xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision d132ee3531c89ea8bdf068f2e0b556bf1ccb86f4)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk_cunit.h"
35 
36 #include "common/lib/ut_multithread.c"
37 #include "unit/lib/json_mock.c"
38 
39 #include "spdk/config.h"
40 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
41 #undef SPDK_CONFIG_VTUNE
42 
43 #include "bdev/bdev.c"
44 
45 struct spdk_trace_histories *g_trace_histories;
46 DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
47 DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix));
48 DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
49 DEFINE_STUB_V(spdk_trace_register_description, (const char *name,
50 		uint16_t tpoint_id, uint8_t owner_type,
51 		uint8_t object_type, uint8_t new_object,
52 		uint8_t arg1_type, const char *arg1_name));
53 DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
54 				   uint32_t size, uint64_t object_id, uint64_t arg1));
55 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
56 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
57 
58 
59 int g_status;
60 int g_count;
61 enum spdk_bdev_event_type g_event_type1;
62 enum spdk_bdev_event_type g_event_type2;
63 struct spdk_histogram_data *g_histogram;
64 void *g_unregister_arg;
65 int g_unregister_rc;
66 
67 void
68 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
69 			 int *sc, int *sk, int *asc, int *ascq)
70 {
71 }
72 
73 static int
74 null_init(void)
75 {
76 	return 0;
77 }
78 
79 static int
80 null_clean(void)
81 {
82 	return 0;
83 }
84 
85 static int
86 stub_destruct(void *ctx)
87 {
88 	return 0;
89 }
90 
91 struct ut_expected_io {
92 	uint8_t				type;
93 	uint64_t			offset;
94 	uint64_t			length;
95 	int				iovcnt;
96 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
97 	void				*md_buf;
98 	TAILQ_ENTRY(ut_expected_io)	link;
99 };
100 
101 struct bdev_ut_channel {
102 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
103 	uint32_t			outstanding_io_count;
104 	TAILQ_HEAD(, ut_expected_io)	expected_io;
105 };
106 
107 static bool g_io_done;
108 static struct spdk_bdev_io *g_bdev_io;
109 static enum spdk_bdev_io_status g_io_status;
110 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
111 static uint32_t g_bdev_ut_io_device;
112 static struct bdev_ut_channel *g_bdev_ut_channel;
113 static void *g_compare_read_buf;
114 static uint32_t g_compare_read_buf_len;
115 static void *g_compare_write_buf;
116 static uint32_t g_compare_write_buf_len;
117 static bool g_abort_done;
118 static enum spdk_bdev_io_status g_abort_status;
119 
120 static struct ut_expected_io *
121 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
122 {
123 	struct ut_expected_io *expected_io;
124 
125 	expected_io = calloc(1, sizeof(*expected_io));
126 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
127 
128 	expected_io->type = type;
129 	expected_io->offset = offset;
130 	expected_io->length = length;
131 	expected_io->iovcnt = iovcnt;
132 
133 	return expected_io;
134 }
135 
136 static void
137 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
138 {
139 	expected_io->iov[pos].iov_base = base;
140 	expected_io->iov[pos].iov_len = len;
141 }
142 
143 static void
144 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
145 {
146 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
147 	struct ut_expected_io *expected_io;
148 	struct iovec *iov, *expected_iov;
149 	struct spdk_bdev_io *bio_to_abort;
150 	int i;
151 
152 	g_bdev_io = bdev_io;
153 
154 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
155 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
156 
157 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
158 		CU_ASSERT(g_compare_read_buf_len == len);
159 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
160 	}
161 
162 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
163 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
164 
165 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
166 		CU_ASSERT(g_compare_write_buf_len == len);
167 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
168 	}
169 
170 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
171 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
172 
173 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
174 		CU_ASSERT(g_compare_read_buf_len == len);
175 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
176 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
177 		}
178 	}
179 
180 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
181 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
182 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
183 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
184 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
185 					ch->outstanding_io_count--;
186 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
187 					break;
188 				}
189 			}
190 		}
191 	}
192 
193 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
194 	ch->outstanding_io_count++;
195 
196 	expected_io = TAILQ_FIRST(&ch->expected_io);
197 	if (expected_io == NULL) {
198 		return;
199 	}
200 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
201 
202 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
203 		CU_ASSERT(bdev_io->type == expected_io->type);
204 	}
205 
206 	if (expected_io->md_buf != NULL) {
207 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
208 	}
209 
210 	if (expected_io->length == 0) {
211 		free(expected_io);
212 		return;
213 	}
214 
215 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
216 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
217 
218 	if (expected_io->iovcnt == 0) {
219 		free(expected_io);
220 		/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
221 		return;
222 	}
223 
224 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
225 	for (i = 0; i < expected_io->iovcnt; i++) {
226 		iov = &bdev_io->u.bdev.iovs[i];
227 		expected_iov = &expected_io->iov[i];
228 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
229 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
230 	}
231 
232 	free(expected_io);
233 }
234 
235 static void
236 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
237 			       struct spdk_bdev_io *bdev_io, bool success)
238 {
239 	CU_ASSERT(success == true);
240 
241 	stub_submit_request(_ch, bdev_io);
242 }
243 
244 static void
245 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
246 {
247 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
248 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
249 }
250 
251 static uint32_t
252 stub_complete_io(uint32_t num_to_complete)
253 {
254 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
255 	struct spdk_bdev_io *bdev_io;
256 	static enum spdk_bdev_io_status io_status;
257 	uint32_t num_completed = 0;
258 
259 	while (num_completed < num_to_complete) {
260 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
261 			break;
262 		}
263 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
264 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
265 		ch->outstanding_io_count--;
266 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
267 			    g_io_exp_status;
268 		spdk_bdev_io_complete(bdev_io, io_status);
269 		num_completed++;
270 	}
271 
272 	return num_completed;
273 }
274 
275 static struct spdk_io_channel *
276 bdev_ut_get_io_channel(void *ctx)
277 {
278 	return spdk_get_io_channel(&g_bdev_ut_io_device);
279 }
280 
281 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
282 	[SPDK_BDEV_IO_TYPE_READ]		= true,
283 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
284 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
285 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
286 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
287 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
288 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
289 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
290 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
291 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
292 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
293 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
294 };
295 
296 static void
297 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
298 {
299 	g_io_types_supported[io_type] = enable;
300 }
301 
302 static bool
303 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
304 {
305 	return g_io_types_supported[io_type];
306 }
307 
308 static struct spdk_bdev_fn_table fn_table = {
309 	.destruct = stub_destruct,
310 	.submit_request = stub_submit_request,
311 	.get_io_channel = bdev_ut_get_io_channel,
312 	.io_type_supported = stub_io_type_supported,
313 };
314 
315 static int
316 bdev_ut_create_ch(void *io_device, void *ctx_buf)
317 {
318 	struct bdev_ut_channel *ch = ctx_buf;
319 
320 	CU_ASSERT(g_bdev_ut_channel == NULL);
321 	g_bdev_ut_channel = ch;
322 
323 	TAILQ_INIT(&ch->outstanding_io);
324 	ch->outstanding_io_count = 0;
325 	TAILQ_INIT(&ch->expected_io);
326 	return 0;
327 }
328 
329 static void
330 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
331 {
332 	CU_ASSERT(g_bdev_ut_channel != NULL);
333 	g_bdev_ut_channel = NULL;
334 }
335 
336 struct spdk_bdev_module bdev_ut_if;
337 
338 static int
339 bdev_ut_module_init(void)
340 {
341 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
342 				sizeof(struct bdev_ut_channel), NULL);
343 	spdk_bdev_module_init_done(&bdev_ut_if);
344 	return 0;
345 }
346 
347 static void
348 bdev_ut_module_fini(void)
349 {
350 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
351 }
352 
353 struct spdk_bdev_module bdev_ut_if = {
354 	.name = "bdev_ut",
355 	.module_init = bdev_ut_module_init,
356 	.module_fini = bdev_ut_module_fini,
357 	.async_init = true,
358 };
359 
360 static void vbdev_ut_examine(struct spdk_bdev *bdev);
361 
362 static int
363 vbdev_ut_module_init(void)
364 {
365 	return 0;
366 }
367 
368 static void
369 vbdev_ut_module_fini(void)
370 {
371 }
372 
373 struct spdk_bdev_module vbdev_ut_if = {
374 	.name = "vbdev_ut",
375 	.module_init = vbdev_ut_module_init,
376 	.module_fini = vbdev_ut_module_fini,
377 	.examine_config = vbdev_ut_examine,
378 };
379 
380 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
381 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
382 
383 static void
384 vbdev_ut_examine(struct spdk_bdev *bdev)
385 {
386 	spdk_bdev_module_examine_done(&vbdev_ut_if);
387 }
388 
389 static struct spdk_bdev *
390 allocate_bdev(char *name)
391 {
392 	struct spdk_bdev *bdev;
393 	int rc;
394 
395 	bdev = calloc(1, sizeof(*bdev));
396 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
397 
398 	bdev->name = name;
399 	bdev->fn_table = &fn_table;
400 	bdev->module = &bdev_ut_if;
401 	bdev->blockcnt = 1024;
402 	bdev->blocklen = 512;
403 
404 	rc = spdk_bdev_register(bdev);
405 	CU_ASSERT(rc == 0);
406 
407 	return bdev;
408 }
409 
410 static struct spdk_bdev *
411 allocate_vbdev(char *name)
412 {
413 	struct spdk_bdev *bdev;
414 	int rc;
415 
416 	bdev = calloc(1, sizeof(*bdev));
417 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
418 
419 	bdev->name = name;
420 	bdev->fn_table = &fn_table;
421 	bdev->module = &vbdev_ut_if;
422 
423 	rc = spdk_bdev_register(bdev);
424 	CU_ASSERT(rc == 0);
425 
426 	return bdev;
427 }
428 
429 static void
430 free_bdev(struct spdk_bdev *bdev)
431 {
432 	spdk_bdev_unregister(bdev, NULL, NULL);
433 	poll_threads();
434 	memset(bdev, 0xFF, sizeof(*bdev));
435 	free(bdev);
436 }
437 
438 static void
439 free_vbdev(struct spdk_bdev *bdev)
440 {
441 	spdk_bdev_unregister(bdev, NULL, NULL);
442 	poll_threads();
443 	memset(bdev, 0xFF, sizeof(*bdev));
444 	free(bdev);
445 }
446 
447 static void
448 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
449 {
450 	const char *bdev_name;
451 
452 	CU_ASSERT(bdev != NULL);
453 	CU_ASSERT(rc == 0);
454 	bdev_name = spdk_bdev_get_name(bdev);
455 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
456 
457 	free(stat);
458 
459 	*(bool *)cb_arg = true;
460 }
461 
462 static void
463 bdev_unregister_cb(void *cb_arg, int rc)
464 {
465 	g_unregister_arg = cb_arg;
466 	g_unregister_rc = rc;
467 }
468 
469 static void
470 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
471 {
472 }
473 
474 static void
475 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
476 {
477 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
478 
479 	g_event_type1 = type;
480 	if (SPDK_BDEV_EVENT_REMOVE == type) {
481 		spdk_bdev_close(desc);
482 	}
483 }
484 
485 static void
486 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
487 {
488 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
489 
490 	g_event_type2 = type;
491 	if (SPDK_BDEV_EVENT_REMOVE == type) {
492 		spdk_bdev_close(desc);
493 	}
494 }
495 
496 static void
497 get_device_stat_test(void)
498 {
499 	struct spdk_bdev *bdev;
500 	struct spdk_bdev_io_stat *stat;
501 	bool done;
502 
503 	bdev = allocate_bdev("bdev0");
504 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
505 	if (stat == NULL) {
506 		free_bdev(bdev);
507 		return;
508 	}
509 
510 	done = false;
511 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
512 	while (!done) { poll_threads(); }
513 
514 	free_bdev(bdev);
515 }
516 
517 static void
518 open_write_test(void)
519 {
520 	struct spdk_bdev *bdev[9];
521 	struct spdk_bdev_desc *desc[9] = {};
522 	int rc;
523 
524 	/*
525 	 * Create a tree of bdevs to test various open w/ write cases.
526 	 *
527 	 * bdev0 through bdev3 are physical block devices, such as NVMe
528 	 * namespaces or Ceph block devices.
529 	 *
530 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
531 	 * caching or RAID use cases.
532 	 *
533 	 * bdev5 through bdev7 are all virtual bdevs with the same base
534 	 * bdev (except bdev7). This models partitioning or logical volume
535 	 * use cases.
536 	 *
537 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
538 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
539 	 * models caching, RAID, partitioning or logical volumes use cases.
540 	 *
541 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
542 	 * base bdevs are themselves virtual bdevs.
543 	 *
544 	 *                bdev8
545 	 *                  |
546 	 *            +----------+
547 	 *            |          |
548 	 *          bdev4      bdev5   bdev6   bdev7
549 	 *            |          |       |       |
550 	 *        +---+---+      +---+   +   +---+---+
551 	 *        |       |           \  |  /         \
552 	 *      bdev0   bdev1          bdev2         bdev3
553 	 */
554 
555 	bdev[0] = allocate_bdev("bdev0");
556 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
557 	CU_ASSERT(rc == 0);
558 
559 	bdev[1] = allocate_bdev("bdev1");
560 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
561 	CU_ASSERT(rc == 0);
562 
563 	bdev[2] = allocate_bdev("bdev2");
564 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
565 	CU_ASSERT(rc == 0);
566 
567 	bdev[3] = allocate_bdev("bdev3");
568 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
569 	CU_ASSERT(rc == 0);
570 
571 	bdev[4] = allocate_vbdev("bdev4");
572 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
573 	CU_ASSERT(rc == 0);
574 
575 	bdev[5] = allocate_vbdev("bdev5");
576 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
577 	CU_ASSERT(rc == 0);
578 
579 	bdev[6] = allocate_vbdev("bdev6");
580 
581 	bdev[7] = allocate_vbdev("bdev7");
582 
583 	bdev[8] = allocate_vbdev("bdev8");
584 
585 	/* Open bdev0 read-only.  This should succeed. */
586 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
587 	CU_ASSERT(rc == 0);
588 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
589 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
590 	spdk_bdev_close(desc[0]);
591 
592 	/*
593 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
594 	 * by a vbdev module.
595 	 */
596 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
597 	CU_ASSERT(rc == -EPERM);
598 
599 	/*
600 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
601 	 * by a vbdev module.
602 	 */
603 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
604 	CU_ASSERT(rc == -EPERM);
605 
606 	/* Open bdev4 read-only.  This should succeed. */
607 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
608 	CU_ASSERT(rc == 0);
609 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
610 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
611 	spdk_bdev_close(desc[4]);
612 
613 	/*
614 	 * Open bdev8 read/write.  This should succeed since it is a leaf
615 	 * bdev.
616 	 */
617 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
618 	CU_ASSERT(rc == 0);
619 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
620 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
621 	spdk_bdev_close(desc[8]);
622 
623 	/*
624 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
625 	 * by a vbdev module.
626 	 */
627 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
628 	CU_ASSERT(rc == -EPERM);
629 
630 	/* Open bdev4 read-only.  This should succeed. */
631 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
632 	CU_ASSERT(rc == 0);
633 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
634 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
635 	spdk_bdev_close(desc[5]);
636 
637 	free_vbdev(bdev[8]);
638 
639 	free_vbdev(bdev[5]);
640 	free_vbdev(bdev[6]);
641 	free_vbdev(bdev[7]);
642 
643 	free_vbdev(bdev[4]);
644 
645 	free_bdev(bdev[0]);
646 	free_bdev(bdev[1]);
647 	free_bdev(bdev[2]);
648 	free_bdev(bdev[3]);
649 }
650 
651 static void
652 bytes_to_blocks_test(void)
653 {
654 	struct spdk_bdev bdev;
655 	uint64_t offset_blocks, num_blocks;
656 
657 	memset(&bdev, 0, sizeof(bdev));
658 
659 	bdev.blocklen = 512;
660 
661 	/* All parameters valid */
662 	offset_blocks = 0;
663 	num_blocks = 0;
664 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
665 	CU_ASSERT(offset_blocks == 1);
666 	CU_ASSERT(num_blocks == 2);
667 
668 	/* Offset not a block multiple */
669 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
670 
671 	/* Length not a block multiple */
672 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
673 
674 	/* In case blocklen not the power of two */
675 	bdev.blocklen = 100;
676 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
677 	CU_ASSERT(offset_blocks == 1);
678 	CU_ASSERT(num_blocks == 2);
679 
680 	/* Offset not a block multiple */
681 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
682 
683 	/* Length not a block multiple */
684 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
685 }
686 
687 static void
688 num_blocks_test(void)
689 {
690 	struct spdk_bdev bdev;
691 	struct spdk_bdev_desc *desc = NULL;
692 	struct spdk_bdev_desc *desc_ext = NULL;
693 	int rc;
694 
695 	memset(&bdev, 0, sizeof(bdev));
696 	bdev.name = "num_blocks";
697 	bdev.fn_table = &fn_table;
698 	bdev.module = &bdev_ut_if;
699 	spdk_bdev_register(&bdev);
700 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
701 
702 	/* Growing block number */
703 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
704 	/* Shrinking block number */
705 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
706 
707 	/* In case bdev opened */
708 	rc = spdk_bdev_open(&bdev, false, NULL, NULL, &desc);
709 	CU_ASSERT(rc == 0);
710 	SPDK_CU_ASSERT_FATAL(desc != NULL);
711 
712 	/* Growing block number */
713 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
714 	/* Shrinking block number */
715 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
716 
717 	/* In case bdev opened with ext API */
718 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc_ext, &desc_ext);
719 	CU_ASSERT(rc == 0);
720 	SPDK_CU_ASSERT_FATAL(desc_ext != NULL);
721 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc_ext));
722 
723 	g_event_type1 = 0xFF;
724 	/* Growing block number */
725 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
726 
727 	poll_threads();
728 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
729 
730 	g_event_type1 = 0xFF;
731 	/* Growing block number and closing */
732 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
733 
734 	spdk_bdev_close(desc);
735 	spdk_bdev_close(desc_ext);
736 	spdk_bdev_unregister(&bdev, NULL, NULL);
737 
738 	poll_threads();
739 
740 	/* Callback is not called for closed device */
741 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
742 }
743 
744 static void
745 io_valid_test(void)
746 {
747 	struct spdk_bdev bdev;
748 
749 	memset(&bdev, 0, sizeof(bdev));
750 
751 	bdev.blocklen = 512;
752 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
753 
754 	/* All parameters valid */
755 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
756 
757 	/* Last valid block */
758 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
759 
760 	/* Offset past end of bdev */
761 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
762 
763 	/* Offset + length past end of bdev */
764 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
765 
766 	/* Offset near end of uint64_t range (2^64 - 1) */
767 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
768 }
769 
770 static void
771 alias_add_del_test(void)
772 {
773 	struct spdk_bdev *bdev[3];
774 	int rc;
775 
776 	/* Creating and registering bdevs */
777 	bdev[0] = allocate_bdev("bdev0");
778 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
779 
780 	bdev[1] = allocate_bdev("bdev1");
781 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
782 
783 	bdev[2] = allocate_bdev("bdev2");
784 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
785 
786 	poll_threads();
787 
788 	/*
789 	 * Trying adding an alias identical to name.
790 	 * Alias is identical to name, so it can not be added to aliases list
791 	 */
792 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
793 	CU_ASSERT(rc == -EEXIST);
794 
795 	/*
796 	 * Trying to add empty alias,
797 	 * this one should fail
798 	 */
799 	rc = spdk_bdev_alias_add(bdev[0], NULL);
800 	CU_ASSERT(rc == -EINVAL);
801 
802 	/* Trying adding same alias to two different registered bdevs */
803 
804 	/* Alias is used first time, so this one should pass */
805 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
806 	CU_ASSERT(rc == 0);
807 
808 	/* Alias was added to another bdev, so this one should fail */
809 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
810 	CU_ASSERT(rc == -EEXIST);
811 
812 	/* Alias is used first time, so this one should pass */
813 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
814 	CU_ASSERT(rc == 0);
815 
816 	/* Trying removing an alias from registered bdevs */
817 
818 	/* Alias is not on a bdev aliases list, so this one should fail */
819 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
820 	CU_ASSERT(rc == -ENOENT);
821 
822 	/* Alias is present on a bdev aliases list, so this one should pass */
823 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
824 	CU_ASSERT(rc == 0);
825 
826 	/* Alias is present on a bdev aliases list, so this one should pass */
827 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
828 	CU_ASSERT(rc == 0);
829 
830 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
831 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
832 	CU_ASSERT(rc != 0);
833 
834 	/* Trying to del all alias from empty alias list */
835 	spdk_bdev_alias_del_all(bdev[2]);
836 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
837 
838 	/* Trying to del all alias from non-empty alias list */
839 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
840 	CU_ASSERT(rc == 0);
841 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
842 	CU_ASSERT(rc == 0);
843 	spdk_bdev_alias_del_all(bdev[2]);
844 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
845 
846 	/* Unregister and free bdevs */
847 	spdk_bdev_unregister(bdev[0], NULL, NULL);
848 	spdk_bdev_unregister(bdev[1], NULL, NULL);
849 	spdk_bdev_unregister(bdev[2], NULL, NULL);
850 
851 	poll_threads();
852 
853 	free(bdev[0]);
854 	free(bdev[1]);
855 	free(bdev[2]);
856 }
857 
858 static void
859 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
860 {
861 	g_io_done = true;
862 	g_io_status = bdev_io->internal.status;
863 	spdk_bdev_free_io(bdev_io);
864 }
865 
866 static void
867 bdev_init_cb(void *arg, int rc)
868 {
869 	CU_ASSERT(rc == 0);
870 }
871 
872 static void
873 bdev_fini_cb(void *arg)
874 {
875 }
876 
877 struct bdev_ut_io_wait_entry {
878 	struct spdk_bdev_io_wait_entry	entry;
879 	struct spdk_io_channel		*io_ch;
880 	struct spdk_bdev_desc		*desc;
881 	bool				submitted;
882 };
883 
884 static void
885 io_wait_cb(void *arg)
886 {
887 	struct bdev_ut_io_wait_entry *entry = arg;
888 	int rc;
889 
890 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
891 	CU_ASSERT(rc == 0);
892 	entry->submitted = true;
893 }
894 
895 static void
896 bdev_io_types_test(void)
897 {
898 	struct spdk_bdev *bdev;
899 	struct spdk_bdev_desc *desc = NULL;
900 	struct spdk_io_channel *io_ch;
901 	struct spdk_bdev_opts bdev_opts = {
902 		.bdev_io_pool_size = 4,
903 		.bdev_io_cache_size = 2,
904 	};
905 	int rc;
906 
907 	rc = spdk_bdev_set_opts(&bdev_opts);
908 	CU_ASSERT(rc == 0);
909 	spdk_bdev_initialize(bdev_init_cb, NULL);
910 	poll_threads();
911 
912 	bdev = allocate_bdev("bdev0");
913 
914 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
915 	CU_ASSERT(rc == 0);
916 	poll_threads();
917 	SPDK_CU_ASSERT_FATAL(desc != NULL);
918 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
919 	io_ch = spdk_bdev_get_io_channel(desc);
920 	CU_ASSERT(io_ch != NULL);
921 
922 	/* WRITE and WRITE ZEROES are not supported */
923 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
924 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
925 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
926 	CU_ASSERT(rc == -ENOTSUP);
927 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
928 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
929 
930 	spdk_put_io_channel(io_ch);
931 	spdk_bdev_close(desc);
932 	free_bdev(bdev);
933 	spdk_bdev_finish(bdev_fini_cb, NULL);
934 	poll_threads();
935 }
936 
937 static void
938 bdev_io_wait_test(void)
939 {
940 	struct spdk_bdev *bdev;
941 	struct spdk_bdev_desc *desc = NULL;
942 	struct spdk_io_channel *io_ch;
943 	struct spdk_bdev_opts bdev_opts = {
944 		.bdev_io_pool_size = 4,
945 		.bdev_io_cache_size = 2,
946 	};
947 	struct bdev_ut_io_wait_entry io_wait_entry;
948 	struct bdev_ut_io_wait_entry io_wait_entry2;
949 	int rc;
950 
951 	rc = spdk_bdev_set_opts(&bdev_opts);
952 	CU_ASSERT(rc == 0);
953 	spdk_bdev_initialize(bdev_init_cb, NULL);
954 	poll_threads();
955 
956 	bdev = allocate_bdev("bdev0");
957 
958 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
959 	CU_ASSERT(rc == 0);
960 	poll_threads();
961 	SPDK_CU_ASSERT_FATAL(desc != NULL);
962 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
963 	io_ch = spdk_bdev_get_io_channel(desc);
964 	CU_ASSERT(io_ch != NULL);
965 
966 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
967 	CU_ASSERT(rc == 0);
968 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
969 	CU_ASSERT(rc == 0);
970 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
971 	CU_ASSERT(rc == 0);
972 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
973 	CU_ASSERT(rc == 0);
974 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
975 
976 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
977 	CU_ASSERT(rc == -ENOMEM);
978 
979 	io_wait_entry.entry.bdev = bdev;
980 	io_wait_entry.entry.cb_fn = io_wait_cb;
981 	io_wait_entry.entry.cb_arg = &io_wait_entry;
982 	io_wait_entry.io_ch = io_ch;
983 	io_wait_entry.desc = desc;
984 	io_wait_entry.submitted = false;
985 	/* Cannot use the same io_wait_entry for two different calls. */
986 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
987 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
988 
989 	/* Queue two I/O waits. */
990 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
991 	CU_ASSERT(rc == 0);
992 	CU_ASSERT(io_wait_entry.submitted == false);
993 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
994 	CU_ASSERT(rc == 0);
995 	CU_ASSERT(io_wait_entry2.submitted == false);
996 
997 	stub_complete_io(1);
998 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
999 	CU_ASSERT(io_wait_entry.submitted == true);
1000 	CU_ASSERT(io_wait_entry2.submitted == false);
1001 
1002 	stub_complete_io(1);
1003 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1004 	CU_ASSERT(io_wait_entry2.submitted == true);
1005 
1006 	stub_complete_io(4);
1007 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1008 
1009 	spdk_put_io_channel(io_ch);
1010 	spdk_bdev_close(desc);
1011 	free_bdev(bdev);
1012 	spdk_bdev_finish(bdev_fini_cb, NULL);
1013 	poll_threads();
1014 }
1015 
1016 static void
1017 bdev_io_spans_split_test(void)
1018 {
1019 	struct spdk_bdev bdev;
1020 	struct spdk_bdev_io bdev_io;
1021 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV];
1022 
1023 	memset(&bdev, 0, sizeof(bdev));
1024 	bdev_io.u.bdev.iovs = iov;
1025 
1026 	bdev.optimal_io_boundary = 0;
1027 	bdev.max_segment_size = 0;
1028 	bdev.max_num_segments = 0;
1029 	bdev_io.bdev = &bdev;
1030 
1031 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1032 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1033 
1034 	bdev.split_on_optimal_io_boundary = true;
1035 	bdev.optimal_io_boundary = 32;
1036 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1037 
1038 	/* RESETs are not based on LBAs - so this should return false. */
1039 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1040 
1041 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1042 	bdev_io.u.bdev.offset_blocks = 0;
1043 	bdev_io.u.bdev.num_blocks = 32;
1044 
1045 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1046 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1047 
1048 	bdev_io.u.bdev.num_blocks = 33;
1049 
1050 	/* This I/O spans a boundary. */
1051 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1052 
1053 	bdev_io.u.bdev.num_blocks = 32;
1054 	bdev.max_segment_size = 512 * 32;
1055 	bdev.max_num_segments = 1;
1056 	bdev_io.u.bdev.iovcnt = 1;
1057 	iov[0].iov_len = 512;
1058 
1059 	/* Does not cross and exceed max_size or max_segs */
1060 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1061 
1062 	bdev.split_on_optimal_io_boundary = false;
1063 	bdev.max_segment_size = 512;
1064 	bdev.max_num_segments = 1;
1065 	bdev_io.u.bdev.iovcnt = 2;
1066 
1067 	/* Exceed max_segs */
1068 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1069 
1070 	bdev.max_num_segments = 2;
1071 	iov[0].iov_len = 513;
1072 	iov[1].iov_len = 512;
1073 
1074 	/* Exceed max_sizes */
1075 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1076 }
1077 
1078 static void
1079 bdev_io_boundary_split_test(void)
1080 {
1081 	struct spdk_bdev *bdev;
1082 	struct spdk_bdev_desc *desc = NULL;
1083 	struct spdk_io_channel *io_ch;
1084 	struct spdk_bdev_opts bdev_opts = {
1085 		.bdev_io_pool_size = 512,
1086 		.bdev_io_cache_size = 64,
1087 	};
1088 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1089 	struct ut_expected_io *expected_io;
1090 	void *md_buf = (void *)0xFF000000;
1091 	uint64_t i;
1092 	int rc;
1093 
1094 	rc = spdk_bdev_set_opts(&bdev_opts);
1095 	CU_ASSERT(rc == 0);
1096 	spdk_bdev_initialize(bdev_init_cb, NULL);
1097 
1098 	bdev = allocate_bdev("bdev0");
1099 
1100 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1101 	CU_ASSERT(rc == 0);
1102 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1103 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1104 	io_ch = spdk_bdev_get_io_channel(desc);
1105 	CU_ASSERT(io_ch != NULL);
1106 
1107 	bdev->optimal_io_boundary = 16;
1108 	bdev->split_on_optimal_io_boundary = false;
1109 
1110 	g_io_done = false;
1111 
1112 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1113 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1114 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1115 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1116 
1117 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1118 	CU_ASSERT(rc == 0);
1119 	CU_ASSERT(g_io_done == false);
1120 
1121 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1122 	stub_complete_io(1);
1123 	CU_ASSERT(g_io_done == true);
1124 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1125 
1126 	bdev->split_on_optimal_io_boundary = true;
1127 	bdev->md_interleave = false;
1128 	bdev->md_len = 8;
1129 
1130 	/* Now test that a single-vector command is split correctly.
1131 	 * Offset 14, length 8, payload 0xF000
1132 	 *  Child - Offset 14, length 2, payload 0xF000
1133 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1134 	 *
1135 	 * Set up the expected values before calling spdk_bdev_read_blocks
1136 	 */
1137 	g_io_done = false;
1138 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1139 	expected_io->md_buf = md_buf;
1140 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1141 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1142 
1143 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1144 	expected_io->md_buf = md_buf + 2 * 8;
1145 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1146 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1147 
1148 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1149 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1150 					   14, 8, io_done, NULL);
1151 	CU_ASSERT(rc == 0);
1152 	CU_ASSERT(g_io_done == false);
1153 
1154 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1155 	stub_complete_io(2);
1156 	CU_ASSERT(g_io_done == true);
1157 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1158 
1159 	/* Now set up a more complex, multi-vector command that needs to be split,
1160 	 *  including splitting iovecs.
1161 	 */
1162 	iov[0].iov_base = (void *)0x10000;
1163 	iov[0].iov_len = 512;
1164 	iov[1].iov_base = (void *)0x20000;
1165 	iov[1].iov_len = 20 * 512;
1166 	iov[2].iov_base = (void *)0x30000;
1167 	iov[2].iov_len = 11 * 512;
1168 
1169 	g_io_done = false;
1170 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1171 	expected_io->md_buf = md_buf;
1172 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1173 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1174 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1175 
1176 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1177 	expected_io->md_buf = md_buf + 2 * 8;
1178 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1179 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1180 
1181 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1182 	expected_io->md_buf = md_buf + 18 * 8;
1183 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1184 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1185 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1186 
1187 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1188 					     14, 32, io_done, NULL);
1189 	CU_ASSERT(rc == 0);
1190 	CU_ASSERT(g_io_done == false);
1191 
1192 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1193 	stub_complete_io(3);
1194 	CU_ASSERT(g_io_done == true);
1195 
1196 	/* Test multi vector command that needs to be split by strip and then needs to be
1197 	 * split further due to the capacity of child iovs.
1198 	 */
1199 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1200 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1201 		iov[i].iov_len = 512;
1202 	}
1203 
1204 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1205 	g_io_done = false;
1206 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1207 					   BDEV_IO_NUM_CHILD_IOV);
1208 	expected_io->md_buf = md_buf;
1209 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1210 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1211 	}
1212 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1213 
1214 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1215 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1216 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1217 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1218 		ut_expected_io_set_iov(expected_io, i,
1219 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1220 	}
1221 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1222 
1223 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1224 					    0, BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1225 	CU_ASSERT(rc == 0);
1226 	CU_ASSERT(g_io_done == false);
1227 
1228 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1229 	stub_complete_io(1);
1230 	CU_ASSERT(g_io_done == false);
1231 
1232 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1233 	stub_complete_io(1);
1234 	CU_ASSERT(g_io_done == true);
1235 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1236 
1237 	/* Test multi vector command that needs to be split by strip and then needs to be
1238 	 * split further due to the capacity of child iovs. In this case, the length of
1239 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1240 	 */
1241 
1242 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1243 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1244 	 */
1245 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1246 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1247 		iov[i].iov_len = 512;
1248 	}
1249 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1250 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1251 		iov[i].iov_len = 256;
1252 	}
1253 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1254 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1255 
1256 	/* Add an extra iovec to trigger split */
1257 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1258 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1259 
1260 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1261 	g_io_done = false;
1262 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1263 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1264 	expected_io->md_buf = md_buf;
1265 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1266 		ut_expected_io_set_iov(expected_io, i,
1267 				       (void *)((i + 1) * 0x10000), 512);
1268 	}
1269 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1270 		ut_expected_io_set_iov(expected_io, i,
1271 				       (void *)((i + 1) * 0x10000), 256);
1272 	}
1273 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1274 
1275 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1276 					   1, 1);
1277 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1278 	ut_expected_io_set_iov(expected_io, 0,
1279 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1280 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1281 
1282 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1283 					   1, 1);
1284 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1285 	ut_expected_io_set_iov(expected_io, 0,
1286 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1287 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1288 
1289 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1290 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1291 	CU_ASSERT(rc == 0);
1292 	CU_ASSERT(g_io_done == false);
1293 
1294 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1295 	stub_complete_io(1);
1296 	CU_ASSERT(g_io_done == false);
1297 
1298 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1299 	stub_complete_io(2);
1300 	CU_ASSERT(g_io_done == true);
1301 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1302 
1303 	/* Test multi vector command that needs to be split by strip and then needs to be
1304 	 * split further due to the capacity of child iovs, the child request offset should
1305 	 * be rewind to last aligned offset and go success without error.
1306 	 */
1307 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1308 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1309 		iov[i].iov_len = 512;
1310 	}
1311 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1312 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1313 
1314 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1315 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1316 
1317 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1318 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1319 
1320 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1321 	g_io_done = false;
1322 	g_io_status = 0;
1323 	/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
1324 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1325 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
1326 	expected_io->md_buf = md_buf;
1327 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1328 		ut_expected_io_set_iov(expected_io, i,
1329 				       (void *)((i + 1) * 0x10000), 512);
1330 	}
1331 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1332 	/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
1333 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1334 					   1, 2);
1335 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1336 	ut_expected_io_set_iov(expected_io, 0,
1337 			       (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1338 	ut_expected_io_set_iov(expected_io, 1,
1339 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1340 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1341 	/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
1342 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1343 					   1, 1);
1344 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1345 	ut_expected_io_set_iov(expected_io, 0,
1346 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1347 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1348 
1349 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1350 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1351 	CU_ASSERT(rc == 0);
1352 	CU_ASSERT(g_io_done == false);
1353 
1354 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1355 	stub_complete_io(1);
1356 	CU_ASSERT(g_io_done == false);
1357 
1358 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1359 	stub_complete_io(2);
1360 	CU_ASSERT(g_io_done == true);
1361 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1362 
1363 	/* Test multi vector command that needs to be split due to the IO boundary and
1364 	 * the capacity of child iovs. Especially test the case when the command is
1365 	 * split due to the capacity of child iovs, the tail address is not aligned with
1366 	 * block size and is rewinded to the aligned address.
1367 	 *
1368 	 * The iovecs used in read request is complex but is based on the data
1369 	 * collected in the real issue. We change the base addresses but keep the lengths
1370 	 * not to loose the credibility of the test.
1371 	 */
1372 	bdev->optimal_io_boundary = 128;
1373 	g_io_done = false;
1374 	g_io_status = 0;
1375 
1376 	for (i = 0; i < 31; i++) {
1377 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1378 		iov[i].iov_len = 1024;
1379 	}
1380 	iov[31].iov_base = (void *)0xFEED1F00000;
1381 	iov[31].iov_len = 32768;
1382 	iov[32].iov_base = (void *)0xFEED2000000;
1383 	iov[32].iov_len = 160;
1384 	iov[33].iov_base = (void *)0xFEED2100000;
1385 	iov[33].iov_len = 4096;
1386 	iov[34].iov_base = (void *)0xFEED2200000;
1387 	iov[34].iov_len = 4096;
1388 	iov[35].iov_base = (void *)0xFEED2300000;
1389 	iov[35].iov_len = 4096;
1390 	iov[36].iov_base = (void *)0xFEED2400000;
1391 	iov[36].iov_len = 4096;
1392 	iov[37].iov_base = (void *)0xFEED2500000;
1393 	iov[37].iov_len = 4096;
1394 	iov[38].iov_base = (void *)0xFEED2600000;
1395 	iov[38].iov_len = 4096;
1396 	iov[39].iov_base = (void *)0xFEED2700000;
1397 	iov[39].iov_len = 4096;
1398 	iov[40].iov_base = (void *)0xFEED2800000;
1399 	iov[40].iov_len = 4096;
1400 	iov[41].iov_base = (void *)0xFEED2900000;
1401 	iov[41].iov_len = 4096;
1402 	iov[42].iov_base = (void *)0xFEED2A00000;
1403 	iov[42].iov_len = 4096;
1404 	iov[43].iov_base = (void *)0xFEED2B00000;
1405 	iov[43].iov_len = 12288;
1406 	iov[44].iov_base = (void *)0xFEED2C00000;
1407 	iov[44].iov_len = 8192;
1408 	iov[45].iov_base = (void *)0xFEED2F00000;
1409 	iov[45].iov_len = 4096;
1410 	iov[46].iov_base = (void *)0xFEED3000000;
1411 	iov[46].iov_len = 4096;
1412 	iov[47].iov_base = (void *)0xFEED3100000;
1413 	iov[47].iov_len = 4096;
1414 	iov[48].iov_base = (void *)0xFEED3200000;
1415 	iov[48].iov_len = 24576;
1416 	iov[49].iov_base = (void *)0xFEED3300000;
1417 	iov[49].iov_len = 16384;
1418 	iov[50].iov_base = (void *)0xFEED3400000;
1419 	iov[50].iov_len = 12288;
1420 	iov[51].iov_base = (void *)0xFEED3500000;
1421 	iov[51].iov_len = 4096;
1422 	iov[52].iov_base = (void *)0xFEED3600000;
1423 	iov[52].iov_len = 4096;
1424 	iov[53].iov_base = (void *)0xFEED3700000;
1425 	iov[53].iov_len = 4096;
1426 	iov[54].iov_base = (void *)0xFEED3800000;
1427 	iov[54].iov_len = 28672;
1428 	iov[55].iov_base = (void *)0xFEED3900000;
1429 	iov[55].iov_len = 20480;
1430 	iov[56].iov_base = (void *)0xFEED3A00000;
1431 	iov[56].iov_len = 4096;
1432 	iov[57].iov_base = (void *)0xFEED3B00000;
1433 	iov[57].iov_len = 12288;
1434 	iov[58].iov_base = (void *)0xFEED3C00000;
1435 	iov[58].iov_len = 4096;
1436 	iov[59].iov_base = (void *)0xFEED3D00000;
1437 	iov[59].iov_len = 4096;
1438 	iov[60].iov_base = (void *)0xFEED3E00000;
1439 	iov[60].iov_len = 352;
1440 
1441 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1442 	 * of child iovs,
1443 	 */
1444 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1445 	expected_io->md_buf = md_buf;
1446 	for (i = 0; i < 32; i++) {
1447 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1448 	}
1449 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1450 
1451 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1452 	 * split by the IO boundary requirement.
1453 	 */
1454 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1455 	expected_io->md_buf = md_buf + 126 * 8;
1456 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1457 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1458 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1459 
1460 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1461 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1462 	 */
1463 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1464 	expected_io->md_buf = md_buf + 128 * 8;
1465 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1466 			       iov[33].iov_len - 864);
1467 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1468 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1469 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1470 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1471 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1472 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1473 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1474 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1475 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1476 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1477 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1478 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1479 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1480 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1481 
1482 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1483 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1484 	 */
1485 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1486 	expected_io->md_buf = md_buf + 256 * 8;
1487 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1488 			       iov[46].iov_len - 864);
1489 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1490 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1491 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1492 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1493 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1494 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1495 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1496 
1497 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1498 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1499 	 */
1500 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1501 	expected_io->md_buf = md_buf + 384 * 8;
1502 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1503 			       iov[52].iov_len - 864);
1504 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1505 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1506 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1507 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1508 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1509 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1510 
1511 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1512 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1513 	 */
1514 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1515 	expected_io->md_buf = md_buf + 512 * 8;
1516 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1517 			       iov[57].iov_len - 4960);
1518 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1519 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1520 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1521 
1522 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1523 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1524 	expected_io->md_buf = md_buf + 542 * 8;
1525 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1526 			       iov[59].iov_len - 3936);
1527 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1528 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1529 
1530 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1531 					    0, 543, io_done, NULL);
1532 	CU_ASSERT(rc == 0);
1533 	CU_ASSERT(g_io_done == false);
1534 
1535 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1536 	stub_complete_io(1);
1537 	CU_ASSERT(g_io_done == false);
1538 
1539 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1540 	stub_complete_io(5);
1541 	CU_ASSERT(g_io_done == false);
1542 
1543 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1544 	stub_complete_io(1);
1545 	CU_ASSERT(g_io_done == true);
1546 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1547 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1548 
1549 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1550 	 * split, so test that.
1551 	 */
1552 	bdev->optimal_io_boundary = 15;
1553 	g_io_done = false;
1554 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1555 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1556 
1557 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1558 	CU_ASSERT(rc == 0);
1559 	CU_ASSERT(g_io_done == false);
1560 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1561 	stub_complete_io(1);
1562 	CU_ASSERT(g_io_done == true);
1563 
1564 	/* Test an UNMAP.  This should also not be split. */
1565 	bdev->optimal_io_boundary = 16;
1566 	g_io_done = false;
1567 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1568 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1569 
1570 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1571 	CU_ASSERT(rc == 0);
1572 	CU_ASSERT(g_io_done == false);
1573 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1574 	stub_complete_io(1);
1575 	CU_ASSERT(g_io_done == true);
1576 
1577 	/* Test a FLUSH.  This should also not be split. */
1578 	bdev->optimal_io_boundary = 16;
1579 	g_io_done = false;
1580 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1581 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1582 
1583 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1584 	CU_ASSERT(rc == 0);
1585 	CU_ASSERT(g_io_done == false);
1586 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1587 	stub_complete_io(1);
1588 	CU_ASSERT(g_io_done == true);
1589 
1590 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1591 
1592 	/* Children requests return an error status */
1593 	bdev->optimal_io_boundary = 16;
1594 	iov[0].iov_base = (void *)0x10000;
1595 	iov[0].iov_len = 512 * 64;
1596 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1597 	g_io_done = false;
1598 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1599 
1600 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1601 	CU_ASSERT(rc == 0);
1602 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1603 	stub_complete_io(4);
1604 	CU_ASSERT(g_io_done == false);
1605 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1606 	stub_complete_io(1);
1607 	CU_ASSERT(g_io_done == true);
1608 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1609 
1610 	/* Test if a multi vector command terminated with failure before continueing
1611 	 * splitting process when one of child I/O failed.
1612 	 * The multi vector command is as same as the above that needs to be split by strip
1613 	 * and then needs to be split further due to the capacity of child iovs.
1614 	 */
1615 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1616 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1617 		iov[i].iov_len = 512;
1618 	}
1619 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1620 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1621 
1622 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1623 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1624 
1625 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1626 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1627 
1628 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1629 
1630 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1631 	g_io_done = false;
1632 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1633 
1634 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1635 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1636 	CU_ASSERT(rc == 0);
1637 	CU_ASSERT(g_io_done == false);
1638 
1639 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1640 	stub_complete_io(1);
1641 	CU_ASSERT(g_io_done == true);
1642 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1643 
1644 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1645 
1646 	/* for this test we will create the following conditions to hit the code path where
1647 	 * we are trying to send and IO following a split that has no iovs because we had to
1648 	 * trim them for alignment reasons.
1649 	 *
1650 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1651 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1652 	 *   position 30 and overshoot by 0x2e.
1653 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1654 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1655 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1656 	 *   and let the completion pick up the last 2 vectors.
1657 	 */
1658 	bdev->optimal_io_boundary = 32;
1659 	bdev->split_on_optimal_io_boundary = true;
1660 	g_io_done = false;
1661 
1662 	/* Init all parent IOVs to 0x212 */
1663 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1664 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1665 		iov[i].iov_len = 0x212;
1666 	}
1667 
1668 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1669 					   BDEV_IO_NUM_CHILD_IOV - 1);
1670 	/* expect 0-29 to be 1:1 with the parent iov */
1671 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1672 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1673 	}
1674 
1675 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1676 	 * where 0x1e is the amount we overshot the 16K boundary
1677 	 */
1678 	ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
1679 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1680 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1681 
1682 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1683 	 * shortened that take it to the next boundary and then a final one to get us to
1684 	 * 0x4200 bytes for the IO.
1685 	 */
1686 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1687 					   BDEV_IO_NUM_CHILD_IOV, 2);
1688 	/* position 30 picked up the remaining bytes to the next boundary */
1689 	ut_expected_io_set_iov(expected_io, 0,
1690 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1691 
1692 	/* position 31 picked the the rest of the trasnfer to get us to 0x4200 */
1693 	ut_expected_io_set_iov(expected_io, 1,
1694 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1695 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1696 
1697 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
1698 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1699 	CU_ASSERT(rc == 0);
1700 	CU_ASSERT(g_io_done == false);
1701 
1702 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1703 	stub_complete_io(1);
1704 	CU_ASSERT(g_io_done == false);
1705 
1706 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1707 	stub_complete_io(1);
1708 	CU_ASSERT(g_io_done == true);
1709 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1710 
1711 	spdk_put_io_channel(io_ch);
1712 	spdk_bdev_close(desc);
1713 	free_bdev(bdev);
1714 	spdk_bdev_finish(bdev_fini_cb, NULL);
1715 	poll_threads();
1716 }
1717 
1718 static void
1719 bdev_io_max_size_and_segment_split_test(void)
1720 {
1721 	struct spdk_bdev *bdev;
1722 	struct spdk_bdev_desc *desc = NULL;
1723 	struct spdk_io_channel *io_ch;
1724 	struct spdk_bdev_opts bdev_opts = {
1725 		.bdev_io_pool_size = 512,
1726 		.bdev_io_cache_size = 64,
1727 	};
1728 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1729 	struct ut_expected_io *expected_io;
1730 	uint64_t i;
1731 	int rc;
1732 
1733 	rc = spdk_bdev_set_opts(&bdev_opts);
1734 	CU_ASSERT(rc == 0);
1735 	spdk_bdev_initialize(bdev_init_cb, NULL);
1736 
1737 	bdev = allocate_bdev("bdev0");
1738 
1739 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
1740 	CU_ASSERT(rc == 0);
1741 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1742 	io_ch = spdk_bdev_get_io_channel(desc);
1743 	CU_ASSERT(io_ch != NULL);
1744 
1745 	bdev->split_on_optimal_io_boundary = false;
1746 	bdev->optimal_io_boundary = 0;
1747 
1748 	/* Case 0 max_num_segments == 0.
1749 	 * but segment size 2 * 512 > 512
1750 	 */
1751 	bdev->max_segment_size = 512;
1752 	bdev->max_num_segments = 0;
1753 	g_io_done = false;
1754 
1755 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
1756 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1757 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
1758 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1759 
1760 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1761 	CU_ASSERT(rc == 0);
1762 	CU_ASSERT(g_io_done == false);
1763 
1764 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1765 	stub_complete_io(1);
1766 	CU_ASSERT(g_io_done == true);
1767 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1768 
1769 	/* Case 1 max_segment_size == 0
1770 	 * but iov num 2 > 1.
1771 	 */
1772 	bdev->max_segment_size = 0;
1773 	bdev->max_num_segments = 1;
1774 	g_io_done = false;
1775 
1776 	iov[0].iov_base = (void *)0x10000;
1777 	iov[0].iov_len = 512;
1778 	iov[1].iov_base = (void *)0x20000;
1779 	iov[1].iov_len = 8 * 512;
1780 
1781 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1782 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
1783 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1784 
1785 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
1786 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
1787 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1788 
1789 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
1790 	CU_ASSERT(rc == 0);
1791 	CU_ASSERT(g_io_done == false);
1792 
1793 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1794 	stub_complete_io(2);
1795 	CU_ASSERT(g_io_done == true);
1796 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1797 
1798 	/* Test that a non-vector command is split correctly.
1799 	 * Set up the expected values before calling spdk_bdev_read_blocks
1800 	 */
1801 	bdev->max_segment_size = 512;
1802 	bdev->max_num_segments = 1;
1803 	g_io_done = false;
1804 
1805 	/* Child IO 0 */
1806 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1807 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1808 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1809 
1810 	/* Child IO 1 */
1811 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
1812 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
1813 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1814 
1815 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1816 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1817 	CU_ASSERT(rc == 0);
1818 	CU_ASSERT(g_io_done == false);
1819 
1820 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1821 	stub_complete_io(2);
1822 	CU_ASSERT(g_io_done == true);
1823 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1824 
1825 	/* Now set up a more complex, multi-vector command that needs to be split,
1826 	 * including splitting iovecs.
1827 	 */
1828 	bdev->max_segment_size = 2 * 512;
1829 	bdev->max_num_segments = 1;
1830 	g_io_done = false;
1831 
1832 	iov[0].iov_base = (void *)0x10000;
1833 	iov[0].iov_len = 2 * 512;
1834 	iov[1].iov_base = (void *)0x20000;
1835 	iov[1].iov_len = 4 * 512;
1836 	iov[2].iov_base = (void *)0x30000;
1837 	iov[2].iov_len = 6 * 512;
1838 
1839 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
1840 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
1841 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1842 
1843 	/* Split iov[1].size to 2 iov entries then split the segments */
1844 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
1845 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
1846 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1847 
1848 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
1849 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
1850 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1851 
1852 	/* Split iov[2].size to 3 iov entries then split the segments */
1853 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
1854 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
1855 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1856 
1857 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
1858 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
1859 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1860 
1861 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
1862 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
1863 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1864 
1865 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
1866 	CU_ASSERT(rc == 0);
1867 	CU_ASSERT(g_io_done == false);
1868 
1869 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
1870 	stub_complete_io(6);
1871 	CU_ASSERT(g_io_done == true);
1872 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1873 
1874 	/* Test multi vector command that needs to be split by strip and then needs to be
1875 	 * split further due to the capacity of parent IO child iovs.
1876 	 */
1877 	bdev->max_segment_size = 512;
1878 	bdev->max_num_segments = 1;
1879 	g_io_done = false;
1880 
1881 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1882 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1883 		iov[i].iov_len = 512 * 2;
1884 	}
1885 
1886 	/* Each input iov.size is split into 2 iovs,
1887 	 * half of the input iov can fill all child iov entries of a single IO.
1888 	 */
1889 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV / 2; i++) {
1890 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
1891 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
1892 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1893 
1894 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
1895 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
1896 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1897 	}
1898 
1899 	/* The remaining iov is split in the second round */
1900 	for (i = BDEV_IO_NUM_CHILD_IOV / 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1901 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
1902 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
1903 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1904 
1905 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
1906 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
1907 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1908 	}
1909 
1910 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
1911 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1912 	CU_ASSERT(rc == 0);
1913 	CU_ASSERT(g_io_done == false);
1914 
1915 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
1916 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
1917 	CU_ASSERT(g_io_done == false);
1918 
1919 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
1920 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
1921 	CU_ASSERT(g_io_done == true);
1922 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1923 
1924 	/* A wrong case, a child IO that is divided does
1925 	 * not meet the principle of multiples of block size,
1926 	 * and exits with error
1927 	 */
1928 	bdev->max_segment_size = 512;
1929 	bdev->max_num_segments = 1;
1930 	g_io_done = false;
1931 
1932 	iov[0].iov_base = (void *)0x10000;
1933 	iov[0].iov_len = 512 + 256;
1934 	iov[1].iov_base = (void *)0x20000;
1935 	iov[1].iov_len = 256;
1936 
1937 	/* iov[0] is split to 512 and 256.
1938 	 * 256 is less than a block size, and it is found
1939 	 * in the next round of split that it is the first child IO smaller than
1940 	 * the block size, so the error exit
1941 	 */
1942 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
1943 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
1944 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1945 
1946 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
1947 	CU_ASSERT(rc == 0);
1948 	CU_ASSERT(g_io_done == false);
1949 
1950 	/* First child IO is OK */
1951 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1952 	stub_complete_io(1);
1953 	CU_ASSERT(g_io_done == true);
1954 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1955 
1956 	/* error exit */
1957 	stub_complete_io(1);
1958 	CU_ASSERT(g_io_done == true);
1959 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1960 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1961 
1962 	/* Test multi vector command that needs to be split by strip and then needs to be
1963 	 * split further due to the capacity of child iovs.
1964 	 *
1965 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
1966 	 * of child iovs, so it needs to wait until the first batch completed.
1967 	 */
1968 	bdev->max_segment_size = 512;
1969 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
1970 	g_io_done = false;
1971 
1972 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1973 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1974 		iov[i].iov_len = 512;
1975 	}
1976 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1977 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1978 		iov[i].iov_len = 512 * 2;
1979 	}
1980 
1981 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1982 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1983 	/* 0 ~ (BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
1984 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1985 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1986 	}
1987 	/* (BDEV_IO_NUM_CHILD_IOV - 2) is split */
1988 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
1989 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
1990 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1991 
1992 	/* Child iov entries exceed the max num of parent IO so split it in next round */
1993 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV, 2, 2);
1994 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
1995 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
1996 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1997 
1998 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
1999 				    BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2000 	CU_ASSERT(rc == 0);
2001 	CU_ASSERT(g_io_done == false);
2002 
2003 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2004 	stub_complete_io(1);
2005 	CU_ASSERT(g_io_done == false);
2006 
2007 	/* Next round */
2008 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2009 	stub_complete_io(1);
2010 	CU_ASSERT(g_io_done == true);
2011 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2012 
2013 	/* This case is similar to the previous one, but the io composed of
2014 	 * the last few entries of child iov is not enough for a blocklen, so they
2015 	 * cannot be put into this IO, but wait until the next time.
2016 	 */
2017 	bdev->max_segment_size = 512;
2018 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2019 	g_io_done = false;
2020 
2021 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2022 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2023 		iov[i].iov_len = 512;
2024 	}
2025 
2026 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2027 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2028 		iov[i].iov_len = 128;
2029 	}
2030 
2031 	/* First child iovcnt is't BDEV_IO_NUM_CHILD_IOV but BDEV_IO_NUM_CHILD_IOV - 2.
2032 	 * Because the left 2 iov is not enough for a blocklen.
2033 	 */
2034 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2035 					   BDEV_IO_NUM_CHILD_IOV - 2, BDEV_IO_NUM_CHILD_IOV - 2);
2036 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2037 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2038 	}
2039 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2040 
2041 	/* The second child io waits until the end of the first child io before executing.
2042 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2043 	 * BDEV_IO_NUM_CHILD_IOV - 2 to BDEV_IO_NUM_CHILD_IOV + 2
2044 	 */
2045 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 2,
2046 					   1, 4);
2047 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2048 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2049 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2050 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2051 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2052 
2053 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2054 				    BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2055 	CU_ASSERT(rc == 0);
2056 	CU_ASSERT(g_io_done == false);
2057 
2058 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2059 	stub_complete_io(1);
2060 	CU_ASSERT(g_io_done == false);
2061 
2062 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2063 	stub_complete_io(1);
2064 	CU_ASSERT(g_io_done == true);
2065 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2066 
2067 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2068 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2069 	 * At the same time, child iovcnt exceeds parent iovcnt.
2070 	 */
2071 	bdev->max_segment_size = 512 + 128;
2072 	bdev->max_num_segments = 3;
2073 	g_io_done = false;
2074 
2075 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2076 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2077 		iov[i].iov_len = 512 + 256;
2078 	}
2079 
2080 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2081 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2082 		iov[i].iov_len = 512 + 128;
2083 	}
2084 
2085 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2086 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2087 	 * Generate 9 child IOs.
2088 	 */
2089 	for (i = 0; i < 3; i++) {
2090 		uint32_t j = i * 4;
2091 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2092 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2093 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2094 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2095 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2096 
2097 		/* Child io must be a multiple of blocklen
2098 		 * iov[j + 2] must be split. If the third entry is also added,
2099 		 * the multiple of blocklen cannot be guaranteed. But it still
2100 		 * occupies one iov entry of the parent child iov.
2101 		 */
2102 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2103 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2104 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2105 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2106 
2107 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2108 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2109 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2110 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2111 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2112 	}
2113 
2114 	/* Child iov position at 27, the 10th child IO
2115 	 * iov entry index is 3 * 4 and offset is 3 * 6
2116 	 */
2117 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2118 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2119 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2120 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2121 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2122 
2123 	/* Child iov position at 30, the 11th child IO */
2124 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2125 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2126 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2127 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2128 
2129 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2130 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2131 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2132 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2133 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2134 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2135 
2136 	/* Consume 9 child IOs and 27 child iov entries.
2137 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2138 	 * Parent IO iov index start from 16 and block offset start from 24
2139 	 */
2140 	for (i = 0; i < 3; i++) {
2141 		uint32_t j = i * 4 + 16;
2142 		uint32_t offset = i * 6 + 24;
2143 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2144 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2145 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2146 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2147 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2148 
2149 		/* Child io must be a multiple of blocklen
2150 		 * iov[j + 2] must be split. If the third entry is also added,
2151 		 * the multiple of blocklen cannot be guaranteed. But it still
2152 		 * occupies one iov entry of the parent child iov.
2153 		 */
2154 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2155 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2156 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2157 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2158 
2159 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2160 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2161 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2162 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2163 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2164 	}
2165 
2166 	/* The 22th child IO, child iov position at 30 */
2167 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2168 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2169 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2170 
2171 	/* The third round */
2172 	/* Here is the 23nd child IO and child iovpos is 0 */
2173 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2174 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2175 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2176 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2177 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2178 
2179 	/* The 24th child IO */
2180 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2181 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2182 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2183 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2184 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2185 
2186 	/* The 25th child IO */
2187 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2188 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2189 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2190 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2191 
2192 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2193 				    50, io_done, NULL);
2194 	CU_ASSERT(rc == 0);
2195 	CU_ASSERT(g_io_done == false);
2196 
2197 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2198 	 * a maximum of 11 IOs can be split at a time, and the
2199 	 * splitting will continue after the first batch is over.
2200 	 */
2201 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2202 	stub_complete_io(11);
2203 	CU_ASSERT(g_io_done == false);
2204 
2205 	/* The 2nd round */
2206 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2207 	stub_complete_io(11);
2208 	CU_ASSERT(g_io_done == false);
2209 
2210 	/* The last round */
2211 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2212 	stub_complete_io(3);
2213 	CU_ASSERT(g_io_done == true);
2214 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2215 
2216 	/* Test an WRITE_ZEROES.  This should also not be split. */
2217 	bdev->max_segment_size = 512;
2218 	bdev->max_num_segments = 1;
2219 	g_io_done = false;
2220 
2221 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2222 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2223 
2224 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2225 	CU_ASSERT(rc == 0);
2226 	CU_ASSERT(g_io_done == false);
2227 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2228 	stub_complete_io(1);
2229 	CU_ASSERT(g_io_done == true);
2230 
2231 	/* Test an UNMAP.  This should also not be split. */
2232 	g_io_done = false;
2233 
2234 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2235 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2236 
2237 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2238 	CU_ASSERT(rc == 0);
2239 	CU_ASSERT(g_io_done == false);
2240 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2241 	stub_complete_io(1);
2242 	CU_ASSERT(g_io_done == true);
2243 
2244 	/* Test a FLUSH.  This should also not be split. */
2245 	g_io_done = false;
2246 
2247 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2248 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2249 
2250 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2251 	CU_ASSERT(rc == 0);
2252 	CU_ASSERT(g_io_done == false);
2253 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2254 	stub_complete_io(1);
2255 	CU_ASSERT(g_io_done == true);
2256 
2257 	spdk_put_io_channel(io_ch);
2258 	spdk_bdev_close(desc);
2259 	free_bdev(bdev);
2260 	spdk_bdev_finish(bdev_fini_cb, NULL);
2261 	poll_threads();
2262 }
2263 
2264 static void
2265 bdev_io_mix_split_test(void)
2266 {
2267 	struct spdk_bdev *bdev;
2268 	struct spdk_bdev_desc *desc = NULL;
2269 	struct spdk_io_channel *io_ch;
2270 	struct spdk_bdev_opts bdev_opts = {
2271 		.bdev_io_pool_size = 512,
2272 		.bdev_io_cache_size = 64,
2273 	};
2274 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
2275 	struct ut_expected_io *expected_io;
2276 	uint64_t i;
2277 	int rc;
2278 
2279 	rc = spdk_bdev_set_opts(&bdev_opts);
2280 	CU_ASSERT(rc == 0);
2281 	spdk_bdev_initialize(bdev_init_cb, NULL);
2282 
2283 	bdev = allocate_bdev("bdev0");
2284 
2285 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2286 	CU_ASSERT(rc == 0);
2287 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2288 	io_ch = spdk_bdev_get_io_channel(desc);
2289 	CU_ASSERT(io_ch != NULL);
2290 
2291 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2292 	bdev->split_on_optimal_io_boundary = true;
2293 	bdev->optimal_io_boundary = 16;
2294 
2295 	bdev->max_segment_size = 512;
2296 	bdev->max_num_segments = 16;
2297 	g_io_done = false;
2298 
2299 	/* IO crossing the IO boundary requires split
2300 	 * Total 2 child IOs.
2301 	 */
2302 
2303 	/* The 1st child IO split the segment_size to multiple segment entry */
2304 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2305 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2306 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2307 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2308 
2309 	/* The 2nd child IO split the segment_size to multiple segment entry */
2310 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2311 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2312 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2313 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2314 
2315 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2316 	CU_ASSERT(rc == 0);
2317 	CU_ASSERT(g_io_done == false);
2318 
2319 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2320 	stub_complete_io(2);
2321 	CU_ASSERT(g_io_done == true);
2322 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2323 
2324 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2325 	bdev->max_segment_size = 15 * 512;
2326 	bdev->max_num_segments = 1;
2327 	g_io_done = false;
2328 
2329 	/* IO crossing the IO boundary requires split.
2330 	 * The 1st child IO segment size exceeds the max_segment_size,
2331 	 * So 1st child IO will be splitted to multiple segment entry.
2332 	 * Then it split to 2 child IOs because of the max_num_segments.
2333 	 * Total 3 child IOs.
2334 	 */
2335 
2336 	/* The first 2 IOs are in an IO boundary.
2337 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2338 	 * So it split to the first 2 IOs.
2339 	 */
2340 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2341 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2342 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2343 
2344 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2345 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2346 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2347 
2348 	/* The 3rd Child IO is because of the io boundary */
2349 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2350 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2351 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2352 
2353 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2354 	CU_ASSERT(rc == 0);
2355 	CU_ASSERT(g_io_done == false);
2356 
2357 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2358 	stub_complete_io(3);
2359 	CU_ASSERT(g_io_done == true);
2360 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2361 
2362 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2363 	bdev->max_segment_size = 17 * 512;
2364 	bdev->max_num_segments = 1;
2365 	g_io_done = false;
2366 
2367 	/* IO crossing the IO boundary requires split.
2368 	 * Child IO does not split.
2369 	 * Total 2 child IOs.
2370 	 */
2371 
2372 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2373 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2374 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2375 
2376 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2377 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2378 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2379 
2380 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2381 	CU_ASSERT(rc == 0);
2382 	CU_ASSERT(g_io_done == false);
2383 
2384 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2385 	stub_complete_io(2);
2386 	CU_ASSERT(g_io_done == true);
2387 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2388 
2389 	/* Now set up a more complex, multi-vector command that needs to be split,
2390 	 * including splitting iovecs.
2391 	 * optimal_io_boundary < max_segment_size * max_num_segments
2392 	 */
2393 	bdev->max_segment_size = 3 * 512;
2394 	bdev->max_num_segments = 6;
2395 	g_io_done = false;
2396 
2397 	iov[0].iov_base = (void *)0x10000;
2398 	iov[0].iov_len = 4 * 512;
2399 	iov[1].iov_base = (void *)0x20000;
2400 	iov[1].iov_len = 4 * 512;
2401 	iov[2].iov_base = (void *)0x30000;
2402 	iov[2].iov_len = 10 * 512;
2403 
2404 	/* IO crossing the IO boundary requires split.
2405 	 * The 1st child IO segment size exceeds the max_segment_size and after
2406 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2407 	 * So 1st child IO will be splitted to 2 child IOs.
2408 	 * Total 3 child IOs.
2409 	 */
2410 
2411 	/* The first 2 IOs are in an IO boundary.
2412 	 * After splitting segmemt size the segment num exceeds.
2413 	 * So it splits to 2 child IOs.
2414 	 */
2415 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2416 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2417 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2418 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2419 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2420 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2421 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2422 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2423 
2424 	/* The 2nd child IO has the left segment entry */
2425 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2426 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2427 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2428 
2429 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2430 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2431 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2432 
2433 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2434 	CU_ASSERT(rc == 0);
2435 	CU_ASSERT(g_io_done == false);
2436 
2437 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2438 	stub_complete_io(3);
2439 	CU_ASSERT(g_io_done == true);
2440 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2441 
2442 	/* A very complicated case. Each sg entry exceeds max_segment_size
2443 	 * and split on io boundary.
2444 	 * optimal_io_boundary < max_segment_size * max_num_segments
2445 	 */
2446 	bdev->max_segment_size = 3 * 512;
2447 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2448 	g_io_done = false;
2449 
2450 	for (i = 0; i < 20; i++) {
2451 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2452 		iov[i].iov_len = 512 * 4;
2453 	}
2454 
2455 	/* IO crossing the IO boundary requires split.
2456 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2457 	 * Each iov entry needs to be splitted to 2 entries because of max_segment_size
2458 	 * Total 5 child IOs.
2459 	 */
2460 
2461 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2462 	 * So each child IO occupies 8 child iov entries.
2463 	 */
2464 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2465 	for (i = 0; i < 4; i++) {
2466 		int iovcnt = i * 2;
2467 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2468 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2469 	}
2470 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2471 
2472 	/* 2nd child IO and total 16 child iov entries of parent IO */
2473 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2474 	for (i = 4; i < 8; i++) {
2475 		int iovcnt = (i - 4) * 2;
2476 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2477 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2478 	}
2479 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2480 
2481 	/* 3rd child IO and total 24 child iov entries of parent IO */
2482 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2483 	for (i = 8; i < 12; i++) {
2484 		int iovcnt = (i - 8) * 2;
2485 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2486 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2487 	}
2488 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2489 
2490 	/* 4th child IO and total 32 child iov entries of parent IO */
2491 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2492 	for (i = 12; i < 16; i++) {
2493 		int iovcnt = (i - 12) * 2;
2494 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2495 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2496 	}
2497 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2498 
2499 	/* 5th child IO and because of the child iov entry it should be splitted
2500 	 * in next round.
2501 	 */
2502 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2503 	for (i = 16; i < 20; i++) {
2504 		int iovcnt = (i - 16) * 2;
2505 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2506 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2507 	}
2508 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2509 
2510 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2511 	CU_ASSERT(rc == 0);
2512 	CU_ASSERT(g_io_done == false);
2513 
2514 	/* First split round */
2515 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2516 	stub_complete_io(4);
2517 	CU_ASSERT(g_io_done == false);
2518 
2519 	/* Second split round */
2520 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2521 	stub_complete_io(1);
2522 	CU_ASSERT(g_io_done == true);
2523 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2524 
2525 	spdk_put_io_channel(io_ch);
2526 	spdk_bdev_close(desc);
2527 	free_bdev(bdev);
2528 	spdk_bdev_finish(bdev_fini_cb, NULL);
2529 	poll_threads();
2530 }
2531 
2532 static void
2533 bdev_io_split_with_io_wait(void)
2534 {
2535 	struct spdk_bdev *bdev;
2536 	struct spdk_bdev_desc *desc = NULL;
2537 	struct spdk_io_channel *io_ch;
2538 	struct spdk_bdev_channel *channel;
2539 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2540 	struct spdk_bdev_opts bdev_opts = {
2541 		.bdev_io_pool_size = 2,
2542 		.bdev_io_cache_size = 1,
2543 	};
2544 	struct iovec iov[3];
2545 	struct ut_expected_io *expected_io;
2546 	int rc;
2547 
2548 	rc = spdk_bdev_set_opts(&bdev_opts);
2549 	CU_ASSERT(rc == 0);
2550 	spdk_bdev_initialize(bdev_init_cb, NULL);
2551 
2552 	bdev = allocate_bdev("bdev0");
2553 
2554 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2555 	CU_ASSERT(rc == 0);
2556 	CU_ASSERT(desc != NULL);
2557 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2558 	io_ch = spdk_bdev_get_io_channel(desc);
2559 	CU_ASSERT(io_ch != NULL);
2560 	channel = spdk_io_channel_get_ctx(io_ch);
2561 	mgmt_ch = channel->shared_resource->mgmt_ch;
2562 
2563 	bdev->optimal_io_boundary = 16;
2564 	bdev->split_on_optimal_io_boundary = true;
2565 
2566 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2567 	CU_ASSERT(rc == 0);
2568 
2569 	/* Now test that a single-vector command is split correctly.
2570 	 * Offset 14, length 8, payload 0xF000
2571 	 *  Child - Offset 14, length 2, payload 0xF000
2572 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2573 	 *
2574 	 * Set up the expected values before calling spdk_bdev_read_blocks
2575 	 */
2576 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2577 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2578 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2579 
2580 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2581 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2582 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2583 
2584 	/* The following children will be submitted sequentially due to the capacity of
2585 	 * spdk_bdev_io.
2586 	 */
2587 
2588 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2589 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2590 	CU_ASSERT(rc == 0);
2591 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2592 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2593 
2594 	/* Completing the first read I/O will submit the first child */
2595 	stub_complete_io(1);
2596 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2597 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2598 
2599 	/* Completing the first child will submit the second child */
2600 	stub_complete_io(1);
2601 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2602 
2603 	/* Complete the second child I/O.  This should result in our callback getting
2604 	 * invoked since the parent I/O is now complete.
2605 	 */
2606 	stub_complete_io(1);
2607 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2608 
2609 	/* Now set up a more complex, multi-vector command that needs to be split,
2610 	 *  including splitting iovecs.
2611 	 */
2612 	iov[0].iov_base = (void *)0x10000;
2613 	iov[0].iov_len = 512;
2614 	iov[1].iov_base = (void *)0x20000;
2615 	iov[1].iov_len = 20 * 512;
2616 	iov[2].iov_base = (void *)0x30000;
2617 	iov[2].iov_len = 11 * 512;
2618 
2619 	g_io_done = false;
2620 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2621 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2622 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2623 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2624 
2625 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2626 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2627 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2628 
2629 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2630 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2631 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2632 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2633 
2634 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2635 	CU_ASSERT(rc == 0);
2636 	CU_ASSERT(g_io_done == false);
2637 
2638 	/* The following children will be submitted sequentially due to the capacity of
2639 	 * spdk_bdev_io.
2640 	 */
2641 
2642 	/* Completing the first child will submit the second child */
2643 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2644 	stub_complete_io(1);
2645 	CU_ASSERT(g_io_done == false);
2646 
2647 	/* Completing the second child will submit the third child */
2648 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2649 	stub_complete_io(1);
2650 	CU_ASSERT(g_io_done == false);
2651 
2652 	/* Completing the third child will result in our callback getting invoked
2653 	 * since the parent I/O is now complete.
2654 	 */
2655 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2656 	stub_complete_io(1);
2657 	CU_ASSERT(g_io_done == true);
2658 
2659 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2660 
2661 	spdk_put_io_channel(io_ch);
2662 	spdk_bdev_close(desc);
2663 	free_bdev(bdev);
2664 	spdk_bdev_finish(bdev_fini_cb, NULL);
2665 	poll_threads();
2666 }
2667 
2668 static void
2669 bdev_io_alignment(void)
2670 {
2671 	struct spdk_bdev *bdev;
2672 	struct spdk_bdev_desc *desc = NULL;
2673 	struct spdk_io_channel *io_ch;
2674 	struct spdk_bdev_opts bdev_opts = {
2675 		.bdev_io_pool_size = 20,
2676 		.bdev_io_cache_size = 2,
2677 	};
2678 	int rc;
2679 	void *buf = NULL;
2680 	struct iovec iovs[2];
2681 	int iovcnt;
2682 	uint64_t alignment;
2683 
2684 	rc = spdk_bdev_set_opts(&bdev_opts);
2685 	CU_ASSERT(rc == 0);
2686 	spdk_bdev_initialize(bdev_init_cb, NULL);
2687 
2688 	fn_table.submit_request = stub_submit_request_get_buf;
2689 	bdev = allocate_bdev("bdev0");
2690 
2691 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2692 	CU_ASSERT(rc == 0);
2693 	CU_ASSERT(desc != NULL);
2694 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2695 	io_ch = spdk_bdev_get_io_channel(desc);
2696 	CU_ASSERT(io_ch != NULL);
2697 
2698 	/* Create aligned buffer */
2699 	rc = posix_memalign(&buf, 4096, 8192);
2700 	SPDK_CU_ASSERT_FATAL(rc == 0);
2701 
2702 	/* Pass aligned single buffer with no alignment required */
2703 	alignment = 1;
2704 	bdev->required_alignment = spdk_u32log2(alignment);
2705 
2706 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2707 	CU_ASSERT(rc == 0);
2708 	stub_complete_io(1);
2709 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2710 				    alignment));
2711 
2712 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2713 	CU_ASSERT(rc == 0);
2714 	stub_complete_io(1);
2715 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2716 				    alignment));
2717 
2718 	/* Pass unaligned single buffer with no alignment required */
2719 	alignment = 1;
2720 	bdev->required_alignment = spdk_u32log2(alignment);
2721 
2722 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2723 	CU_ASSERT(rc == 0);
2724 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2725 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2726 	stub_complete_io(1);
2727 
2728 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2729 	CU_ASSERT(rc == 0);
2730 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2731 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2732 	stub_complete_io(1);
2733 
2734 	/* Pass unaligned single buffer with 512 alignment required */
2735 	alignment = 512;
2736 	bdev->required_alignment = spdk_u32log2(alignment);
2737 
2738 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2739 	CU_ASSERT(rc == 0);
2740 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2741 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2742 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2743 				    alignment));
2744 	stub_complete_io(1);
2745 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2746 
2747 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2748 	CU_ASSERT(rc == 0);
2749 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2750 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2751 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2752 				    alignment));
2753 	stub_complete_io(1);
2754 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2755 
2756 	/* Pass unaligned single buffer with 4096 alignment required */
2757 	alignment = 4096;
2758 	bdev->required_alignment = spdk_u32log2(alignment);
2759 
2760 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2761 	CU_ASSERT(rc == 0);
2762 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2763 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2764 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2765 				    alignment));
2766 	stub_complete_io(1);
2767 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2768 
2769 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2770 	CU_ASSERT(rc == 0);
2771 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2772 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2773 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2774 				    alignment));
2775 	stub_complete_io(1);
2776 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2777 
2778 	/* Pass aligned iovs with no alignment required */
2779 	alignment = 1;
2780 	bdev->required_alignment = spdk_u32log2(alignment);
2781 
2782 	iovcnt = 1;
2783 	iovs[0].iov_base = buf;
2784 	iovs[0].iov_len = 512;
2785 
2786 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2787 	CU_ASSERT(rc == 0);
2788 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2789 	stub_complete_io(1);
2790 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2791 
2792 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2793 	CU_ASSERT(rc == 0);
2794 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2795 	stub_complete_io(1);
2796 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2797 
2798 	/* Pass unaligned iovs with no alignment required */
2799 	alignment = 1;
2800 	bdev->required_alignment = spdk_u32log2(alignment);
2801 
2802 	iovcnt = 2;
2803 	iovs[0].iov_base = buf + 16;
2804 	iovs[0].iov_len = 256;
2805 	iovs[1].iov_base = buf + 16 + 256 + 32;
2806 	iovs[1].iov_len = 256;
2807 
2808 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2809 	CU_ASSERT(rc == 0);
2810 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2811 	stub_complete_io(1);
2812 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2813 
2814 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2815 	CU_ASSERT(rc == 0);
2816 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2817 	stub_complete_io(1);
2818 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2819 
2820 	/* Pass unaligned iov with 2048 alignment required */
2821 	alignment = 2048;
2822 	bdev->required_alignment = spdk_u32log2(alignment);
2823 
2824 	iovcnt = 2;
2825 	iovs[0].iov_base = buf + 16;
2826 	iovs[0].iov_len = 256;
2827 	iovs[1].iov_base = buf + 16 + 256 + 32;
2828 	iovs[1].iov_len = 256;
2829 
2830 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2831 	CU_ASSERT(rc == 0);
2832 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
2833 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2834 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2835 				    alignment));
2836 	stub_complete_io(1);
2837 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2838 
2839 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2840 	CU_ASSERT(rc == 0);
2841 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
2842 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2843 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2844 				    alignment));
2845 	stub_complete_io(1);
2846 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2847 
2848 	/* Pass iov without allocated buffer without alignment required */
2849 	alignment = 1;
2850 	bdev->required_alignment = spdk_u32log2(alignment);
2851 
2852 	iovcnt = 1;
2853 	iovs[0].iov_base = NULL;
2854 	iovs[0].iov_len = 0;
2855 
2856 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2857 	CU_ASSERT(rc == 0);
2858 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2859 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2860 				    alignment));
2861 	stub_complete_io(1);
2862 
2863 	/* Pass iov without allocated buffer with 1024 alignment required */
2864 	alignment = 1024;
2865 	bdev->required_alignment = spdk_u32log2(alignment);
2866 
2867 	iovcnt = 1;
2868 	iovs[0].iov_base = NULL;
2869 	iovs[0].iov_len = 0;
2870 
2871 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2872 	CU_ASSERT(rc == 0);
2873 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2874 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2875 				    alignment));
2876 	stub_complete_io(1);
2877 
2878 	spdk_put_io_channel(io_ch);
2879 	spdk_bdev_close(desc);
2880 	free_bdev(bdev);
2881 	fn_table.submit_request = stub_submit_request;
2882 	spdk_bdev_finish(bdev_fini_cb, NULL);
2883 	poll_threads();
2884 
2885 	free(buf);
2886 }
2887 
2888 static void
2889 bdev_io_alignment_with_boundary(void)
2890 {
2891 	struct spdk_bdev *bdev;
2892 	struct spdk_bdev_desc *desc = NULL;
2893 	struct spdk_io_channel *io_ch;
2894 	struct spdk_bdev_opts bdev_opts = {
2895 		.bdev_io_pool_size = 20,
2896 		.bdev_io_cache_size = 2,
2897 	};
2898 	int rc;
2899 	void *buf = NULL;
2900 	struct iovec iovs[2];
2901 	int iovcnt;
2902 	uint64_t alignment;
2903 
2904 	rc = spdk_bdev_set_opts(&bdev_opts);
2905 	CU_ASSERT(rc == 0);
2906 	spdk_bdev_initialize(bdev_init_cb, NULL);
2907 
2908 	fn_table.submit_request = stub_submit_request_get_buf;
2909 	bdev = allocate_bdev("bdev0");
2910 
2911 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2912 	CU_ASSERT(rc == 0);
2913 	CU_ASSERT(desc != NULL);
2914 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2915 	io_ch = spdk_bdev_get_io_channel(desc);
2916 	CU_ASSERT(io_ch != NULL);
2917 
2918 	/* Create aligned buffer */
2919 	rc = posix_memalign(&buf, 4096, 131072);
2920 	SPDK_CU_ASSERT_FATAL(rc == 0);
2921 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2922 
2923 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
2924 	alignment = 512;
2925 	bdev->required_alignment = spdk_u32log2(alignment);
2926 	bdev->optimal_io_boundary = 2;
2927 	bdev->split_on_optimal_io_boundary = true;
2928 
2929 	iovcnt = 1;
2930 	iovs[0].iov_base = NULL;
2931 	iovs[0].iov_len = 512 * 3;
2932 
2933 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2934 	CU_ASSERT(rc == 0);
2935 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2936 	stub_complete_io(2);
2937 
2938 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
2939 	alignment = 512;
2940 	bdev->required_alignment = spdk_u32log2(alignment);
2941 	bdev->optimal_io_boundary = 16;
2942 	bdev->split_on_optimal_io_boundary = true;
2943 
2944 	iovcnt = 1;
2945 	iovs[0].iov_base = NULL;
2946 	iovs[0].iov_len = 512 * 16;
2947 
2948 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
2949 	CU_ASSERT(rc == 0);
2950 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2951 	stub_complete_io(2);
2952 
2953 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
2954 	alignment = 512;
2955 	bdev->required_alignment = spdk_u32log2(alignment);
2956 	bdev->optimal_io_boundary = 128;
2957 	bdev->split_on_optimal_io_boundary = true;
2958 
2959 	iovcnt = 1;
2960 	iovs[0].iov_base = buf + 16;
2961 	iovs[0].iov_len = 512 * 160;
2962 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
2963 	CU_ASSERT(rc == 0);
2964 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2965 	stub_complete_io(2);
2966 
2967 	/* 512 * 3 with 2 IO boundary */
2968 	alignment = 512;
2969 	bdev->required_alignment = spdk_u32log2(alignment);
2970 	bdev->optimal_io_boundary = 2;
2971 	bdev->split_on_optimal_io_boundary = true;
2972 
2973 	iovcnt = 2;
2974 	iovs[0].iov_base = buf + 16;
2975 	iovs[0].iov_len = 512;
2976 	iovs[1].iov_base = buf + 16 + 512 + 32;
2977 	iovs[1].iov_len = 1024;
2978 
2979 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2980 	CU_ASSERT(rc == 0);
2981 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2982 	stub_complete_io(2);
2983 
2984 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2985 	CU_ASSERT(rc == 0);
2986 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2987 	stub_complete_io(2);
2988 
2989 	/* 512 * 64 with 32 IO boundary */
2990 	bdev->optimal_io_boundary = 32;
2991 	iovcnt = 2;
2992 	iovs[0].iov_base = buf + 16;
2993 	iovs[0].iov_len = 16384;
2994 	iovs[1].iov_base = buf + 16 + 16384 + 32;
2995 	iovs[1].iov_len = 16384;
2996 
2997 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
2998 	CU_ASSERT(rc == 0);
2999 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3000 	stub_complete_io(3);
3001 
3002 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3003 	CU_ASSERT(rc == 0);
3004 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3005 	stub_complete_io(3);
3006 
3007 	/* 512 * 160 with 32 IO boundary */
3008 	iovcnt = 1;
3009 	iovs[0].iov_base = buf + 16;
3010 	iovs[0].iov_len = 16384 + 65536;
3011 
3012 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3013 	CU_ASSERT(rc == 0);
3014 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3015 	stub_complete_io(6);
3016 
3017 	spdk_put_io_channel(io_ch);
3018 	spdk_bdev_close(desc);
3019 	free_bdev(bdev);
3020 	fn_table.submit_request = stub_submit_request;
3021 	spdk_bdev_finish(bdev_fini_cb, NULL);
3022 	poll_threads();
3023 
3024 	free(buf);
3025 }
3026 
3027 static void
3028 histogram_status_cb(void *cb_arg, int status)
3029 {
3030 	g_status = status;
3031 }
3032 
3033 static void
3034 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3035 {
3036 	g_status = status;
3037 	g_histogram = histogram;
3038 }
3039 
3040 static void
3041 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3042 		   uint64_t total, uint64_t so_far)
3043 {
3044 	g_count += count;
3045 }
3046 
3047 static void
3048 bdev_histograms(void)
3049 {
3050 	struct spdk_bdev *bdev;
3051 	struct spdk_bdev_desc *desc = NULL;
3052 	struct spdk_io_channel *ch;
3053 	struct spdk_histogram_data *histogram;
3054 	uint8_t buf[4096];
3055 	int rc;
3056 
3057 	spdk_bdev_initialize(bdev_init_cb, NULL);
3058 
3059 	bdev = allocate_bdev("bdev");
3060 
3061 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3062 	CU_ASSERT(rc == 0);
3063 	CU_ASSERT(desc != NULL);
3064 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3065 
3066 	ch = spdk_bdev_get_io_channel(desc);
3067 	CU_ASSERT(ch != NULL);
3068 
3069 	/* Enable histogram */
3070 	g_status = -1;
3071 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3072 	poll_threads();
3073 	CU_ASSERT(g_status == 0);
3074 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3075 
3076 	/* Allocate histogram */
3077 	histogram = spdk_histogram_data_alloc();
3078 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3079 
3080 	/* Check if histogram is zeroed */
3081 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3082 	poll_threads();
3083 	CU_ASSERT(g_status == 0);
3084 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3085 
3086 	g_count = 0;
3087 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3088 
3089 	CU_ASSERT(g_count == 0);
3090 
3091 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3092 	CU_ASSERT(rc == 0);
3093 
3094 	spdk_delay_us(10);
3095 	stub_complete_io(1);
3096 	poll_threads();
3097 
3098 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3099 	CU_ASSERT(rc == 0);
3100 
3101 	spdk_delay_us(10);
3102 	stub_complete_io(1);
3103 	poll_threads();
3104 
3105 	/* Check if histogram gathered data from all I/O channels */
3106 	g_histogram = NULL;
3107 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3108 	poll_threads();
3109 	CU_ASSERT(g_status == 0);
3110 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3111 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3112 
3113 	g_count = 0;
3114 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3115 	CU_ASSERT(g_count == 2);
3116 
3117 	/* Disable histogram */
3118 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3119 	poll_threads();
3120 	CU_ASSERT(g_status == 0);
3121 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3122 
3123 	/* Try to run histogram commands on disabled bdev */
3124 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3125 	poll_threads();
3126 	CU_ASSERT(g_status == -EFAULT);
3127 
3128 	spdk_histogram_data_free(histogram);
3129 	spdk_put_io_channel(ch);
3130 	spdk_bdev_close(desc);
3131 	free_bdev(bdev);
3132 	spdk_bdev_finish(bdev_fini_cb, NULL);
3133 	poll_threads();
3134 }
3135 
3136 static void
3137 _bdev_compare(bool emulated)
3138 {
3139 	struct spdk_bdev *bdev;
3140 	struct spdk_bdev_desc *desc = NULL;
3141 	struct spdk_io_channel *ioch;
3142 	struct ut_expected_io *expected_io;
3143 	uint64_t offset, num_blocks;
3144 	uint32_t num_completed;
3145 	char aa_buf[512];
3146 	char bb_buf[512];
3147 	struct iovec compare_iov;
3148 	uint8_t io_type;
3149 	int rc;
3150 
3151 	if (emulated) {
3152 		io_type = SPDK_BDEV_IO_TYPE_READ;
3153 	} else {
3154 		io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3155 	}
3156 
3157 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3158 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3159 
3160 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3161 
3162 	spdk_bdev_initialize(bdev_init_cb, NULL);
3163 	fn_table.submit_request = stub_submit_request_get_buf;
3164 	bdev = allocate_bdev("bdev");
3165 
3166 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3167 	CU_ASSERT_EQUAL(rc, 0);
3168 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3169 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3170 	ioch = spdk_bdev_get_io_channel(desc);
3171 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3172 
3173 	fn_table.submit_request = stub_submit_request_get_buf;
3174 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3175 
3176 	offset = 50;
3177 	num_blocks = 1;
3178 	compare_iov.iov_base = aa_buf;
3179 	compare_iov.iov_len = sizeof(aa_buf);
3180 
3181 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
3182 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3183 
3184 	g_io_done = false;
3185 	g_compare_read_buf = aa_buf;
3186 	g_compare_read_buf_len = sizeof(aa_buf);
3187 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3188 	CU_ASSERT_EQUAL(rc, 0);
3189 	num_completed = stub_complete_io(1);
3190 	CU_ASSERT_EQUAL(num_completed, 1);
3191 	CU_ASSERT(g_io_done == true);
3192 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3193 
3194 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
3195 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3196 
3197 	g_io_done = false;
3198 	g_compare_read_buf = bb_buf;
3199 	g_compare_read_buf_len = sizeof(bb_buf);
3200 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3201 	CU_ASSERT_EQUAL(rc, 0);
3202 	num_completed = stub_complete_io(1);
3203 	CU_ASSERT_EQUAL(num_completed, 1);
3204 	CU_ASSERT(g_io_done == true);
3205 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3206 
3207 	spdk_put_io_channel(ioch);
3208 	spdk_bdev_close(desc);
3209 	free_bdev(bdev);
3210 	fn_table.submit_request = stub_submit_request;
3211 	spdk_bdev_finish(bdev_fini_cb, NULL);
3212 	poll_threads();
3213 
3214 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3215 
3216 	g_compare_read_buf = NULL;
3217 }
3218 
3219 static void
3220 bdev_compare(void)
3221 {
3222 	_bdev_compare(true);
3223 	_bdev_compare(false);
3224 }
3225 
3226 static void
3227 bdev_compare_and_write(void)
3228 {
3229 	struct spdk_bdev *bdev;
3230 	struct spdk_bdev_desc *desc = NULL;
3231 	struct spdk_io_channel *ioch;
3232 	struct ut_expected_io *expected_io;
3233 	uint64_t offset, num_blocks;
3234 	uint32_t num_completed;
3235 	char aa_buf[512];
3236 	char bb_buf[512];
3237 	char cc_buf[512];
3238 	char write_buf[512];
3239 	struct iovec compare_iov;
3240 	struct iovec write_iov;
3241 	int rc;
3242 
3243 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3244 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3245 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3246 
3247 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3248 
3249 	spdk_bdev_initialize(bdev_init_cb, NULL);
3250 	fn_table.submit_request = stub_submit_request_get_buf;
3251 	bdev = allocate_bdev("bdev");
3252 
3253 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3254 	CU_ASSERT_EQUAL(rc, 0);
3255 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3256 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3257 	ioch = spdk_bdev_get_io_channel(desc);
3258 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3259 
3260 	fn_table.submit_request = stub_submit_request_get_buf;
3261 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3262 
3263 	offset = 50;
3264 	num_blocks = 1;
3265 	compare_iov.iov_base = aa_buf;
3266 	compare_iov.iov_len = sizeof(aa_buf);
3267 	write_iov.iov_base = bb_buf;
3268 	write_iov.iov_len = sizeof(bb_buf);
3269 
3270 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3271 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3272 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3273 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3274 
3275 	g_io_done = false;
3276 	g_compare_read_buf = aa_buf;
3277 	g_compare_read_buf_len = sizeof(aa_buf);
3278 	memset(write_buf, 0, sizeof(write_buf));
3279 	g_compare_write_buf = write_buf;
3280 	g_compare_write_buf_len = sizeof(write_buf);
3281 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3282 			offset, num_blocks, io_done, NULL);
3283 	/* Trigger range locking */
3284 	poll_threads();
3285 	CU_ASSERT_EQUAL(rc, 0);
3286 	num_completed = stub_complete_io(1);
3287 	CU_ASSERT_EQUAL(num_completed, 1);
3288 	CU_ASSERT(g_io_done == false);
3289 	num_completed = stub_complete_io(1);
3290 	/* Trigger range unlocking */
3291 	poll_threads();
3292 	CU_ASSERT_EQUAL(num_completed, 1);
3293 	CU_ASSERT(g_io_done == true);
3294 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3295 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3296 
3297 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3298 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3299 
3300 	g_io_done = false;
3301 	g_compare_read_buf = cc_buf;
3302 	g_compare_read_buf_len = sizeof(cc_buf);
3303 	memset(write_buf, 0, sizeof(write_buf));
3304 	g_compare_write_buf = write_buf;
3305 	g_compare_write_buf_len = sizeof(write_buf);
3306 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3307 			offset, num_blocks, io_done, NULL);
3308 	/* Trigger range locking */
3309 	poll_threads();
3310 	CU_ASSERT_EQUAL(rc, 0);
3311 	num_completed = stub_complete_io(1);
3312 	/* Trigger range unlocking earlier because we expect error here */
3313 	poll_threads();
3314 	CU_ASSERT_EQUAL(num_completed, 1);
3315 	CU_ASSERT(g_io_done == true);
3316 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3317 	num_completed = stub_complete_io(1);
3318 	CU_ASSERT_EQUAL(num_completed, 0);
3319 
3320 	spdk_put_io_channel(ioch);
3321 	spdk_bdev_close(desc);
3322 	free_bdev(bdev);
3323 	fn_table.submit_request = stub_submit_request;
3324 	spdk_bdev_finish(bdev_fini_cb, NULL);
3325 	poll_threads();
3326 
3327 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3328 
3329 	g_compare_read_buf = NULL;
3330 	g_compare_write_buf = NULL;
3331 }
3332 
3333 static void
3334 bdev_write_zeroes(void)
3335 {
3336 	struct spdk_bdev *bdev;
3337 	struct spdk_bdev_desc *desc = NULL;
3338 	struct spdk_io_channel *ioch;
3339 	struct ut_expected_io *expected_io;
3340 	uint64_t offset, num_io_blocks, num_blocks;
3341 	uint32_t num_completed, num_requests;
3342 	int rc;
3343 
3344 	spdk_bdev_initialize(bdev_init_cb, NULL);
3345 	bdev = allocate_bdev("bdev");
3346 
3347 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3348 	CU_ASSERT_EQUAL(rc, 0);
3349 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3350 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3351 	ioch = spdk_bdev_get_io_channel(desc);
3352 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3353 
3354 	fn_table.submit_request = stub_submit_request;
3355 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3356 
3357 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3358 	bdev->md_len = 0;
3359 	bdev->blocklen = 4096;
3360 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3361 
3362 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3363 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3364 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3365 	CU_ASSERT_EQUAL(rc, 0);
3366 	num_completed = stub_complete_io(1);
3367 	CU_ASSERT_EQUAL(num_completed, 1);
3368 
3369 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3370 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3371 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3372 	num_requests = 2;
3373 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3374 
3375 	for (offset = 0; offset < num_requests; ++offset) {
3376 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3377 						   offset * num_io_blocks, num_io_blocks, 0);
3378 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3379 	}
3380 
3381 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3382 	CU_ASSERT_EQUAL(rc, 0);
3383 	num_completed = stub_complete_io(num_requests);
3384 	CU_ASSERT_EQUAL(num_completed, num_requests);
3385 
3386 	/* Check that the splitting is correct if bdev has interleaved metadata */
3387 	bdev->md_interleave = true;
3388 	bdev->md_len = 64;
3389 	bdev->blocklen = 4096 + 64;
3390 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3391 
3392 	num_requests = offset = 0;
3393 	while (offset < num_blocks) {
3394 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
3395 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3396 						   offset, num_io_blocks, 0);
3397 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3398 		offset += num_io_blocks;
3399 		num_requests++;
3400 	}
3401 
3402 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3403 	CU_ASSERT_EQUAL(rc, 0);
3404 	num_completed = stub_complete_io(num_requests);
3405 	CU_ASSERT_EQUAL(num_completed, num_requests);
3406 	num_completed = stub_complete_io(num_requests);
3407 	assert(num_completed == 0);
3408 
3409 	/* Check the the same for separate metadata buffer */
3410 	bdev->md_interleave = false;
3411 	bdev->md_len = 64;
3412 	bdev->blocklen = 4096;
3413 
3414 	num_requests = offset = 0;
3415 	while (offset < num_blocks) {
3416 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
3417 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3418 						   offset, num_io_blocks, 0);
3419 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
3420 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3421 		offset += num_io_blocks;
3422 		num_requests++;
3423 	}
3424 
3425 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3426 	CU_ASSERT_EQUAL(rc, 0);
3427 	num_completed = stub_complete_io(num_requests);
3428 	CU_ASSERT_EQUAL(num_completed, num_requests);
3429 
3430 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
3431 	spdk_put_io_channel(ioch);
3432 	spdk_bdev_close(desc);
3433 	free_bdev(bdev);
3434 	spdk_bdev_finish(bdev_fini_cb, NULL);
3435 	poll_threads();
3436 }
3437 
3438 static void
3439 bdev_open_while_hotremove(void)
3440 {
3441 	struct spdk_bdev *bdev;
3442 	struct spdk_bdev_desc *desc[2] = {};
3443 	int rc;
3444 
3445 	bdev = allocate_bdev("bdev");
3446 
3447 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
3448 	CU_ASSERT(rc == 0);
3449 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
3450 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
3451 
3452 	spdk_bdev_unregister(bdev, NULL, NULL);
3453 
3454 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
3455 	CU_ASSERT(rc == -ENODEV);
3456 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
3457 
3458 	spdk_bdev_close(desc[0]);
3459 	free_bdev(bdev);
3460 }
3461 
3462 static void
3463 bdev_close_while_hotremove(void)
3464 {
3465 	struct spdk_bdev *bdev;
3466 	struct spdk_bdev_desc *desc = NULL;
3467 	int rc = 0;
3468 
3469 	bdev = allocate_bdev("bdev");
3470 
3471 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
3472 	CU_ASSERT_EQUAL(rc, 0);
3473 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3474 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3475 
3476 	/* Simulate hot-unplug by unregistering bdev */
3477 	g_event_type1 = 0xFF;
3478 	g_unregister_arg = NULL;
3479 	g_unregister_rc = -1;
3480 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
3481 	/* Close device while remove event is in flight */
3482 	spdk_bdev_close(desc);
3483 
3484 	/* Ensure that unregister callback is delayed */
3485 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
3486 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
3487 
3488 	poll_threads();
3489 
3490 	/* Event callback shall not be issued because device was closed */
3491 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
3492 	/* Unregister callback is issued */
3493 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
3494 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
3495 
3496 	free_bdev(bdev);
3497 }
3498 
3499 static void
3500 bdev_open_ext(void)
3501 {
3502 	struct spdk_bdev *bdev;
3503 	struct spdk_bdev_desc *desc1 = NULL;
3504 	struct spdk_bdev_desc *desc2 = NULL;
3505 	int rc = 0;
3506 
3507 	bdev = allocate_bdev("bdev");
3508 
3509 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
3510 	CU_ASSERT_EQUAL(rc, -EINVAL);
3511 
3512 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
3513 	CU_ASSERT_EQUAL(rc, 0);
3514 
3515 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
3516 	CU_ASSERT_EQUAL(rc, 0);
3517 
3518 	g_event_type1 = 0xFF;
3519 	g_event_type2 = 0xFF;
3520 
3521 	/* Simulate hot-unplug by unregistering bdev */
3522 	spdk_bdev_unregister(bdev, NULL, NULL);
3523 	poll_threads();
3524 
3525 	/* Check if correct events have been triggered in event callback fn */
3526 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
3527 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
3528 
3529 	free_bdev(bdev);
3530 	poll_threads();
3531 }
3532 
3533 struct timeout_io_cb_arg {
3534 	struct iovec iov;
3535 	uint8_t type;
3536 };
3537 
3538 static int
3539 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
3540 {
3541 	struct spdk_bdev_io *bdev_io;
3542 	int n = 0;
3543 
3544 	if (!ch) {
3545 		return -1;
3546 	}
3547 
3548 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
3549 		n++;
3550 	}
3551 
3552 	return n;
3553 }
3554 
3555 static void
3556 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
3557 {
3558 	struct timeout_io_cb_arg *ctx = cb_arg;
3559 
3560 	ctx->type = bdev_io->type;
3561 	ctx->iov.iov_base = bdev_io->iov.iov_base;
3562 	ctx->iov.iov_len = bdev_io->iov.iov_len;
3563 }
3564 
3565 static void
3566 bdev_set_io_timeout(void)
3567 {
3568 	struct spdk_bdev *bdev;
3569 	struct spdk_bdev_desc *desc = NULL;
3570 	struct spdk_io_channel *io_ch = NULL;
3571 	struct spdk_bdev_channel *bdev_ch = NULL;
3572 	struct timeout_io_cb_arg cb_arg;
3573 
3574 	spdk_bdev_initialize(bdev_init_cb, NULL);
3575 
3576 	bdev = allocate_bdev("bdev");
3577 
3578 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
3579 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3580 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3581 
3582 	io_ch = spdk_bdev_get_io_channel(desc);
3583 	CU_ASSERT(io_ch != NULL);
3584 
3585 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
3586 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
3587 
3588 	/* This is the part1.
3589 	 * We will check the bdev_ch->io_submitted list
3590 	 * TO make sure that it can link IOs and only the user submitted IOs
3591 	 */
3592 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
3593 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
3594 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
3595 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
3596 	stub_complete_io(1);
3597 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
3598 	stub_complete_io(1);
3599 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
3600 
3601 	/* Split IO */
3602 	bdev->optimal_io_boundary = 16;
3603 	bdev->split_on_optimal_io_boundary = true;
3604 
3605 	/* Now test that a single-vector command is split correctly.
3606 	 * Offset 14, length 8, payload 0xF000
3607 	 *  Child - Offset 14, length 2, payload 0xF000
3608 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
3609 	 *
3610 	 * Set up the expected values before calling spdk_bdev_read_blocks
3611 	 */
3612 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
3613 	/* We count all submitted IOs including IO that are generated by splitting. */
3614 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
3615 	stub_complete_io(1);
3616 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
3617 	stub_complete_io(1);
3618 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
3619 
3620 	/* Also include the reset IO */
3621 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
3622 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
3623 	poll_threads();
3624 	stub_complete_io(1);
3625 	poll_threads();
3626 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
3627 
3628 	/* This is part2
3629 	 * Test the desc timeout poller register
3630 	 */
3631 
3632 	/* Successfully set the timeout */
3633 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
3634 	CU_ASSERT(desc->io_timeout_poller != NULL);
3635 	CU_ASSERT(desc->timeout_in_sec == 30);
3636 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
3637 	CU_ASSERT(desc->cb_arg == &cb_arg);
3638 
3639 	/* Change the timeout limit */
3640 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
3641 	CU_ASSERT(desc->io_timeout_poller != NULL);
3642 	CU_ASSERT(desc->timeout_in_sec == 20);
3643 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
3644 	CU_ASSERT(desc->cb_arg == &cb_arg);
3645 
3646 	/* Disable the timeout */
3647 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
3648 	CU_ASSERT(desc->io_timeout_poller == NULL);
3649 
3650 	/* This the part3
3651 	 * We will test to catch timeout IO and check whether the IO is
3652 	 * the submitted one.
3653 	 */
3654 	memset(&cb_arg, 0, sizeof(cb_arg));
3655 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
3656 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
3657 
3658 	/* Don't reach the limit */
3659 	spdk_delay_us(15 * spdk_get_ticks_hz());
3660 	poll_threads();
3661 	CU_ASSERT(cb_arg.type == 0);
3662 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
3663 	CU_ASSERT(cb_arg.iov.iov_len == 0);
3664 
3665 	/* 15 + 15 = 30 reach the limit */
3666 	spdk_delay_us(15 * spdk_get_ticks_hz());
3667 	poll_threads();
3668 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
3669 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
3670 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
3671 	stub_complete_io(1);
3672 
3673 	/* Use the same split IO above and check the IO */
3674 	memset(&cb_arg, 0, sizeof(cb_arg));
3675 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
3676 
3677 	/* The first child complete in time */
3678 	spdk_delay_us(15 * spdk_get_ticks_hz());
3679 	poll_threads();
3680 	stub_complete_io(1);
3681 	CU_ASSERT(cb_arg.type == 0);
3682 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
3683 	CU_ASSERT(cb_arg.iov.iov_len == 0);
3684 
3685 	/* The second child reach the limit */
3686 	spdk_delay_us(15 * spdk_get_ticks_hz());
3687 	poll_threads();
3688 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
3689 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
3690 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
3691 	stub_complete_io(1);
3692 
3693 	/* Also include the reset IO */
3694 	memset(&cb_arg, 0, sizeof(cb_arg));
3695 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
3696 	spdk_delay_us(30 * spdk_get_ticks_hz());
3697 	poll_threads();
3698 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
3699 	stub_complete_io(1);
3700 	poll_threads();
3701 
3702 	spdk_put_io_channel(io_ch);
3703 	spdk_bdev_close(desc);
3704 	free_bdev(bdev);
3705 	spdk_bdev_finish(bdev_fini_cb, NULL);
3706 	poll_threads();
3707 }
3708 
3709 static void
3710 lba_range_overlap(void)
3711 {
3712 	struct lba_range r1, r2;
3713 
3714 	r1.offset = 100;
3715 	r1.length = 50;
3716 
3717 	r2.offset = 0;
3718 	r2.length = 1;
3719 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
3720 
3721 	r2.offset = 0;
3722 	r2.length = 100;
3723 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
3724 
3725 	r2.offset = 0;
3726 	r2.length = 110;
3727 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
3728 
3729 	r2.offset = 100;
3730 	r2.length = 10;
3731 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
3732 
3733 	r2.offset = 110;
3734 	r2.length = 20;
3735 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
3736 
3737 	r2.offset = 140;
3738 	r2.length = 150;
3739 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
3740 
3741 	r2.offset = 130;
3742 	r2.length = 200;
3743 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
3744 
3745 	r2.offset = 150;
3746 	r2.length = 100;
3747 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
3748 
3749 	r2.offset = 110;
3750 	r2.length = 0;
3751 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
3752 }
3753 
3754 static bool g_lock_lba_range_done;
3755 static bool g_unlock_lba_range_done;
3756 
3757 static void
3758 lock_lba_range_done(void *ctx, int status)
3759 {
3760 	g_lock_lba_range_done = true;
3761 }
3762 
3763 static void
3764 unlock_lba_range_done(void *ctx, int status)
3765 {
3766 	g_unlock_lba_range_done = true;
3767 }
3768 
3769 static void
3770 lock_lba_range_check_ranges(void)
3771 {
3772 	struct spdk_bdev *bdev;
3773 	struct spdk_bdev_desc *desc = NULL;
3774 	struct spdk_io_channel *io_ch;
3775 	struct spdk_bdev_channel *channel;
3776 	struct lba_range *range;
3777 	int ctx1;
3778 	int rc;
3779 
3780 	spdk_bdev_initialize(bdev_init_cb, NULL);
3781 
3782 	bdev = allocate_bdev("bdev0");
3783 
3784 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3785 	CU_ASSERT(rc == 0);
3786 	CU_ASSERT(desc != NULL);
3787 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3788 	io_ch = spdk_bdev_get_io_channel(desc);
3789 	CU_ASSERT(io_ch != NULL);
3790 	channel = spdk_io_channel_get_ctx(io_ch);
3791 
3792 	g_lock_lba_range_done = false;
3793 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3794 	CU_ASSERT(rc == 0);
3795 	poll_threads();
3796 
3797 	CU_ASSERT(g_lock_lba_range_done == true);
3798 	range = TAILQ_FIRST(&channel->locked_ranges);
3799 	SPDK_CU_ASSERT_FATAL(range != NULL);
3800 	CU_ASSERT(range->offset == 20);
3801 	CU_ASSERT(range->length == 10);
3802 	CU_ASSERT(range->owner_ch == channel);
3803 
3804 	/* Unlocks must exactly match a lock. */
3805 	g_unlock_lba_range_done = false;
3806 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
3807 	CU_ASSERT(rc == -EINVAL);
3808 	CU_ASSERT(g_unlock_lba_range_done == false);
3809 
3810 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3811 	CU_ASSERT(rc == 0);
3812 	spdk_delay_us(100);
3813 	poll_threads();
3814 
3815 	CU_ASSERT(g_unlock_lba_range_done == true);
3816 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3817 
3818 	spdk_put_io_channel(io_ch);
3819 	spdk_bdev_close(desc);
3820 	free_bdev(bdev);
3821 	spdk_bdev_finish(bdev_fini_cb, NULL);
3822 	poll_threads();
3823 }
3824 
3825 static void
3826 lock_lba_range_with_io_outstanding(void)
3827 {
3828 	struct spdk_bdev *bdev;
3829 	struct spdk_bdev_desc *desc = NULL;
3830 	struct spdk_io_channel *io_ch;
3831 	struct spdk_bdev_channel *channel;
3832 	struct lba_range *range;
3833 	char buf[4096];
3834 	int ctx1;
3835 	int rc;
3836 
3837 	spdk_bdev_initialize(bdev_init_cb, NULL);
3838 
3839 	bdev = allocate_bdev("bdev0");
3840 
3841 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3842 	CU_ASSERT(rc == 0);
3843 	CU_ASSERT(desc != NULL);
3844 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3845 	io_ch = spdk_bdev_get_io_channel(desc);
3846 	CU_ASSERT(io_ch != NULL);
3847 	channel = spdk_io_channel_get_ctx(io_ch);
3848 
3849 	g_io_done = false;
3850 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
3851 	CU_ASSERT(rc == 0);
3852 
3853 	g_lock_lba_range_done = false;
3854 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3855 	CU_ASSERT(rc == 0);
3856 	poll_threads();
3857 
3858 	/* The lock should immediately become valid, since there are no outstanding
3859 	 * write I/O.
3860 	 */
3861 	CU_ASSERT(g_io_done == false);
3862 	CU_ASSERT(g_lock_lba_range_done == true);
3863 	range = TAILQ_FIRST(&channel->locked_ranges);
3864 	SPDK_CU_ASSERT_FATAL(range != NULL);
3865 	CU_ASSERT(range->offset == 20);
3866 	CU_ASSERT(range->length == 10);
3867 	CU_ASSERT(range->owner_ch == channel);
3868 	CU_ASSERT(range->locked_ctx == &ctx1);
3869 
3870 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3871 	CU_ASSERT(rc == 0);
3872 	stub_complete_io(1);
3873 	spdk_delay_us(100);
3874 	poll_threads();
3875 
3876 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3877 
3878 	/* Now try again, but with a write I/O. */
3879 	g_io_done = false;
3880 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
3881 	CU_ASSERT(rc == 0);
3882 
3883 	g_lock_lba_range_done = false;
3884 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3885 	CU_ASSERT(rc == 0);
3886 	poll_threads();
3887 
3888 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
3889 	 * But note that the range should be on the channel's locked_list, to make sure no
3890 	 * new write I/O are started.
3891 	 */
3892 	CU_ASSERT(g_io_done == false);
3893 	CU_ASSERT(g_lock_lba_range_done == false);
3894 	range = TAILQ_FIRST(&channel->locked_ranges);
3895 	SPDK_CU_ASSERT_FATAL(range != NULL);
3896 	CU_ASSERT(range->offset == 20);
3897 	CU_ASSERT(range->length == 10);
3898 
3899 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
3900 	 * our callback was invoked).
3901 	 */
3902 	stub_complete_io(1);
3903 	spdk_delay_us(100);
3904 	poll_threads();
3905 	CU_ASSERT(g_io_done == true);
3906 	CU_ASSERT(g_lock_lba_range_done == true);
3907 
3908 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3909 	CU_ASSERT(rc == 0);
3910 	poll_threads();
3911 
3912 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3913 
3914 	spdk_put_io_channel(io_ch);
3915 	spdk_bdev_close(desc);
3916 	free_bdev(bdev);
3917 	spdk_bdev_finish(bdev_fini_cb, NULL);
3918 	poll_threads();
3919 }
3920 
3921 static void
3922 lock_lba_range_overlapped(void)
3923 {
3924 	struct spdk_bdev *bdev;
3925 	struct spdk_bdev_desc *desc = NULL;
3926 	struct spdk_io_channel *io_ch;
3927 	struct spdk_bdev_channel *channel;
3928 	struct lba_range *range;
3929 	int ctx1;
3930 	int rc;
3931 
3932 	spdk_bdev_initialize(bdev_init_cb, NULL);
3933 
3934 	bdev = allocate_bdev("bdev0");
3935 
3936 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3937 	CU_ASSERT(rc == 0);
3938 	CU_ASSERT(desc != NULL);
3939 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3940 	io_ch = spdk_bdev_get_io_channel(desc);
3941 	CU_ASSERT(io_ch != NULL);
3942 	channel = spdk_io_channel_get_ctx(io_ch);
3943 
3944 	/* Lock range 20-29. */
3945 	g_lock_lba_range_done = false;
3946 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3947 	CU_ASSERT(rc == 0);
3948 	poll_threads();
3949 
3950 	CU_ASSERT(g_lock_lba_range_done == true);
3951 	range = TAILQ_FIRST(&channel->locked_ranges);
3952 	SPDK_CU_ASSERT_FATAL(range != NULL);
3953 	CU_ASSERT(range->offset == 20);
3954 	CU_ASSERT(range->length == 10);
3955 
3956 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
3957 	 * 20-29.
3958 	 */
3959 	g_lock_lba_range_done = false;
3960 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
3961 	CU_ASSERT(rc == 0);
3962 	poll_threads();
3963 
3964 	CU_ASSERT(g_lock_lba_range_done == false);
3965 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3966 	SPDK_CU_ASSERT_FATAL(range != NULL);
3967 	CU_ASSERT(range->offset == 25);
3968 	CU_ASSERT(range->length == 15);
3969 
3970 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
3971 	 * no longer overlaps with an active lock.
3972 	 */
3973 	g_unlock_lba_range_done = false;
3974 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3975 	CU_ASSERT(rc == 0);
3976 	poll_threads();
3977 
3978 	CU_ASSERT(g_unlock_lba_range_done == true);
3979 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
3980 	range = TAILQ_FIRST(&channel->locked_ranges);
3981 	SPDK_CU_ASSERT_FATAL(range != NULL);
3982 	CU_ASSERT(range->offset == 25);
3983 	CU_ASSERT(range->length == 15);
3984 
3985 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
3986 	 * currently active 25-39 lock.
3987 	 */
3988 	g_lock_lba_range_done = false;
3989 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
3990 	CU_ASSERT(rc == 0);
3991 	poll_threads();
3992 
3993 	CU_ASSERT(g_lock_lba_range_done == true);
3994 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
3995 	SPDK_CU_ASSERT_FATAL(range != NULL);
3996 	range = TAILQ_NEXT(range, tailq);
3997 	SPDK_CU_ASSERT_FATAL(range != NULL);
3998 	CU_ASSERT(range->offset == 40);
3999 	CU_ASSERT(range->length == 20);
4000 
4001 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4002 	g_lock_lba_range_done = false;
4003 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4004 	CU_ASSERT(rc == 0);
4005 	poll_threads();
4006 
4007 	CU_ASSERT(g_lock_lba_range_done == false);
4008 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4009 	SPDK_CU_ASSERT_FATAL(range != NULL);
4010 	CU_ASSERT(range->offset == 35);
4011 	CU_ASSERT(range->length == 10);
4012 
4013 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4014 	 * the 40-59 lock is still active.
4015 	 */
4016 	g_unlock_lba_range_done = false;
4017 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4018 	CU_ASSERT(rc == 0);
4019 	poll_threads();
4020 
4021 	CU_ASSERT(g_unlock_lba_range_done == true);
4022 	CU_ASSERT(g_lock_lba_range_done == false);
4023 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4024 	SPDK_CU_ASSERT_FATAL(range != NULL);
4025 	CU_ASSERT(range->offset == 35);
4026 	CU_ASSERT(range->length == 10);
4027 
4028 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4029 	 * no longer any active overlapping locks.
4030 	 */
4031 	g_unlock_lba_range_done = false;
4032 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4033 	CU_ASSERT(rc == 0);
4034 	poll_threads();
4035 
4036 	CU_ASSERT(g_unlock_lba_range_done == true);
4037 	CU_ASSERT(g_lock_lba_range_done == true);
4038 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4039 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4040 	SPDK_CU_ASSERT_FATAL(range != NULL);
4041 	CU_ASSERT(range->offset == 35);
4042 	CU_ASSERT(range->length == 10);
4043 
4044 	/* Finally, unlock 35-44. */
4045 	g_unlock_lba_range_done = false;
4046 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
4047 	CU_ASSERT(rc == 0);
4048 	poll_threads();
4049 
4050 	CU_ASSERT(g_unlock_lba_range_done == true);
4051 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
4052 
4053 	spdk_put_io_channel(io_ch);
4054 	spdk_bdev_close(desc);
4055 	free_bdev(bdev);
4056 	spdk_bdev_finish(bdev_fini_cb, NULL);
4057 	poll_threads();
4058 }
4059 
4060 static void
4061 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4062 {
4063 	g_abort_done = true;
4064 	g_abort_status = bdev_io->internal.status;
4065 	spdk_bdev_free_io(bdev_io);
4066 }
4067 
4068 static void
4069 bdev_io_abort(void)
4070 {
4071 	struct spdk_bdev *bdev;
4072 	struct spdk_bdev_desc *desc = NULL;
4073 	struct spdk_io_channel *io_ch;
4074 	struct spdk_bdev_channel *channel;
4075 	struct spdk_bdev_mgmt_channel *mgmt_ch;
4076 	struct spdk_bdev_opts bdev_opts = {
4077 		.bdev_io_pool_size = 7,
4078 		.bdev_io_cache_size = 2,
4079 	};
4080 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
4081 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
4082 	int rc;
4083 
4084 	rc = spdk_bdev_set_opts(&bdev_opts);
4085 	CU_ASSERT(rc == 0);
4086 	spdk_bdev_initialize(bdev_init_cb, NULL);
4087 
4088 	bdev = allocate_bdev("bdev0");
4089 
4090 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4091 	CU_ASSERT(rc == 0);
4092 	CU_ASSERT(desc != NULL);
4093 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4094 	io_ch = spdk_bdev_get_io_channel(desc);
4095 	CU_ASSERT(io_ch != NULL);
4096 	channel = spdk_io_channel_get_ctx(io_ch);
4097 	mgmt_ch = channel->shared_resource->mgmt_ch;
4098 
4099 	g_abort_done = false;
4100 
4101 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
4102 
4103 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4104 	CU_ASSERT(rc == -ENOTSUP);
4105 
4106 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
4107 
4108 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
4109 	CU_ASSERT(rc == 0);
4110 	CU_ASSERT(g_abort_done == true);
4111 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
4112 
4113 	/* Test the case that the target I/O was successfully aborted. */
4114 	g_io_done = false;
4115 
4116 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4117 	CU_ASSERT(rc == 0);
4118 	CU_ASSERT(g_io_done == false);
4119 
4120 	g_abort_done = false;
4121 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4122 
4123 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4124 	CU_ASSERT(rc == 0);
4125 	CU_ASSERT(g_io_done == true);
4126 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4127 	stub_complete_io(1);
4128 	CU_ASSERT(g_abort_done == true);
4129 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4130 
4131 	/* Test the case that the target I/O was not aborted because it completed
4132 	 * in the middle of execution of the abort.
4133 	 */
4134 	g_io_done = false;
4135 
4136 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4137 	CU_ASSERT(rc == 0);
4138 	CU_ASSERT(g_io_done == false);
4139 
4140 	g_abort_done = false;
4141 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4142 
4143 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4144 	CU_ASSERT(rc == 0);
4145 	CU_ASSERT(g_io_done == false);
4146 
4147 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4148 	stub_complete_io(1);
4149 	CU_ASSERT(g_io_done == true);
4150 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4151 
4152 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4153 	stub_complete_io(1);
4154 	CU_ASSERT(g_abort_done == true);
4155 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4156 
4157 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4158 
4159 	bdev->optimal_io_boundary = 16;
4160 	bdev->split_on_optimal_io_boundary = true;
4161 
4162 	/* Test that a single-vector command which is split is aborted correctly.
4163 	 * Offset 14, length 8, payload 0xF000
4164 	 *  Child - Offset 14, length 2, payload 0xF000
4165 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4166 	 */
4167 	g_io_done = false;
4168 
4169 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
4170 	CU_ASSERT(rc == 0);
4171 	CU_ASSERT(g_io_done == false);
4172 
4173 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4174 
4175 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4176 
4177 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4178 	CU_ASSERT(rc == 0);
4179 	CU_ASSERT(g_io_done == true);
4180 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4181 	stub_complete_io(2);
4182 	CU_ASSERT(g_abort_done == true);
4183 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4184 
4185 	/* Test that a multi-vector command that needs to be split by strip and then
4186 	 * needs to be split is aborted correctly. Abort is requested before the second
4187 	 * child I/O was submitted. The parent I/O should complete with failure without
4188 	 * submitting the second child I/O.
4189 	 */
4190 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
4191 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
4192 		iov[i].iov_len = 512;
4193 	}
4194 
4195 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
4196 	g_io_done = false;
4197 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
4198 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
4199 	CU_ASSERT(rc == 0);
4200 	CU_ASSERT(g_io_done == false);
4201 
4202 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4203 
4204 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4205 
4206 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4207 	CU_ASSERT(rc == 0);
4208 	CU_ASSERT(g_io_done == true);
4209 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4210 	stub_complete_io(1);
4211 	CU_ASSERT(g_abort_done == true);
4212 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4213 
4214 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4215 
4216 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4217 
4218 	bdev->optimal_io_boundary = 16;
4219 	g_io_done = false;
4220 
4221 	/* Test that a ingle-vector command which is split is aborted correctly.
4222 	 * Differently from the above, the child abort request will be submitted
4223 	 * sequentially due to the capacity of spdk_bdev_io.
4224 	 */
4225 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
4226 	CU_ASSERT(rc == 0);
4227 	CU_ASSERT(g_io_done == false);
4228 
4229 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4230 
4231 	g_abort_done = false;
4232 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4233 
4234 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4235 	CU_ASSERT(rc == 0);
4236 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
4237 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4238 
4239 	stub_complete_io(1);
4240 	CU_ASSERT(g_io_done == true);
4241 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4242 	stub_complete_io(3);
4243 	CU_ASSERT(g_abort_done == true);
4244 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4245 
4246 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4247 
4248 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4249 
4250 	spdk_put_io_channel(io_ch);
4251 	spdk_bdev_close(desc);
4252 	free_bdev(bdev);
4253 	spdk_bdev_finish(bdev_fini_cb, NULL);
4254 	poll_threads();
4255 }
4256 
4257 int
4258 main(int argc, char **argv)
4259 {
4260 	CU_pSuite		suite = NULL;
4261 	unsigned int		num_failures;
4262 
4263 	CU_set_error_action(CUEA_ABORT);
4264 	CU_initialize_registry();
4265 
4266 	suite = CU_add_suite("bdev", null_init, null_clean);
4267 
4268 	CU_ADD_TEST(suite, bytes_to_blocks_test);
4269 	CU_ADD_TEST(suite, num_blocks_test);
4270 	CU_ADD_TEST(suite, io_valid_test);
4271 	CU_ADD_TEST(suite, open_write_test);
4272 	CU_ADD_TEST(suite, alias_add_del_test);
4273 	CU_ADD_TEST(suite, get_device_stat_test);
4274 	CU_ADD_TEST(suite, bdev_io_types_test);
4275 	CU_ADD_TEST(suite, bdev_io_wait_test);
4276 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
4277 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
4278 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
4279 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
4280 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
4281 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
4282 	CU_ADD_TEST(suite, bdev_io_alignment);
4283 	CU_ADD_TEST(suite, bdev_histograms);
4284 	CU_ADD_TEST(suite, bdev_write_zeroes);
4285 	CU_ADD_TEST(suite, bdev_compare_and_write);
4286 	CU_ADD_TEST(suite, bdev_compare);
4287 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
4288 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
4289 	CU_ADD_TEST(suite, bdev_open_ext);
4290 	CU_ADD_TEST(suite, bdev_set_io_timeout);
4291 	CU_ADD_TEST(suite, lba_range_overlap);
4292 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
4293 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
4294 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
4295 	CU_ADD_TEST(suite, bdev_io_abort);
4296 
4297 	allocate_cores(1);
4298 	allocate_threads(1);
4299 	set_thread(0);
4300 
4301 	CU_basic_set_mode(CU_BRM_VERBOSE);
4302 	CU_basic_run_tests();
4303 	num_failures = CU_get_number_of_failures();
4304 	CU_cleanup_registry();
4305 
4306 	free_threads();
4307 	free_cores();
4308 
4309 	return num_failures;
4310 }
4311