockcnt = 1024; 356 bdev->blocklen = 512; 357 358 rc = spdk_bdev_register(bdev); 359 CU_ASSERT(rc == 0); 360 361 return bdev; 362 } 363 364 static struct spdk_bdev * 365 allocate_vbdev(char *name) 366 { 367 struct spdk_bdev *bdev; 368 int rc; 369 370 bdev = calloc(1, sizeof(*bdev)); 371 SPDK_CU_ASSERT_FATAL(bdev != NULL); 372 373 bdev->name = name; 374 bdev->fn_table = &fn_table; 375 bdev->module = &vbdev_ut_if; 376 377 rc = spdk_bdev_register(bdev); 378 CU_ASSERT(rc == 0); 379 380 return bdev; 381 } 382 383 static void 384 free_bdev(struct spdk_bdev *bdev) 385 { 386 spdk_bdev_unregister(bdev, NULL, NULL); 387 poll_threads(); 388 memset(bdev, 0xFF, sizeof(*bdev)); 389 free(bdev); 390 } 391 392 static void 393 free_vbdev(struct spdk_bdev *bdev) 394 { 395 spdk_bdev_unregister(bdev, NULL, NULL); 396 poll_threads(); 397 memset(bdev, 0xFF, sizeof(*bdev)); 398 free(bdev); 399 } 400 401 static void 402 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc) 403 { 404 const char *bdev_name; 405 406 CU_ASSERT(bdev != NULL); 407 CU_ASSERT(rc == 0); 408 bdev_name = spdk_bdev_get_name(bdev); 409 CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0"); 410 411 free(stat); 412 free_bdev(bdev); 413 414 *(bool *)cb_arg = true; 415 } 416 417 static void 418 get_device_stat_test(void) 419 { 420 struct spdk_bdev *bdev; 421 struct spdk_bdev_io_stat *stat; 422 bool done; 423 424 bdev = allocate_bdev("bdev0"); 425 stat = calloc(1, sizeof(struct spdk_bdev_io_stat)); 426 if (stat == NULL) { 427 free_bdev(bdev); 428 return; 429 } 430 431 done = false; 432 spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done); 433 while (!done) { poll_threads(); } 434 435 436 } 437 438 static void 439 open_write_test(void) 440 { 441 struct spdk_bdev *bdev[9]; 442 struct spdk_bdev_desc *desc[9] = {}; 443 int rc; 444 445 /* 446 * Create a tree of bdevs to test various open w/ write cases. 447 * 448 * bdev0 through bdev3 are physical block devices, such as NVMe 449 * namespaces or Ceph block devices. 450 * 451 * bdev4 is a virtual bdev with multiple base bdevs. This models 452 * caching or RAID use cases. 453 * 454 * bdev5 through bdev7 are all virtual bdevs with the same base 455 * bdev (except bdev7). This models partitioning or logical volume 456 * use cases. 457 * 458 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs 459 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This 460 * models caching, RAID, partitioning or logical volumes use cases. 461 * 462 * bdev8 is a virtual bdev with multiple base bdevs, but these 463 * base bdevs are themselves virtual bdevs. 464 * 465 * bdev8 466 * | 467 * +----------+ 468 * | | 469 * bdev4 bdev5 bdev6 bdev7 470 * | | | | 471 * +---+---+ +---+ + +---+---+ 472 * | | \ | / \ 473 * bdev0 bdev1 bdev2 bdev3 474 */ 475 476 bdev[0] = allocate_bdev("bdev0"); 477 rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if); 478 CU_ASSERT(rc == 0); 479 480 bdev[1] = allocate_bdev("bdev1"); 481 rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if); 482 CU_ASSERT(rc == 0); 483 484 bdev[2] = allocate_bdev("bdev2"); 485 rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if); 486 CU_ASSERT(rc == 0); 487 488 bdev[3] = allocate_bdev("bdev3"); 489 rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if); 490 CU_ASSERT(rc == 0); 491 492 bdev[4] = allocate_vbdev("bdev4"); 493 rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if); 494 CU_ASSERT(rc == 0); 495 496 bdev[5] = allocate_vbdev("bdev5"); 497 rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if); 498 CU_ASSERT(rc == 0); 499 500 bdev[6] = allocate_vbdev("bdev6"); 501 502 bdev[7] = allocate_vbdev("bdev7"); 503 504 bdev[8] = allocate_vbdev("bdev8"); 505 506 /* Open bdev0 read-only. This should succeed. */ 507 rc = spdk_bdev_open(bdev[0], false, NULL, NULL, &desc[0]); 508 CU_ASSERT(rc == 0); 509 SPDK_CU_ASSERT_FATAL(desc[0] != NULL); 510 spdk_bdev_close(desc[0]); 511 512 /* 513 * Open bdev1 read/write. This should fail since bdev1 has been claimed 514 * by a vbdev module. 515 */ 516 rc = spdk_bdev_open(bdev[1], true, NULL, NULL, &desc[1]); 517 CU_ASSERT(rc == -EPERM); 518 519 /* 520 * Open bdev4 read/write. This should fail since bdev3 has been claimed 521 * by a vbdev module. 522 */ 523 rc = spdk_bdev_open(bdev[4], true, NULL, NULL, &desc[4]); 524 CU_ASSERT(rc == -EPERM); 525 526 /* Open bdev4 read-only. This should succeed. */ 527 rc = spdk_bdev_open(bdev[4], false, NULL, NULL, &desc[4]); 528 CU_ASSERT(rc == 0); 529 SPDK_CU_ASSERT_FATAL(desc[4] != NULL); 530 spdk_bdev_close(desc[4]); 531 532 /* 533 * Open bdev8 read/write. This should succeed since it is a leaf 534 * bdev. 535 */ 536 rc = spdk_bdev_open(bdev[8], true, NULL, NULL, &desc[8]); 537 CU_ASSERT(rc == 0); 538 SPDK_CU_ASSERT_FATAL(desc[8] != NULL); 539 spdk_bdev_close(desc[8]); 540 541 /* 542 * Open bdev5 read/write. This should fail since bdev4 has been claimed 543 * by a vbdev module. 544 */ 545 rc = spdk_bdev_open(bdev[5], true, NULL, NULL, &desc[5]); 546 CU_ASSERT(rc == -EPERM); 547 548 /* Open bdev4 read-only. This should succeed. */ 549 rc = spdk_bdev_open(bdev[5], false, NULL, NULL, &desc[5]); 550 CU_ASSERT(rc == 0); 551 SPDK_CU_ASSERT_FATAL(desc[5] != NULL); 552 spdk_bdev_close(desc[5]); 553 554 free_vbdev(bdev[8]); 555 556 free_vbdev(bdev[5]); 557 free_vbdev(bdev[6]); 558 free_vbdev(bdev[7]); 559 560 free_vbdev(bdev[4]); 561 562 free_bdev(bdev[0]); 563 free_bdev(bdev[1]); 564 free_bdev(bdev[2]); 565 free_bdev(bdev[3]); 566 } 567 568 static void 569 bytes_to_blocks_test(void) 570 { 571 struct spdk_bdev bdev; 572 uint64_t offset_blocks, num_blocks; 573 574 memset(&bdev, 0, sizeof(bdev)); 575 576 bdev.blocklen = 512; 577 578 /* All parameters valid */ 579 offset_blocks = 0; 580 num_blocks = 0; 581 CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0); 582 CU_ASSERT(offset_blocks == 1); 583 CU_ASSERT(num_blocks == 2); 584 585 /* Offset not a block multiple */ 586 CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0); 587 588 /* Length not a block multiple */ 589 CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0); 590 591 /* In case blocklen not the power of two */ 592 bdev.blocklen = 100; 593 CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0); 594 CU_ASSERT(offset_blocks == 1); 595 CU_ASSERT(num_blocks == 2); 596 597 /* Offset not a block multiple */ 598 CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0); 599 600 /* Length not a block multiple */ 601 CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0); 602 } 603 604 static void 605 num_blocks_test(void) 606 { 607 struct spdk_bdev bdev; 608 struct spdk_bdev_desc *desc = NULL; 609 int rc; 610 611 memset(&bdev, 0, sizeof(bdev)); 612 bdev.name = "num_blocks"; 613 bdev.fn_table = &fn_table; 614 bdev.module = &bdev_ut_if; 615 spdk_bdev_register(&bdev); 616 spdk_bdev_notify_blockcnt_change(&bdev, 50); 617 618 /* Growing block number */ 619 CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0); 620 /* Shrinking block number */ 621 CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0); 622 623 /* In case bdev opened */ 624 rc = spdk_bdev_open(&bdev, false, NULL, NULL, &desc); 625 CU_ASSERT(rc == 0); 626 SPDK_CU_ASSERT_FATAL(desc != NULL); 627 628 /* Growing block number */ 629 CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0); 630 /* Shrinking block number */ 631 CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0); 632 633 spdk_bdev_close(desc); 634 spdk_bdev_unregister(&bdev, NULL, NULL); 635 636 poll_threads(); 637 } 638 639 static void 640 io_valid_test(void) 641 { 642 struct spdk_bdev bdev; 643 644 memset(&bdev, 0, sizeof(bdev)); 645 646 bdev.blocklen = 512; 647 spdk_bdev_notify_blockcnt_change(&bdev, 100); 648 649 /* All parameters valid */ 650 CU_ASSERT(spdk_bdev_io_valid_blocks(&bdev, 1, 2) == true); 651 652 /* Last valid block */ 653 CU_ASSERT(spdk_bdev_io_valid_blocks(&bdev, 99, 1) == true); 654 655 /* Offset past end of bdev */ 656 CU_ASSERT(spdk_bdev_io_valid_blocks(&bdev, 100, 1) == false); 657 658 /* Offset + length past end of bdev */ 659 CU_ASSERT(spdk_bdev_io_valid_blocks(&bdev, 99, 2) == false); 660 661 /* Offset near end of uint64_t range (2^64 - 1) */ 662 CU_ASSERT(spdk_bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false); 663 } 664 665 static void 666 alias_add_del_test(void) 667 { 668 struct spdk_bdev *bdev[3]; 669 int rc; 670 671 /* Creating and registering bdevs */ 672 bdev[0] = allocate_bdev("bdev0"); 673 SPDK_CU_ASSERT_FATAL(bdev[0] != 0); 674 675 bdev[1] = allocate_bdev("bdev1"); 676 SPDK_CU_ASSERT_FATAL(bdev[1] != 0); 677 678 bdev[2] = allocate_bdev("bdev2"); 679 SPDK_CU_ASSERT_FATAL(bdev[2] != 0); 680 681 poll_threads(); 682 683 /* 684 * Trying adding an alias identical to name. 685 * Alias is identical to name, so it can not be added to aliases list 686 */ 687 rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name); 688 CU_ASSERT(rc == -EEXIST); 689 690 /* 691 * Trying to add empty alias, 692 * this one should fail 693 */ 694 rc = spdk_bdev_alias_add(bdev[0], NULL); 695 CU_ASSERT(rc == -EINVAL); 696 697 /* Trying adding same alias to two different registered bdevs */ 698 699 /* Alias is used first time, so this one should pass */ 700 rc = spdk_bdev_alias_add(bdev[0], "proper alias 0"); 701 CU_ASSERT(rc == 0); 702 703 /* Alias was added to another bdev, so this one should fail */ 704 rc = spdk_bdev_alias_add(bdev[1], "proper alias 0"); 705 CU_ASSERT(rc == -EEXIST); 706 707 /* Alias is used first time, so this one should pass */ 708 rc = spdk_bdev_alias_add(bdev[1], "proper alias 1"); 709 CU_ASSERT(rc == 0); 710 711 /* Trying removing an alias from registered bdevs */ 712 713 /* Alias is not on a bdev aliases list, so this one should fail */ 714 rc = spdk_bdev_alias_del(bdev[0], "not existing"); 715 CU_ASSERT(rc == -ENOENT); 716 717 /* Alias is present on a bdev aliases list, so this one should pass */ 718 rc = spdk_bdev_alias_del(bdev[0], "proper alias 0"); 719 CU_ASSERT(rc == 0); 720 721 /* Alias is present on a bdev aliases list, so this one should pass */ 722 rc = spdk_bdev_alias_del(bdev[1], "proper alias 1"); 723 CU_ASSERT(rc == 0); 724 725 /* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */ 726 rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name); 727 CU_ASSERT(rc != 0); 728 729 /* Trying to del all alias from empty alias list */ 730 spdk_bdev_alias_del_all(bdev[2]); 731 SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases)); 732 733 /* Trying to del all alias from non-empty alias list */ 734 rc = spdk_bdev_alias_add(bdev[2], "alias0"); 735 CU_ASSERT(rc == 0); 736 rc = spdk_bdev_alias_add(bdev[2], "alias1"); 737 CU_ASSERT(rc == 0); 738 spdk_bdev_alias_del_all(bdev[2]); 739 CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases)); 740 741 /* Unregister and free bdevs */ 742 spdk_bdev_unregister(bdev[0], NULL, NULL); 743 spdk_bdev_unregister(bdev[1], NULL, NULL); 744 spdk_bdev_unregister(bdev[2], NULL, NULL); 745 746 poll_threads(); 747 748 free(bdev[0]); 749 free(bdev[1]); 750 free(bdev[2]); 751 } 752 753 static void 754 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 755 { 756 g_io_done = true; 757 g_io_status = bdev_io->internal.status; 758 spdk_bdev_free_io(bdev_io); 759 } 760 761 static void 762 bdev_init_cb(void *arg, int rc) 763 { 764 CU_ASSERT(rc == 0); 765 } 766 767 static void 768 bdev_fini_cb(void *arg) 769 { 770 } 771 772 struct bdev_ut_io_wait_entry { 773 struct spdk_bdev_io_wait_entry entry; 774 struct spdk_io_channel *io_ch; 775 struct spdk_bdev_desc *desc; 776 bool submitted; 777 }; 778 779 static void 780 io_wait_cb(void *arg) 781 { 782 struct bdev_ut_io_wait_entry *entry = arg; 783 int rc; 784 785 rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL); 786 CU_ASSERT(rc == 0); 787 entry->submitted = true; 788 } 789 790 static void 791 bdev_io_types_test(void) 792 { 793 struct spdk_bdev *bdev; 794 struct spdk_bdev_desc *desc = NULL; 795 struct spdk_io_channel *io_ch; 796 struct spdk_bdev_opts bdev_opts = { 797 .bdev_io_pool_size = 4, 798 .bdev_io_cache_size = 2, 799 }; 800 int rc; 801 802 rc = spdk_bdev_set_opts(&bdev_opts); 803 CU_ASSERT(rc == 0); 804 spdk_bdev_initialize(bdev_init_cb, NULL); 805 poll_threads(); 806 807 bdev = allocate_bdev("bdev0"); 808 809 rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc); 810 CU_ASSERT(rc == 0); 811 poll_threads(); 812 SPDK_CU_ASSERT_FATAL(desc != NULL); 813 io_ch = spdk_bdev_get_io_channel(desc); 814 CU_ASSERT(io_ch != NULL); 815 816 /* WRITE and WRITE ZEROES are not supported */ 817 ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false); 818 ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false); 819 rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL); 820 CU_ASSERT(rc == -ENOTSUP); 821 ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true); 822 ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true); 823 824 spdk_put_io_channel(io_ch); 825 spdk_bdev_close(desc); 826 free_bdev(bdev); 827 spdk_bdev_finish(bdev_fini_cb, NULL); 828 poll_threads(); 829 } 830 831 static void 832 bdev_io_wait_test(void) 833 { 834 struct spdk_bdev *bdev; 835 struct spdk_bdev_desc *desc = NULL; 836 struct spdk_io_channel *io_ch; 837 struct spdk_bdev_opts bdev_opts = { 838 .bdev_io_pool_size = 4, 839 .bdev_io_cache_size = 2, 840 }; 841 struct bdev_ut_io_wait_entry io_wait_entry; 842 struct bdev_ut_io_wait_entry io_wait_entry2; 843 int rc; 844 845 rc = spdk_bdev_set_opts(&bdev_opts); 846 CU_ASSERT(rc == 0); 847 spdk_bdev_initialize(bdev_init_cb, NULL); 848 poll_threads(); 849 850 bdev = allocate_bdev("bdev0"); 851 852 rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc); 853 CU_ASSERT(rc == 0); 854 poll_threads(); 855 SPDK_CU_ASSERT_FATAL(desc != NULL); 856 io_ch = spdk_bdev_get_io_channel(desc); 857 CU_ASSERT(io_ch != NULL); 858 859 rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL); 860 CU_ASSERT(rc == 0); 861 rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL); 862 CU_ASSERT(rc == 0); 863 rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL); 864 CU_ASSERT(rc == 0); 865 rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL); 866 CU_ASSERT(rc == 0); 867 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4); 868 869 rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL); 870 CU_ASSERT(rc == -ENOMEM); 871 872 io_wait_entry.entry.bdev = bdev; 873 io_wait_entry.entry.cb_fn = io_wait_cb; 874 io_wait_entry.entry.cb_arg = &io_wait_entry; 875 io_wait_entry.io_ch = io_ch; 876 io_wait_entry.desc = desc; 877 io_wait_entry.submitted = false; 878 /* Cannot use the same io_wait_entry for two different calls. */ 879 memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry)); 880 io_wait_entry2.entry.cb_arg = &io_wait_entry2; 881 882 /* Queue two I/O waits. */ 883 rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry); 884 CU_ASSERT(rc == 0); 885 CU_ASSERT(io_wait_entry.submitted == false); 886 rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry); 887 CU_ASSERT(rc == 0); 888 CU_ASSERT(io_wait_entry2.submitted == false); 889 890 stub_complete_io(1); 891 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4); 892 CU_ASSERT(io_wait_entry.submitted == true); 893 CU_ASSERT(io_wait_entry2.submitted == false); 894 895 stub_complete_io(1); 896 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4); 897 CU_ASSERT(io_wait_entry2.submitted == true); 898 899 stub_complete_io(4); 900 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 901 902 spdk_put_io_channel(io_ch); 903 spdk_bdev_close(desc); 904 free_bdev(bdev); 905 spdk_bdev_finish(bdev_fini_cb, NULL); 906 poll_threads(); 907 } 908 909 static void 910 bdev_io_spans_boundary_test(void) 911 { 912 struct spdk_bdev bdev; 913 struct spdk_bdev_io bdev_io; 914 915 memset(&bdev, 0, sizeof(bdev)); 916 917 bdev.optimal_io_boundary = 0; 918 bdev_io.bdev = &bdev; 919 920 /* bdev has no optimal_io_boundary set - so this should return false. */ 921 CU_ASSERT(_spdk_bdev_io_should_split(&bdev_io) == false); 922 923 bdev.optimal_io_boundary = 32; 924 bdev_io.type = SPDK_BDEV_IO_TYPE_RESET; 925 926 /* RESETs are not based on LBAs - so this should return false. */ 927 CU_ASSERT(_spdk_bdev_io_should_split(&bdev_io) == false); 928 929 bdev_io.type = SPDK_BDEV_IO_TYPE_READ; 930 bdev_io.u.bdev.offset_blocks = 0; 931 bdev_io.u.bdev.num_blocks = 32; 932 933 /* This I/O run right up to, but does not cross, the boundary - so this should return false. */ 934 CU_ASSERT(_spdk_bdev_io_should_split(&bdev_io) == false); 935 936 bdev_io.u.bdev.num_blocks = 33; 937 938 /* This I/O spans a boundary. */ 939 CU_ASSERT(_spdk_bdev_io_should_split(&bdev_io) == true); 940 } 941 942 static void 943 bdev_io_split(void) 944 { 945 struct spdk_bdev *bdev; 946 struct spdk_bdev_desc *desc = NULL; 947 struct spdk_io_channel *io_ch; 948 struct spdk_bdev_opts bdev_opts = { 949 .bdev_io_pool_size = 512, 950 .bdev_io_cache_size = 64, 951 }; 952 struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2]; 953 struct ut_expected_io *expected_io; 954 uint64_t i; 955 int rc; 956 957 rc = spdk_bdev_set_opts(&bdev_opts); 958 CU_ASSERT(rc == 0); 959 spdk_bdev_initialize(bdev_init_cb, NULL); 960 961 bdev = allocate_bdev("bdev0"); 962 963 rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc); 964 CU_ASSERT(rc == 0); 965 SPDK_CU_ASSERT_FATAL(desc != NULL); 966 io_ch = spdk_bdev_get_io_channel(desc); 967 CU_ASSERT(io_ch != NULL); 968 969 bdev->optimal_io_boundary = 16; 970 bdev->split_on_optimal_io_boundary = false; 971 972 g_io_done = false; 973 974 /* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */ 975 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1); 976 ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512); 977 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 978 979 rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL); 980 CU_ASSERT(rc == 0); 981 CU_ASSERT(g_io_done == false); 982 983 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 984 stub_complete_io(1); 985 CU_ASSERT(g_io_done == true); 986 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 987 988 bdev->split_on_optimal_io_boundary = true; 989 990 /* Now test that a single-vector command is split correctly. 991 * Offset 14, length 8, payload 0xF000 992 * Child - Offset 14, length 2, payload 0xF000 993 * Child - Offset 16, length 6, payload 0xF000 + 2 * 512 994 * 995 * Set up the expected values before calling spdk_bdev_read_blocks 996 */ 997 g_io_done = false; 998 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1); 999 ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512); 1000 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1001 1002 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1); 1003 ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512); 1004 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1005 1006 /* spdk_bdev_read_blocks will submit the first child immediately. */ 1007 rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL); 1008 CU_ASSERT(rc == 0); 1009 CU_ASSERT(g_io_done == false); 1010 1011 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 1012 stub_complete_io(2); 1013 CU_ASSERT(g_io_done == true); 1014 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 1015 1016 /* Now set up a more complex, multi-vector command that needs to be split, 1017 * including splitting iovecs. 1018 */ 1019 iov[0].iov_base = (void *)0x10000; 1020 iov[0].iov_len = 512; 1021 iov[1].iov_base = (void *)0x20000; 1022 iov[1].iov_len = 20 * 512; 1023 iov[2].iov_base = (void *)0x30000; 1024 iov[2].iov_len = 11 * 512; 1025 1026 g_io_done = false; 1027 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2); 1028 ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512); 1029 ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512); 1030 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1031 1032 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1); 1033 ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512); 1034 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1035 1036 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2); 1037 ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512); 1038 ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512); 1039 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1040 1041 rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL); 1042 CU_ASSERT(rc == 0); 1043 CU_ASSERT(g_io_done == false); 1044 1045 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3); 1046 stub_complete_io(3); 1047 CU_ASSERT(g_io_done == true); 1048 1049 /* Test multi vector command that needs to be split by strip and then needs to be 1050 * split further due to the capacity of child iovs. 1051 */ 1052 for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) { 1053 iov[i].iov_base = (void *)((i + 1) * 0x10000); 1054 iov[i].iov_len = 512; 1055 } 1056 1057 bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV; 1058 g_io_done = false; 1059 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV, 1060 BDEV_IO_NUM_CHILD_IOV); 1061 for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) { 1062 ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512); 1063 } 1064 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1065 1066 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV, 1067 BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV); 1068 for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) { 1069 ut_expected_io_set_iov(expected_io, i, 1070 (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512); 1071 } 1072 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1073 1074 rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0, 1075 BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL); 1076 CU_ASSERT(rc == 0); 1077 CU_ASSERT(g_io_done == false); 1078 1079 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1080 stub_complete_io(1); 1081 CU_ASSERT(g_io_done == false); 1082 1083 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1084 stub_complete_io(1); 1085 CU_ASSERT(g_io_done == true); 1086 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 1087 1088 /* Test multi vector command that needs to be split by strip and then needs to be 1089 * split further due to the capacity of child iovs. In this case, the length of 1090 * the rest of iovec array with an I/O boundary is the multiple of block size. 1091 */ 1092 1093 /* Fill iovec array for exactly one boundary. The iovec cnt for this boundary 1094 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs. 1095 */ 1096 for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) { 1097 iov[i].iov_base = (void *)((i + 1) * 0x10000); 1098 iov[i].iov_len = 512; 1099 } 1100 for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) { 1101 iov[i].iov_base = (void *)((i + 1) * 0x10000); 1102 iov[i].iov_len = 256; 1103 } 1104 iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000); 1105 iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512; 1106 1107 /* Add an extra iovec to trigger split */ 1108 iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000); 1109 iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512; 1110 1111 bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV; 1112 g_io_done = false; 1113 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1114 BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV); 1115 for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) { 1116 ut_expected_io_set_iov(expected_io, i, 1117 (void *)((i + 1) * 0x10000), 512); 1118 } 1119 for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) { 1120 ut_expected_io_set_iov(expected_io, i, 1121 (void *)((i + 1) * 0x10000), 256); 1122 } 1123 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1124 1125 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1, 1126 1, 1); 1127 ut_expected_io_set_iov(expected_io, 0, 1128 (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512); 1129 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1130 1131 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV, 1132 1, 1); 1133 ut_expected_io_set_iov(expected_io, 0, 1134 (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512); 1135 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1136 1137 rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0, 1138 BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL); 1139 CU_ASSERT(rc == 0); 1140 CU_ASSERT(g_io_done == false); 1141 1142 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1143 stub_complete_io(1); 1144 CU_ASSERT(g_io_done == false); 1145 1146 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 1147 stub_complete_io(2); 1148 CU_ASSERT(g_io_done == true); 1149 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 1150 1151 /* Test multi vector command that needs to be split by strip and then needs to be 1152 * split further due to the capacity of child iovs, but fails to split. The cause 1153 * of failure of split is that the length of an iovec is not multiple of block size. 1154 */ 1155 for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) { 1156 iov[i].iov_base = (void *)((i + 1) * 0x10000); 1157 iov[i].iov_len = 512; 1158 } 1159 iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000); 1160 iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256; 1161 1162 bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV; 1163 g_io_done = false; 1164 g_io_status = 0; 1165 1166 rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0, 1167 BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL); 1168 CU_ASSERT(rc == 0); 1169 CU_ASSERT(g_io_done == true); 1170 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED); 1171 1172 /* Test a WRITE_ZEROES that would span an I/O boundary. WRITE_ZEROES should not be 1173 * split, so test that. 1174 */ 1175 bdev->optimal_io_boundary = 15; 1176 g_io_done = false; 1177 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0); 1178 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1179 1180 rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL); 1181 CU_ASSERT(rc == 0); 1182 CU_ASSERT(g_io_done == false); 1183 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1184 stub_complete_io(1); 1185 CU_ASSERT(g_io_done == true); 1186 1187 /* Test an UNMAP. This should also not be split. */ 1188 bdev->optimal_io_boundary = 16; 1189 g_io_done = false; 1190 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0); 1191 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1192 1193 rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL); 1194 CU_ASSERT(rc == 0); 1195 CU_ASSERT(g_io_done == false); 1196 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1197 stub_complete_io(1); 1198 CU_ASSERT(g_io_done == true); 1199 1200 /* Test a FLUSH. This should also not be split. */ 1201 bdev->optimal_io_boundary = 16; 1202 g_io_done = false; 1203 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0); 1204 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1205 1206 rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL); 1207 CU_ASSERT(rc == 0); 1208 CU_ASSERT(g_io_done == false); 1209 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1210 stub_complete_io(1); 1211 CU_ASSERT(g_io_done == true); 1212 1213 CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io)); 1214 1215 /* Children requests return an error status */ 1216 bdev->optimal_io_boundary = 16; 1217 iov[0].iov_base = (void *)0x10000; 1218 iov[0].iov_len = 512 * 64; 1219 g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED; 1220 g_io_done = false; 1221 g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS; 1222 1223 rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL); 1224 CU_ASSERT(rc == 0); 1225 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5); 1226 stub_complete_io(4); 1227 CU_ASSERT(g_io_done == false); 1228 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS); 1229 stub_complete_io(1); 1230 CU_ASSERT(g_io_done == true); 1231 CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED); 1232 1233 spdk_put_io_channel(io_ch); 1234 spdk_bdev_close(desc); 1235 free_bdev(bdev); 1236 spdk_bdev_finish(bdev_fini_cb, NULL); 1237 poll_threads(); 1238 } 1239 1240 static void 1241 bdev_io_split_with_io_wait(void) 1242 { 1243 struct spdk_bdev *bdev; 1244 struct spdk_bdev_desc *desc; 1245 struct spdk_io_channel *io_ch; 1246 struct spdk_bdev_channel *channel; 1247 struct spdk_bdev_mgmt_channel *mgmt_ch; 1248 struct spdk_bdev_opts bdev_opts = { 1249 .bdev_io_pool_size = 2, 1250 .bdev_io_cache_size = 1, 1251 }; 1252 struct iovec iov[3]; 1253 struct ut_expected_io *expected_io; 1254 int rc; 1255 1256 rc = spdk_bdev_set_opts(&bdev_opts); 1257 CU_ASSERT(rc == 0); 1258 spdk_bdev_initialize(bdev_init_cb, NULL); 1259 1260 bdev = allocate_bdev("bdev0"); 1261 1262 rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc); 1263 CU_ASSERT(rc == 0); 1264 CU_ASSERT(desc != NULL); 1265 io_ch = spdk_bdev_get_io_channel(desc); 1266 CU_ASSERT(io_ch != NULL); 1267 channel = spdk_io_channel_get_ctx(io_ch); 1268 mgmt_ch = channel->shared_resource->mgmt_ch; 1269 1270 bdev->optimal_io_boundary = 16; 1271 bdev->split_on_optimal_io_boundary = true; 1272 1273 rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL); 1274 CU_ASSERT(rc == 0); 1275 1276 /* Now test that a single-vector command is split correctly. 1277 * Offset 14, length 8, payload 0xF000 1278 * Child - Offset 14, length 2, payload 0xF000 1279 * Child - Offset 16, length 6, payload 0xF000 + 2 * 512 1280 * 1281 * Set up the expected values before calling spdk_bdev_read_blocks 1282 */ 1283 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1); 1284 ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512); 1285 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1286 1287 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1); 1288 ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512); 1289 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1290 1291 /* The following children will be submitted sequentially due to the capacity of 1292 * spdk_bdev_io. 1293 */ 1294 1295 /* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */ 1296 rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL); 1297 CU_ASSERT(rc == 0); 1298 CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue)); 1299 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1300 1301 /* Completing the first read I/O will submit the first child */ 1302 stub_complete_io(1); 1303 CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue)); 1304 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1305 1306 /* Completing the first child will submit the second child */ 1307 stub_complete_io(1); 1308 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1309 1310 /* Complete the second child I/O. This should result in our callback getting 1311 * invoked since the parent I/O is now complete. 1312 */ 1313 stub_complete_io(1); 1314 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0); 1315 1316 /* Now set up a more complex, multi-vector command that needs to be split, 1317 * including splitting iovecs. 1318 */ 1319 iov[0].iov_base = (void *)0x10000; 1320 iov[0].iov_len = 512; 1321 iov[1].iov_base = (void *)0x20000; 1322 iov[1].iov_len = 20 * 512; 1323 iov[2].iov_base = (void *)0x30000; 1324 iov[2].iov_len = 11 * 512; 1325 1326 g_io_done = false; 1327 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2); 1328 ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512); 1329 ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512); 1330 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1331 1332 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1); 1333 ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512); 1334 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1335 1336 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2); 1337 ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512); 1338 ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512); 1339 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1340 1341 rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL); 1342 CU_ASSERT(rc == 0); 1343 CU_ASSERT(g_io_done == false); 1344 1345 /* The following children will be submitted sequentially due to the capacity of 1346 * spdk_bdev_io. 1347 */ 1348 1349 /* Completing the first child will submit the second child */ 1350 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1351 stub_complete_io(1); 1352 CU_ASSERT(g_io_done == false); 1353 1354 /* Completing the second child will submit the third child */ 1355 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1356 stub_complete_io(1); 1357 CU_ASSERT(g_io_done == false); 1358 1359 /* Completing the third child will result in our callback getting invoked 1360 * since the parent I/O is now complete. 1361 */ 1362 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1); 1363 stub_complete_io(1); 1364 CU_ASSERT(g_io_done == true); 1365 1366 CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io)); 1367 1368 spdk_put_io_channel(io_ch); 1369 spdk_bdev_close(desc); 1370 free_bdev(bdev); 1371 spdk_bdev_finish(bdev_fini_cb, NULL); 1372 poll_threads(); 1373 } 1374 1375 static void 1376 bdev_io_alignment(void) 1377 { 1378 struct spdk_bdev *bdev; 1379 struct spdk_bdev_desc *desc; 1380 struct spdk_io_channel *io_ch; 1381 struct spdk_bdev_opts bdev_opts = { 1382 .bdev_io_pool_size = 20, 1383 .bdev_io_cache_size = 2, 1384 }; 1385 int rc; 1386 void *buf; 1387 struct iovec iovs[2]; 1388 int iovcnt; 1389 uint64_t alignment; 1390 1391 rc = spdk_bdev_set_opts(&bdev_opts); 1392 CU_ASSERT(rc == 0); 1393 spdk_bdev_initialize(bdev_init_cb, NULL); 1394 1395 fn_table.submit_request = stub_submit_request_aligned_buffer; 1396 bdev = allocate_bdev("bdev0"); 1397 1398 rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc); 1399 CU_ASSERT(rc == 0); 1400 CU_ASSERT(desc != NULL); 1401 io_ch = spdk_bdev_get_io_channel(desc); 1402 CU_ASSERT(io_ch != NULL); 1403 1404 /* Create aligned buffer */ 1405 rc = posix_memalign(&buf, 4096, 8192); 1406 SPDK_CU_ASSERT_FATAL(rc == 0); 1407 1408 /* Pass aligned single buffer with no alignment required */ 1409 alignment = 1; 1410 bdev->required_alignment = spdk_u32log2(alignment); 1411 1412 rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL); 1413 CU_ASSERT(rc == 0); 1414 stub_complete_io(1); 1415 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 1416 alignment)); 1417 1418 rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL); 1419 CU_ASSERT(rc == 0); 1420 stub_complete_io(1); 1421 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 1422 alignment)); 1423 1424 /* Pass unaligned single buffer with no alignment required */ 1425 alignment = 1; 1426 bdev->required_alignment = spdk_u32log2(alignment); 1427 1428 rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL); 1429 CU_ASSERT(rc == 0); 1430 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 1431 CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4); 1432 stub_complete_io(1); 1433 1434 rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL); 1435 CU_ASSERT(rc == 0); 1436 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 1437 CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4); 1438 stub_complete_io(1); 1439 1440 /* Pass unaligned single buffer with 512 alignment required */ 1441 alignment = 512; 1442 bdev->required_alignment = spdk_u32log2(alignment); 1443 1444 rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL); 1445 CU_ASSERT(rc == 0); 1446 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1); 1447 CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov); 1448 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 1449 alignment)); 1450 stub_complete_io(1); 1451 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 1452 1453 rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL); 1454 CU_ASSERT(rc == 0); 1455 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1); 1456 CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov); 1457 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 1458 alignment)); 1459 stub_complete_io(1); 1460 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 1461 1462 /* Pass unaligned single buffer with 4096 alignment required */ 1463 alignment = 4096; 1464 bdev->required_alignment = spdk_u32log2(alignment); 1465 1466 rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL); 1467 CU_ASSERT(rc == 0); 1468 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1); 1469 CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov); 1470 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 1471 alignment)); 1472 stub_complete_io(1); 1473 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 1474 1475 rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL); 1476 CU_ASSERT(rc == 0); 1477 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1); 1478 CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov); 1479 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 1480 alignment)); 1481 stub_complete_io(1); 1482 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 1483 1484 /* Pass aligned iovs with no alignment required */ 1485 alignment = 1; 1486 bdev->required_alignment = spdk_u32log2(alignment); 1487 1488 iovcnt = 1; 1489 iovs[0].iov_base = buf; 1490 iovs[0].iov_len = 512; 1491 1492 rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL); 1493 CU_ASSERT(rc == 0); 1494 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 1495 stub_complete_io(1); 1496 CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base); 1497 1498 rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL); 1499 CU_ASSERT(rc == 0); 1500 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 1501 stub_complete_io(1); 1502 CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base); 1503 1504 /* Pass unaligned iovs with no alignment required */ 1505 alignment = 1; 1506 bdev->required_alignment = spdk_u32log2(alignment); 1507 1508 iovcnt = 2; 1509 iovs[0].iov_base = buf + 16; 1510 iovs[0].iov_len = 256; 1511 iovs[1].iov_base = buf + 16 + 256 + 32; 1512 iovs[1].iov_len = 256; 1513 1514 rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL); 1515 CU_ASSERT(rc == 0); 1516 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 1517 stub_complete_io(1); 1518 CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base); 1519 1520 rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL); 1521 CU_ASSERT(rc == 0); 1522 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 1523 stub_complete_io(1); 1524 CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base); 1525 1526 /* Pass unaligned iov with 2048 alignment required */ 1527 alignment = 2048; 1528 bdev->required_alignment = spdk_u32log2(alignment); 1529 1530 iovcnt = 2; 1531 iovs[0].iov_base = buf + 16; 1532 iovs[0].iov_len = 256; 1533 iovs[1].iov_base = buf + 16 + 256 + 32; 1534 iovs[1].iov_len = 256; 1535 1536 rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL); 1537 CU_ASSERT(rc == 0); 1538 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt); 1539 CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov); 1540 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 1541 alignment)); 1542 stub_complete_io(1); 1543 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 1544 1545 rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL); 1546 CU_ASSERT(rc == 0); 1547 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt); 1548 CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov); 1549 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 1550 alignment)); 1551 stub_complete_io(1); 1552 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 1553 1554 /* Pass iov without allocated buffer without alignment required */ 1555 alignment = 1; 1556 bdev->required_alignment = spdk_u32log2(alignment); 1557 1558 iovcnt = 1; 1559 iovs[0].iov_base = NULL; 1560 iovs[0].iov_len = 0; 1561 1562 rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL); 1563 CU_ASSERT(rc == 0); 1564 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 1565 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 1566 alignment)); 1567 stub_complete_io(1); 1568 1569 /* Pass iov without allocated buffer with 1024 alignment required */ 1570 alignment = 1024; 1571 bdev->required_alignment = spdk_u32log2(alignment); 1572 1573 iovcnt = 1; 1574 iovs[0].iov_base = NULL; 1575 iovs[0].iov_len = 0; 1576 1577 rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL); 1578 CU_ASSERT(rc == 0); 1579 CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0); 1580 CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt, 1581 alignment)); 1582 stub_complete_io(1); 1583 1584 spdk_put_io_channel(io_ch); 1585 spdk_bdev_close(desc); 1586 free_bdev(bdev); 1587 spdk_bdev_finish(bdev_fini_cb, NULL); 1588 poll_threads(); 1589 1590 free(buf); 1591 } 1592 1593 static void 1594 bdev_io_alignment_with_boundary(void) 1595 { 1596 struct spdk_bdev *bdev; 1597 struct spdk_bdev_desc *desc; 1598 struct spdk_io_channel *io_ch; 1599 struct spdk_bdev_opts bdev_opts = { 1600 .bdev_io_pool_size = 20, 1601 .bdev_io_cache_size = 2, 1602 }; 1603 int rc; 1604 void *buf; 1605 struct iovec iovs[2]; 1606 int iovcnt; 1607 uint64_t alignment; 1608 1609 rc = spdk_bdev_set_opts(&bdev_opts); 1610 CU_ASSERT(rc == 0); 1611 spdk_bdev_initialize(bdev_init_cb, NULL); 1612 1613 fn_table.submit_request = stub_submit_request_aligned_buffer; 1614 bdev = allocate_bdev("bdev0"); 1615 1616 rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc); 1617 CU_ASSERT(rc == 0); 1618 CU_ASSERT(desc != NULL); 1619 io_ch = spdk_bdev_get_io_channel(desc); 1620 CU_ASSERT(io_ch != NULL); 1621 1622 /* Create aligned buffer */ 1623 rc = posix_memalign(&buf, 4096, 131072); 1624 SPDK_CU_ASSERT_FATAL(rc == 0); 1625 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 1626 1627 /* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */ 1628 alignment = 512; 1629 bdev->required_alignment = spdk_u32log2(alignment); 1630 bdev->optimal_io_boundary = 2; 1631 bdev->split_on_optimal_io_boundary = true; 1632 1633 iovcnt = 1; 1634 iovs[0].iov_base = NULL; 1635 iovs[0].iov_len = 512 * 3; 1636 1637 rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL); 1638 CU_ASSERT(rc == 0); 1639 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 1640 stub_complete_io(2); 1641 1642 /* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */ 1643 alignment = 512; 1644 bdev->required_alignment = spdk_u32log2(alignment); 1645 bdev->optimal_io_boundary = 16; 1646 bdev->split_on_optimal_io_boundary = true; 1647 1648 iovcnt = 1; 1649 iovs[0].iov_base = NULL; 1650 iovs[0].iov_len = 512 * 16; 1651 1652 rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL); 1653 CU_ASSERT(rc == 0); 1654 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 1655 stub_complete_io(2); 1656 1657 /* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */ 1658 alignment = 512; 1659 bdev->required_alignment = spdk_u32log2(alignment); 1660 bdev->optimal_io_boundary = 128; 1661 bdev->split_on_optimal_io_boundary = true; 1662 1663 iovcnt = 1; 1664 iovs[0].iov_base = buf + 16; 1665 iovs[0].iov_len = 512 * 160; 1666 rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL); 1667 CU_ASSERT(rc == 0); 1668 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 1669 stub_complete_io(2); 1670 1671 /* 512 * 3 with 2 IO boundary */ 1672 alignment = 512; 1673 bdev->required_alignment = spdk_u32log2(alignment); 1674 bdev->optimal_io_boundary = 2; 1675 bdev->split_on_optimal_io_boundary = true; 1676 1677 iovcnt = 2; 1678 iovs[0].iov_base = buf + 16; 1679 iovs[0].iov_len = 512; 1680 iovs[1].iov_base = buf + 16 + 512 + 32; 1681 iovs[1].iov_len = 1024; 1682 1683 rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL); 1684 CU_ASSERT(rc == 0); 1685 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 1686 stub_complete_io(2); 1687 1688 rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL); 1689 CU_ASSERT(rc == 0); 1690 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2); 1691 stub_complete_io(2); 1692 1693 /* 512 * 64 with 32 IO boundary */ 1694 bdev->optimal_io_boundary = 32; 1695 iovcnt = 2; 1696 iovs[0].iov_base = buf + 16; 1697 iovs[0].iov_len = 16384; 1698 iovs[1].iov_base = buf + 16 + 16384 + 32; 1699 iovs[1].iov_len = 16384; 1700 1701 rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL); 1702 CU_ASSERT(rc == 0); 1703 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3); 1704 stub_complete_io(3); 1705 1706 rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL); 1707 CU_ASSERT(rc == 0); 1708 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3); 1709 stub_complete_io(3); 1710 1711 /* 512 * 160 with 32 IO boundary */ 1712 iovcnt = 1; 1713 iovs[0].iov_base = buf + 16; 1714 iovs[0].iov_len = 16384 + 65536; 1715 1716 rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL); 1717 CU_ASSERT(rc == 0); 1718 CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6); 1719 stub_complete_io(6); 1720 1721 spdk_put_io_channel(io_ch); 1722 spdk_bdev_close(desc); 1723 free_bdev(bdev); 1724 spdk_bdev_finish(bdev_fini_cb, NULL); 1725 poll_threads(); 1726 1727 free(buf); 1728 } 1729 1730 static void 1731 histogram_status_cb(void *cb_arg, int status) 1732 { 1733 g_status = status; 1734 } 1735 1736 static void 1737 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram) 1738 { 1739 g_status = status; 1740 g_histogram = histogram; 1741 } 1742 1743 static void 1744 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count, 1745 uint64_t total, uint64_t so_far) 1746 { 1747 g_count += count; 1748 } 1749 1750 static void 1751 bdev_histograms(void) 1752 { 1753 struct spdk_bdev *bdev; 1754 struct spdk_bdev_desc *desc; 1755 struct spdk_io_channel *ch; 1756 struct spdk_histogram_data *histogram; 1757 uint8_t buf[4096]; 1758 int rc; 1759 1760 spdk_bdev_initialize(bdev_init_cb, NULL); 1761 1762 bdev = allocate_bdev("bdev"); 1763 1764 rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc); 1765 CU_ASSERT(rc == 0); 1766 CU_ASSERT(desc != NULL); 1767 1768 ch = spdk_bdev_get_io_channel(desc); 1769 CU_ASSERT(ch != NULL); 1770 1771 /* Enable histogram */ 1772 g_status = -1; 1773 spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true); 1774 poll_threads(); 1775 CU_ASSERT(g_status == 0); 1776 CU_ASSERT(bdev->internal.histogram_enabled == true); 1777 1778 /* Allocate histogram */ 1779 histogram = spdk_histogram_data_alloc(); 1780 SPDK_CU_ASSERT_FATAL(histogram != NULL); 1781 1782 /* Check if histogram is zeroed */ 1783 spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL); 1784 poll_threads(); 1785 CU_ASSERT(g_status == 0); 1786 SPDK_CU_ASSERT_FATAL(g_histogram != NULL); 1787 1788 g_count = 0; 1789 spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL); 1790 1791 CU_ASSERT(g_count == 0); 1792 1793 rc = spdk_bdev_write_blocks(desc, ch, &buf, 0, 1, io_done, NULL); 1794 CU_ASSERT(rc == 0); 1795 1796 spdk_delay_us(10); 1797 stub_complete_io(1); 1798 poll_threads(); 1799 1800 rc = spdk_bdev_read_blocks(desc, ch, &buf, 0, 1, io_done, NULL); 1801 CU_ASSERT(rc == 0); 1802 1803 spdk_delay_us(10); 1804 stub_complete_io(1); 1805 poll_threads(); 1806 1807 /* Check if histogram gathered data from all I/O channels */ 1808 g_histogram = NULL; 1809 spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL); 1810 poll_threads(); 1811 CU_ASSERT(g_status == 0); 1812 CU_ASSERT(bdev->internal.histogram_enabled == true); 1813 SPDK_CU_ASSERT_FATAL(g_histogram != NULL); 1814 1815 g_count = 0; 1816 spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL); 1817 CU_ASSERT(g_count == 2); 1818 1819 /* Disable histogram */ 1820 spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false); 1821 poll_threads(); 1822 CU_ASSERT(g_status == 0); 1823 CU_ASSERT(bdev->internal.histogram_enabled == false); 1824 1825 /* Try to run histogram commands on disabled bdev */ 1826 spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL); 1827 poll_threads(); 1828 CU_ASSERT(g_status == -EFAULT); 1829 1830 spdk_histogram_data_free(g_histogram); 1831 spdk_put_io_channel(ch); 1832 spdk_bdev_close(desc); 1833 free_bdev(bdev); 1834 spdk_bdev_finish(bdev_fini_cb, NULL); 1835 poll_threads(); 1836 } 1837 1838 static void 1839 bdev_write_zeroes(void) 1840 { 1841 struct spdk_bdev *bdev; 1842 struct spdk_bdev_desc *desc = NULL; 1843 struct spdk_io_channel *ioch; 1844 struct ut_expected_io *expected_io; 1845 uint64_t offset, num_io_blocks, num_blocks; 1846 uint32_t num_completed, num_requests; 1847 int rc; 1848 1849 spdk_bdev_initialize(bdev_init_cb, NULL); 1850 bdev = allocate_bdev("bdev"); 1851 1852 rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc); 1853 CU_ASSERT_EQUAL(rc, 0); 1854 SPDK_CU_ASSERT_FATAL(desc != NULL); 1855 ioch = spdk_bdev_get_io_channel(desc); 1856 SPDK_CU_ASSERT_FATAL(ioch != NULL); 1857 1858 fn_table.submit_request = stub_submit_request; 1859 g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS; 1860 1861 /* First test that if the bdev supports write_zeroes, the request won't be split */ 1862 bdev->md_len = 0; 1863 bdev->blocklen = 4096; 1864 num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2; 1865 1866 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0); 1867 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1868 rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL); 1869 CU_ASSERT_EQUAL(rc, 0); 1870 num_completed = stub_complete_io(1); 1871 CU_ASSERT_EQUAL(num_completed, 1); 1872 1873 /* Check that if write zeroes is not supported it'll be replaced by regular writes */ 1874 ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false); 1875 num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen; 1876 num_requests = 2; 1877 num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests; 1878 1879 for (offset = 0; offset < num_requests; ++offset) { 1880 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 1881 offset * num_io_blocks, num_io_blocks, 0); 1882 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1883 } 1884 1885 rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL); 1886 CU_ASSERT_EQUAL(rc, 0); 1887 num_completed = stub_complete_io(num_requests); 1888 CU_ASSERT_EQUAL(num_completed, num_requests); 1889 1890 /* Check that the splitting is correct if bdev has interleaved metadata */ 1891 bdev->md_interleave = true; 1892 bdev->md_len = 64; 1893 bdev->blocklen = 4096 + 64; 1894 num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2; 1895 1896 num_requests = offset = 0; 1897 while (offset < num_blocks) { 1898 num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset); 1899 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 1900 offset, num_io_blocks, 0); 1901 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1902 offset += num_io_blocks; 1903 num_requests++; 1904 } 1905 1906 rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL); 1907 CU_ASSERT_EQUAL(rc, 0); 1908 num_completed = stub_complete_io(num_requests); 1909 CU_ASSERT_EQUAL(num_completed, num_requests); 1910 num_completed = stub_complete_io(num_requests); 1911 assert(num_completed == 0); 1912 1913 /* Check the the same for separate metadata buffer */ 1914 bdev->md_interleave = false; 1915 bdev->md_len = 64; 1916 bdev->blocklen = 4096; 1917 1918 num_requests = offset = 0; 1919 while (offset < num_blocks) { 1920 num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks); 1921 expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 1922 offset, num_io_blocks, 0); 1923 expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen; 1924 TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link); 1925 offset += num_io_blocks; 1926 num_requests++; 1927 } 1928 1929 rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL); 1930 CU_ASSERT_EQUAL(rc, 0); 1931 num_completed = stub_complete_io(num_requests); 1932 CU_ASSERT_EQUAL(num_completed, num_requests); 1933 1934 ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true); 1935 spdk_put_io_channel(ioch); 1936 spdk_bdev_close(desc); 1937 free_bdev(bdev); 1938 spdk_bdev_finish(bdev_fini_cb, NULL); 1939 poll_threads(); 1940 } 1941 1942 int 1943 main(int argc, char **argv) 1944 { 1945 CU_pSuite suite = NULL; 1946 unsigned int num_failures; 1947 1948 if (CU_initialize_registry() != CUE_SUCCESS) { 1949 return CU_get_error(); 1950 } 1951 1952 suite = CU_add_suite("bdev", null_init, null_clean); 1953 if (suite == NULL) { 1954 CU_cleanup_registry(); 1955 return CU_get_error(); 1956 } 1957 1958 if ( 1959 CU_add_test(suite, "bytes_to_blocks_test", bytes_to_blocks_test) == NULL || 1960 CU_add_test(suite, "num_blocks_test", num_blocks_test) == NULL || 1961 CU_add_test(suite, "io_valid", io_valid_test) == NULL || 1962 CU_add_test(suite, "open_write", open_write_test) == NULL || 1963 CU_add_test(suite, "alias_add_del", alias_add_del_test) == NULL || 1964 CU_add_test(suite, "get_device_stat", get_device_stat_test) == NULL || 1965 CU_add_test(suite, "bdev_io_types", bdev_io_types_test) == NULL || 1966 CU_add_test(suite, "bdev_io_wait", bdev_io_wait_test) == NULL || 1967 CU_add_test(suite, "bdev_io_spans_boundary", bdev_io_spans_boundary_test) == NULL || 1968 CU_add_test(suite, "bdev_io_split", bdev_io_split) == NULL || 1969 CU_add_test(suite, "bdev_io_split_with_io_wait", bdev_io_split_with_io_wait) == NULL || 1970 CU_add_test(suite, "bdev_io_alignment_with_boundary", bdev_io_alignment_with_boundary) == NULL || 1971 CU_add_test(suite, "bdev_io_alignment", bdev_io_alignment) == NULL || 1972 CU_add_test(suite, "bdev_histograms", bdev_histograms) == NULL || 1973 CU_add_test(suite, "bdev_write_zeroes", bdev_write_zeroes) == NULL 1974 ) { 1975 CU_cleanup_registry(); 1976 return CU_get_error(); 1977 } 1978 1979 allocate_threads(1); 1980 set_thread(0); 1981 1982 CU_basic_set_mode(CU_BRM_VERBOSE); 1983 CU_basic_run_tests(); 1984 num_failures = CU_get_number_of_failures(); 1985 CU_cleanup_registry(); 1986 1987 free_threads(); 1988 1989 return num_failures; 1990 } 1991