xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision d2a0706982a95a1ae495f9499e2defb08e98fe24)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk_cunit.h"
35 
36 #include "common/lib/ut_multithread.c"
37 #include "unit/lib/json_mock.c"
38 
39 #include "spdk/config.h"
40 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
41 #undef SPDK_CONFIG_VTUNE
42 
43 #include "bdev/bdev.c"
44 
45 struct spdk_trace_histories *g_trace_histories;
46 DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
47 DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix));
48 DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
49 DEFINE_STUB_V(spdk_trace_register_description, (const char *name,
50 		uint16_t tpoint_id, uint8_t owner_type,
51 		uint8_t object_type, uint8_t new_object,
52 		uint8_t arg1_type, const char *arg1_name));
53 DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
54 				   uint32_t size, uint64_t object_id, uint64_t arg1));
55 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
56 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
57 
58 
59 int g_status;
60 int g_count;
61 enum spdk_bdev_event_type g_event_type1;
62 enum spdk_bdev_event_type g_event_type2;
63 struct spdk_histogram_data *g_histogram;
64 void *g_unregister_arg;
65 int g_unregister_rc;
66 
67 void
68 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
69 			 int *sc, int *sk, int *asc, int *ascq)
70 {
71 }
72 
73 static int
74 null_init(void)
75 {
76 	return 0;
77 }
78 
79 static int
80 null_clean(void)
81 {
82 	return 0;
83 }
84 
85 static int
86 stub_destruct(void *ctx)
87 {
88 	return 0;
89 }
90 
91 struct ut_expected_io {
92 	uint8_t				type;
93 	uint64_t			offset;
94 	uint64_t			length;
95 	int				iovcnt;
96 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
97 	void				*md_buf;
98 	TAILQ_ENTRY(ut_expected_io)	link;
99 };
100 
101 struct bdev_ut_channel {
102 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
103 	uint32_t			outstanding_io_count;
104 	TAILQ_HEAD(, ut_expected_io)	expected_io;
105 };
106 
107 static bool g_io_done;
108 static struct spdk_bdev_io *g_bdev_io;
109 static enum spdk_bdev_io_status g_io_status;
110 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
111 static uint32_t g_bdev_ut_io_device;
112 static struct bdev_ut_channel *g_bdev_ut_channel;
113 static void *g_compare_read_buf;
114 static uint32_t g_compare_read_buf_len;
115 static void *g_compare_write_buf;
116 static uint32_t g_compare_write_buf_len;
117 static bool g_abort_done;
118 static enum spdk_bdev_io_status g_abort_status;
119 
120 static struct ut_expected_io *
121 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
122 {
123 	struct ut_expected_io *expected_io;
124 
125 	expected_io = calloc(1, sizeof(*expected_io));
126 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
127 
128 	expected_io->type = type;
129 	expected_io->offset = offset;
130 	expected_io->length = length;
131 	expected_io->iovcnt = iovcnt;
132 
133 	return expected_io;
134 }
135 
136 static void
137 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
138 {
139 	expected_io->iov[pos].iov_base = base;
140 	expected_io->iov[pos].iov_len = len;
141 }
142 
143 static void
144 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
145 {
146 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
147 	struct ut_expected_io *expected_io;
148 	struct iovec *iov, *expected_iov;
149 	struct spdk_bdev_io *bio_to_abort;
150 	int i;
151 
152 	g_bdev_io = bdev_io;
153 
154 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
155 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
156 
157 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
158 		CU_ASSERT(g_compare_read_buf_len == len);
159 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
160 	}
161 
162 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
163 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
164 
165 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
166 		CU_ASSERT(g_compare_write_buf_len == len);
167 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
168 	}
169 
170 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
171 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
172 
173 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
174 		CU_ASSERT(g_compare_read_buf_len == len);
175 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
176 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
177 		}
178 	}
179 
180 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
181 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
182 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
183 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
184 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
185 					ch->outstanding_io_count--;
186 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
187 					break;
188 				}
189 			}
190 		}
191 	}
192 
193 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
194 	ch->outstanding_io_count++;
195 
196 	expected_io = TAILQ_FIRST(&ch->expected_io);
197 	if (expected_io == NULL) {
198 		return;
199 	}
200 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
201 
202 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
203 		CU_ASSERT(bdev_io->type == expected_io->type);
204 	}
205 
206 	if (expected_io->md_buf != NULL) {
207 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
208 	}
209 
210 	if (expected_io->length == 0) {
211 		free(expected_io);
212 		return;
213 	}
214 
215 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
216 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
217 
218 	if (expected_io->iovcnt == 0) {
219 		free(expected_io);
220 		/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
221 		return;
222 	}
223 
224 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
225 	for (i = 0; i < expected_io->iovcnt; i++) {
226 		iov = &bdev_io->u.bdev.iovs[i];
227 		expected_iov = &expected_io->iov[i];
228 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
229 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
230 	}
231 
232 	free(expected_io);
233 }
234 
235 static void
236 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
237 			       struct spdk_bdev_io *bdev_io, bool success)
238 {
239 	CU_ASSERT(success == true);
240 
241 	stub_submit_request(_ch, bdev_io);
242 }
243 
244 static void
245 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
246 {
247 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
248 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
249 }
250 
251 static uint32_t
252 stub_complete_io(uint32_t num_to_complete)
253 {
254 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
255 	struct spdk_bdev_io *bdev_io;
256 	static enum spdk_bdev_io_status io_status;
257 	uint32_t num_completed = 0;
258 
259 	while (num_completed < num_to_complete) {
260 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
261 			break;
262 		}
263 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
264 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
265 		ch->outstanding_io_count--;
266 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
267 			    g_io_exp_status;
268 		spdk_bdev_io_complete(bdev_io, io_status);
269 		num_completed++;
270 	}
271 
272 	return num_completed;
273 }
274 
275 static struct spdk_io_channel *
276 bdev_ut_get_io_channel(void *ctx)
277 {
278 	return spdk_get_io_channel(&g_bdev_ut_io_device);
279 }
280 
281 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
282 	[SPDK_BDEV_IO_TYPE_READ]		= true,
283 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
284 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
285 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
286 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
287 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
288 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
289 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
290 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
291 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
292 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
293 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
294 };
295 
296 static void
297 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
298 {
299 	g_io_types_supported[io_type] = enable;
300 }
301 
302 static bool
303 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
304 {
305 	return g_io_types_supported[io_type];
306 }
307 
308 static struct spdk_bdev_fn_table fn_table = {
309 	.destruct = stub_destruct,
310 	.submit_request = stub_submit_request,
311 	.get_io_channel = bdev_ut_get_io_channel,
312 	.io_type_supported = stub_io_type_supported,
313 };
314 
315 static int
316 bdev_ut_create_ch(void *io_device, void *ctx_buf)
317 {
318 	struct bdev_ut_channel *ch = ctx_buf;
319 
320 	CU_ASSERT(g_bdev_ut_channel == NULL);
321 	g_bdev_ut_channel = ch;
322 
323 	TAILQ_INIT(&ch->outstanding_io);
324 	ch->outstanding_io_count = 0;
325 	TAILQ_INIT(&ch->expected_io);
326 	return 0;
327 }
328 
329 static void
330 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
331 {
332 	CU_ASSERT(g_bdev_ut_channel != NULL);
333 	g_bdev_ut_channel = NULL;
334 }
335 
336 struct spdk_bdev_module bdev_ut_if;
337 
338 static int
339 bdev_ut_module_init(void)
340 {
341 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
342 				sizeof(struct bdev_ut_channel), NULL);
343 	spdk_bdev_module_init_done(&bdev_ut_if);
344 	return 0;
345 }
346 
347 static void
348 bdev_ut_module_fini(void)
349 {
350 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
351 }
352 
353 struct spdk_bdev_module bdev_ut_if = {
354 	.name = "bdev_ut",
355 	.module_init = bdev_ut_module_init,
356 	.module_fini = bdev_ut_module_fini,
357 	.async_init = true,
358 };
359 
360 static void vbdev_ut_examine(struct spdk_bdev *bdev);
361 
362 static int
363 vbdev_ut_module_init(void)
364 {
365 	return 0;
366 }
367 
368 static void
369 vbdev_ut_module_fini(void)
370 {
371 }
372 
373 struct spdk_bdev_module vbdev_ut_if = {
374 	.name = "vbdev_ut",
375 	.module_init = vbdev_ut_module_init,
376 	.module_fini = vbdev_ut_module_fini,
377 	.examine_config = vbdev_ut_examine,
378 };
379 
380 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
381 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
382 
383 static void
384 vbdev_ut_examine(struct spdk_bdev *bdev)
385 {
386 	spdk_bdev_module_examine_done(&vbdev_ut_if);
387 }
388 
389 static struct spdk_bdev *
390 allocate_bdev(char *name)
391 {
392 	struct spdk_bdev *bdev;
393 	int rc;
394 
395 	bdev = calloc(1, sizeof(*bdev));
396 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
397 
398 	bdev->name = name;
399 	bdev->fn_table = &fn_table;
400 	bdev->module = &bdev_ut_if;
401 	bdev->blockcnt = 1024;
402 	bdev->blocklen = 512;
403 
404 	rc = spdk_bdev_register(bdev);
405 	CU_ASSERT(rc == 0);
406 
407 	return bdev;
408 }
409 
410 static struct spdk_bdev *
411 allocate_vbdev(char *name)
412 {
413 	struct spdk_bdev *bdev;
414 	int rc;
415 
416 	bdev = calloc(1, sizeof(*bdev));
417 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
418 
419 	bdev->name = name;
420 	bdev->fn_table = &fn_table;
421 	bdev->module = &vbdev_ut_if;
422 
423 	rc = spdk_bdev_register(bdev);
424 	CU_ASSERT(rc == 0);
425 
426 	return bdev;
427 }
428 
429 static void
430 free_bdev(struct spdk_bdev *bdev)
431 {
432 	spdk_bdev_unregister(bdev, NULL, NULL);
433 	poll_threads();
434 	memset(bdev, 0xFF, sizeof(*bdev));
435 	free(bdev);
436 }
437 
438 static void
439 free_vbdev(struct spdk_bdev *bdev)
440 {
441 	spdk_bdev_unregister(bdev, NULL, NULL);
442 	poll_threads();
443 	memset(bdev, 0xFF, sizeof(*bdev));
444 	free(bdev);
445 }
446 
447 static void
448 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
449 {
450 	const char *bdev_name;
451 
452 	CU_ASSERT(bdev != NULL);
453 	CU_ASSERT(rc == 0);
454 	bdev_name = spdk_bdev_get_name(bdev);
455 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
456 
457 	free(stat);
458 	free_bdev(bdev);
459 
460 	*(bool *)cb_arg = true;
461 }
462 
463 static void
464 bdev_unregister_cb(void *cb_arg, int rc)
465 {
466 	g_unregister_arg = cb_arg;
467 	g_unregister_rc = rc;
468 }
469 
470 static void
471 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
472 {
473 }
474 
475 static void
476 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
477 {
478 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
479 
480 	g_event_type1 = type;
481 	if (SPDK_BDEV_EVENT_REMOVE == type) {
482 		spdk_bdev_close(desc);
483 	}
484 }
485 
486 static void
487 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
488 {
489 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
490 
491 	g_event_type2 = type;
492 	if (SPDK_BDEV_EVENT_REMOVE == type) {
493 		spdk_bdev_close(desc);
494 	}
495 }
496 
497 static void
498 get_device_stat_test(void)
499 {
500 	struct spdk_bdev *bdev;
501 	struct spdk_bdev_io_stat *stat;
502 	bool done;
503 
504 	bdev = allocate_bdev("bdev0");
505 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
506 	if (stat == NULL) {
507 		free_bdev(bdev);
508 		return;
509 	}
510 
511 	done = false;
512 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
513 	while (!done) { poll_threads(); }
514 
515 
516 }
517 
518 static void
519 open_write_test(void)
520 {
521 	struct spdk_bdev *bdev[9];
522 	struct spdk_bdev_desc *desc[9] = {};
523 	int rc;
524 
525 	/*
526 	 * Create a tree of bdevs to test various open w/ write cases.
527 	 *
528 	 * bdev0 through bdev3 are physical block devices, such as NVMe
529 	 * namespaces or Ceph block devices.
530 	 *
531 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
532 	 * caching or RAID use cases.
533 	 *
534 	 * bdev5 through bdev7 are all virtual bdevs with the same base
535 	 * bdev (except bdev7). This models partitioning or logical volume
536 	 * use cases.
537 	 *
538 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
539 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
540 	 * models caching, RAID, partitioning or logical volumes use cases.
541 	 *
542 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
543 	 * base bdevs are themselves virtual bdevs.
544 	 *
545 	 *                bdev8
546 	 *                  |
547 	 *            +----------+
548 	 *            |          |
549 	 *          bdev4      bdev5   bdev6   bdev7
550 	 *            |          |       |       |
551 	 *        +---+---+      +---+   +   +---+---+
552 	 *        |       |           \  |  /         \
553 	 *      bdev0   bdev1          bdev2         bdev3
554 	 */
555 
556 	bdev[0] = allocate_bdev("bdev0");
557 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
558 	CU_ASSERT(rc == 0);
559 
560 	bdev[1] = allocate_bdev("bdev1");
561 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
562 	CU_ASSERT(rc == 0);
563 
564 	bdev[2] = allocate_bdev("bdev2");
565 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
566 	CU_ASSERT(rc == 0);
567 
568 	bdev[3] = allocate_bdev("bdev3");
569 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
570 	CU_ASSERT(rc == 0);
571 
572 	bdev[4] = allocate_vbdev("bdev4");
573 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
574 	CU_ASSERT(rc == 0);
575 
576 	bdev[5] = allocate_vbdev("bdev5");
577 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
578 	CU_ASSERT(rc == 0);
579 
580 	bdev[6] = allocate_vbdev("bdev6");
581 
582 	bdev[7] = allocate_vbdev("bdev7");
583 
584 	bdev[8] = allocate_vbdev("bdev8");
585 
586 	/* Open bdev0 read-only.  This should succeed. */
587 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
588 	CU_ASSERT(rc == 0);
589 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
590 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
591 	spdk_bdev_close(desc[0]);
592 
593 	/*
594 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
595 	 * by a vbdev module.
596 	 */
597 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
598 	CU_ASSERT(rc == -EPERM);
599 
600 	/*
601 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
602 	 * by a vbdev module.
603 	 */
604 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
605 	CU_ASSERT(rc == -EPERM);
606 
607 	/* Open bdev4 read-only.  This should succeed. */
608 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
609 	CU_ASSERT(rc == 0);
610 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
611 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
612 	spdk_bdev_close(desc[4]);
613 
614 	/*
615 	 * Open bdev8 read/write.  This should succeed since it is a leaf
616 	 * bdev.
617 	 */
618 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
619 	CU_ASSERT(rc == 0);
620 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
621 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
622 	spdk_bdev_close(desc[8]);
623 
624 	/*
625 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
626 	 * by a vbdev module.
627 	 */
628 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
629 	CU_ASSERT(rc == -EPERM);
630 
631 	/* Open bdev4 read-only.  This should succeed. */
632 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
633 	CU_ASSERT(rc == 0);
634 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
635 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
636 	spdk_bdev_close(desc[5]);
637 
638 	free_vbdev(bdev[8]);
639 
640 	free_vbdev(bdev[5]);
641 	free_vbdev(bdev[6]);
642 	free_vbdev(bdev[7]);
643 
644 	free_vbdev(bdev[4]);
645 
646 	free_bdev(bdev[0]);
647 	free_bdev(bdev[1]);
648 	free_bdev(bdev[2]);
649 	free_bdev(bdev[3]);
650 }
651 
652 static void
653 bytes_to_blocks_test(void)
654 {
655 	struct spdk_bdev bdev;
656 	uint64_t offset_blocks, num_blocks;
657 
658 	memset(&bdev, 0, sizeof(bdev));
659 
660 	bdev.blocklen = 512;
661 
662 	/* All parameters valid */
663 	offset_blocks = 0;
664 	num_blocks = 0;
665 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
666 	CU_ASSERT(offset_blocks == 1);
667 	CU_ASSERT(num_blocks == 2);
668 
669 	/* Offset not a block multiple */
670 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
671 
672 	/* Length not a block multiple */
673 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
674 
675 	/* In case blocklen not the power of two */
676 	bdev.blocklen = 100;
677 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
678 	CU_ASSERT(offset_blocks == 1);
679 	CU_ASSERT(num_blocks == 2);
680 
681 	/* Offset not a block multiple */
682 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
683 
684 	/* Length not a block multiple */
685 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
686 }
687 
688 static void
689 num_blocks_test(void)
690 {
691 	struct spdk_bdev bdev;
692 	struct spdk_bdev_desc *desc = NULL;
693 	struct spdk_bdev_desc *desc_ext = NULL;
694 	int rc;
695 
696 	memset(&bdev, 0, sizeof(bdev));
697 	bdev.name = "num_blocks";
698 	bdev.fn_table = &fn_table;
699 	bdev.module = &bdev_ut_if;
700 	spdk_bdev_register(&bdev);
701 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
702 
703 	/* Growing block number */
704 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
705 	/* Shrinking block number */
706 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
707 
708 	/* In case bdev opened */
709 	rc = spdk_bdev_open(&bdev, false, NULL, NULL, &desc);
710 	CU_ASSERT(rc == 0);
711 	SPDK_CU_ASSERT_FATAL(desc != NULL);
712 
713 	/* Growing block number */
714 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
715 	/* Shrinking block number */
716 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
717 
718 	/* In case bdev opened with ext API */
719 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc_ext, &desc_ext);
720 	CU_ASSERT(rc == 0);
721 	SPDK_CU_ASSERT_FATAL(desc_ext != NULL);
722 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc_ext));
723 
724 	g_event_type1 = 0xFF;
725 	/* Growing block number */
726 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
727 
728 	poll_threads();
729 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
730 
731 	g_event_type1 = 0xFF;
732 	/* Growing block number and closing */
733 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
734 
735 	spdk_bdev_close(desc);
736 	spdk_bdev_close(desc_ext);
737 	spdk_bdev_unregister(&bdev, NULL, NULL);
738 
739 	poll_threads();
740 
741 	/* Callback is not called for closed device */
742 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
743 }
744 
745 static void
746 io_valid_test(void)
747 {
748 	struct spdk_bdev bdev;
749 
750 	memset(&bdev, 0, sizeof(bdev));
751 
752 	bdev.blocklen = 512;
753 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
754 
755 	/* All parameters valid */
756 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
757 
758 	/* Last valid block */
759 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
760 
761 	/* Offset past end of bdev */
762 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
763 
764 	/* Offset + length past end of bdev */
765 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
766 
767 	/* Offset near end of uint64_t range (2^64 - 1) */
768 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
769 }
770 
771 static void
772 alias_add_del_test(void)
773 {
774 	struct spdk_bdev *bdev[3];
775 	int rc;
776 
777 	/* Creating and registering bdevs */
778 	bdev[0] = allocate_bdev("bdev0");
779 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
780 
781 	bdev[1] = allocate_bdev("bdev1");
782 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
783 
784 	bdev[2] = allocate_bdev("bdev2");
785 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
786 
787 	poll_threads();
788 
789 	/*
790 	 * Trying adding an alias identical to name.
791 	 * Alias is identical to name, so it can not be added to aliases list
792 	 */
793 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
794 	CU_ASSERT(rc == -EEXIST);
795 
796 	/*
797 	 * Trying to add empty alias,
798 	 * this one should fail
799 	 */
800 	rc = spdk_bdev_alias_add(bdev[0], NULL);
801 	CU_ASSERT(rc == -EINVAL);
802 
803 	/* Trying adding same alias to two different registered bdevs */
804 
805 	/* Alias is used first time, so this one should pass */
806 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
807 	CU_ASSERT(rc == 0);
808 
809 	/* Alias was added to another bdev, so this one should fail */
810 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
811 	CU_ASSERT(rc == -EEXIST);
812 
813 	/* Alias is used first time, so this one should pass */
814 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
815 	CU_ASSERT(rc == 0);
816 
817 	/* Trying removing an alias from registered bdevs */
818 
819 	/* Alias is not on a bdev aliases list, so this one should fail */
820 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
821 	CU_ASSERT(rc == -ENOENT);
822 
823 	/* Alias is present on a bdev aliases list, so this one should pass */
824 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
825 	CU_ASSERT(rc == 0);
826 
827 	/* Alias is present on a bdev aliases list, so this one should pass */
828 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
829 	CU_ASSERT(rc == 0);
830 
831 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
832 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
833 	CU_ASSERT(rc != 0);
834 
835 	/* Trying to del all alias from empty alias list */
836 	spdk_bdev_alias_del_all(bdev[2]);
837 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
838 
839 	/* Trying to del all alias from non-empty alias list */
840 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
841 	CU_ASSERT(rc == 0);
842 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
843 	CU_ASSERT(rc == 0);
844 	spdk_bdev_alias_del_all(bdev[2]);
845 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
846 
847 	/* Unregister and free bdevs */
848 	spdk_bdev_unregister(bdev[0], NULL, NULL);
849 	spdk_bdev_unregister(bdev[1], NULL, NULL);
850 	spdk_bdev_unregister(bdev[2], NULL, NULL);
851 
852 	poll_threads();
853 
854 	free(bdev[0]);
855 	free(bdev[1]);
856 	free(bdev[2]);
857 }
858 
859 static void
860 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
861 {
862 	g_io_done = true;
863 	g_io_status = bdev_io->internal.status;
864 	spdk_bdev_free_io(bdev_io);
865 }
866 
867 static void
868 bdev_init_cb(void *arg, int rc)
869 {
870 	CU_ASSERT(rc == 0);
871 }
872 
873 static void
874 bdev_fini_cb(void *arg)
875 {
876 }
877 
878 struct bdev_ut_io_wait_entry {
879 	struct spdk_bdev_io_wait_entry	entry;
880 	struct spdk_io_channel		*io_ch;
881 	struct spdk_bdev_desc		*desc;
882 	bool				submitted;
883 };
884 
885 static void
886 io_wait_cb(void *arg)
887 {
888 	struct bdev_ut_io_wait_entry *entry = arg;
889 	int rc;
890 
891 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
892 	CU_ASSERT(rc == 0);
893 	entry->submitted = true;
894 }
895 
896 static void
897 bdev_io_types_test(void)
898 {
899 	struct spdk_bdev *bdev;
900 	struct spdk_bdev_desc *desc = NULL;
901 	struct spdk_io_channel *io_ch;
902 	struct spdk_bdev_opts bdev_opts = {
903 		.bdev_io_pool_size = 4,
904 		.bdev_io_cache_size = 2,
905 	};
906 	int rc;
907 
908 	rc = spdk_bdev_set_opts(&bdev_opts);
909 	CU_ASSERT(rc == 0);
910 	spdk_bdev_initialize(bdev_init_cb, NULL);
911 	poll_threads();
912 
913 	bdev = allocate_bdev("bdev0");
914 
915 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
916 	CU_ASSERT(rc == 0);
917 	poll_threads();
918 	SPDK_CU_ASSERT_FATAL(desc != NULL);
919 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
920 	io_ch = spdk_bdev_get_io_channel(desc);
921 	CU_ASSERT(io_ch != NULL);
922 
923 	/* WRITE and WRITE ZEROES are not supported */
924 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
925 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
926 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
927 	CU_ASSERT(rc == -ENOTSUP);
928 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
929 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
930 
931 	spdk_put_io_channel(io_ch);
932 	spdk_bdev_close(desc);
933 	free_bdev(bdev);
934 	spdk_bdev_finish(bdev_fini_cb, NULL);
935 	poll_threads();
936 }
937 
938 static void
939 bdev_io_wait_test(void)
940 {
941 	struct spdk_bdev *bdev;
942 	struct spdk_bdev_desc *desc = NULL;
943 	struct spdk_io_channel *io_ch;
944 	struct spdk_bdev_opts bdev_opts = {
945 		.bdev_io_pool_size = 4,
946 		.bdev_io_cache_size = 2,
947 	};
948 	struct bdev_ut_io_wait_entry io_wait_entry;
949 	struct bdev_ut_io_wait_entry io_wait_entry2;
950 	int rc;
951 
952 	rc = spdk_bdev_set_opts(&bdev_opts);
953 	CU_ASSERT(rc == 0);
954 	spdk_bdev_initialize(bdev_init_cb, NULL);
955 	poll_threads();
956 
957 	bdev = allocate_bdev("bdev0");
958 
959 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
960 	CU_ASSERT(rc == 0);
961 	poll_threads();
962 	SPDK_CU_ASSERT_FATAL(desc != NULL);
963 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
964 	io_ch = spdk_bdev_get_io_channel(desc);
965 	CU_ASSERT(io_ch != NULL);
966 
967 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
968 	CU_ASSERT(rc == 0);
969 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
970 	CU_ASSERT(rc == 0);
971 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
972 	CU_ASSERT(rc == 0);
973 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
974 	CU_ASSERT(rc == 0);
975 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
976 
977 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
978 	CU_ASSERT(rc == -ENOMEM);
979 
980 	io_wait_entry.entry.bdev = bdev;
981 	io_wait_entry.entry.cb_fn = io_wait_cb;
982 	io_wait_entry.entry.cb_arg = &io_wait_entry;
983 	io_wait_entry.io_ch = io_ch;
984 	io_wait_entry.desc = desc;
985 	io_wait_entry.submitted = false;
986 	/* Cannot use the same io_wait_entry for two different calls. */
987 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
988 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
989 
990 	/* Queue two I/O waits. */
991 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
992 	CU_ASSERT(rc == 0);
993 	CU_ASSERT(io_wait_entry.submitted == false);
994 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
995 	CU_ASSERT(rc == 0);
996 	CU_ASSERT(io_wait_entry2.submitted == false);
997 
998 	stub_complete_io(1);
999 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1000 	CU_ASSERT(io_wait_entry.submitted == true);
1001 	CU_ASSERT(io_wait_entry2.submitted == false);
1002 
1003 	stub_complete_io(1);
1004 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1005 	CU_ASSERT(io_wait_entry2.submitted == true);
1006 
1007 	stub_complete_io(4);
1008 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1009 
1010 	spdk_put_io_channel(io_ch);
1011 	spdk_bdev_close(desc);
1012 	free_bdev(bdev);
1013 	spdk_bdev_finish(bdev_fini_cb, NULL);
1014 	poll_threads();
1015 }
1016 
1017 static void
1018 bdev_io_spans_boundary_test(void)
1019 {
1020 	struct spdk_bdev bdev;
1021 	struct spdk_bdev_io bdev_io;
1022 
1023 	memset(&bdev, 0, sizeof(bdev));
1024 
1025 	bdev.optimal_io_boundary = 0;
1026 	bdev_io.bdev = &bdev;
1027 
1028 	/* bdev has no optimal_io_boundary set - so this should return false. */
1029 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1030 
1031 	bdev.optimal_io_boundary = 32;
1032 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1033 
1034 	/* RESETs are not based on LBAs - so this should return false. */
1035 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1036 
1037 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1038 	bdev_io.u.bdev.offset_blocks = 0;
1039 	bdev_io.u.bdev.num_blocks = 32;
1040 
1041 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1042 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1043 
1044 	bdev_io.u.bdev.num_blocks = 33;
1045 
1046 	/* This I/O spans a boundary. */
1047 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1048 }
1049 
1050 static void
1051 bdev_io_split_test(void)
1052 {
1053 	struct spdk_bdev *bdev;
1054 	struct spdk_bdev_desc *desc = NULL;
1055 	struct spdk_io_channel *io_ch;
1056 	struct spdk_bdev_opts bdev_opts = {
1057 		.bdev_io_pool_size = 512,
1058 		.bdev_io_cache_size = 64,
1059 	};
1060 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1061 	struct ut_expected_io *expected_io;
1062 	void *md_buf = (void *)0xFF000000;
1063 	uint64_t i;
1064 	int rc;
1065 
1066 	rc = spdk_bdev_set_opts(&bdev_opts);
1067 	CU_ASSERT(rc == 0);
1068 	spdk_bdev_initialize(bdev_init_cb, NULL);
1069 
1070 	bdev = allocate_bdev("bdev0");
1071 
1072 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1073 	CU_ASSERT(rc == 0);
1074 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1075 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1076 	io_ch = spdk_bdev_get_io_channel(desc);
1077 	CU_ASSERT(io_ch != NULL);
1078 
1079 	bdev->optimal_io_boundary = 16;
1080 	bdev->split_on_optimal_io_boundary = false;
1081 
1082 	g_io_done = false;
1083 
1084 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1085 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1086 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1087 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1088 
1089 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1090 	CU_ASSERT(rc == 0);
1091 	CU_ASSERT(g_io_done == false);
1092 
1093 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1094 	stub_complete_io(1);
1095 	CU_ASSERT(g_io_done == true);
1096 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1097 
1098 	bdev->split_on_optimal_io_boundary = true;
1099 	bdev->md_interleave = false;
1100 	bdev->md_len = 8;
1101 
1102 	/* Now test that a single-vector command is split correctly.
1103 	 * Offset 14, length 8, payload 0xF000
1104 	 *  Child - Offset 14, length 2, payload 0xF000
1105 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1106 	 *
1107 	 * Set up the expected values before calling spdk_bdev_read_blocks
1108 	 */
1109 	g_io_done = false;
1110 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1111 	expected_io->md_buf = md_buf;
1112 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1113 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1114 
1115 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1116 	expected_io->md_buf = md_buf + 2 * 8;
1117 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1118 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1119 
1120 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1121 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1122 					   14, 8, io_done, NULL);
1123 	CU_ASSERT(rc == 0);
1124 	CU_ASSERT(g_io_done == false);
1125 
1126 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1127 	stub_complete_io(2);
1128 	CU_ASSERT(g_io_done == true);
1129 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1130 
1131 	/* Now set up a more complex, multi-vector command that needs to be split,
1132 	 *  including splitting iovecs.
1133 	 */
1134 	iov[0].iov_base = (void *)0x10000;
1135 	iov[0].iov_len = 512;
1136 	iov[1].iov_base = (void *)0x20000;
1137 	iov[1].iov_len = 20 * 512;
1138 	iov[2].iov_base = (void *)0x30000;
1139 	iov[2].iov_len = 11 * 512;
1140 
1141 	g_io_done = false;
1142 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1143 	expected_io->md_buf = md_buf;
1144 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1145 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1146 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1147 
1148 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1149 	expected_io->md_buf = md_buf + 2 * 8;
1150 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1151 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1152 
1153 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1154 	expected_io->md_buf = md_buf + 18 * 8;
1155 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1156 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1157 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1158 
1159 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1160 					     14, 32, io_done, NULL);
1161 	CU_ASSERT(rc == 0);
1162 	CU_ASSERT(g_io_done == false);
1163 
1164 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1165 	stub_complete_io(3);
1166 	CU_ASSERT(g_io_done == true);
1167 
1168 	/* Test multi vector command that needs to be split by strip and then needs to be
1169 	 * split further due to the capacity of child iovs.
1170 	 */
1171 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1172 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1173 		iov[i].iov_len = 512;
1174 	}
1175 
1176 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1177 	g_io_done = false;
1178 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1179 					   BDEV_IO_NUM_CHILD_IOV);
1180 	expected_io->md_buf = md_buf;
1181 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1182 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1183 	}
1184 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1185 
1186 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1187 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1188 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1189 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1190 		ut_expected_io_set_iov(expected_io, i,
1191 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1192 	}
1193 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1194 
1195 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1196 					    0, BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1197 	CU_ASSERT(rc == 0);
1198 	CU_ASSERT(g_io_done == false);
1199 
1200 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1201 	stub_complete_io(1);
1202 	CU_ASSERT(g_io_done == false);
1203 
1204 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1205 	stub_complete_io(1);
1206 	CU_ASSERT(g_io_done == true);
1207 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1208 
1209 	/* Test multi vector command that needs to be split by strip and then needs to be
1210 	 * split further due to the capacity of child iovs. In this case, the length of
1211 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1212 	 */
1213 
1214 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1215 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1216 	 */
1217 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1218 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1219 		iov[i].iov_len = 512;
1220 	}
1221 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1222 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1223 		iov[i].iov_len = 256;
1224 	}
1225 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1226 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1227 
1228 	/* Add an extra iovec to trigger split */
1229 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1230 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1231 
1232 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1233 	g_io_done = false;
1234 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1235 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1236 	expected_io->md_buf = md_buf;
1237 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1238 		ut_expected_io_set_iov(expected_io, i,
1239 				       (void *)((i + 1) * 0x10000), 512);
1240 	}
1241 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1242 		ut_expected_io_set_iov(expected_io, i,
1243 				       (void *)((i + 1) * 0x10000), 256);
1244 	}
1245 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1246 
1247 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1248 					   1, 1);
1249 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1250 	ut_expected_io_set_iov(expected_io, 0,
1251 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1252 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1253 
1254 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1255 					   1, 1);
1256 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1257 	ut_expected_io_set_iov(expected_io, 0,
1258 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1259 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1260 
1261 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1262 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1263 	CU_ASSERT(rc == 0);
1264 	CU_ASSERT(g_io_done == false);
1265 
1266 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1267 	stub_complete_io(1);
1268 	CU_ASSERT(g_io_done == false);
1269 
1270 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1271 	stub_complete_io(2);
1272 	CU_ASSERT(g_io_done == true);
1273 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1274 
1275 	/* Test multi vector command that needs to be split by strip and then needs to be
1276 	 * split further due to the capacity of child iovs, the child request offset should
1277 	 * be rewind to last aligned offset and go success without error.
1278 	 */
1279 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1280 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1281 		iov[i].iov_len = 512;
1282 	}
1283 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1284 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1285 
1286 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1287 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1288 
1289 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1290 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1291 
1292 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1293 	g_io_done = false;
1294 	g_io_status = 0;
1295 	/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
1296 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1297 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
1298 	expected_io->md_buf = md_buf;
1299 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1300 		ut_expected_io_set_iov(expected_io, i,
1301 				       (void *)((i + 1) * 0x10000), 512);
1302 	}
1303 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1304 	/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
1305 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1306 					   1, 2);
1307 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1308 	ut_expected_io_set_iov(expected_io, 0,
1309 			       (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1310 	ut_expected_io_set_iov(expected_io, 1,
1311 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1312 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1313 	/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
1314 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1315 					   1, 1);
1316 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1317 	ut_expected_io_set_iov(expected_io, 0,
1318 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1319 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1320 
1321 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1322 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1323 	CU_ASSERT(rc == 0);
1324 	CU_ASSERT(g_io_done == false);
1325 
1326 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1327 	stub_complete_io(1);
1328 	CU_ASSERT(g_io_done == false);
1329 
1330 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1331 	stub_complete_io(2);
1332 	CU_ASSERT(g_io_done == true);
1333 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1334 
1335 	/* Test multi vector command that needs to be split due to the IO boundary and
1336 	 * the capacity of child iovs. Especially test the case when the command is
1337 	 * split due to the capacity of child iovs, the tail address is not aligned with
1338 	 * block size and is rewinded to the aligned address.
1339 	 *
1340 	 * The iovecs used in read request is complex but is based on the data
1341 	 * collected in the real issue. We change the base addresses but keep the lengths
1342 	 * not to loose the credibility of the test.
1343 	 */
1344 	bdev->optimal_io_boundary = 128;
1345 	g_io_done = false;
1346 	g_io_status = 0;
1347 
1348 	for (i = 0; i < 31; i++) {
1349 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1350 		iov[i].iov_len = 1024;
1351 	}
1352 	iov[31].iov_base = (void *)0xFEED1F00000;
1353 	iov[31].iov_len = 32768;
1354 	iov[32].iov_base = (void *)0xFEED2000000;
1355 	iov[32].iov_len = 160;
1356 	iov[33].iov_base = (void *)0xFEED2100000;
1357 	iov[33].iov_len = 4096;
1358 	iov[34].iov_base = (void *)0xFEED2200000;
1359 	iov[34].iov_len = 4096;
1360 	iov[35].iov_base = (void *)0xFEED2300000;
1361 	iov[35].iov_len = 4096;
1362 	iov[36].iov_base = (void *)0xFEED2400000;
1363 	iov[36].iov_len = 4096;
1364 	iov[37].iov_base = (void *)0xFEED2500000;
1365 	iov[37].iov_len = 4096;
1366 	iov[38].iov_base = (void *)0xFEED2600000;
1367 	iov[38].iov_len = 4096;
1368 	iov[39].iov_base = (void *)0xFEED2700000;
1369 	iov[39].iov_len = 4096;
1370 	iov[40].iov_base = (void *)0xFEED2800000;
1371 	iov[40].iov_len = 4096;
1372 	iov[41].iov_base = (void *)0xFEED2900000;
1373 	iov[41].iov_len = 4096;
1374 	iov[42].iov_base = (void *)0xFEED2A00000;
1375 	iov[42].iov_len = 4096;
1376 	iov[43].iov_base = (void *)0xFEED2B00000;
1377 	iov[43].iov_len = 12288;
1378 	iov[44].iov_base = (void *)0xFEED2C00000;
1379 	iov[44].iov_len = 8192;
1380 	iov[45].iov_base = (void *)0xFEED2F00000;
1381 	iov[45].iov_len = 4096;
1382 	iov[46].iov_base = (void *)0xFEED3000000;
1383 	iov[46].iov_len = 4096;
1384 	iov[47].iov_base = (void *)0xFEED3100000;
1385 	iov[47].iov_len = 4096;
1386 	iov[48].iov_base = (void *)0xFEED3200000;
1387 	iov[48].iov_len = 24576;
1388 	iov[49].iov_base = (void *)0xFEED3300000;
1389 	iov[49].iov_len = 16384;
1390 	iov[50].iov_base = (void *)0xFEED3400000;
1391 	iov[50].iov_len = 12288;
1392 	iov[51].iov_base = (void *)0xFEED3500000;
1393 	iov[51].iov_len = 4096;
1394 	iov[52].iov_base = (void *)0xFEED3600000;
1395 	iov[52].iov_len = 4096;
1396 	iov[53].iov_base = (void *)0xFEED3700000;
1397 	iov[53].iov_len = 4096;
1398 	iov[54].iov_base = (void *)0xFEED3800000;
1399 	iov[54].iov_len = 28672;
1400 	iov[55].iov_base = (void *)0xFEED3900000;
1401 	iov[55].iov_len = 20480;
1402 	iov[56].iov_base = (void *)0xFEED3A00000;
1403 	iov[56].iov_len = 4096;
1404 	iov[57].iov_base = (void *)0xFEED3B00000;
1405 	iov[57].iov_len = 12288;
1406 	iov[58].iov_base = (void *)0xFEED3C00000;
1407 	iov[58].iov_len = 4096;
1408 	iov[59].iov_base = (void *)0xFEED3D00000;
1409 	iov[59].iov_len = 4096;
1410 	iov[60].iov_base = (void *)0xFEED3E00000;
1411 	iov[60].iov_len = 352;
1412 
1413 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1414 	 * of child iovs,
1415 	 */
1416 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1417 	expected_io->md_buf = md_buf;
1418 	for (i = 0; i < 32; i++) {
1419 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1420 	}
1421 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1422 
1423 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1424 	 * split by the IO boundary requirement.
1425 	 */
1426 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1427 	expected_io->md_buf = md_buf + 126 * 8;
1428 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1429 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1430 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1431 
1432 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1433 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1434 	 */
1435 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1436 	expected_io->md_buf = md_buf + 128 * 8;
1437 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1438 			       iov[33].iov_len - 864);
1439 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1440 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1441 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1442 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1443 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1444 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1445 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1446 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1447 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1448 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1449 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1450 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1451 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1452 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1453 
1454 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1455 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1456 	 */
1457 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1458 	expected_io->md_buf = md_buf + 256 * 8;
1459 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1460 			       iov[46].iov_len - 864);
1461 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1462 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1463 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1464 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1465 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1466 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1467 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1468 
1469 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1470 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1471 	 */
1472 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1473 	expected_io->md_buf = md_buf + 384 * 8;
1474 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1475 			       iov[52].iov_len - 864);
1476 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1477 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1478 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1479 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1480 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1481 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1482 
1483 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1484 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1485 	 */
1486 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1487 	expected_io->md_buf = md_buf + 512 * 8;
1488 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1489 			       iov[57].iov_len - 4960);
1490 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1491 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1492 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1493 
1494 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1495 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1496 	expected_io->md_buf = md_buf + 542 * 8;
1497 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1498 			       iov[59].iov_len - 3936);
1499 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1500 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1501 
1502 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1503 					    0, 543, io_done, NULL);
1504 	CU_ASSERT(rc == 0);
1505 	CU_ASSERT(g_io_done == false);
1506 
1507 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1508 	stub_complete_io(1);
1509 	CU_ASSERT(g_io_done == false);
1510 
1511 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1512 	stub_complete_io(5);
1513 	CU_ASSERT(g_io_done == false);
1514 
1515 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1516 	stub_complete_io(1);
1517 	CU_ASSERT(g_io_done == true);
1518 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1519 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1520 
1521 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1522 	 * split, so test that.
1523 	 */
1524 	bdev->optimal_io_boundary = 15;
1525 	g_io_done = false;
1526 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1527 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1528 
1529 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1530 	CU_ASSERT(rc == 0);
1531 	CU_ASSERT(g_io_done == false);
1532 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1533 	stub_complete_io(1);
1534 	CU_ASSERT(g_io_done == true);
1535 
1536 	/* Test an UNMAP.  This should also not be split. */
1537 	bdev->optimal_io_boundary = 16;
1538 	g_io_done = false;
1539 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1540 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1541 
1542 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1543 	CU_ASSERT(rc == 0);
1544 	CU_ASSERT(g_io_done == false);
1545 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1546 	stub_complete_io(1);
1547 	CU_ASSERT(g_io_done == true);
1548 
1549 	/* Test a FLUSH.  This should also not be split. */
1550 	bdev->optimal_io_boundary = 16;
1551 	g_io_done = false;
1552 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1553 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1554 
1555 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1556 	CU_ASSERT(rc == 0);
1557 	CU_ASSERT(g_io_done == false);
1558 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1559 	stub_complete_io(1);
1560 	CU_ASSERT(g_io_done == true);
1561 
1562 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1563 
1564 	/* Children requests return an error status */
1565 	bdev->optimal_io_boundary = 16;
1566 	iov[0].iov_base = (void *)0x10000;
1567 	iov[0].iov_len = 512 * 64;
1568 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1569 	g_io_done = false;
1570 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1571 
1572 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1573 	CU_ASSERT(rc == 0);
1574 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1575 	stub_complete_io(4);
1576 	CU_ASSERT(g_io_done == false);
1577 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1578 	stub_complete_io(1);
1579 	CU_ASSERT(g_io_done == true);
1580 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1581 
1582 	/* Test if a multi vector command terminated with failure before continueing
1583 	 * splitting process when one of child I/O failed.
1584 	 * The multi vector command is as same as the above that needs to be split by strip
1585 	 * and then needs to be split further due to the capacity of child iovs.
1586 	 */
1587 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1588 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1589 		iov[i].iov_len = 512;
1590 	}
1591 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1592 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1593 
1594 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1595 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1596 
1597 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1598 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1599 
1600 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1601 
1602 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1603 	g_io_done = false;
1604 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1605 
1606 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1607 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1608 	CU_ASSERT(rc == 0);
1609 	CU_ASSERT(g_io_done == false);
1610 
1611 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1612 	stub_complete_io(1);
1613 	CU_ASSERT(g_io_done == true);
1614 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1615 
1616 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1617 
1618 	/* for this test we will create the following conditions to hit the code path where
1619 	 * we are trying to send and IO following a split that has no iovs because we had to
1620 	 * trim them for alignment reasons.
1621 	 *
1622 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1623 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1624 	 *   position 30 and overshoot by 0x2e.
1625 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1626 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1627 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1628 	 *   and let the completion pick up the last 2 vectors.
1629 	 */
1630 	bdev->optimal_io_boundary = 32;
1631 	bdev->split_on_optimal_io_boundary = true;
1632 	g_io_done = false;
1633 
1634 	/* Init all parent IOVs to 0x212 */
1635 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1636 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1637 		iov[i].iov_len = 0x212;
1638 	}
1639 
1640 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1641 					   BDEV_IO_NUM_CHILD_IOV - 1);
1642 	/* expect 0-29 to be 1:1 with the parent iov */
1643 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1644 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1645 	}
1646 
1647 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1648 	 * where 0x1e is the amount we overshot the 16K boundary
1649 	 */
1650 	ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
1651 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1652 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1653 
1654 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1655 	 * shortened that take it to the next boundary and then a final one to get us to
1656 	 * 0x4200 bytes for the IO.
1657 	 */
1658 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1659 					   BDEV_IO_NUM_CHILD_IOV, 2);
1660 	/* position 30 picked up the remaining bytes to the next boundary */
1661 	ut_expected_io_set_iov(expected_io, 0,
1662 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1663 
1664 	/* position 31 picked the the rest of the trasnfer to get us to 0x4200 */
1665 	ut_expected_io_set_iov(expected_io, 1,
1666 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1667 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1668 
1669 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
1670 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1671 	CU_ASSERT(rc == 0);
1672 	CU_ASSERT(g_io_done == false);
1673 
1674 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1675 	stub_complete_io(1);
1676 	CU_ASSERT(g_io_done == false);
1677 
1678 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1679 	stub_complete_io(1);
1680 	CU_ASSERT(g_io_done == true);
1681 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1682 
1683 	spdk_put_io_channel(io_ch);
1684 	spdk_bdev_close(desc);
1685 	free_bdev(bdev);
1686 	spdk_bdev_finish(bdev_fini_cb, NULL);
1687 	poll_threads();
1688 }
1689 
1690 static void
1691 bdev_io_split_with_io_wait(void)
1692 {
1693 	struct spdk_bdev *bdev;
1694 	struct spdk_bdev_desc *desc = NULL;
1695 	struct spdk_io_channel *io_ch;
1696 	struct spdk_bdev_channel *channel;
1697 	struct spdk_bdev_mgmt_channel *mgmt_ch;
1698 	struct spdk_bdev_opts bdev_opts = {
1699 		.bdev_io_pool_size = 2,
1700 		.bdev_io_cache_size = 1,
1701 	};
1702 	struct iovec iov[3];
1703 	struct ut_expected_io *expected_io;
1704 	int rc;
1705 
1706 	rc = spdk_bdev_set_opts(&bdev_opts);
1707 	CU_ASSERT(rc == 0);
1708 	spdk_bdev_initialize(bdev_init_cb, NULL);
1709 
1710 	bdev = allocate_bdev("bdev0");
1711 
1712 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1713 	CU_ASSERT(rc == 0);
1714 	CU_ASSERT(desc != NULL);
1715 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1716 	io_ch = spdk_bdev_get_io_channel(desc);
1717 	CU_ASSERT(io_ch != NULL);
1718 	channel = spdk_io_channel_get_ctx(io_ch);
1719 	mgmt_ch = channel->shared_resource->mgmt_ch;
1720 
1721 	bdev->optimal_io_boundary = 16;
1722 	bdev->split_on_optimal_io_boundary = true;
1723 
1724 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1725 	CU_ASSERT(rc == 0);
1726 
1727 	/* Now test that a single-vector command is split correctly.
1728 	 * Offset 14, length 8, payload 0xF000
1729 	 *  Child - Offset 14, length 2, payload 0xF000
1730 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1731 	 *
1732 	 * Set up the expected values before calling spdk_bdev_read_blocks
1733 	 */
1734 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1735 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1736 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1737 
1738 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1739 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1740 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1741 
1742 	/* The following children will be submitted sequentially due to the capacity of
1743 	 * spdk_bdev_io.
1744 	 */
1745 
1746 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
1747 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1748 	CU_ASSERT(rc == 0);
1749 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
1750 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1751 
1752 	/* Completing the first read I/O will submit the first child */
1753 	stub_complete_io(1);
1754 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
1755 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1756 
1757 	/* Completing the first child will submit the second child */
1758 	stub_complete_io(1);
1759 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1760 
1761 	/* Complete the second child I/O.  This should result in our callback getting
1762 	 * invoked since the parent I/O is now complete.
1763 	 */
1764 	stub_complete_io(1);
1765 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1766 
1767 	/* Now set up a more complex, multi-vector command that needs to be split,
1768 	 *  including splitting iovecs.
1769 	 */
1770 	iov[0].iov_base = (void *)0x10000;
1771 	iov[0].iov_len = 512;
1772 	iov[1].iov_base = (void *)0x20000;
1773 	iov[1].iov_len = 20 * 512;
1774 	iov[2].iov_base = (void *)0x30000;
1775 	iov[2].iov_len = 11 * 512;
1776 
1777 	g_io_done = false;
1778 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1779 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1780 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1781 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1782 
1783 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1784 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1785 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1786 
1787 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1788 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1789 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1790 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1791 
1792 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
1793 	CU_ASSERT(rc == 0);
1794 	CU_ASSERT(g_io_done == false);
1795 
1796 	/* The following children will be submitted sequentially due to the capacity of
1797 	 * spdk_bdev_io.
1798 	 */
1799 
1800 	/* Completing the first child will submit the second child */
1801 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1802 	stub_complete_io(1);
1803 	CU_ASSERT(g_io_done == false);
1804 
1805 	/* Completing the second child will submit the third child */
1806 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1807 	stub_complete_io(1);
1808 	CU_ASSERT(g_io_done == false);
1809 
1810 	/* Completing the third child will result in our callback getting invoked
1811 	 * since the parent I/O is now complete.
1812 	 */
1813 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1814 	stub_complete_io(1);
1815 	CU_ASSERT(g_io_done == true);
1816 
1817 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1818 
1819 	spdk_put_io_channel(io_ch);
1820 	spdk_bdev_close(desc);
1821 	free_bdev(bdev);
1822 	spdk_bdev_finish(bdev_fini_cb, NULL);
1823 	poll_threads();
1824 }
1825 
1826 static void
1827 bdev_io_alignment(void)
1828 {
1829 	struct spdk_bdev *bdev;
1830 	struct spdk_bdev_desc *desc = NULL;
1831 	struct spdk_io_channel *io_ch;
1832 	struct spdk_bdev_opts bdev_opts = {
1833 		.bdev_io_pool_size = 20,
1834 		.bdev_io_cache_size = 2,
1835 	};
1836 	int rc;
1837 	void *buf = NULL;
1838 	struct iovec iovs[2];
1839 	int iovcnt;
1840 	uint64_t alignment;
1841 
1842 	rc = spdk_bdev_set_opts(&bdev_opts);
1843 	CU_ASSERT(rc == 0);
1844 	spdk_bdev_initialize(bdev_init_cb, NULL);
1845 
1846 	fn_table.submit_request = stub_submit_request_get_buf;
1847 	bdev = allocate_bdev("bdev0");
1848 
1849 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1850 	CU_ASSERT(rc == 0);
1851 	CU_ASSERT(desc != NULL);
1852 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1853 	io_ch = spdk_bdev_get_io_channel(desc);
1854 	CU_ASSERT(io_ch != NULL);
1855 
1856 	/* Create aligned buffer */
1857 	rc = posix_memalign(&buf, 4096, 8192);
1858 	SPDK_CU_ASSERT_FATAL(rc == 0);
1859 
1860 	/* Pass aligned single buffer with no alignment required */
1861 	alignment = 1;
1862 	bdev->required_alignment = spdk_u32log2(alignment);
1863 
1864 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
1865 	CU_ASSERT(rc == 0);
1866 	stub_complete_io(1);
1867 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1868 				    alignment));
1869 
1870 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
1871 	CU_ASSERT(rc == 0);
1872 	stub_complete_io(1);
1873 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1874 				    alignment));
1875 
1876 	/* Pass unaligned single buffer with no alignment required */
1877 	alignment = 1;
1878 	bdev->required_alignment = spdk_u32log2(alignment);
1879 
1880 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1881 	CU_ASSERT(rc == 0);
1882 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1883 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
1884 	stub_complete_io(1);
1885 
1886 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1887 	CU_ASSERT(rc == 0);
1888 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1889 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
1890 	stub_complete_io(1);
1891 
1892 	/* Pass unaligned single buffer with 512 alignment required */
1893 	alignment = 512;
1894 	bdev->required_alignment = spdk_u32log2(alignment);
1895 
1896 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1897 	CU_ASSERT(rc == 0);
1898 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1899 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1900 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1901 				    alignment));
1902 	stub_complete_io(1);
1903 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1904 
1905 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
1906 	CU_ASSERT(rc == 0);
1907 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1908 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1909 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1910 				    alignment));
1911 	stub_complete_io(1);
1912 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1913 
1914 	/* Pass unaligned single buffer with 4096 alignment required */
1915 	alignment = 4096;
1916 	bdev->required_alignment = spdk_u32log2(alignment);
1917 
1918 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
1919 	CU_ASSERT(rc == 0);
1920 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1921 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1922 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1923 				    alignment));
1924 	stub_complete_io(1);
1925 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1926 
1927 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
1928 	CU_ASSERT(rc == 0);
1929 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
1930 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1931 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1932 				    alignment));
1933 	stub_complete_io(1);
1934 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1935 
1936 	/* Pass aligned iovs with no alignment required */
1937 	alignment = 1;
1938 	bdev->required_alignment = spdk_u32log2(alignment);
1939 
1940 	iovcnt = 1;
1941 	iovs[0].iov_base = buf;
1942 	iovs[0].iov_len = 512;
1943 
1944 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1945 	CU_ASSERT(rc == 0);
1946 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1947 	stub_complete_io(1);
1948 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1949 
1950 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1951 	CU_ASSERT(rc == 0);
1952 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1953 	stub_complete_io(1);
1954 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1955 
1956 	/* Pass unaligned iovs with no alignment required */
1957 	alignment = 1;
1958 	bdev->required_alignment = spdk_u32log2(alignment);
1959 
1960 	iovcnt = 2;
1961 	iovs[0].iov_base = buf + 16;
1962 	iovs[0].iov_len = 256;
1963 	iovs[1].iov_base = buf + 16 + 256 + 32;
1964 	iovs[1].iov_len = 256;
1965 
1966 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1967 	CU_ASSERT(rc == 0);
1968 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1969 	stub_complete_io(1);
1970 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1971 
1972 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1973 	CU_ASSERT(rc == 0);
1974 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1975 	stub_complete_io(1);
1976 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
1977 
1978 	/* Pass unaligned iov with 2048 alignment required */
1979 	alignment = 2048;
1980 	bdev->required_alignment = spdk_u32log2(alignment);
1981 
1982 	iovcnt = 2;
1983 	iovs[0].iov_base = buf + 16;
1984 	iovs[0].iov_len = 256;
1985 	iovs[1].iov_base = buf + 16 + 256 + 32;
1986 	iovs[1].iov_len = 256;
1987 
1988 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1989 	CU_ASSERT(rc == 0);
1990 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
1991 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
1992 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
1993 				    alignment));
1994 	stub_complete_io(1);
1995 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
1996 
1997 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
1998 	CU_ASSERT(rc == 0);
1999 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
2000 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2001 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2002 				    alignment));
2003 	stub_complete_io(1);
2004 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2005 
2006 	/* Pass iov without allocated buffer without alignment required */
2007 	alignment = 1;
2008 	bdev->required_alignment = spdk_u32log2(alignment);
2009 
2010 	iovcnt = 1;
2011 	iovs[0].iov_base = NULL;
2012 	iovs[0].iov_len = 0;
2013 
2014 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2015 	CU_ASSERT(rc == 0);
2016 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2017 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2018 				    alignment));
2019 	stub_complete_io(1);
2020 
2021 	/* Pass iov without allocated buffer with 1024 alignment required */
2022 	alignment = 1024;
2023 	bdev->required_alignment = spdk_u32log2(alignment);
2024 
2025 	iovcnt = 1;
2026 	iovs[0].iov_base = NULL;
2027 	iovs[0].iov_len = 0;
2028 
2029 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2030 	CU_ASSERT(rc == 0);
2031 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2032 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2033 				    alignment));
2034 	stub_complete_io(1);
2035 
2036 	spdk_put_io_channel(io_ch);
2037 	spdk_bdev_close(desc);
2038 	free_bdev(bdev);
2039 	fn_table.submit_request = stub_submit_request;
2040 	spdk_bdev_finish(bdev_fini_cb, NULL);
2041 	poll_threads();
2042 
2043 	free(buf);
2044 }
2045 
2046 static void
2047 bdev_io_alignment_with_boundary(void)
2048 {
2049 	struct spdk_bdev *bdev;
2050 	struct spdk_bdev_desc *desc = NULL;
2051 	struct spdk_io_channel *io_ch;
2052 	struct spdk_bdev_opts bdev_opts = {
2053 		.bdev_io_pool_size = 20,
2054 		.bdev_io_cache_size = 2,
2055 	};
2056 	int rc;
2057 	void *buf = NULL;
2058 	struct iovec iovs[2];
2059 	int iovcnt;
2060 	uint64_t alignment;
2061 
2062 	rc = spdk_bdev_set_opts(&bdev_opts);
2063 	CU_ASSERT(rc == 0);
2064 	spdk_bdev_initialize(bdev_init_cb, NULL);
2065 
2066 	fn_table.submit_request = stub_submit_request_get_buf;
2067 	bdev = allocate_bdev("bdev0");
2068 
2069 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2070 	CU_ASSERT(rc == 0);
2071 	CU_ASSERT(desc != NULL);
2072 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2073 	io_ch = spdk_bdev_get_io_channel(desc);
2074 	CU_ASSERT(io_ch != NULL);
2075 
2076 	/* Create aligned buffer */
2077 	rc = posix_memalign(&buf, 4096, 131072);
2078 	SPDK_CU_ASSERT_FATAL(rc == 0);
2079 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2080 
2081 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
2082 	alignment = 512;
2083 	bdev->required_alignment = spdk_u32log2(alignment);
2084 	bdev->optimal_io_boundary = 2;
2085 	bdev->split_on_optimal_io_boundary = true;
2086 
2087 	iovcnt = 1;
2088 	iovs[0].iov_base = NULL;
2089 	iovs[0].iov_len = 512 * 3;
2090 
2091 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2092 	CU_ASSERT(rc == 0);
2093 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2094 	stub_complete_io(2);
2095 
2096 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
2097 	alignment = 512;
2098 	bdev->required_alignment = spdk_u32log2(alignment);
2099 	bdev->optimal_io_boundary = 16;
2100 	bdev->split_on_optimal_io_boundary = true;
2101 
2102 	iovcnt = 1;
2103 	iovs[0].iov_base = NULL;
2104 	iovs[0].iov_len = 512 * 16;
2105 
2106 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
2107 	CU_ASSERT(rc == 0);
2108 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2109 	stub_complete_io(2);
2110 
2111 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
2112 	alignment = 512;
2113 	bdev->required_alignment = spdk_u32log2(alignment);
2114 	bdev->optimal_io_boundary = 128;
2115 	bdev->split_on_optimal_io_boundary = true;
2116 
2117 	iovcnt = 1;
2118 	iovs[0].iov_base = buf + 16;
2119 	iovs[0].iov_len = 512 * 160;
2120 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
2121 	CU_ASSERT(rc == 0);
2122 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2123 	stub_complete_io(2);
2124 
2125 	/* 512 * 3 with 2 IO boundary */
2126 	alignment = 512;
2127 	bdev->required_alignment = spdk_u32log2(alignment);
2128 	bdev->optimal_io_boundary = 2;
2129 	bdev->split_on_optimal_io_boundary = true;
2130 
2131 	iovcnt = 2;
2132 	iovs[0].iov_base = buf + 16;
2133 	iovs[0].iov_len = 512;
2134 	iovs[1].iov_base = buf + 16 + 512 + 32;
2135 	iovs[1].iov_len = 1024;
2136 
2137 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2138 	CU_ASSERT(rc == 0);
2139 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2140 	stub_complete_io(2);
2141 
2142 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2143 	CU_ASSERT(rc == 0);
2144 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2145 	stub_complete_io(2);
2146 
2147 	/* 512 * 64 with 32 IO boundary */
2148 	bdev->optimal_io_boundary = 32;
2149 	iovcnt = 2;
2150 	iovs[0].iov_base = buf + 16;
2151 	iovs[0].iov_len = 16384;
2152 	iovs[1].iov_base = buf + 16 + 16384 + 32;
2153 	iovs[1].iov_len = 16384;
2154 
2155 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
2156 	CU_ASSERT(rc == 0);
2157 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2158 	stub_complete_io(3);
2159 
2160 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
2161 	CU_ASSERT(rc == 0);
2162 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2163 	stub_complete_io(3);
2164 
2165 	/* 512 * 160 with 32 IO boundary */
2166 	iovcnt = 1;
2167 	iovs[0].iov_base = buf + 16;
2168 	iovs[0].iov_len = 16384 + 65536;
2169 
2170 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
2171 	CU_ASSERT(rc == 0);
2172 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2173 	stub_complete_io(6);
2174 
2175 	spdk_put_io_channel(io_ch);
2176 	spdk_bdev_close(desc);
2177 	free_bdev(bdev);
2178 	fn_table.submit_request = stub_submit_request;
2179 	spdk_bdev_finish(bdev_fini_cb, NULL);
2180 	poll_threads();
2181 
2182 	free(buf);
2183 }
2184 
2185 static void
2186 histogram_status_cb(void *cb_arg, int status)
2187 {
2188 	g_status = status;
2189 }
2190 
2191 static void
2192 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
2193 {
2194 	g_status = status;
2195 	g_histogram = histogram;
2196 }
2197 
2198 static void
2199 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
2200 		   uint64_t total, uint64_t so_far)
2201 {
2202 	g_count += count;
2203 }
2204 
2205 static void
2206 bdev_histograms(void)
2207 {
2208 	struct spdk_bdev *bdev;
2209 	struct spdk_bdev_desc *desc = NULL;
2210 	struct spdk_io_channel *ch;
2211 	struct spdk_histogram_data *histogram;
2212 	uint8_t buf[4096];
2213 	int rc;
2214 
2215 	spdk_bdev_initialize(bdev_init_cb, NULL);
2216 
2217 	bdev = allocate_bdev("bdev");
2218 
2219 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
2220 	CU_ASSERT(rc == 0);
2221 	CU_ASSERT(desc != NULL);
2222 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2223 
2224 	ch = spdk_bdev_get_io_channel(desc);
2225 	CU_ASSERT(ch != NULL);
2226 
2227 	/* Enable histogram */
2228 	g_status = -1;
2229 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
2230 	poll_threads();
2231 	CU_ASSERT(g_status == 0);
2232 	CU_ASSERT(bdev->internal.histogram_enabled == true);
2233 
2234 	/* Allocate histogram */
2235 	histogram = spdk_histogram_data_alloc();
2236 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
2237 
2238 	/* Check if histogram is zeroed */
2239 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
2240 	poll_threads();
2241 	CU_ASSERT(g_status == 0);
2242 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
2243 
2244 	g_count = 0;
2245 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
2246 
2247 	CU_ASSERT(g_count == 0);
2248 
2249 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
2250 	CU_ASSERT(rc == 0);
2251 
2252 	spdk_delay_us(10);
2253 	stub_complete_io(1);
2254 	poll_threads();
2255 
2256 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
2257 	CU_ASSERT(rc == 0);
2258 
2259 	spdk_delay_us(10);
2260 	stub_complete_io(1);
2261 	poll_threads();
2262 
2263 	/* Check if histogram gathered data from all I/O channels */
2264 	g_histogram = NULL;
2265 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
2266 	poll_threads();
2267 	CU_ASSERT(g_status == 0);
2268 	CU_ASSERT(bdev->internal.histogram_enabled == true);
2269 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
2270 
2271 	g_count = 0;
2272 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
2273 	CU_ASSERT(g_count == 2);
2274 
2275 	/* Disable histogram */
2276 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
2277 	poll_threads();
2278 	CU_ASSERT(g_status == 0);
2279 	CU_ASSERT(bdev->internal.histogram_enabled == false);
2280 
2281 	/* Try to run histogram commands on disabled bdev */
2282 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
2283 	poll_threads();
2284 	CU_ASSERT(g_status == -EFAULT);
2285 
2286 	spdk_histogram_data_free(histogram);
2287 	spdk_put_io_channel(ch);
2288 	spdk_bdev_close(desc);
2289 	free_bdev(bdev);
2290 	spdk_bdev_finish(bdev_fini_cb, NULL);
2291 	poll_threads();
2292 }
2293 
2294 static void
2295 _bdev_compare(bool emulated)
2296 {
2297 	struct spdk_bdev *bdev;
2298 	struct spdk_bdev_desc *desc = NULL;
2299 	struct spdk_io_channel *ioch;
2300 	struct ut_expected_io *expected_io;
2301 	uint64_t offset, num_blocks;
2302 	uint32_t num_completed;
2303 	char aa_buf[512];
2304 	char bb_buf[512];
2305 	struct iovec compare_iov;
2306 	uint8_t io_type;
2307 	int rc;
2308 
2309 	if (emulated) {
2310 		io_type = SPDK_BDEV_IO_TYPE_READ;
2311 	} else {
2312 		io_type = SPDK_BDEV_IO_TYPE_COMPARE;
2313 	}
2314 
2315 	memset(aa_buf, 0xaa, sizeof(aa_buf));
2316 	memset(bb_buf, 0xbb, sizeof(bb_buf));
2317 
2318 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
2319 
2320 	spdk_bdev_initialize(bdev_init_cb, NULL);
2321 	fn_table.submit_request = stub_submit_request_get_buf;
2322 	bdev = allocate_bdev("bdev");
2323 
2324 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
2325 	CU_ASSERT_EQUAL(rc, 0);
2326 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2327 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2328 	ioch = spdk_bdev_get_io_channel(desc);
2329 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
2330 
2331 	fn_table.submit_request = stub_submit_request_get_buf;
2332 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2333 
2334 	offset = 50;
2335 	num_blocks = 1;
2336 	compare_iov.iov_base = aa_buf;
2337 	compare_iov.iov_len = sizeof(aa_buf);
2338 
2339 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
2340 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2341 
2342 	g_io_done = false;
2343 	g_compare_read_buf = aa_buf;
2344 	g_compare_read_buf_len = sizeof(aa_buf);
2345 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
2346 	CU_ASSERT_EQUAL(rc, 0);
2347 	num_completed = stub_complete_io(1);
2348 	CU_ASSERT_EQUAL(num_completed, 1);
2349 	CU_ASSERT(g_io_done == true);
2350 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2351 
2352 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
2353 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2354 
2355 	g_io_done = false;
2356 	g_compare_read_buf = bb_buf;
2357 	g_compare_read_buf_len = sizeof(bb_buf);
2358 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
2359 	CU_ASSERT_EQUAL(rc, 0);
2360 	num_completed = stub_complete_io(1);
2361 	CU_ASSERT_EQUAL(num_completed, 1);
2362 	CU_ASSERT(g_io_done == true);
2363 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
2364 
2365 	spdk_put_io_channel(ioch);
2366 	spdk_bdev_close(desc);
2367 	free_bdev(bdev);
2368 	fn_table.submit_request = stub_submit_request;
2369 	spdk_bdev_finish(bdev_fini_cb, NULL);
2370 	poll_threads();
2371 
2372 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
2373 
2374 	g_compare_read_buf = NULL;
2375 }
2376 
2377 static void
2378 bdev_compare(void)
2379 {
2380 	_bdev_compare(true);
2381 	_bdev_compare(false);
2382 }
2383 
2384 static void
2385 bdev_compare_and_write(void)
2386 {
2387 	struct spdk_bdev *bdev;
2388 	struct spdk_bdev_desc *desc = NULL;
2389 	struct spdk_io_channel *ioch;
2390 	struct ut_expected_io *expected_io;
2391 	uint64_t offset, num_blocks;
2392 	uint32_t num_completed;
2393 	char aa_buf[512];
2394 	char bb_buf[512];
2395 	char cc_buf[512];
2396 	char write_buf[512];
2397 	struct iovec compare_iov;
2398 	struct iovec write_iov;
2399 	int rc;
2400 
2401 	memset(aa_buf, 0xaa, sizeof(aa_buf));
2402 	memset(bb_buf, 0xbb, sizeof(bb_buf));
2403 	memset(cc_buf, 0xcc, sizeof(cc_buf));
2404 
2405 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
2406 
2407 	spdk_bdev_initialize(bdev_init_cb, NULL);
2408 	fn_table.submit_request = stub_submit_request_get_buf;
2409 	bdev = allocate_bdev("bdev");
2410 
2411 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
2412 	CU_ASSERT_EQUAL(rc, 0);
2413 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2414 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2415 	ioch = spdk_bdev_get_io_channel(desc);
2416 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
2417 
2418 	fn_table.submit_request = stub_submit_request_get_buf;
2419 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2420 
2421 	offset = 50;
2422 	num_blocks = 1;
2423 	compare_iov.iov_base = aa_buf;
2424 	compare_iov.iov_len = sizeof(aa_buf);
2425 	write_iov.iov_base = bb_buf;
2426 	write_iov.iov_len = sizeof(bb_buf);
2427 
2428 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
2429 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2430 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
2431 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2432 
2433 	g_io_done = false;
2434 	g_compare_read_buf = aa_buf;
2435 	g_compare_read_buf_len = sizeof(aa_buf);
2436 	memset(write_buf, 0, sizeof(write_buf));
2437 	g_compare_write_buf = write_buf;
2438 	g_compare_write_buf_len = sizeof(write_buf);
2439 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
2440 			offset, num_blocks, io_done, NULL);
2441 	/* Trigger range locking */
2442 	poll_threads();
2443 	CU_ASSERT_EQUAL(rc, 0);
2444 	num_completed = stub_complete_io(1);
2445 	CU_ASSERT_EQUAL(num_completed, 1);
2446 	CU_ASSERT(g_io_done == false);
2447 	num_completed = stub_complete_io(1);
2448 	/* Trigger range unlocking */
2449 	poll_threads();
2450 	CU_ASSERT_EQUAL(num_completed, 1);
2451 	CU_ASSERT(g_io_done == true);
2452 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
2453 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
2454 
2455 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
2456 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2457 
2458 	g_io_done = false;
2459 	g_compare_read_buf = cc_buf;
2460 	g_compare_read_buf_len = sizeof(cc_buf);
2461 	memset(write_buf, 0, sizeof(write_buf));
2462 	g_compare_write_buf = write_buf;
2463 	g_compare_write_buf_len = sizeof(write_buf);
2464 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
2465 			offset, num_blocks, io_done, NULL);
2466 	/* Trigger range locking */
2467 	poll_threads();
2468 	CU_ASSERT_EQUAL(rc, 0);
2469 	num_completed = stub_complete_io(1);
2470 	/* Trigger range unlocking earlier because we expect error here */
2471 	poll_threads();
2472 	CU_ASSERT_EQUAL(num_completed, 1);
2473 	CU_ASSERT(g_io_done == true);
2474 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
2475 	num_completed = stub_complete_io(1);
2476 	CU_ASSERT_EQUAL(num_completed, 0);
2477 
2478 	spdk_put_io_channel(ioch);
2479 	spdk_bdev_close(desc);
2480 	free_bdev(bdev);
2481 	fn_table.submit_request = stub_submit_request;
2482 	spdk_bdev_finish(bdev_fini_cb, NULL);
2483 	poll_threads();
2484 
2485 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
2486 
2487 	g_compare_read_buf = NULL;
2488 	g_compare_write_buf = NULL;
2489 }
2490 
2491 static void
2492 bdev_write_zeroes(void)
2493 {
2494 	struct spdk_bdev *bdev;
2495 	struct spdk_bdev_desc *desc = NULL;
2496 	struct spdk_io_channel *ioch;
2497 	struct ut_expected_io *expected_io;
2498 	uint64_t offset, num_io_blocks, num_blocks;
2499 	uint32_t num_completed, num_requests;
2500 	int rc;
2501 
2502 	spdk_bdev_initialize(bdev_init_cb, NULL);
2503 	bdev = allocate_bdev("bdev");
2504 
2505 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
2506 	CU_ASSERT_EQUAL(rc, 0);
2507 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2508 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2509 	ioch = spdk_bdev_get_io_channel(desc);
2510 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
2511 
2512 	fn_table.submit_request = stub_submit_request;
2513 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2514 
2515 	/* First test that if the bdev supports write_zeroes, the request won't be split */
2516 	bdev->md_len = 0;
2517 	bdev->blocklen = 4096;
2518 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
2519 
2520 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
2521 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2522 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2523 	CU_ASSERT_EQUAL(rc, 0);
2524 	num_completed = stub_complete_io(1);
2525 	CU_ASSERT_EQUAL(num_completed, 1);
2526 
2527 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
2528 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
2529 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
2530 	num_requests = 2;
2531 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
2532 
2533 	for (offset = 0; offset < num_requests; ++offset) {
2534 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
2535 						   offset * num_io_blocks, num_io_blocks, 0);
2536 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2537 	}
2538 
2539 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2540 	CU_ASSERT_EQUAL(rc, 0);
2541 	num_completed = stub_complete_io(num_requests);
2542 	CU_ASSERT_EQUAL(num_completed, num_requests);
2543 
2544 	/* Check that the splitting is correct if bdev has interleaved metadata */
2545 	bdev->md_interleave = true;
2546 	bdev->md_len = 64;
2547 	bdev->blocklen = 4096 + 64;
2548 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
2549 
2550 	num_requests = offset = 0;
2551 	while (offset < num_blocks) {
2552 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
2553 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
2554 						   offset, num_io_blocks, 0);
2555 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2556 		offset += num_io_blocks;
2557 		num_requests++;
2558 	}
2559 
2560 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2561 	CU_ASSERT_EQUAL(rc, 0);
2562 	num_completed = stub_complete_io(num_requests);
2563 	CU_ASSERT_EQUAL(num_completed, num_requests);
2564 	num_completed = stub_complete_io(num_requests);
2565 	assert(num_completed == 0);
2566 
2567 	/* Check the the same for separate metadata buffer */
2568 	bdev->md_interleave = false;
2569 	bdev->md_len = 64;
2570 	bdev->blocklen = 4096;
2571 
2572 	num_requests = offset = 0;
2573 	while (offset < num_blocks) {
2574 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
2575 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
2576 						   offset, num_io_blocks, 0);
2577 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
2578 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2579 		offset += num_io_blocks;
2580 		num_requests++;
2581 	}
2582 
2583 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
2584 	CU_ASSERT_EQUAL(rc, 0);
2585 	num_completed = stub_complete_io(num_requests);
2586 	CU_ASSERT_EQUAL(num_completed, num_requests);
2587 
2588 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
2589 	spdk_put_io_channel(ioch);
2590 	spdk_bdev_close(desc);
2591 	free_bdev(bdev);
2592 	spdk_bdev_finish(bdev_fini_cb, NULL);
2593 	poll_threads();
2594 }
2595 
2596 static void
2597 bdev_open_while_hotremove(void)
2598 {
2599 	struct spdk_bdev *bdev;
2600 	struct spdk_bdev_desc *desc[2] = {};
2601 	int rc;
2602 
2603 	bdev = allocate_bdev("bdev");
2604 
2605 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
2606 	CU_ASSERT(rc == 0);
2607 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
2608 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
2609 
2610 	spdk_bdev_unregister(bdev, NULL, NULL);
2611 
2612 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
2613 	CU_ASSERT(rc == -ENODEV);
2614 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
2615 
2616 	spdk_bdev_close(desc[0]);
2617 	free_bdev(bdev);
2618 }
2619 
2620 static void
2621 bdev_close_while_hotremove(void)
2622 {
2623 	struct spdk_bdev *bdev;
2624 	struct spdk_bdev_desc *desc = NULL;
2625 	int rc = 0;
2626 
2627 	bdev = allocate_bdev("bdev");
2628 
2629 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
2630 	CU_ASSERT_EQUAL(rc, 0);
2631 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2632 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2633 
2634 	/* Simulate hot-unplug by unregistering bdev */
2635 	g_event_type1 = 0xFF;
2636 	g_unregister_arg = NULL;
2637 	g_unregister_rc = -1;
2638 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
2639 	/* Close device while remove event is in flight */
2640 	spdk_bdev_close(desc);
2641 
2642 	/* Ensure that unregister callback is delayed */
2643 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
2644 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
2645 
2646 	poll_threads();
2647 
2648 	/* Event callback shall not be issued because device was closed */
2649 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
2650 	/* Unregister callback is issued */
2651 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
2652 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
2653 
2654 	free_bdev(bdev);
2655 }
2656 
2657 static void
2658 bdev_open_ext(void)
2659 {
2660 	struct spdk_bdev *bdev;
2661 	struct spdk_bdev_desc *desc1 = NULL;
2662 	struct spdk_bdev_desc *desc2 = NULL;
2663 	int rc = 0;
2664 
2665 	bdev = allocate_bdev("bdev");
2666 
2667 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
2668 	CU_ASSERT_EQUAL(rc, -EINVAL);
2669 
2670 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
2671 	CU_ASSERT_EQUAL(rc, 0);
2672 
2673 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
2674 	CU_ASSERT_EQUAL(rc, 0);
2675 
2676 	g_event_type1 = 0xFF;
2677 	g_event_type2 = 0xFF;
2678 
2679 	/* Simulate hot-unplug by unregistering bdev */
2680 	spdk_bdev_unregister(bdev, NULL, NULL);
2681 	poll_threads();
2682 
2683 	/* Check if correct events have been triggered in event callback fn */
2684 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
2685 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
2686 
2687 	free_bdev(bdev);
2688 	poll_threads();
2689 }
2690 
2691 struct timeout_io_cb_arg {
2692 	struct iovec iov;
2693 	uint8_t type;
2694 };
2695 
2696 static int
2697 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
2698 {
2699 	struct spdk_bdev_io *bdev_io;
2700 	int n = 0;
2701 
2702 	if (!ch) {
2703 		return -1;
2704 	}
2705 
2706 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
2707 		n++;
2708 	}
2709 
2710 	return n;
2711 }
2712 
2713 static void
2714 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
2715 {
2716 	struct timeout_io_cb_arg *ctx = cb_arg;
2717 
2718 	ctx->type = bdev_io->type;
2719 	ctx->iov.iov_base = bdev_io->iov.iov_base;
2720 	ctx->iov.iov_len = bdev_io->iov.iov_len;
2721 }
2722 
2723 static void
2724 bdev_set_io_timeout(void)
2725 {
2726 	struct spdk_bdev *bdev;
2727 	struct spdk_bdev_desc *desc = NULL;
2728 	struct spdk_io_channel *io_ch = NULL;
2729 	struct spdk_bdev_channel *bdev_ch = NULL;
2730 	struct timeout_io_cb_arg cb_arg;
2731 
2732 	spdk_bdev_initialize(bdev_init_cb, NULL);
2733 
2734 	bdev = allocate_bdev("bdev");
2735 
2736 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
2737 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2738 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2739 
2740 	io_ch = spdk_bdev_get_io_channel(desc);
2741 	CU_ASSERT(io_ch != NULL);
2742 
2743 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
2744 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
2745 
2746 	/* This is the part1.
2747 	 * We will check the bdev_ch->io_submitted list
2748 	 * TO make sure that it can link IOs and only the user submitted IOs
2749 	 */
2750 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
2751 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
2752 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
2753 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
2754 	stub_complete_io(1);
2755 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
2756 	stub_complete_io(1);
2757 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
2758 
2759 	/* Split IO */
2760 	bdev->optimal_io_boundary = 16;
2761 	bdev->split_on_optimal_io_boundary = true;
2762 
2763 	/* Now test that a single-vector command is split correctly.
2764 	 * Offset 14, length 8, payload 0xF000
2765 	 *  Child - Offset 14, length 2, payload 0xF000
2766 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2767 	 *
2768 	 * Set up the expected values before calling spdk_bdev_read_blocks
2769 	 */
2770 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
2771 	/* We count all submitted IOs including IO that are generated by splitting. */
2772 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
2773 	stub_complete_io(1);
2774 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
2775 	stub_complete_io(1);
2776 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
2777 
2778 	/* Also include the reset IO */
2779 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
2780 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
2781 	poll_threads();
2782 	stub_complete_io(1);
2783 	poll_threads();
2784 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
2785 
2786 	/* This is part2
2787 	 * Test the desc timeout poller register
2788 	 */
2789 
2790 	/* Successfully set the timeout */
2791 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
2792 	CU_ASSERT(desc->io_timeout_poller != NULL);
2793 	CU_ASSERT(desc->timeout_in_sec == 30);
2794 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
2795 	CU_ASSERT(desc->cb_arg == &cb_arg);
2796 
2797 	/* Change the timeout limit */
2798 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
2799 	CU_ASSERT(desc->io_timeout_poller != NULL);
2800 	CU_ASSERT(desc->timeout_in_sec == 20);
2801 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
2802 	CU_ASSERT(desc->cb_arg == &cb_arg);
2803 
2804 	/* Disable the timeout */
2805 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
2806 	CU_ASSERT(desc->io_timeout_poller == NULL);
2807 
2808 	/* This the part3
2809 	 * We will test to catch timeout IO and check whether the IO is
2810 	 * the submitted one.
2811 	 */
2812 	memset(&cb_arg, 0, sizeof(cb_arg));
2813 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
2814 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
2815 
2816 	/* Don't reach the limit */
2817 	spdk_delay_us(15 * spdk_get_ticks_hz());
2818 	poll_threads();
2819 	CU_ASSERT(cb_arg.type == 0);
2820 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
2821 	CU_ASSERT(cb_arg.iov.iov_len == 0);
2822 
2823 	/* 15 + 15 = 30 reach the limit */
2824 	spdk_delay_us(15 * spdk_get_ticks_hz());
2825 	poll_threads();
2826 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
2827 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
2828 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
2829 	stub_complete_io(1);
2830 
2831 	/* Use the same split IO above and check the IO */
2832 	memset(&cb_arg, 0, sizeof(cb_arg));
2833 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
2834 
2835 	/* The first child complete in time */
2836 	spdk_delay_us(15 * spdk_get_ticks_hz());
2837 	poll_threads();
2838 	stub_complete_io(1);
2839 	CU_ASSERT(cb_arg.type == 0);
2840 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
2841 	CU_ASSERT(cb_arg.iov.iov_len == 0);
2842 
2843 	/* The second child reach the limit */
2844 	spdk_delay_us(15 * spdk_get_ticks_hz());
2845 	poll_threads();
2846 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
2847 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
2848 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
2849 	stub_complete_io(1);
2850 
2851 	/* Also include the reset IO */
2852 	memset(&cb_arg, 0, sizeof(cb_arg));
2853 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
2854 	spdk_delay_us(30 * spdk_get_ticks_hz());
2855 	poll_threads();
2856 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
2857 	stub_complete_io(1);
2858 	poll_threads();
2859 
2860 	spdk_put_io_channel(io_ch);
2861 	spdk_bdev_close(desc);
2862 	free_bdev(bdev);
2863 	spdk_bdev_finish(bdev_fini_cb, NULL);
2864 	poll_threads();
2865 }
2866 
2867 static void
2868 lba_range_overlap(void)
2869 {
2870 	struct lba_range r1, r2;
2871 
2872 	r1.offset = 100;
2873 	r1.length = 50;
2874 
2875 	r2.offset = 0;
2876 	r2.length = 1;
2877 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2878 
2879 	r2.offset = 0;
2880 	r2.length = 100;
2881 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2882 
2883 	r2.offset = 0;
2884 	r2.length = 110;
2885 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2886 
2887 	r2.offset = 100;
2888 	r2.length = 10;
2889 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2890 
2891 	r2.offset = 110;
2892 	r2.length = 20;
2893 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2894 
2895 	r2.offset = 140;
2896 	r2.length = 150;
2897 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2898 
2899 	r2.offset = 130;
2900 	r2.length = 200;
2901 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
2902 
2903 	r2.offset = 150;
2904 	r2.length = 100;
2905 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2906 
2907 	r2.offset = 110;
2908 	r2.length = 0;
2909 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
2910 }
2911 
2912 static bool g_lock_lba_range_done;
2913 static bool g_unlock_lba_range_done;
2914 
2915 static void
2916 lock_lba_range_done(void *ctx, int status)
2917 {
2918 	g_lock_lba_range_done = true;
2919 }
2920 
2921 static void
2922 unlock_lba_range_done(void *ctx, int status)
2923 {
2924 	g_unlock_lba_range_done = true;
2925 }
2926 
2927 static void
2928 lock_lba_range_check_ranges(void)
2929 {
2930 	struct spdk_bdev *bdev;
2931 	struct spdk_bdev_desc *desc = NULL;
2932 	struct spdk_io_channel *io_ch;
2933 	struct spdk_bdev_channel *channel;
2934 	struct lba_range *range;
2935 	int ctx1;
2936 	int rc;
2937 
2938 	spdk_bdev_initialize(bdev_init_cb, NULL);
2939 
2940 	bdev = allocate_bdev("bdev0");
2941 
2942 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2943 	CU_ASSERT(rc == 0);
2944 	CU_ASSERT(desc != NULL);
2945 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2946 	io_ch = spdk_bdev_get_io_channel(desc);
2947 	CU_ASSERT(io_ch != NULL);
2948 	channel = spdk_io_channel_get_ctx(io_ch);
2949 
2950 	g_lock_lba_range_done = false;
2951 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
2952 	CU_ASSERT(rc == 0);
2953 	poll_threads();
2954 
2955 	CU_ASSERT(g_lock_lba_range_done == true);
2956 	range = TAILQ_FIRST(&channel->locked_ranges);
2957 	SPDK_CU_ASSERT_FATAL(range != NULL);
2958 	CU_ASSERT(range->offset == 20);
2959 	CU_ASSERT(range->length == 10);
2960 	CU_ASSERT(range->owner_ch == channel);
2961 
2962 	/* Unlocks must exactly match a lock. */
2963 	g_unlock_lba_range_done = false;
2964 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
2965 	CU_ASSERT(rc == -EINVAL);
2966 	CU_ASSERT(g_unlock_lba_range_done == false);
2967 
2968 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
2969 	CU_ASSERT(rc == 0);
2970 	spdk_delay_us(100);
2971 	poll_threads();
2972 
2973 	CU_ASSERT(g_unlock_lba_range_done == true);
2974 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
2975 
2976 	spdk_put_io_channel(io_ch);
2977 	spdk_bdev_close(desc);
2978 	free_bdev(bdev);
2979 	spdk_bdev_finish(bdev_fini_cb, NULL);
2980 	poll_threads();
2981 }
2982 
2983 static void
2984 lock_lba_range_with_io_outstanding(void)
2985 {
2986 	struct spdk_bdev *bdev;
2987 	struct spdk_bdev_desc *desc = NULL;
2988 	struct spdk_io_channel *io_ch;
2989 	struct spdk_bdev_channel *channel;
2990 	struct lba_range *range;
2991 	char buf[4096];
2992 	int ctx1;
2993 	int rc;
2994 
2995 	spdk_bdev_initialize(bdev_init_cb, NULL);
2996 
2997 	bdev = allocate_bdev("bdev0");
2998 
2999 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3000 	CU_ASSERT(rc == 0);
3001 	CU_ASSERT(desc != NULL);
3002 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3003 	io_ch = spdk_bdev_get_io_channel(desc);
3004 	CU_ASSERT(io_ch != NULL);
3005 	channel = spdk_io_channel_get_ctx(io_ch);
3006 
3007 	g_io_done = false;
3008 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
3009 	CU_ASSERT(rc == 0);
3010 
3011 	g_lock_lba_range_done = false;
3012 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3013 	CU_ASSERT(rc == 0);
3014 	poll_threads();
3015 
3016 	/* The lock should immediately become valid, since there are no outstanding
3017 	 * write I/O.
3018 	 */
3019 	CU_ASSERT(g_io_done == false);
3020 	CU_ASSERT(g_lock_lba_range_done == true);
3021 	range = TAILQ_FIRST(&channel->locked_ranges);
3022 	SPDK_CU_ASSERT_FATAL(range != NULL);
3023 	CU_ASSERT(range->offset == 20);
3024 	CU_ASSERT(range->length == 10);
3025 	CU_ASSERT(range->owner_ch == channel);
3026 	CU_ASSERT(range->locked_ctx == &ctx1);
3027 
3028 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3029 	CU_ASSERT(rc == 0);
3030 	stub_complete_io(1);
3031 	spdk_delay_us(100);
3032 	poll_threads();
3033 
3034 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3035 
3036 	/* Now try again, but with a write I/O. */
3037 	g_io_done = false;
3038 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
3039 	CU_ASSERT(rc == 0);
3040 
3041 	g_lock_lba_range_done = false;
3042 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3043 	CU_ASSERT(rc == 0);
3044 	poll_threads();
3045 
3046 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
3047 	 * But note that the range should be on the channel's locked_list, to make sure no
3048 	 * new write I/O are started.
3049 	 */
3050 	CU_ASSERT(g_io_done == false);
3051 	CU_ASSERT(g_lock_lba_range_done == false);
3052 	range = TAILQ_FIRST(&channel->locked_ranges);
3053 	SPDK_CU_ASSERT_FATAL(range != NULL);
3054 	CU_ASSERT(range->offset == 20);
3055 	CU_ASSERT(range->length == 10);
3056 
3057 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
3058 	 * our callback was invoked).
3059 	 */
3060 	stub_complete_io(1);
3061 	spdk_delay_us(100);
3062 	poll_threads();
3063 	CU_ASSERT(g_io_done == true);
3064 	CU_ASSERT(g_lock_lba_range_done == true);
3065 
3066 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3067 	CU_ASSERT(rc == 0);
3068 	poll_threads();
3069 
3070 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3071 
3072 	spdk_put_io_channel(io_ch);
3073 	spdk_bdev_close(desc);
3074 	free_bdev(bdev);
3075 	spdk_bdev_finish(bdev_fini_cb, NULL);
3076 	poll_threads();
3077 }
3078 
3079 static void
3080 lock_lba_range_overlapped(void)
3081 {
3082 	struct spdk_bdev *bdev;
3083 	struct spdk_bdev_desc *desc = NULL;
3084 	struct spdk_io_channel *io_ch;
3085 	struct spdk_bdev_channel *channel;
3086 	struct lba_range *range;
3087 	int ctx1;
3088 	int rc;
3089 
3090 	spdk_bdev_initialize(bdev_init_cb, NULL);
3091 
3092 	bdev = allocate_bdev("bdev0");
3093 
3094 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3095 	CU_ASSERT(rc == 0);
3096 	CU_ASSERT(desc != NULL);
3097 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3098 	io_ch = spdk_bdev_get_io_channel(desc);
3099 	CU_ASSERT(io_ch != NULL);
3100 	channel = spdk_io_channel_get_ctx(io_ch);
3101 
3102 	/* Lock range 20-29. */
3103 	g_lock_lba_range_done = false;
3104 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3105 	CU_ASSERT(rc == 0);
3106 	poll_threads();
3107 
3108 	CU_ASSERT(g_lock_lba_range_done == true);
3109 	range = TAILQ_FIRST(&channel->locked_ranges);
3110 	SPDK_CU_ASSERT_FATAL(range != NULL);
3111 	CU_ASSERT(range->offset == 20);
3112 	CU_ASSERT(range->length == 10);
3113 
3114 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
3115 	 * 20-29.
3116 	 */
3117 	g_lock_lba_range_done = false;
3118 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
3119 	CU_ASSERT(rc == 0);
3120 	poll_threads();
3121 
3122 	CU_ASSERT(g_lock_lba_range_done == false);
3123 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3124 	SPDK_CU_ASSERT_FATAL(range != NULL);
3125 	CU_ASSERT(range->offset == 25);
3126 	CU_ASSERT(range->length == 15);
3127 
3128 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
3129 	 * no longer overlaps with an active lock.
3130 	 */
3131 	g_unlock_lba_range_done = false;
3132 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3133 	CU_ASSERT(rc == 0);
3134 	poll_threads();
3135 
3136 	CU_ASSERT(g_unlock_lba_range_done == true);
3137 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
3138 	range = TAILQ_FIRST(&channel->locked_ranges);
3139 	SPDK_CU_ASSERT_FATAL(range != NULL);
3140 	CU_ASSERT(range->offset == 25);
3141 	CU_ASSERT(range->length == 15);
3142 
3143 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
3144 	 * currently active 25-39 lock.
3145 	 */
3146 	g_lock_lba_range_done = false;
3147 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
3148 	CU_ASSERT(rc == 0);
3149 	poll_threads();
3150 
3151 	CU_ASSERT(g_lock_lba_range_done == true);
3152 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
3153 	SPDK_CU_ASSERT_FATAL(range != NULL);
3154 	range = TAILQ_NEXT(range, tailq);
3155 	SPDK_CU_ASSERT_FATAL(range != NULL);
3156 	CU_ASSERT(range->offset == 40);
3157 	CU_ASSERT(range->length == 20);
3158 
3159 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
3160 	g_lock_lba_range_done = false;
3161 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
3162 	CU_ASSERT(rc == 0);
3163 	poll_threads();
3164 
3165 	CU_ASSERT(g_lock_lba_range_done == false);
3166 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3167 	SPDK_CU_ASSERT_FATAL(range != NULL);
3168 	CU_ASSERT(range->offset == 35);
3169 	CU_ASSERT(range->length == 10);
3170 
3171 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
3172 	 * the 40-59 lock is still active.
3173 	 */
3174 	g_unlock_lba_range_done = false;
3175 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
3176 	CU_ASSERT(rc == 0);
3177 	poll_threads();
3178 
3179 	CU_ASSERT(g_unlock_lba_range_done == true);
3180 	CU_ASSERT(g_lock_lba_range_done == false);
3181 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3182 	SPDK_CU_ASSERT_FATAL(range != NULL);
3183 	CU_ASSERT(range->offset == 35);
3184 	CU_ASSERT(range->length == 10);
3185 
3186 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
3187 	 * no longer any active overlapping locks.
3188 	 */
3189 	g_unlock_lba_range_done = false;
3190 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
3191 	CU_ASSERT(rc == 0);
3192 	poll_threads();
3193 
3194 	CU_ASSERT(g_unlock_lba_range_done == true);
3195 	CU_ASSERT(g_lock_lba_range_done == true);
3196 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
3197 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
3198 	SPDK_CU_ASSERT_FATAL(range != NULL);
3199 	CU_ASSERT(range->offset == 35);
3200 	CU_ASSERT(range->length == 10);
3201 
3202 	/* Finally, unlock 35-44. */
3203 	g_unlock_lba_range_done = false;
3204 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
3205 	CU_ASSERT(rc == 0);
3206 	poll_threads();
3207 
3208 	CU_ASSERT(g_unlock_lba_range_done == true);
3209 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
3210 
3211 	spdk_put_io_channel(io_ch);
3212 	spdk_bdev_close(desc);
3213 	free_bdev(bdev);
3214 	spdk_bdev_finish(bdev_fini_cb, NULL);
3215 	poll_threads();
3216 }
3217 
3218 static void
3219 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
3220 {
3221 	g_abort_done = true;
3222 	g_abort_status = bdev_io->internal.status;
3223 	spdk_bdev_free_io(bdev_io);
3224 }
3225 
3226 static void
3227 bdev_io_abort(void)
3228 {
3229 	struct spdk_bdev *bdev;
3230 	struct spdk_bdev_desc *desc = NULL;
3231 	struct spdk_io_channel *io_ch;
3232 	struct spdk_bdev_channel *channel;
3233 	struct spdk_bdev_mgmt_channel *mgmt_ch;
3234 	struct spdk_bdev_opts bdev_opts = {
3235 		.bdev_io_pool_size = 7,
3236 		.bdev_io_cache_size = 2,
3237 	};
3238 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
3239 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
3240 	int rc;
3241 
3242 	rc = spdk_bdev_set_opts(&bdev_opts);
3243 	CU_ASSERT(rc == 0);
3244 	spdk_bdev_initialize(bdev_init_cb, NULL);
3245 
3246 	bdev = allocate_bdev("bdev0");
3247 
3248 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3249 	CU_ASSERT(rc == 0);
3250 	CU_ASSERT(desc != NULL);
3251 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3252 	io_ch = spdk_bdev_get_io_channel(desc);
3253 	CU_ASSERT(io_ch != NULL);
3254 	channel = spdk_io_channel_get_ctx(io_ch);
3255 	mgmt_ch = channel->shared_resource->mgmt_ch;
3256 
3257 	g_abort_done = false;
3258 
3259 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
3260 
3261 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3262 	CU_ASSERT(rc == -ENOTSUP);
3263 
3264 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
3265 
3266 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
3267 	CU_ASSERT(rc == 0);
3268 	CU_ASSERT(g_abort_done == true);
3269 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
3270 
3271 	/* Test the case that the target I/O was successfully aborted. */
3272 	g_io_done = false;
3273 
3274 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
3275 	CU_ASSERT(rc == 0);
3276 	CU_ASSERT(g_io_done == false);
3277 
3278 	g_abort_done = false;
3279 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3280 
3281 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3282 	CU_ASSERT(rc == 0);
3283 	CU_ASSERT(g_io_done == true);
3284 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3285 	stub_complete_io(1);
3286 	CU_ASSERT(g_abort_done == true);
3287 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3288 
3289 	/* Test the case that the target I/O was not aborted because it completed
3290 	 * in the middle of execution of the abort.
3291 	 */
3292 	g_io_done = false;
3293 
3294 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
3295 	CU_ASSERT(rc == 0);
3296 	CU_ASSERT(g_io_done == false);
3297 
3298 	g_abort_done = false;
3299 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
3300 
3301 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3302 	CU_ASSERT(rc == 0);
3303 	CU_ASSERT(g_io_done == false);
3304 
3305 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3306 	stub_complete_io(1);
3307 	CU_ASSERT(g_io_done == true);
3308 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3309 
3310 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
3311 	stub_complete_io(1);
3312 	CU_ASSERT(g_abort_done == true);
3313 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3314 
3315 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3316 
3317 	bdev->optimal_io_boundary = 16;
3318 	bdev->split_on_optimal_io_boundary = true;
3319 
3320 	/* Test that a single-vector command which is split is aborted correctly.
3321 	 * Offset 14, length 8, payload 0xF000
3322 	 *  Child - Offset 14, length 2, payload 0xF000
3323 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
3324 	 */
3325 	g_io_done = false;
3326 
3327 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
3328 	CU_ASSERT(rc == 0);
3329 	CU_ASSERT(g_io_done == false);
3330 
3331 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3332 
3333 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3334 
3335 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3336 	CU_ASSERT(rc == 0);
3337 	CU_ASSERT(g_io_done == true);
3338 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3339 	stub_complete_io(2);
3340 	CU_ASSERT(g_abort_done == true);
3341 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3342 
3343 	/* Test that a multi-vector command that needs to be split by strip and then
3344 	 * needs to be split is aborted correctly. Abort is requested before the second
3345 	 * child I/O was submitted. The parent I/O should complete with failure without
3346 	 * submitting the second child I/O.
3347 	 */
3348 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
3349 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
3350 		iov[i].iov_len = 512;
3351 	}
3352 
3353 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
3354 	g_io_done = false;
3355 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
3356 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
3357 	CU_ASSERT(rc == 0);
3358 	CU_ASSERT(g_io_done == false);
3359 
3360 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3361 
3362 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3363 
3364 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3365 	CU_ASSERT(rc == 0);
3366 	CU_ASSERT(g_io_done == true);
3367 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3368 	stub_complete_io(1);
3369 	CU_ASSERT(g_abort_done == true);
3370 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3371 
3372 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3373 
3374 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3375 
3376 	bdev->optimal_io_boundary = 16;
3377 	g_io_done = false;
3378 
3379 	/* Test that a ingle-vector command which is split is aborted correctly.
3380 	 * Differently from the above, the child abort request will be submitted
3381 	 * sequentially due to the capacity of spdk_bdev_io.
3382 	 */
3383 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
3384 	CU_ASSERT(rc == 0);
3385 	CU_ASSERT(g_io_done == false);
3386 
3387 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
3388 
3389 	g_abort_done = false;
3390 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3391 
3392 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
3393 	CU_ASSERT(rc == 0);
3394 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
3395 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
3396 
3397 	stub_complete_io(1);
3398 	CU_ASSERT(g_io_done == true);
3399 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3400 	stub_complete_io(3);
3401 	CU_ASSERT(g_abort_done == true);
3402 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3403 
3404 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3405 
3406 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3407 
3408 	spdk_put_io_channel(io_ch);
3409 	spdk_bdev_close(desc);
3410 	free_bdev(bdev);
3411 	spdk_bdev_finish(bdev_fini_cb, NULL);
3412 	poll_threads();
3413 }
3414 
3415 int
3416 main(int argc, char **argv)
3417 {
3418 	CU_pSuite		suite = NULL;
3419 	unsigned int		num_failures;
3420 
3421 	CU_set_error_action(CUEA_ABORT);
3422 	CU_initialize_registry();
3423 
3424 	suite = CU_add_suite("bdev", null_init, null_clean);
3425 
3426 	CU_ADD_TEST(suite, bytes_to_blocks_test);
3427 	CU_ADD_TEST(suite, num_blocks_test);
3428 	CU_ADD_TEST(suite, io_valid_test);
3429 	CU_ADD_TEST(suite, open_write_test);
3430 	CU_ADD_TEST(suite, alias_add_del_test);
3431 	CU_ADD_TEST(suite, get_device_stat_test);
3432 	CU_ADD_TEST(suite, bdev_io_types_test);
3433 	CU_ADD_TEST(suite, bdev_io_wait_test);
3434 	CU_ADD_TEST(suite, bdev_io_spans_boundary_test);
3435 	CU_ADD_TEST(suite, bdev_io_split_test);
3436 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
3437 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
3438 	CU_ADD_TEST(suite, bdev_io_alignment);
3439 	CU_ADD_TEST(suite, bdev_histograms);
3440 	CU_ADD_TEST(suite, bdev_write_zeroes);
3441 	CU_ADD_TEST(suite, bdev_compare_and_write);
3442 	CU_ADD_TEST(suite, bdev_compare);
3443 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
3444 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
3445 	CU_ADD_TEST(suite, bdev_open_ext);
3446 	CU_ADD_TEST(suite, bdev_set_io_timeout);
3447 	CU_ADD_TEST(suite, lba_range_overlap);
3448 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
3449 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
3450 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
3451 	CU_ADD_TEST(suite, bdev_io_abort);
3452 
3453 	allocate_cores(1);
3454 	allocate_threads(1);
3455 	set_thread(0);
3456 
3457 	CU_basic_set_mode(CU_BRM_VERBOSE);
3458 	CU_basic_run_tests();
3459 	num_failures = CU_get_number_of_failures();
3460 	CU_cleanup_registry();
3461 
3462 	free_threads();
3463 	free_cores();
3464 
3465 	return num_failures;
3466 }
3467