xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision b30d57cdad6d2bc75cc1e4e2ebbcebcb0d98dcfa)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation. All rights reserved.
5  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk_cunit.h"
35 
36 #include "common/lib/ut_multithread.c"
37 #include "unit/lib/json_mock.c"
38 
39 #include "spdk/config.h"
40 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
41 #undef SPDK_CONFIG_VTUNE
42 
43 #include "bdev/bdev.c"
44 
45 struct spdk_trace_histories *g_trace_histories;
46 DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
47 DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix));
48 DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
49 DEFINE_STUB_V(spdk_trace_register_description, (const char *name,
50 		uint16_t tpoint_id, uint8_t owner_type,
51 		uint8_t object_type, uint8_t new_object,
52 		uint8_t arg1_type, const char *arg1_name));
53 DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
54 				   uint32_t size, uint64_t object_id, uint64_t arg1));
55 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
56 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
57 
58 
59 int g_status;
60 int g_count;
61 enum spdk_bdev_event_type g_event_type1;
62 enum spdk_bdev_event_type g_event_type2;
63 struct spdk_histogram_data *g_histogram;
64 void *g_unregister_arg;
65 int g_unregister_rc;
66 
67 void
68 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
69 			 int *sc, int *sk, int *asc, int *ascq)
70 {
71 }
72 
73 static int
74 null_init(void)
75 {
76 	return 0;
77 }
78 
79 static int
80 null_clean(void)
81 {
82 	return 0;
83 }
84 
85 static int
86 stub_destruct(void *ctx)
87 {
88 	return 0;
89 }
90 
91 struct ut_expected_io {
92 	uint8_t				type;
93 	uint64_t			offset;
94 	uint64_t			length;
95 	int				iovcnt;
96 	struct iovec			iov[BDEV_IO_NUM_CHILD_IOV];
97 	void				*md_buf;
98 	TAILQ_ENTRY(ut_expected_io)	link;
99 };
100 
101 struct bdev_ut_channel {
102 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
103 	uint32_t			outstanding_io_count;
104 	TAILQ_HEAD(, ut_expected_io)	expected_io;
105 };
106 
107 static bool g_io_done;
108 static struct spdk_bdev_io *g_bdev_io;
109 static enum spdk_bdev_io_status g_io_status;
110 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
111 static uint32_t g_bdev_ut_io_device;
112 static struct bdev_ut_channel *g_bdev_ut_channel;
113 static void *g_compare_read_buf;
114 static uint32_t g_compare_read_buf_len;
115 static void *g_compare_write_buf;
116 static uint32_t g_compare_write_buf_len;
117 static bool g_abort_done;
118 static enum spdk_bdev_io_status g_abort_status;
119 
120 static struct ut_expected_io *
121 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
122 {
123 	struct ut_expected_io *expected_io;
124 
125 	expected_io = calloc(1, sizeof(*expected_io));
126 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
127 
128 	expected_io->type = type;
129 	expected_io->offset = offset;
130 	expected_io->length = length;
131 	expected_io->iovcnt = iovcnt;
132 
133 	return expected_io;
134 }
135 
136 static void
137 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
138 {
139 	expected_io->iov[pos].iov_base = base;
140 	expected_io->iov[pos].iov_len = len;
141 }
142 
143 static void
144 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
145 {
146 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
147 	struct ut_expected_io *expected_io;
148 	struct iovec *iov, *expected_iov;
149 	struct spdk_bdev_io *bio_to_abort;
150 	int i;
151 
152 	g_bdev_io = bdev_io;
153 
154 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
155 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
156 
157 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
158 		CU_ASSERT(g_compare_read_buf_len == len);
159 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
160 	}
161 
162 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
163 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
164 
165 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
166 		CU_ASSERT(g_compare_write_buf_len == len);
167 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
168 	}
169 
170 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
171 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
172 
173 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
174 		CU_ASSERT(g_compare_read_buf_len == len);
175 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
176 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
177 		}
178 	}
179 
180 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
181 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
182 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
183 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
184 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
185 					ch->outstanding_io_count--;
186 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
187 					break;
188 				}
189 			}
190 		}
191 	}
192 
193 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
194 	ch->outstanding_io_count++;
195 
196 	expected_io = TAILQ_FIRST(&ch->expected_io);
197 	if (expected_io == NULL) {
198 		return;
199 	}
200 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
201 
202 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
203 		CU_ASSERT(bdev_io->type == expected_io->type);
204 	}
205 
206 	if (expected_io->md_buf != NULL) {
207 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
208 	}
209 
210 	if (expected_io->length == 0) {
211 		free(expected_io);
212 		return;
213 	}
214 
215 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
216 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
217 
218 	if (expected_io->iovcnt == 0) {
219 		free(expected_io);
220 		/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
221 		return;
222 	}
223 
224 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
225 	for (i = 0; i < expected_io->iovcnt; i++) {
226 		iov = &bdev_io->u.bdev.iovs[i];
227 		expected_iov = &expected_io->iov[i];
228 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
229 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
230 	}
231 
232 	free(expected_io);
233 }
234 
235 static void
236 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
237 			       struct spdk_bdev_io *bdev_io, bool success)
238 {
239 	CU_ASSERT(success == true);
240 
241 	stub_submit_request(_ch, bdev_io);
242 }
243 
244 static void
245 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
246 {
247 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
248 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
249 }
250 
251 static uint32_t
252 stub_complete_io(uint32_t num_to_complete)
253 {
254 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
255 	struct spdk_bdev_io *bdev_io;
256 	static enum spdk_bdev_io_status io_status;
257 	uint32_t num_completed = 0;
258 
259 	while (num_completed < num_to_complete) {
260 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
261 			break;
262 		}
263 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
264 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
265 		ch->outstanding_io_count--;
266 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
267 			    g_io_exp_status;
268 		spdk_bdev_io_complete(bdev_io, io_status);
269 		num_completed++;
270 	}
271 
272 	return num_completed;
273 }
274 
275 static struct spdk_io_channel *
276 bdev_ut_get_io_channel(void *ctx)
277 {
278 	return spdk_get_io_channel(&g_bdev_ut_io_device);
279 }
280 
281 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
282 	[SPDK_BDEV_IO_TYPE_READ]		= true,
283 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
284 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
285 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
286 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
287 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
288 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
289 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
290 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
291 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
292 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
293 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
294 };
295 
296 static void
297 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
298 {
299 	g_io_types_supported[io_type] = enable;
300 }
301 
302 static bool
303 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
304 {
305 	return g_io_types_supported[io_type];
306 }
307 
308 static struct spdk_bdev_fn_table fn_table = {
309 	.destruct = stub_destruct,
310 	.submit_request = stub_submit_request,
311 	.get_io_channel = bdev_ut_get_io_channel,
312 	.io_type_supported = stub_io_type_supported,
313 };
314 
315 static int
316 bdev_ut_create_ch(void *io_device, void *ctx_buf)
317 {
318 	struct bdev_ut_channel *ch = ctx_buf;
319 
320 	CU_ASSERT(g_bdev_ut_channel == NULL);
321 	g_bdev_ut_channel = ch;
322 
323 	TAILQ_INIT(&ch->outstanding_io);
324 	ch->outstanding_io_count = 0;
325 	TAILQ_INIT(&ch->expected_io);
326 	return 0;
327 }
328 
329 static void
330 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
331 {
332 	CU_ASSERT(g_bdev_ut_channel != NULL);
333 	g_bdev_ut_channel = NULL;
334 }
335 
336 struct spdk_bdev_module bdev_ut_if;
337 
338 static int
339 bdev_ut_module_init(void)
340 {
341 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
342 				sizeof(struct bdev_ut_channel), NULL);
343 	spdk_bdev_module_init_done(&bdev_ut_if);
344 	return 0;
345 }
346 
347 static void
348 bdev_ut_module_fini(void)
349 {
350 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
351 }
352 
353 struct spdk_bdev_module bdev_ut_if = {
354 	.name = "bdev_ut",
355 	.module_init = bdev_ut_module_init,
356 	.module_fini = bdev_ut_module_fini,
357 	.async_init = true,
358 };
359 
360 static void vbdev_ut_examine(struct spdk_bdev *bdev);
361 
362 static int
363 vbdev_ut_module_init(void)
364 {
365 	return 0;
366 }
367 
368 static void
369 vbdev_ut_module_fini(void)
370 {
371 }
372 
373 struct spdk_bdev_module vbdev_ut_if = {
374 	.name = "vbdev_ut",
375 	.module_init = vbdev_ut_module_init,
376 	.module_fini = vbdev_ut_module_fini,
377 	.examine_config = vbdev_ut_examine,
378 };
379 
380 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
381 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
382 
383 static void
384 vbdev_ut_examine(struct spdk_bdev *bdev)
385 {
386 	spdk_bdev_module_examine_done(&vbdev_ut_if);
387 }
388 
389 static struct spdk_bdev *
390 allocate_bdev(char *name)
391 {
392 	struct spdk_bdev *bdev;
393 	int rc;
394 
395 	bdev = calloc(1, sizeof(*bdev));
396 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
397 
398 	bdev->name = name;
399 	bdev->fn_table = &fn_table;
400 	bdev->module = &bdev_ut_if;
401 	bdev->blockcnt = 1024;
402 	bdev->blocklen = 512;
403 
404 	rc = spdk_bdev_register(bdev);
405 	CU_ASSERT(rc == 0);
406 
407 	return bdev;
408 }
409 
410 static struct spdk_bdev *
411 allocate_vbdev(char *name)
412 {
413 	struct spdk_bdev *bdev;
414 	int rc;
415 
416 	bdev = calloc(1, sizeof(*bdev));
417 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
418 
419 	bdev->name = name;
420 	bdev->fn_table = &fn_table;
421 	bdev->module = &vbdev_ut_if;
422 
423 	rc = spdk_bdev_register(bdev);
424 	CU_ASSERT(rc == 0);
425 
426 	return bdev;
427 }
428 
429 static void
430 free_bdev(struct spdk_bdev *bdev)
431 {
432 	spdk_bdev_unregister(bdev, NULL, NULL);
433 	poll_threads();
434 	memset(bdev, 0xFF, sizeof(*bdev));
435 	free(bdev);
436 }
437 
438 static void
439 free_vbdev(struct spdk_bdev *bdev)
440 {
441 	spdk_bdev_unregister(bdev, NULL, NULL);
442 	poll_threads();
443 	memset(bdev, 0xFF, sizeof(*bdev));
444 	free(bdev);
445 }
446 
447 static void
448 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
449 {
450 	const char *bdev_name;
451 
452 	CU_ASSERT(bdev != NULL);
453 	CU_ASSERT(rc == 0);
454 	bdev_name = spdk_bdev_get_name(bdev);
455 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
456 
457 	free(stat);
458 
459 	*(bool *)cb_arg = true;
460 }
461 
462 static void
463 bdev_unregister_cb(void *cb_arg, int rc)
464 {
465 	g_unregister_arg = cb_arg;
466 	g_unregister_rc = rc;
467 }
468 
469 static void
470 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
471 {
472 }
473 
474 static void
475 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
476 {
477 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
478 
479 	g_event_type1 = type;
480 	if (SPDK_BDEV_EVENT_REMOVE == type) {
481 		spdk_bdev_close(desc);
482 	}
483 }
484 
485 static void
486 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
487 {
488 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
489 
490 	g_event_type2 = type;
491 	if (SPDK_BDEV_EVENT_REMOVE == type) {
492 		spdk_bdev_close(desc);
493 	}
494 }
495 
496 static void
497 get_device_stat_test(void)
498 {
499 	struct spdk_bdev *bdev;
500 	struct spdk_bdev_io_stat *stat;
501 	bool done;
502 
503 	bdev = allocate_bdev("bdev0");
504 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
505 	if (stat == NULL) {
506 		free_bdev(bdev);
507 		return;
508 	}
509 
510 	done = false;
511 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
512 	while (!done) { poll_threads(); }
513 
514 	free_bdev(bdev);
515 }
516 
517 static void
518 open_write_test(void)
519 {
520 	struct spdk_bdev *bdev[9];
521 	struct spdk_bdev_desc *desc[9] = {};
522 	int rc;
523 
524 	/*
525 	 * Create a tree of bdevs to test various open w/ write cases.
526 	 *
527 	 * bdev0 through bdev3 are physical block devices, such as NVMe
528 	 * namespaces or Ceph block devices.
529 	 *
530 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
531 	 * caching or RAID use cases.
532 	 *
533 	 * bdev5 through bdev7 are all virtual bdevs with the same base
534 	 * bdev (except bdev7). This models partitioning or logical volume
535 	 * use cases.
536 	 *
537 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
538 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
539 	 * models caching, RAID, partitioning or logical volumes use cases.
540 	 *
541 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
542 	 * base bdevs are themselves virtual bdevs.
543 	 *
544 	 *                bdev8
545 	 *                  |
546 	 *            +----------+
547 	 *            |          |
548 	 *          bdev4      bdev5   bdev6   bdev7
549 	 *            |          |       |       |
550 	 *        +---+---+      +---+   +   +---+---+
551 	 *        |       |           \  |  /         \
552 	 *      bdev0   bdev1          bdev2         bdev3
553 	 */
554 
555 	bdev[0] = allocate_bdev("bdev0");
556 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
557 	CU_ASSERT(rc == 0);
558 
559 	bdev[1] = allocate_bdev("bdev1");
560 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
561 	CU_ASSERT(rc == 0);
562 
563 	bdev[2] = allocate_bdev("bdev2");
564 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
565 	CU_ASSERT(rc == 0);
566 
567 	bdev[3] = allocate_bdev("bdev3");
568 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
569 	CU_ASSERT(rc == 0);
570 
571 	bdev[4] = allocate_vbdev("bdev4");
572 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
573 	CU_ASSERT(rc == 0);
574 
575 	bdev[5] = allocate_vbdev("bdev5");
576 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
577 	CU_ASSERT(rc == 0);
578 
579 	bdev[6] = allocate_vbdev("bdev6");
580 
581 	bdev[7] = allocate_vbdev("bdev7");
582 
583 	bdev[8] = allocate_vbdev("bdev8");
584 
585 	/* Open bdev0 read-only.  This should succeed. */
586 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
587 	CU_ASSERT(rc == 0);
588 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
589 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
590 	spdk_bdev_close(desc[0]);
591 
592 	/*
593 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
594 	 * by a vbdev module.
595 	 */
596 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
597 	CU_ASSERT(rc == -EPERM);
598 
599 	/*
600 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
601 	 * by a vbdev module.
602 	 */
603 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
604 	CU_ASSERT(rc == -EPERM);
605 
606 	/* Open bdev4 read-only.  This should succeed. */
607 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
608 	CU_ASSERT(rc == 0);
609 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
610 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
611 	spdk_bdev_close(desc[4]);
612 
613 	/*
614 	 * Open bdev8 read/write.  This should succeed since it is a leaf
615 	 * bdev.
616 	 */
617 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
618 	CU_ASSERT(rc == 0);
619 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
620 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
621 	spdk_bdev_close(desc[8]);
622 
623 	/*
624 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
625 	 * by a vbdev module.
626 	 */
627 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
628 	CU_ASSERT(rc == -EPERM);
629 
630 	/* Open bdev4 read-only.  This should succeed. */
631 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
632 	CU_ASSERT(rc == 0);
633 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
634 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
635 	spdk_bdev_close(desc[5]);
636 
637 	free_vbdev(bdev[8]);
638 
639 	free_vbdev(bdev[5]);
640 	free_vbdev(bdev[6]);
641 	free_vbdev(bdev[7]);
642 
643 	free_vbdev(bdev[4]);
644 
645 	free_bdev(bdev[0]);
646 	free_bdev(bdev[1]);
647 	free_bdev(bdev[2]);
648 	free_bdev(bdev[3]);
649 }
650 
651 static void
652 bytes_to_blocks_test(void)
653 {
654 	struct spdk_bdev bdev;
655 	uint64_t offset_blocks, num_blocks;
656 
657 	memset(&bdev, 0, sizeof(bdev));
658 
659 	bdev.blocklen = 512;
660 
661 	/* All parameters valid */
662 	offset_blocks = 0;
663 	num_blocks = 0;
664 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
665 	CU_ASSERT(offset_blocks == 1);
666 	CU_ASSERT(num_blocks == 2);
667 
668 	/* Offset not a block multiple */
669 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
670 
671 	/* Length not a block multiple */
672 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
673 
674 	/* In case blocklen not the power of two */
675 	bdev.blocklen = 100;
676 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
677 	CU_ASSERT(offset_blocks == 1);
678 	CU_ASSERT(num_blocks == 2);
679 
680 	/* Offset not a block multiple */
681 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
682 
683 	/* Length not a block multiple */
684 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
685 }
686 
687 static void
688 num_blocks_test(void)
689 {
690 	struct spdk_bdev bdev;
691 	struct spdk_bdev_desc *desc = NULL;
692 	struct spdk_bdev_desc *desc_ext = NULL;
693 	int rc;
694 
695 	memset(&bdev, 0, sizeof(bdev));
696 	bdev.name = "num_blocks";
697 	bdev.fn_table = &fn_table;
698 	bdev.module = &bdev_ut_if;
699 	spdk_bdev_register(&bdev);
700 	spdk_bdev_notify_blockcnt_change(&bdev, 50);
701 
702 	/* Growing block number */
703 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
704 	/* Shrinking block number */
705 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
706 
707 	/* In case bdev opened */
708 	rc = spdk_bdev_open(&bdev, false, NULL, NULL, &desc);
709 	CU_ASSERT(rc == 0);
710 	SPDK_CU_ASSERT_FATAL(desc != NULL);
711 
712 	/* Growing block number */
713 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
714 	/* Shrinking block number */
715 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
716 
717 	/* In case bdev opened with ext API */
718 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc_ext, &desc_ext);
719 	CU_ASSERT(rc == 0);
720 	SPDK_CU_ASSERT_FATAL(desc_ext != NULL);
721 	CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc_ext));
722 
723 	g_event_type1 = 0xFF;
724 	/* Growing block number */
725 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
726 
727 	poll_threads();
728 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
729 
730 	g_event_type1 = 0xFF;
731 	/* Growing block number and closing */
732 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
733 
734 	spdk_bdev_close(desc);
735 	spdk_bdev_close(desc_ext);
736 	spdk_bdev_unregister(&bdev, NULL, NULL);
737 
738 	poll_threads();
739 
740 	/* Callback is not called for closed device */
741 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
742 }
743 
744 static void
745 io_valid_test(void)
746 {
747 	struct spdk_bdev bdev;
748 
749 	memset(&bdev, 0, sizeof(bdev));
750 
751 	bdev.blocklen = 512;
752 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
753 
754 	/* All parameters valid */
755 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
756 
757 	/* Last valid block */
758 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
759 
760 	/* Offset past end of bdev */
761 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
762 
763 	/* Offset + length past end of bdev */
764 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
765 
766 	/* Offset near end of uint64_t range (2^64 - 1) */
767 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
768 }
769 
770 static void
771 alias_add_del_test(void)
772 {
773 	struct spdk_bdev *bdev[3];
774 	int rc;
775 
776 	/* Creating and registering bdevs */
777 	bdev[0] = allocate_bdev("bdev0");
778 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
779 
780 	bdev[1] = allocate_bdev("bdev1");
781 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
782 
783 	bdev[2] = allocate_bdev("bdev2");
784 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
785 
786 	poll_threads();
787 
788 	/*
789 	 * Trying adding an alias identical to name.
790 	 * Alias is identical to name, so it can not be added to aliases list
791 	 */
792 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
793 	CU_ASSERT(rc == -EEXIST);
794 
795 	/*
796 	 * Trying to add empty alias,
797 	 * this one should fail
798 	 */
799 	rc = spdk_bdev_alias_add(bdev[0], NULL);
800 	CU_ASSERT(rc == -EINVAL);
801 
802 	/* Trying adding same alias to two different registered bdevs */
803 
804 	/* Alias is used first time, so this one should pass */
805 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
806 	CU_ASSERT(rc == 0);
807 
808 	/* Alias was added to another bdev, so this one should fail */
809 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
810 	CU_ASSERT(rc == -EEXIST);
811 
812 	/* Alias is used first time, so this one should pass */
813 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
814 	CU_ASSERT(rc == 0);
815 
816 	/* Trying removing an alias from registered bdevs */
817 
818 	/* Alias is not on a bdev aliases list, so this one should fail */
819 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
820 	CU_ASSERT(rc == -ENOENT);
821 
822 	/* Alias is present on a bdev aliases list, so this one should pass */
823 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
824 	CU_ASSERT(rc == 0);
825 
826 	/* Alias is present on a bdev aliases list, so this one should pass */
827 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
828 	CU_ASSERT(rc == 0);
829 
830 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
831 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
832 	CU_ASSERT(rc != 0);
833 
834 	/* Trying to del all alias from empty alias list */
835 	spdk_bdev_alias_del_all(bdev[2]);
836 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
837 
838 	/* Trying to del all alias from non-empty alias list */
839 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
840 	CU_ASSERT(rc == 0);
841 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
842 	CU_ASSERT(rc == 0);
843 	spdk_bdev_alias_del_all(bdev[2]);
844 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
845 
846 	/* Unregister and free bdevs */
847 	spdk_bdev_unregister(bdev[0], NULL, NULL);
848 	spdk_bdev_unregister(bdev[1], NULL, NULL);
849 	spdk_bdev_unregister(bdev[2], NULL, NULL);
850 
851 	poll_threads();
852 
853 	free(bdev[0]);
854 	free(bdev[1]);
855 	free(bdev[2]);
856 }
857 
858 static void
859 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
860 {
861 	g_io_done = true;
862 	g_io_status = bdev_io->internal.status;
863 	spdk_bdev_free_io(bdev_io);
864 }
865 
866 static void
867 bdev_init_cb(void *arg, int rc)
868 {
869 	CU_ASSERT(rc == 0);
870 }
871 
872 static void
873 bdev_fini_cb(void *arg)
874 {
875 }
876 
877 struct bdev_ut_io_wait_entry {
878 	struct spdk_bdev_io_wait_entry	entry;
879 	struct spdk_io_channel		*io_ch;
880 	struct spdk_bdev_desc		*desc;
881 	bool				submitted;
882 };
883 
884 static void
885 io_wait_cb(void *arg)
886 {
887 	struct bdev_ut_io_wait_entry *entry = arg;
888 	int rc;
889 
890 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
891 	CU_ASSERT(rc == 0);
892 	entry->submitted = true;
893 }
894 
895 static void
896 bdev_io_types_test(void)
897 {
898 	struct spdk_bdev *bdev;
899 	struct spdk_bdev_desc *desc = NULL;
900 	struct spdk_io_channel *io_ch;
901 	struct spdk_bdev_opts bdev_opts = {};
902 	int rc;
903 
904 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
905 	bdev_opts.bdev_io_pool_size = 4;
906 	bdev_opts.bdev_io_cache_size = 2;
907 
908 	rc = spdk_bdev_set_opts(&bdev_opts);
909 	CU_ASSERT(rc == 0);
910 	spdk_bdev_initialize(bdev_init_cb, NULL);
911 	poll_threads();
912 
913 	bdev = allocate_bdev("bdev0");
914 
915 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
916 	CU_ASSERT(rc == 0);
917 	poll_threads();
918 	SPDK_CU_ASSERT_FATAL(desc != NULL);
919 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
920 	io_ch = spdk_bdev_get_io_channel(desc);
921 	CU_ASSERT(io_ch != NULL);
922 
923 	/* WRITE and WRITE ZEROES are not supported */
924 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
925 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
926 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
927 	CU_ASSERT(rc == -ENOTSUP);
928 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
929 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
930 
931 	spdk_put_io_channel(io_ch);
932 	spdk_bdev_close(desc);
933 	free_bdev(bdev);
934 	spdk_bdev_finish(bdev_fini_cb, NULL);
935 	poll_threads();
936 }
937 
938 static void
939 bdev_io_wait_test(void)
940 {
941 	struct spdk_bdev *bdev;
942 	struct spdk_bdev_desc *desc = NULL;
943 	struct spdk_io_channel *io_ch;
944 	struct spdk_bdev_opts bdev_opts = {};
945 	struct bdev_ut_io_wait_entry io_wait_entry;
946 	struct bdev_ut_io_wait_entry io_wait_entry2;
947 	int rc;
948 
949 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
950 	bdev_opts.bdev_io_pool_size = 4;
951 	bdev_opts.bdev_io_cache_size = 2;
952 
953 	rc = spdk_bdev_set_opts(&bdev_opts);
954 	CU_ASSERT(rc == 0);
955 	spdk_bdev_initialize(bdev_init_cb, NULL);
956 	poll_threads();
957 
958 	bdev = allocate_bdev("bdev0");
959 
960 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
961 	CU_ASSERT(rc == 0);
962 	poll_threads();
963 	SPDK_CU_ASSERT_FATAL(desc != NULL);
964 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
965 	io_ch = spdk_bdev_get_io_channel(desc);
966 	CU_ASSERT(io_ch != NULL);
967 
968 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
969 	CU_ASSERT(rc == 0);
970 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
971 	CU_ASSERT(rc == 0);
972 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
973 	CU_ASSERT(rc == 0);
974 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
975 	CU_ASSERT(rc == 0);
976 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
977 
978 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
979 	CU_ASSERT(rc == -ENOMEM);
980 
981 	io_wait_entry.entry.bdev = bdev;
982 	io_wait_entry.entry.cb_fn = io_wait_cb;
983 	io_wait_entry.entry.cb_arg = &io_wait_entry;
984 	io_wait_entry.io_ch = io_ch;
985 	io_wait_entry.desc = desc;
986 	io_wait_entry.submitted = false;
987 	/* Cannot use the same io_wait_entry for two different calls. */
988 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
989 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
990 
991 	/* Queue two I/O waits. */
992 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
993 	CU_ASSERT(rc == 0);
994 	CU_ASSERT(io_wait_entry.submitted == false);
995 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
996 	CU_ASSERT(rc == 0);
997 	CU_ASSERT(io_wait_entry2.submitted == false);
998 
999 	stub_complete_io(1);
1000 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1001 	CU_ASSERT(io_wait_entry.submitted == true);
1002 	CU_ASSERT(io_wait_entry2.submitted == false);
1003 
1004 	stub_complete_io(1);
1005 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1006 	CU_ASSERT(io_wait_entry2.submitted == true);
1007 
1008 	stub_complete_io(4);
1009 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1010 
1011 	spdk_put_io_channel(io_ch);
1012 	spdk_bdev_close(desc);
1013 	free_bdev(bdev);
1014 	spdk_bdev_finish(bdev_fini_cb, NULL);
1015 	poll_threads();
1016 }
1017 
1018 static void
1019 bdev_io_spans_split_test(void)
1020 {
1021 	struct spdk_bdev bdev;
1022 	struct spdk_bdev_io bdev_io;
1023 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV];
1024 
1025 	memset(&bdev, 0, sizeof(bdev));
1026 	bdev_io.u.bdev.iovs = iov;
1027 
1028 	bdev.optimal_io_boundary = 0;
1029 	bdev.max_segment_size = 0;
1030 	bdev.max_num_segments = 0;
1031 	bdev_io.bdev = &bdev;
1032 
1033 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1034 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1035 
1036 	bdev.split_on_optimal_io_boundary = true;
1037 	bdev.optimal_io_boundary = 32;
1038 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1039 
1040 	/* RESETs are not based on LBAs - so this should return false. */
1041 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1042 
1043 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1044 	bdev_io.u.bdev.offset_blocks = 0;
1045 	bdev_io.u.bdev.num_blocks = 32;
1046 
1047 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1048 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1049 
1050 	bdev_io.u.bdev.num_blocks = 33;
1051 
1052 	/* This I/O spans a boundary. */
1053 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1054 
1055 	bdev_io.u.bdev.num_blocks = 32;
1056 	bdev.max_segment_size = 512 * 32;
1057 	bdev.max_num_segments = 1;
1058 	bdev_io.u.bdev.iovcnt = 1;
1059 	iov[0].iov_len = 512;
1060 
1061 	/* Does not cross and exceed max_size or max_segs */
1062 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1063 
1064 	bdev.split_on_optimal_io_boundary = false;
1065 	bdev.max_segment_size = 512;
1066 	bdev.max_num_segments = 1;
1067 	bdev_io.u.bdev.iovcnt = 2;
1068 
1069 	/* Exceed max_segs */
1070 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1071 
1072 	bdev.max_num_segments = 2;
1073 	iov[0].iov_len = 513;
1074 	iov[1].iov_len = 512;
1075 
1076 	/* Exceed max_sizes */
1077 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1078 }
1079 
1080 static void
1081 bdev_io_boundary_split_test(void)
1082 {
1083 	struct spdk_bdev *bdev;
1084 	struct spdk_bdev_desc *desc = NULL;
1085 	struct spdk_io_channel *io_ch;
1086 	struct spdk_bdev_opts bdev_opts = {};
1087 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1088 	struct ut_expected_io *expected_io;
1089 	void *md_buf = (void *)0xFF000000;
1090 	uint64_t i;
1091 	int rc;
1092 
1093 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1094 	bdev_opts.bdev_io_pool_size = 512;
1095 	bdev_opts.bdev_io_cache_size = 64;
1096 
1097 	rc = spdk_bdev_set_opts(&bdev_opts);
1098 	CU_ASSERT(rc == 0);
1099 	spdk_bdev_initialize(bdev_init_cb, NULL);
1100 
1101 	bdev = allocate_bdev("bdev0");
1102 
1103 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1104 	CU_ASSERT(rc == 0);
1105 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1106 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1107 	io_ch = spdk_bdev_get_io_channel(desc);
1108 	CU_ASSERT(io_ch != NULL);
1109 
1110 	bdev->optimal_io_boundary = 16;
1111 	bdev->split_on_optimal_io_boundary = false;
1112 
1113 	g_io_done = false;
1114 
1115 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1116 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1117 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1118 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1119 
1120 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1121 	CU_ASSERT(rc == 0);
1122 	CU_ASSERT(g_io_done == false);
1123 
1124 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1125 	stub_complete_io(1);
1126 	CU_ASSERT(g_io_done == true);
1127 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1128 
1129 	bdev->split_on_optimal_io_boundary = true;
1130 	bdev->md_interleave = false;
1131 	bdev->md_len = 8;
1132 
1133 	/* Now test that a single-vector command is split correctly.
1134 	 * Offset 14, length 8, payload 0xF000
1135 	 *  Child - Offset 14, length 2, payload 0xF000
1136 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1137 	 *
1138 	 * Set up the expected values before calling spdk_bdev_read_blocks
1139 	 */
1140 	g_io_done = false;
1141 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1142 	expected_io->md_buf = md_buf;
1143 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1144 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1145 
1146 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1147 	expected_io->md_buf = md_buf + 2 * 8;
1148 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1149 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1150 
1151 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1152 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1153 					   14, 8, io_done, NULL);
1154 	CU_ASSERT(rc == 0);
1155 	CU_ASSERT(g_io_done == false);
1156 
1157 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1158 	stub_complete_io(2);
1159 	CU_ASSERT(g_io_done == true);
1160 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1161 
1162 	/* Now set up a more complex, multi-vector command that needs to be split,
1163 	 *  including splitting iovecs.
1164 	 */
1165 	iov[0].iov_base = (void *)0x10000;
1166 	iov[0].iov_len = 512;
1167 	iov[1].iov_base = (void *)0x20000;
1168 	iov[1].iov_len = 20 * 512;
1169 	iov[2].iov_base = (void *)0x30000;
1170 	iov[2].iov_len = 11 * 512;
1171 
1172 	g_io_done = false;
1173 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1174 	expected_io->md_buf = md_buf;
1175 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1176 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1177 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1178 
1179 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1180 	expected_io->md_buf = md_buf + 2 * 8;
1181 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1182 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1183 
1184 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1185 	expected_io->md_buf = md_buf + 18 * 8;
1186 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1187 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1188 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1189 
1190 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1191 					     14, 32, io_done, NULL);
1192 	CU_ASSERT(rc == 0);
1193 	CU_ASSERT(g_io_done == false);
1194 
1195 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1196 	stub_complete_io(3);
1197 	CU_ASSERT(g_io_done == true);
1198 
1199 	/* Test multi vector command that needs to be split by strip and then needs to be
1200 	 * split further due to the capacity of child iovs.
1201 	 */
1202 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1203 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1204 		iov[i].iov_len = 512;
1205 	}
1206 
1207 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1208 	g_io_done = false;
1209 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1210 					   BDEV_IO_NUM_CHILD_IOV);
1211 	expected_io->md_buf = md_buf;
1212 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1213 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1214 	}
1215 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1216 
1217 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1218 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1219 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1220 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1221 		ut_expected_io_set_iov(expected_io, i,
1222 				       (void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1223 	}
1224 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1225 
1226 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1227 					    0, BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1228 	CU_ASSERT(rc == 0);
1229 	CU_ASSERT(g_io_done == false);
1230 
1231 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1232 	stub_complete_io(1);
1233 	CU_ASSERT(g_io_done == false);
1234 
1235 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1236 	stub_complete_io(1);
1237 	CU_ASSERT(g_io_done == true);
1238 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1239 
1240 	/* Test multi vector command that needs to be split by strip and then needs to be
1241 	 * split further due to the capacity of child iovs. In this case, the length of
1242 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1243 	 */
1244 
1245 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1246 	 * is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1247 	 */
1248 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1249 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1250 		iov[i].iov_len = 512;
1251 	}
1252 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1253 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1254 		iov[i].iov_len = 256;
1255 	}
1256 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1257 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1258 
1259 	/* Add an extra iovec to trigger split */
1260 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1261 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1262 
1263 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1264 	g_io_done = false;
1265 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1266 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
1267 	expected_io->md_buf = md_buf;
1268 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1269 		ut_expected_io_set_iov(expected_io, i,
1270 				       (void *)((i + 1) * 0x10000), 512);
1271 	}
1272 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1273 		ut_expected_io_set_iov(expected_io, i,
1274 				       (void *)((i + 1) * 0x10000), 256);
1275 	}
1276 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1277 
1278 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1279 					   1, 1);
1280 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1281 	ut_expected_io_set_iov(expected_io, 0,
1282 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1283 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1284 
1285 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1286 					   1, 1);
1287 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1288 	ut_expected_io_set_iov(expected_io, 0,
1289 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1290 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1291 
1292 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1293 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1294 	CU_ASSERT(rc == 0);
1295 	CU_ASSERT(g_io_done == false);
1296 
1297 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1298 	stub_complete_io(1);
1299 	CU_ASSERT(g_io_done == false);
1300 
1301 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1302 	stub_complete_io(2);
1303 	CU_ASSERT(g_io_done == true);
1304 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1305 
1306 	/* Test multi vector command that needs to be split by strip and then needs to be
1307 	 * split further due to the capacity of child iovs, the child request offset should
1308 	 * be rewind to last aligned offset and go success without error.
1309 	 */
1310 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1311 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1312 		iov[i].iov_len = 512;
1313 	}
1314 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1315 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1316 
1317 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1318 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1319 
1320 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1321 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1322 
1323 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1324 	g_io_done = false;
1325 	g_io_status = 0;
1326 	/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
1327 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1328 					   BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
1329 	expected_io->md_buf = md_buf;
1330 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1331 		ut_expected_io_set_iov(expected_io, i,
1332 				       (void *)((i + 1) * 0x10000), 512);
1333 	}
1334 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1335 	/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
1336 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1337 					   1, 2);
1338 	expected_io->md_buf = md_buf + (BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1339 	ut_expected_io_set_iov(expected_io, 0,
1340 			       (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1341 	ut_expected_io_set_iov(expected_io, 1,
1342 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1343 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1344 	/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
1345 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1346 					   1, 1);
1347 	expected_io->md_buf = md_buf + BDEV_IO_NUM_CHILD_IOV * 8;
1348 	ut_expected_io_set_iov(expected_io, 0,
1349 			       (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1350 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1351 
1352 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1353 					    0, BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1354 	CU_ASSERT(rc == 0);
1355 	CU_ASSERT(g_io_done == false);
1356 
1357 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1358 	stub_complete_io(1);
1359 	CU_ASSERT(g_io_done == false);
1360 
1361 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1362 	stub_complete_io(2);
1363 	CU_ASSERT(g_io_done == true);
1364 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1365 
1366 	/* Test multi vector command that needs to be split due to the IO boundary and
1367 	 * the capacity of child iovs. Especially test the case when the command is
1368 	 * split due to the capacity of child iovs, the tail address is not aligned with
1369 	 * block size and is rewinded to the aligned address.
1370 	 *
1371 	 * The iovecs used in read request is complex but is based on the data
1372 	 * collected in the real issue. We change the base addresses but keep the lengths
1373 	 * not to loose the credibility of the test.
1374 	 */
1375 	bdev->optimal_io_boundary = 128;
1376 	g_io_done = false;
1377 	g_io_status = 0;
1378 
1379 	for (i = 0; i < 31; i++) {
1380 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1381 		iov[i].iov_len = 1024;
1382 	}
1383 	iov[31].iov_base = (void *)0xFEED1F00000;
1384 	iov[31].iov_len = 32768;
1385 	iov[32].iov_base = (void *)0xFEED2000000;
1386 	iov[32].iov_len = 160;
1387 	iov[33].iov_base = (void *)0xFEED2100000;
1388 	iov[33].iov_len = 4096;
1389 	iov[34].iov_base = (void *)0xFEED2200000;
1390 	iov[34].iov_len = 4096;
1391 	iov[35].iov_base = (void *)0xFEED2300000;
1392 	iov[35].iov_len = 4096;
1393 	iov[36].iov_base = (void *)0xFEED2400000;
1394 	iov[36].iov_len = 4096;
1395 	iov[37].iov_base = (void *)0xFEED2500000;
1396 	iov[37].iov_len = 4096;
1397 	iov[38].iov_base = (void *)0xFEED2600000;
1398 	iov[38].iov_len = 4096;
1399 	iov[39].iov_base = (void *)0xFEED2700000;
1400 	iov[39].iov_len = 4096;
1401 	iov[40].iov_base = (void *)0xFEED2800000;
1402 	iov[40].iov_len = 4096;
1403 	iov[41].iov_base = (void *)0xFEED2900000;
1404 	iov[41].iov_len = 4096;
1405 	iov[42].iov_base = (void *)0xFEED2A00000;
1406 	iov[42].iov_len = 4096;
1407 	iov[43].iov_base = (void *)0xFEED2B00000;
1408 	iov[43].iov_len = 12288;
1409 	iov[44].iov_base = (void *)0xFEED2C00000;
1410 	iov[44].iov_len = 8192;
1411 	iov[45].iov_base = (void *)0xFEED2F00000;
1412 	iov[45].iov_len = 4096;
1413 	iov[46].iov_base = (void *)0xFEED3000000;
1414 	iov[46].iov_len = 4096;
1415 	iov[47].iov_base = (void *)0xFEED3100000;
1416 	iov[47].iov_len = 4096;
1417 	iov[48].iov_base = (void *)0xFEED3200000;
1418 	iov[48].iov_len = 24576;
1419 	iov[49].iov_base = (void *)0xFEED3300000;
1420 	iov[49].iov_len = 16384;
1421 	iov[50].iov_base = (void *)0xFEED3400000;
1422 	iov[50].iov_len = 12288;
1423 	iov[51].iov_base = (void *)0xFEED3500000;
1424 	iov[51].iov_len = 4096;
1425 	iov[52].iov_base = (void *)0xFEED3600000;
1426 	iov[52].iov_len = 4096;
1427 	iov[53].iov_base = (void *)0xFEED3700000;
1428 	iov[53].iov_len = 4096;
1429 	iov[54].iov_base = (void *)0xFEED3800000;
1430 	iov[54].iov_len = 28672;
1431 	iov[55].iov_base = (void *)0xFEED3900000;
1432 	iov[55].iov_len = 20480;
1433 	iov[56].iov_base = (void *)0xFEED3A00000;
1434 	iov[56].iov_len = 4096;
1435 	iov[57].iov_base = (void *)0xFEED3B00000;
1436 	iov[57].iov_len = 12288;
1437 	iov[58].iov_base = (void *)0xFEED3C00000;
1438 	iov[58].iov_len = 4096;
1439 	iov[59].iov_base = (void *)0xFEED3D00000;
1440 	iov[59].iov_len = 4096;
1441 	iov[60].iov_base = (void *)0xFEED3E00000;
1442 	iov[60].iov_len = 352;
1443 
1444 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1445 	 * of child iovs,
1446 	 */
1447 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1448 	expected_io->md_buf = md_buf;
1449 	for (i = 0; i < 32; i++) {
1450 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1451 	}
1452 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1453 
1454 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1455 	 * split by the IO boundary requirement.
1456 	 */
1457 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1458 	expected_io->md_buf = md_buf + 126 * 8;
1459 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1460 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1461 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1462 
1463 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1464 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1465 	 */
1466 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1467 	expected_io->md_buf = md_buf + 128 * 8;
1468 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1469 			       iov[33].iov_len - 864);
1470 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1471 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1472 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1473 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1474 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1475 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1476 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1477 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1478 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1479 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1480 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1481 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1482 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1483 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1484 
1485 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1486 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1487 	 */
1488 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1489 	expected_io->md_buf = md_buf + 256 * 8;
1490 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1491 			       iov[46].iov_len - 864);
1492 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1493 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1494 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1495 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1496 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1497 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1498 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1499 
1500 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1501 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1502 	 */
1503 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1504 	expected_io->md_buf = md_buf + 384 * 8;
1505 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1506 			       iov[52].iov_len - 864);
1507 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1508 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1509 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1510 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1511 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1512 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1513 
1514 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1515 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1516 	 */
1517 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1518 	expected_io->md_buf = md_buf + 512 * 8;
1519 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1520 			       iov[57].iov_len - 4960);
1521 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1522 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1523 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1524 
1525 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1526 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1527 	expected_io->md_buf = md_buf + 542 * 8;
1528 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1529 			       iov[59].iov_len - 3936);
1530 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1531 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1532 
1533 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1534 					    0, 543, io_done, NULL);
1535 	CU_ASSERT(rc == 0);
1536 	CU_ASSERT(g_io_done == false);
1537 
1538 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1539 	stub_complete_io(1);
1540 	CU_ASSERT(g_io_done == false);
1541 
1542 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1543 	stub_complete_io(5);
1544 	CU_ASSERT(g_io_done == false);
1545 
1546 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1547 	stub_complete_io(1);
1548 	CU_ASSERT(g_io_done == true);
1549 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1550 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1551 
1552 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1553 	 * split, so test that.
1554 	 */
1555 	bdev->optimal_io_boundary = 15;
1556 	g_io_done = false;
1557 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1558 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1559 
1560 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1561 	CU_ASSERT(rc == 0);
1562 	CU_ASSERT(g_io_done == false);
1563 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1564 	stub_complete_io(1);
1565 	CU_ASSERT(g_io_done == true);
1566 
1567 	/* Test an UNMAP.  This should also not be split. */
1568 	bdev->optimal_io_boundary = 16;
1569 	g_io_done = false;
1570 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1571 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1572 
1573 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1574 	CU_ASSERT(rc == 0);
1575 	CU_ASSERT(g_io_done == false);
1576 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1577 	stub_complete_io(1);
1578 	CU_ASSERT(g_io_done == true);
1579 
1580 	/* Test a FLUSH.  This should also not be split. */
1581 	bdev->optimal_io_boundary = 16;
1582 	g_io_done = false;
1583 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1584 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1585 
1586 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1587 	CU_ASSERT(rc == 0);
1588 	CU_ASSERT(g_io_done == false);
1589 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1590 	stub_complete_io(1);
1591 	CU_ASSERT(g_io_done == true);
1592 
1593 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1594 
1595 	/* Children requests return an error status */
1596 	bdev->optimal_io_boundary = 16;
1597 	iov[0].iov_base = (void *)0x10000;
1598 	iov[0].iov_len = 512 * 64;
1599 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1600 	g_io_done = false;
1601 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1602 
1603 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1604 	CU_ASSERT(rc == 0);
1605 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1606 	stub_complete_io(4);
1607 	CU_ASSERT(g_io_done == false);
1608 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1609 	stub_complete_io(1);
1610 	CU_ASSERT(g_io_done == true);
1611 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1612 
1613 	/* Test if a multi vector command terminated with failure before continueing
1614 	 * splitting process when one of child I/O failed.
1615 	 * The multi vector command is as same as the above that needs to be split by strip
1616 	 * and then needs to be split further due to the capacity of child iovs.
1617 	 */
1618 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1619 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1620 		iov[i].iov_len = 512;
1621 	}
1622 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
1623 	iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1624 
1625 	iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1626 	iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1627 
1628 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1629 	iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1630 
1631 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
1632 
1633 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1634 	g_io_done = false;
1635 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1636 
1637 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
1638 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1639 	CU_ASSERT(rc == 0);
1640 	CU_ASSERT(g_io_done == false);
1641 
1642 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1643 	stub_complete_io(1);
1644 	CU_ASSERT(g_io_done == true);
1645 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1646 
1647 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1648 
1649 	/* for this test we will create the following conditions to hit the code path where
1650 	 * we are trying to send and IO following a split that has no iovs because we had to
1651 	 * trim them for alignment reasons.
1652 	 *
1653 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1654 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1655 	 *   position 30 and overshoot by 0x2e.
1656 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1657 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1658 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1659 	 *   and let the completion pick up the last 2 vectors.
1660 	 */
1661 	bdev->optimal_io_boundary = 32;
1662 	bdev->split_on_optimal_io_boundary = true;
1663 	g_io_done = false;
1664 
1665 	/* Init all parent IOVs to 0x212 */
1666 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1667 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1668 		iov[i].iov_len = 0x212;
1669 	}
1670 
1671 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
1672 					   BDEV_IO_NUM_CHILD_IOV - 1);
1673 	/* expect 0-29 to be 1:1 with the parent iov */
1674 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1675 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1676 	}
1677 
1678 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1679 	 * where 0x1e is the amount we overshot the 16K boundary
1680 	 */
1681 	ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
1682 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1683 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1684 
1685 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1686 	 * shortened that take it to the next boundary and then a final one to get us to
1687 	 * 0x4200 bytes for the IO.
1688 	 */
1689 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1690 					   BDEV_IO_NUM_CHILD_IOV, 2);
1691 	/* position 30 picked up the remaining bytes to the next boundary */
1692 	ut_expected_io_set_iov(expected_io, 0,
1693 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1694 
1695 	/* position 31 picked the the rest of the trasnfer to get us to 0x4200 */
1696 	ut_expected_io_set_iov(expected_io, 1,
1697 			       (void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
1698 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1699 
1700 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
1701 				    BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1702 	CU_ASSERT(rc == 0);
1703 	CU_ASSERT(g_io_done == false);
1704 
1705 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1706 	stub_complete_io(1);
1707 	CU_ASSERT(g_io_done == false);
1708 
1709 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1710 	stub_complete_io(1);
1711 	CU_ASSERT(g_io_done == true);
1712 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1713 
1714 	spdk_put_io_channel(io_ch);
1715 	spdk_bdev_close(desc);
1716 	free_bdev(bdev);
1717 	spdk_bdev_finish(bdev_fini_cb, NULL);
1718 	poll_threads();
1719 }
1720 
1721 static void
1722 bdev_io_max_size_and_segment_split_test(void)
1723 {
1724 	struct spdk_bdev *bdev;
1725 	struct spdk_bdev_desc *desc = NULL;
1726 	struct spdk_io_channel *io_ch;
1727 	struct spdk_bdev_opts bdev_opts = {};
1728 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
1729 	struct ut_expected_io *expected_io;
1730 	uint64_t i;
1731 	int rc;
1732 
1733 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1734 	bdev_opts.bdev_io_pool_size = 512;
1735 	bdev_opts.bdev_io_cache_size = 64;
1736 
1737 	bdev_opts.opts_size = sizeof(bdev_opts);
1738 	rc = spdk_bdev_set_opts(&bdev_opts);
1739 	CU_ASSERT(rc == 0);
1740 	spdk_bdev_initialize(bdev_init_cb, NULL);
1741 
1742 	bdev = allocate_bdev("bdev0");
1743 
1744 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
1745 	CU_ASSERT(rc == 0);
1746 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1747 	io_ch = spdk_bdev_get_io_channel(desc);
1748 	CU_ASSERT(io_ch != NULL);
1749 
1750 	bdev->split_on_optimal_io_boundary = false;
1751 	bdev->optimal_io_boundary = 0;
1752 
1753 	/* Case 0 max_num_segments == 0.
1754 	 * but segment size 2 * 512 > 512
1755 	 */
1756 	bdev->max_segment_size = 512;
1757 	bdev->max_num_segments = 0;
1758 	g_io_done = false;
1759 
1760 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
1761 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1762 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
1763 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1764 
1765 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1766 	CU_ASSERT(rc == 0);
1767 	CU_ASSERT(g_io_done == false);
1768 
1769 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1770 	stub_complete_io(1);
1771 	CU_ASSERT(g_io_done == true);
1772 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1773 
1774 	/* Case 1 max_segment_size == 0
1775 	 * but iov num 2 > 1.
1776 	 */
1777 	bdev->max_segment_size = 0;
1778 	bdev->max_num_segments = 1;
1779 	g_io_done = false;
1780 
1781 	iov[0].iov_base = (void *)0x10000;
1782 	iov[0].iov_len = 512;
1783 	iov[1].iov_base = (void *)0x20000;
1784 	iov[1].iov_len = 8 * 512;
1785 
1786 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1787 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
1788 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1789 
1790 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
1791 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
1792 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1793 
1794 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
1795 	CU_ASSERT(rc == 0);
1796 	CU_ASSERT(g_io_done == false);
1797 
1798 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1799 	stub_complete_io(2);
1800 	CU_ASSERT(g_io_done == true);
1801 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1802 
1803 	/* Test that a non-vector command is split correctly.
1804 	 * Set up the expected values before calling spdk_bdev_read_blocks
1805 	 */
1806 	bdev->max_segment_size = 512;
1807 	bdev->max_num_segments = 1;
1808 	g_io_done = false;
1809 
1810 	/* Child IO 0 */
1811 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
1812 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
1813 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1814 
1815 	/* Child IO 1 */
1816 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
1817 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
1818 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1819 
1820 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1821 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
1822 	CU_ASSERT(rc == 0);
1823 	CU_ASSERT(g_io_done == false);
1824 
1825 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1826 	stub_complete_io(2);
1827 	CU_ASSERT(g_io_done == true);
1828 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1829 
1830 	/* Now set up a more complex, multi-vector command that needs to be split,
1831 	 * including splitting iovecs.
1832 	 */
1833 	bdev->max_segment_size = 2 * 512;
1834 	bdev->max_num_segments = 1;
1835 	g_io_done = false;
1836 
1837 	iov[0].iov_base = (void *)0x10000;
1838 	iov[0].iov_len = 2 * 512;
1839 	iov[1].iov_base = (void *)0x20000;
1840 	iov[1].iov_len = 4 * 512;
1841 	iov[2].iov_base = (void *)0x30000;
1842 	iov[2].iov_len = 6 * 512;
1843 
1844 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
1845 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
1846 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1847 
1848 	/* Split iov[1].size to 2 iov entries then split the segments */
1849 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
1850 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
1851 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1852 
1853 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
1854 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
1855 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1856 
1857 	/* Split iov[2].size to 3 iov entries then split the segments */
1858 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
1859 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
1860 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1861 
1862 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
1863 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
1864 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1865 
1866 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
1867 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
1868 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1869 
1870 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
1871 	CU_ASSERT(rc == 0);
1872 	CU_ASSERT(g_io_done == false);
1873 
1874 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
1875 	stub_complete_io(6);
1876 	CU_ASSERT(g_io_done == true);
1877 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1878 
1879 	/* Test multi vector command that needs to be split by strip and then needs to be
1880 	 * split further due to the capacity of parent IO child iovs.
1881 	 */
1882 	bdev->max_segment_size = 512;
1883 	bdev->max_num_segments = 1;
1884 	g_io_done = false;
1885 
1886 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1887 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1888 		iov[i].iov_len = 512 * 2;
1889 	}
1890 
1891 	/* Each input iov.size is split into 2 iovs,
1892 	 * half of the input iov can fill all child iov entries of a single IO.
1893 	 */
1894 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV / 2; i++) {
1895 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
1896 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
1897 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1898 
1899 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
1900 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
1901 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1902 	}
1903 
1904 	/* The remaining iov is split in the second round */
1905 	for (i = BDEV_IO_NUM_CHILD_IOV / 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1906 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
1907 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
1908 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1909 
1910 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
1911 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
1912 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1913 	}
1914 
1915 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
1916 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1917 	CU_ASSERT(rc == 0);
1918 	CU_ASSERT(g_io_done == false);
1919 
1920 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
1921 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
1922 	CU_ASSERT(g_io_done == false);
1923 
1924 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == BDEV_IO_NUM_CHILD_IOV);
1925 	stub_complete_io(BDEV_IO_NUM_CHILD_IOV);
1926 	CU_ASSERT(g_io_done == true);
1927 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1928 
1929 	/* A wrong case, a child IO that is divided does
1930 	 * not meet the principle of multiples of block size,
1931 	 * and exits with error
1932 	 */
1933 	bdev->max_segment_size = 512;
1934 	bdev->max_num_segments = 1;
1935 	g_io_done = false;
1936 
1937 	iov[0].iov_base = (void *)0x10000;
1938 	iov[0].iov_len = 512 + 256;
1939 	iov[1].iov_base = (void *)0x20000;
1940 	iov[1].iov_len = 256;
1941 
1942 	/* iov[0] is split to 512 and 256.
1943 	 * 256 is less than a block size, and it is found
1944 	 * in the next round of split that it is the first child IO smaller than
1945 	 * the block size, so the error exit
1946 	 */
1947 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
1948 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
1949 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1950 
1951 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
1952 	CU_ASSERT(rc == 0);
1953 	CU_ASSERT(g_io_done == false);
1954 
1955 	/* First child IO is OK */
1956 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1957 	stub_complete_io(1);
1958 	CU_ASSERT(g_io_done == true);
1959 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1960 
1961 	/* error exit */
1962 	stub_complete_io(1);
1963 	CU_ASSERT(g_io_done == true);
1964 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1965 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1966 
1967 	/* Test multi vector command that needs to be split by strip and then needs to be
1968 	 * split further due to the capacity of child iovs.
1969 	 *
1970 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
1971 	 * of child iovs, so it needs to wait until the first batch completed.
1972 	 */
1973 	bdev->max_segment_size = 512;
1974 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
1975 	g_io_done = false;
1976 
1977 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1978 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1979 		iov[i].iov_len = 512;
1980 	}
1981 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
1982 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1983 		iov[i].iov_len = 512 * 2;
1984 	}
1985 
1986 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1987 					   BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
1988 	/* 0 ~ (BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
1989 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1990 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1991 	}
1992 	/* (BDEV_IO_NUM_CHILD_IOV - 2) is split */
1993 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
1994 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
1995 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1996 
1997 	/* Child iov entries exceed the max num of parent IO so split it in next round */
1998 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV, 2, 2);
1999 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2000 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2001 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2002 
2003 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV, 0,
2004 				    BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2005 	CU_ASSERT(rc == 0);
2006 	CU_ASSERT(g_io_done == false);
2007 
2008 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2009 	stub_complete_io(1);
2010 	CU_ASSERT(g_io_done == false);
2011 
2012 	/* Next round */
2013 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2014 	stub_complete_io(1);
2015 	CU_ASSERT(g_io_done == true);
2016 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2017 
2018 	/* This case is similar to the previous one, but the io composed of
2019 	 * the last few entries of child iov is not enough for a blocklen, so they
2020 	 * cannot be put into this IO, but wait until the next time.
2021 	 */
2022 	bdev->max_segment_size = 512;
2023 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2024 	g_io_done = false;
2025 
2026 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2027 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2028 		iov[i].iov_len = 512;
2029 	}
2030 
2031 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2032 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2033 		iov[i].iov_len = 128;
2034 	}
2035 
2036 	/* First child iovcnt is't BDEV_IO_NUM_CHILD_IOV but BDEV_IO_NUM_CHILD_IOV - 2.
2037 	 * Because the left 2 iov is not enough for a blocklen.
2038 	 */
2039 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2040 					   BDEV_IO_NUM_CHILD_IOV - 2, BDEV_IO_NUM_CHILD_IOV - 2);
2041 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2042 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2043 	}
2044 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2045 
2046 	/* The second child io waits until the end of the first child io before executing.
2047 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2048 	 * BDEV_IO_NUM_CHILD_IOV - 2 to BDEV_IO_NUM_CHILD_IOV + 2
2049 	 */
2050 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 2,
2051 					   1, 4);
2052 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2053 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2054 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2055 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2056 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2057 
2058 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2059 				    BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2060 	CU_ASSERT(rc == 0);
2061 	CU_ASSERT(g_io_done == false);
2062 
2063 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2064 	stub_complete_io(1);
2065 	CU_ASSERT(g_io_done == false);
2066 
2067 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2068 	stub_complete_io(1);
2069 	CU_ASSERT(g_io_done == true);
2070 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2071 
2072 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2073 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2074 	 * At the same time, child iovcnt exceeds parent iovcnt.
2075 	 */
2076 	bdev->max_segment_size = 512 + 128;
2077 	bdev->max_num_segments = 3;
2078 	g_io_done = false;
2079 
2080 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2081 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2082 		iov[i].iov_len = 512 + 256;
2083 	}
2084 
2085 	for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2086 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2087 		iov[i].iov_len = 512 + 128;
2088 	}
2089 
2090 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2091 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2092 	 * Generate 9 child IOs.
2093 	 */
2094 	for (i = 0; i < 3; i++) {
2095 		uint32_t j = i * 4;
2096 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2097 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2098 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2099 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2100 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2101 
2102 		/* Child io must be a multiple of blocklen
2103 		 * iov[j + 2] must be split. If the third entry is also added,
2104 		 * the multiple of blocklen cannot be guaranteed. But it still
2105 		 * occupies one iov entry of the parent child iov.
2106 		 */
2107 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2108 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2109 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2110 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2111 
2112 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2113 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2114 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2115 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2116 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2117 	}
2118 
2119 	/* Child iov position at 27, the 10th child IO
2120 	 * iov entry index is 3 * 4 and offset is 3 * 6
2121 	 */
2122 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2123 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2124 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2125 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2126 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2127 
2128 	/* Child iov position at 30, the 11th child IO */
2129 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2130 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2131 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2132 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2133 
2134 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2135 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2136 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2137 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2138 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2139 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2140 
2141 	/* Consume 9 child IOs and 27 child iov entries.
2142 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2143 	 * Parent IO iov index start from 16 and block offset start from 24
2144 	 */
2145 	for (i = 0; i < 3; i++) {
2146 		uint32_t j = i * 4 + 16;
2147 		uint32_t offset = i * 6 + 24;
2148 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2149 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2150 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2151 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2152 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2153 
2154 		/* Child io must be a multiple of blocklen
2155 		 * iov[j + 2] must be split. If the third entry is also added,
2156 		 * the multiple of blocklen cannot be guaranteed. But it still
2157 		 * occupies one iov entry of the parent child iov.
2158 		 */
2159 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2160 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2161 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2162 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2163 
2164 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2165 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2166 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2167 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2168 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2169 	}
2170 
2171 	/* The 22th child IO, child iov position at 30 */
2172 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2173 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2174 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2175 
2176 	/* The third round */
2177 	/* Here is the 23nd child IO and child iovpos is 0 */
2178 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2179 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2180 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2181 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2182 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2183 
2184 	/* The 24th child IO */
2185 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2186 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2187 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2188 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2189 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2190 
2191 	/* The 25th child IO */
2192 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2193 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2194 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2195 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2196 
2197 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
2198 				    50, io_done, NULL);
2199 	CU_ASSERT(rc == 0);
2200 	CU_ASSERT(g_io_done == false);
2201 
2202 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2203 	 * a maximum of 11 IOs can be split at a time, and the
2204 	 * splitting will continue after the first batch is over.
2205 	 */
2206 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2207 	stub_complete_io(11);
2208 	CU_ASSERT(g_io_done == false);
2209 
2210 	/* The 2nd round */
2211 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2212 	stub_complete_io(11);
2213 	CU_ASSERT(g_io_done == false);
2214 
2215 	/* The last round */
2216 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2217 	stub_complete_io(3);
2218 	CU_ASSERT(g_io_done == true);
2219 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2220 
2221 	/* Test an WRITE_ZEROES.  This should also not be split. */
2222 	bdev->max_segment_size = 512;
2223 	bdev->max_num_segments = 1;
2224 	g_io_done = false;
2225 
2226 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2227 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2228 
2229 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2230 	CU_ASSERT(rc == 0);
2231 	CU_ASSERT(g_io_done == false);
2232 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2233 	stub_complete_io(1);
2234 	CU_ASSERT(g_io_done == true);
2235 
2236 	/* Test an UNMAP.  This should also not be split. */
2237 	g_io_done = false;
2238 
2239 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2240 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2241 
2242 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2243 	CU_ASSERT(rc == 0);
2244 	CU_ASSERT(g_io_done == false);
2245 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2246 	stub_complete_io(1);
2247 	CU_ASSERT(g_io_done == true);
2248 
2249 	/* Test a FLUSH.  This should also not be split. */
2250 	g_io_done = false;
2251 
2252 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2253 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2254 
2255 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2256 	CU_ASSERT(rc == 0);
2257 	CU_ASSERT(g_io_done == false);
2258 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2259 	stub_complete_io(1);
2260 	CU_ASSERT(g_io_done == true);
2261 
2262 	spdk_put_io_channel(io_ch);
2263 	spdk_bdev_close(desc);
2264 	free_bdev(bdev);
2265 	spdk_bdev_finish(bdev_fini_cb, NULL);
2266 	poll_threads();
2267 }
2268 
2269 static void
2270 bdev_io_mix_split_test(void)
2271 {
2272 	struct spdk_bdev *bdev;
2273 	struct spdk_bdev_desc *desc = NULL;
2274 	struct spdk_io_channel *io_ch;
2275 	struct spdk_bdev_opts bdev_opts = {};
2276 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
2277 	struct ut_expected_io *expected_io;
2278 	uint64_t i;
2279 	int rc;
2280 
2281 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2282 	bdev_opts.bdev_io_pool_size = 512;
2283 	bdev_opts.bdev_io_cache_size = 64;
2284 
2285 	rc = spdk_bdev_set_opts(&bdev_opts);
2286 	CU_ASSERT(rc == 0);
2287 	spdk_bdev_initialize(bdev_init_cb, NULL);
2288 
2289 	bdev = allocate_bdev("bdev0");
2290 
2291 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2292 	CU_ASSERT(rc == 0);
2293 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2294 	io_ch = spdk_bdev_get_io_channel(desc);
2295 	CU_ASSERT(io_ch != NULL);
2296 
2297 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2298 	bdev->split_on_optimal_io_boundary = true;
2299 	bdev->optimal_io_boundary = 16;
2300 
2301 	bdev->max_segment_size = 512;
2302 	bdev->max_num_segments = 16;
2303 	g_io_done = false;
2304 
2305 	/* IO crossing the IO boundary requires split
2306 	 * Total 2 child IOs.
2307 	 */
2308 
2309 	/* The 1st child IO split the segment_size to multiple segment entry */
2310 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2311 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2312 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2313 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2314 
2315 	/* The 2nd child IO split the segment_size to multiple segment entry */
2316 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2317 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2318 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2319 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2320 
2321 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2322 	CU_ASSERT(rc == 0);
2323 	CU_ASSERT(g_io_done == false);
2324 
2325 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2326 	stub_complete_io(2);
2327 	CU_ASSERT(g_io_done == true);
2328 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2329 
2330 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2331 	bdev->max_segment_size = 15 * 512;
2332 	bdev->max_num_segments = 1;
2333 	g_io_done = false;
2334 
2335 	/* IO crossing the IO boundary requires split.
2336 	 * The 1st child IO segment size exceeds the max_segment_size,
2337 	 * So 1st child IO will be splitted to multiple segment entry.
2338 	 * Then it split to 2 child IOs because of the max_num_segments.
2339 	 * Total 3 child IOs.
2340 	 */
2341 
2342 	/* The first 2 IOs are in an IO boundary.
2343 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2344 	 * So it split to the first 2 IOs.
2345 	 */
2346 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2347 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2348 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2349 
2350 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2351 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2352 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2353 
2354 	/* The 3rd Child IO is because of the io boundary */
2355 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2356 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2357 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2358 
2359 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2360 	CU_ASSERT(rc == 0);
2361 	CU_ASSERT(g_io_done == false);
2362 
2363 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2364 	stub_complete_io(3);
2365 	CU_ASSERT(g_io_done == true);
2366 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2367 
2368 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2369 	bdev->max_segment_size = 17 * 512;
2370 	bdev->max_num_segments = 1;
2371 	g_io_done = false;
2372 
2373 	/* IO crossing the IO boundary requires split.
2374 	 * Child IO does not split.
2375 	 * Total 2 child IOs.
2376 	 */
2377 
2378 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2379 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2380 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2381 
2382 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2383 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2384 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2385 
2386 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2387 	CU_ASSERT(rc == 0);
2388 	CU_ASSERT(g_io_done == false);
2389 
2390 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2391 	stub_complete_io(2);
2392 	CU_ASSERT(g_io_done == true);
2393 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2394 
2395 	/* Now set up a more complex, multi-vector command that needs to be split,
2396 	 * including splitting iovecs.
2397 	 * optimal_io_boundary < max_segment_size * max_num_segments
2398 	 */
2399 	bdev->max_segment_size = 3 * 512;
2400 	bdev->max_num_segments = 6;
2401 	g_io_done = false;
2402 
2403 	iov[0].iov_base = (void *)0x10000;
2404 	iov[0].iov_len = 4 * 512;
2405 	iov[1].iov_base = (void *)0x20000;
2406 	iov[1].iov_len = 4 * 512;
2407 	iov[2].iov_base = (void *)0x30000;
2408 	iov[2].iov_len = 10 * 512;
2409 
2410 	/* IO crossing the IO boundary requires split.
2411 	 * The 1st child IO segment size exceeds the max_segment_size and after
2412 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2413 	 * So 1st child IO will be splitted to 2 child IOs.
2414 	 * Total 3 child IOs.
2415 	 */
2416 
2417 	/* The first 2 IOs are in an IO boundary.
2418 	 * After splitting segmemt size the segment num exceeds.
2419 	 * So it splits to 2 child IOs.
2420 	 */
2421 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2422 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2423 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2424 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2425 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2426 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2427 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2428 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2429 
2430 	/* The 2nd child IO has the left segment entry */
2431 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2432 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2433 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2434 
2435 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2436 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2437 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2438 
2439 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2440 	CU_ASSERT(rc == 0);
2441 	CU_ASSERT(g_io_done == false);
2442 
2443 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2444 	stub_complete_io(3);
2445 	CU_ASSERT(g_io_done == true);
2446 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2447 
2448 	/* A very complicated case. Each sg entry exceeds max_segment_size
2449 	 * and split on io boundary.
2450 	 * optimal_io_boundary < max_segment_size * max_num_segments
2451 	 */
2452 	bdev->max_segment_size = 3 * 512;
2453 	bdev->max_num_segments = BDEV_IO_NUM_CHILD_IOV;
2454 	g_io_done = false;
2455 
2456 	for (i = 0; i < 20; i++) {
2457 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2458 		iov[i].iov_len = 512 * 4;
2459 	}
2460 
2461 	/* IO crossing the IO boundary requires split.
2462 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2463 	 * Each iov entry needs to be splitted to 2 entries because of max_segment_size
2464 	 * Total 5 child IOs.
2465 	 */
2466 
2467 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2468 	 * So each child IO occupies 8 child iov entries.
2469 	 */
2470 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2471 	for (i = 0; i < 4; i++) {
2472 		int iovcnt = i * 2;
2473 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2474 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2475 	}
2476 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2477 
2478 	/* 2nd child IO and total 16 child iov entries of parent IO */
2479 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2480 	for (i = 4; i < 8; i++) {
2481 		int iovcnt = (i - 4) * 2;
2482 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2483 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2484 	}
2485 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2486 
2487 	/* 3rd child IO and total 24 child iov entries of parent IO */
2488 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2489 	for (i = 8; i < 12; i++) {
2490 		int iovcnt = (i - 8) * 2;
2491 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2492 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2493 	}
2494 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2495 
2496 	/* 4th child IO and total 32 child iov entries of parent IO */
2497 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2498 	for (i = 12; i < 16; i++) {
2499 		int iovcnt = (i - 12) * 2;
2500 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2501 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2502 	}
2503 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2504 
2505 	/* 5th child IO and because of the child iov entry it should be splitted
2506 	 * in next round.
2507 	 */
2508 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2509 	for (i = 16; i < 20; i++) {
2510 		int iovcnt = (i - 16) * 2;
2511 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2512 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2513 	}
2514 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2515 
2516 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2517 	CU_ASSERT(rc == 0);
2518 	CU_ASSERT(g_io_done == false);
2519 
2520 	/* First split round */
2521 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2522 	stub_complete_io(4);
2523 	CU_ASSERT(g_io_done == false);
2524 
2525 	/* Second split round */
2526 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2527 	stub_complete_io(1);
2528 	CU_ASSERT(g_io_done == true);
2529 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2530 
2531 	spdk_put_io_channel(io_ch);
2532 	spdk_bdev_close(desc);
2533 	free_bdev(bdev);
2534 	spdk_bdev_finish(bdev_fini_cb, NULL);
2535 	poll_threads();
2536 }
2537 
2538 static void
2539 bdev_io_split_with_io_wait(void)
2540 {
2541 	struct spdk_bdev *bdev;
2542 	struct spdk_bdev_desc *desc = NULL;
2543 	struct spdk_io_channel *io_ch;
2544 	struct spdk_bdev_channel *channel;
2545 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2546 	struct spdk_bdev_opts bdev_opts = {};
2547 	struct iovec iov[3];
2548 	struct ut_expected_io *expected_io;
2549 	int rc;
2550 
2551 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2552 	bdev_opts.bdev_io_pool_size = 2;
2553 	bdev_opts.bdev_io_cache_size = 1;
2554 
2555 	rc = spdk_bdev_set_opts(&bdev_opts);
2556 	CU_ASSERT(rc == 0);
2557 	spdk_bdev_initialize(bdev_init_cb, NULL);
2558 
2559 	bdev = allocate_bdev("bdev0");
2560 
2561 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2562 	CU_ASSERT(rc == 0);
2563 	CU_ASSERT(desc != NULL);
2564 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2565 	io_ch = spdk_bdev_get_io_channel(desc);
2566 	CU_ASSERT(io_ch != NULL);
2567 	channel = spdk_io_channel_get_ctx(io_ch);
2568 	mgmt_ch = channel->shared_resource->mgmt_ch;
2569 
2570 	bdev->optimal_io_boundary = 16;
2571 	bdev->split_on_optimal_io_boundary = true;
2572 
2573 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
2574 	CU_ASSERT(rc == 0);
2575 
2576 	/* Now test that a single-vector command is split correctly.
2577 	 * Offset 14, length 8, payload 0xF000
2578 	 *  Child - Offset 14, length 2, payload 0xF000
2579 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
2580 	 *
2581 	 * Set up the expected values before calling spdk_bdev_read_blocks
2582 	 */
2583 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
2584 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
2585 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2586 
2587 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
2588 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
2589 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2590 
2591 	/* The following children will be submitted sequentially due to the capacity of
2592 	 * spdk_bdev_io.
2593 	 */
2594 
2595 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
2596 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
2597 	CU_ASSERT(rc == 0);
2598 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2599 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2600 
2601 	/* Completing the first read I/O will submit the first child */
2602 	stub_complete_io(1);
2603 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
2604 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2605 
2606 	/* Completing the first child will submit the second child */
2607 	stub_complete_io(1);
2608 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2609 
2610 	/* Complete the second child I/O.  This should result in our callback getting
2611 	 * invoked since the parent I/O is now complete.
2612 	 */
2613 	stub_complete_io(1);
2614 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2615 
2616 	/* Now set up a more complex, multi-vector command that needs to be split,
2617 	 *  including splitting iovecs.
2618 	 */
2619 	iov[0].iov_base = (void *)0x10000;
2620 	iov[0].iov_len = 512;
2621 	iov[1].iov_base = (void *)0x20000;
2622 	iov[1].iov_len = 20 * 512;
2623 	iov[2].iov_base = (void *)0x30000;
2624 	iov[2].iov_len = 11 * 512;
2625 
2626 	g_io_done = false;
2627 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
2628 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
2629 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
2630 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2631 
2632 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
2633 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
2634 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2635 
2636 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
2637 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
2638 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
2639 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2640 
2641 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
2642 	CU_ASSERT(rc == 0);
2643 	CU_ASSERT(g_io_done == false);
2644 
2645 	/* The following children will be submitted sequentially due to the capacity of
2646 	 * spdk_bdev_io.
2647 	 */
2648 
2649 	/* Completing the first child will submit the second child */
2650 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2651 	stub_complete_io(1);
2652 	CU_ASSERT(g_io_done == false);
2653 
2654 	/* Completing the second child will submit the third child */
2655 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2656 	stub_complete_io(1);
2657 	CU_ASSERT(g_io_done == false);
2658 
2659 	/* Completing the third child will result in our callback getting invoked
2660 	 * since the parent I/O is now complete.
2661 	 */
2662 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2663 	stub_complete_io(1);
2664 	CU_ASSERT(g_io_done == true);
2665 
2666 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
2667 
2668 	spdk_put_io_channel(io_ch);
2669 	spdk_bdev_close(desc);
2670 	free_bdev(bdev);
2671 	spdk_bdev_finish(bdev_fini_cb, NULL);
2672 	poll_threads();
2673 }
2674 
2675 static void
2676 bdev_io_alignment(void)
2677 {
2678 	struct spdk_bdev *bdev;
2679 	struct spdk_bdev_desc *desc = NULL;
2680 	struct spdk_io_channel *io_ch;
2681 	struct spdk_bdev_opts bdev_opts = {};
2682 	int rc;
2683 	void *buf = NULL;
2684 	struct iovec iovs[2];
2685 	int iovcnt;
2686 	uint64_t alignment;
2687 
2688 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2689 	bdev_opts.bdev_io_pool_size = 20;
2690 	bdev_opts.bdev_io_cache_size = 2;
2691 
2692 	rc = spdk_bdev_set_opts(&bdev_opts);
2693 	CU_ASSERT(rc == 0);
2694 	spdk_bdev_initialize(bdev_init_cb, NULL);
2695 
2696 	fn_table.submit_request = stub_submit_request_get_buf;
2697 	bdev = allocate_bdev("bdev0");
2698 
2699 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2700 	CU_ASSERT(rc == 0);
2701 	CU_ASSERT(desc != NULL);
2702 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2703 	io_ch = spdk_bdev_get_io_channel(desc);
2704 	CU_ASSERT(io_ch != NULL);
2705 
2706 	/* Create aligned buffer */
2707 	rc = posix_memalign(&buf, 4096, 8192);
2708 	SPDK_CU_ASSERT_FATAL(rc == 0);
2709 
2710 	/* Pass aligned single buffer with no alignment required */
2711 	alignment = 1;
2712 	bdev->required_alignment = spdk_u32log2(alignment);
2713 
2714 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2715 	CU_ASSERT(rc == 0);
2716 	stub_complete_io(1);
2717 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2718 				    alignment));
2719 
2720 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
2721 	CU_ASSERT(rc == 0);
2722 	stub_complete_io(1);
2723 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2724 				    alignment));
2725 
2726 	/* Pass unaligned single buffer with no alignment required */
2727 	alignment = 1;
2728 	bdev->required_alignment = spdk_u32log2(alignment);
2729 
2730 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2731 	CU_ASSERT(rc == 0);
2732 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2733 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2734 	stub_complete_io(1);
2735 
2736 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2737 	CU_ASSERT(rc == 0);
2738 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2739 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
2740 	stub_complete_io(1);
2741 
2742 	/* Pass unaligned single buffer with 512 alignment required */
2743 	alignment = 512;
2744 	bdev->required_alignment = spdk_u32log2(alignment);
2745 
2746 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2747 	CU_ASSERT(rc == 0);
2748 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2749 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2750 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2751 				    alignment));
2752 	stub_complete_io(1);
2753 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2754 
2755 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
2756 	CU_ASSERT(rc == 0);
2757 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2758 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2759 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2760 				    alignment));
2761 	stub_complete_io(1);
2762 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2763 
2764 	/* Pass unaligned single buffer with 4096 alignment required */
2765 	alignment = 4096;
2766 	bdev->required_alignment = spdk_u32log2(alignment);
2767 
2768 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2769 	CU_ASSERT(rc == 0);
2770 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2771 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2772 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2773 				    alignment));
2774 	stub_complete_io(1);
2775 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2776 
2777 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
2778 	CU_ASSERT(rc == 0);
2779 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
2780 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2781 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2782 				    alignment));
2783 	stub_complete_io(1);
2784 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2785 
2786 	/* Pass aligned iovs with no alignment required */
2787 	alignment = 1;
2788 	bdev->required_alignment = spdk_u32log2(alignment);
2789 
2790 	iovcnt = 1;
2791 	iovs[0].iov_base = buf;
2792 	iovs[0].iov_len = 512;
2793 
2794 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2795 	CU_ASSERT(rc == 0);
2796 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2797 	stub_complete_io(1);
2798 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2799 
2800 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2801 	CU_ASSERT(rc == 0);
2802 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2803 	stub_complete_io(1);
2804 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2805 
2806 	/* Pass unaligned iovs with no alignment required */
2807 	alignment = 1;
2808 	bdev->required_alignment = spdk_u32log2(alignment);
2809 
2810 	iovcnt = 2;
2811 	iovs[0].iov_base = buf + 16;
2812 	iovs[0].iov_len = 256;
2813 	iovs[1].iov_base = buf + 16 + 256 + 32;
2814 	iovs[1].iov_len = 256;
2815 
2816 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2817 	CU_ASSERT(rc == 0);
2818 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2819 	stub_complete_io(1);
2820 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2821 
2822 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2823 	CU_ASSERT(rc == 0);
2824 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2825 	stub_complete_io(1);
2826 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
2827 
2828 	/* Pass unaligned iov with 2048 alignment required */
2829 	alignment = 2048;
2830 	bdev->required_alignment = spdk_u32log2(alignment);
2831 
2832 	iovcnt = 2;
2833 	iovs[0].iov_base = buf + 16;
2834 	iovs[0].iov_len = 256;
2835 	iovs[1].iov_base = buf + 16 + 256 + 32;
2836 	iovs[1].iov_len = 256;
2837 
2838 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2839 	CU_ASSERT(rc == 0);
2840 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
2841 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2842 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2843 				    alignment));
2844 	stub_complete_io(1);
2845 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2846 
2847 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2848 	CU_ASSERT(rc == 0);
2849 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
2850 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
2851 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2852 				    alignment));
2853 	stub_complete_io(1);
2854 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2855 
2856 	/* Pass iov without allocated buffer without alignment required */
2857 	alignment = 1;
2858 	bdev->required_alignment = spdk_u32log2(alignment);
2859 
2860 	iovcnt = 1;
2861 	iovs[0].iov_base = NULL;
2862 	iovs[0].iov_len = 0;
2863 
2864 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2865 	CU_ASSERT(rc == 0);
2866 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2867 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2868 				    alignment));
2869 	stub_complete_io(1);
2870 
2871 	/* Pass iov without allocated buffer with 1024 alignment required */
2872 	alignment = 1024;
2873 	bdev->required_alignment = spdk_u32log2(alignment);
2874 
2875 	iovcnt = 1;
2876 	iovs[0].iov_base = NULL;
2877 	iovs[0].iov_len = 0;
2878 
2879 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
2880 	CU_ASSERT(rc == 0);
2881 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
2882 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
2883 				    alignment));
2884 	stub_complete_io(1);
2885 
2886 	spdk_put_io_channel(io_ch);
2887 	spdk_bdev_close(desc);
2888 	free_bdev(bdev);
2889 	fn_table.submit_request = stub_submit_request;
2890 	spdk_bdev_finish(bdev_fini_cb, NULL);
2891 	poll_threads();
2892 
2893 	free(buf);
2894 }
2895 
2896 static void
2897 bdev_io_alignment_with_boundary(void)
2898 {
2899 	struct spdk_bdev *bdev;
2900 	struct spdk_bdev_desc *desc = NULL;
2901 	struct spdk_io_channel *io_ch;
2902 	struct spdk_bdev_opts bdev_opts = {};
2903 	int rc;
2904 	void *buf = NULL;
2905 	struct iovec iovs[2];
2906 	int iovcnt;
2907 	uint64_t alignment;
2908 
2909 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2910 	bdev_opts.bdev_io_pool_size = 20;
2911 	bdev_opts.bdev_io_cache_size = 2;
2912 
2913 	bdev_opts.opts_size = sizeof(bdev_opts);
2914 	rc = spdk_bdev_set_opts(&bdev_opts);
2915 	CU_ASSERT(rc == 0);
2916 	spdk_bdev_initialize(bdev_init_cb, NULL);
2917 
2918 	fn_table.submit_request = stub_submit_request_get_buf;
2919 	bdev = allocate_bdev("bdev0");
2920 
2921 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2922 	CU_ASSERT(rc == 0);
2923 	CU_ASSERT(desc != NULL);
2924 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
2925 	io_ch = spdk_bdev_get_io_channel(desc);
2926 	CU_ASSERT(io_ch != NULL);
2927 
2928 	/* Create aligned buffer */
2929 	rc = posix_memalign(&buf, 4096, 131072);
2930 	SPDK_CU_ASSERT_FATAL(rc == 0);
2931 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
2932 
2933 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
2934 	alignment = 512;
2935 	bdev->required_alignment = spdk_u32log2(alignment);
2936 	bdev->optimal_io_boundary = 2;
2937 	bdev->split_on_optimal_io_boundary = true;
2938 
2939 	iovcnt = 1;
2940 	iovs[0].iov_base = NULL;
2941 	iovs[0].iov_len = 512 * 3;
2942 
2943 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2944 	CU_ASSERT(rc == 0);
2945 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2946 	stub_complete_io(2);
2947 
2948 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
2949 	alignment = 512;
2950 	bdev->required_alignment = spdk_u32log2(alignment);
2951 	bdev->optimal_io_boundary = 16;
2952 	bdev->split_on_optimal_io_boundary = true;
2953 
2954 	iovcnt = 1;
2955 	iovs[0].iov_base = NULL;
2956 	iovs[0].iov_len = 512 * 16;
2957 
2958 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
2959 	CU_ASSERT(rc == 0);
2960 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2961 	stub_complete_io(2);
2962 
2963 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
2964 	alignment = 512;
2965 	bdev->required_alignment = spdk_u32log2(alignment);
2966 	bdev->optimal_io_boundary = 128;
2967 	bdev->split_on_optimal_io_boundary = true;
2968 
2969 	iovcnt = 1;
2970 	iovs[0].iov_base = buf + 16;
2971 	iovs[0].iov_len = 512 * 160;
2972 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
2973 	CU_ASSERT(rc == 0);
2974 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2975 	stub_complete_io(2);
2976 
2977 	/* 512 * 3 with 2 IO boundary */
2978 	alignment = 512;
2979 	bdev->required_alignment = spdk_u32log2(alignment);
2980 	bdev->optimal_io_boundary = 2;
2981 	bdev->split_on_optimal_io_boundary = true;
2982 
2983 	iovcnt = 2;
2984 	iovs[0].iov_base = buf + 16;
2985 	iovs[0].iov_len = 512;
2986 	iovs[1].iov_base = buf + 16 + 512 + 32;
2987 	iovs[1].iov_len = 1024;
2988 
2989 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2990 	CU_ASSERT(rc == 0);
2991 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2992 	stub_complete_io(2);
2993 
2994 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
2995 	CU_ASSERT(rc == 0);
2996 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2997 	stub_complete_io(2);
2998 
2999 	/* 512 * 64 with 32 IO boundary */
3000 	bdev->optimal_io_boundary = 32;
3001 	iovcnt = 2;
3002 	iovs[0].iov_base = buf + 16;
3003 	iovs[0].iov_len = 16384;
3004 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3005 	iovs[1].iov_len = 16384;
3006 
3007 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3008 	CU_ASSERT(rc == 0);
3009 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3010 	stub_complete_io(3);
3011 
3012 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3013 	CU_ASSERT(rc == 0);
3014 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3015 	stub_complete_io(3);
3016 
3017 	/* 512 * 160 with 32 IO boundary */
3018 	iovcnt = 1;
3019 	iovs[0].iov_base = buf + 16;
3020 	iovs[0].iov_len = 16384 + 65536;
3021 
3022 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3023 	CU_ASSERT(rc == 0);
3024 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3025 	stub_complete_io(6);
3026 
3027 	spdk_put_io_channel(io_ch);
3028 	spdk_bdev_close(desc);
3029 	free_bdev(bdev);
3030 	fn_table.submit_request = stub_submit_request;
3031 	spdk_bdev_finish(bdev_fini_cb, NULL);
3032 	poll_threads();
3033 
3034 	free(buf);
3035 }
3036 
3037 static void
3038 histogram_status_cb(void *cb_arg, int status)
3039 {
3040 	g_status = status;
3041 }
3042 
3043 static void
3044 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3045 {
3046 	g_status = status;
3047 	g_histogram = histogram;
3048 }
3049 
3050 static void
3051 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3052 		   uint64_t total, uint64_t so_far)
3053 {
3054 	g_count += count;
3055 }
3056 
3057 static void
3058 bdev_histograms(void)
3059 {
3060 	struct spdk_bdev *bdev;
3061 	struct spdk_bdev_desc *desc = NULL;
3062 	struct spdk_io_channel *ch;
3063 	struct spdk_histogram_data *histogram;
3064 	uint8_t buf[4096];
3065 	int rc;
3066 
3067 	spdk_bdev_initialize(bdev_init_cb, NULL);
3068 
3069 	bdev = allocate_bdev("bdev");
3070 
3071 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3072 	CU_ASSERT(rc == 0);
3073 	CU_ASSERT(desc != NULL);
3074 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3075 
3076 	ch = spdk_bdev_get_io_channel(desc);
3077 	CU_ASSERT(ch != NULL);
3078 
3079 	/* Enable histogram */
3080 	g_status = -1;
3081 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3082 	poll_threads();
3083 	CU_ASSERT(g_status == 0);
3084 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3085 
3086 	/* Allocate histogram */
3087 	histogram = spdk_histogram_data_alloc();
3088 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3089 
3090 	/* Check if histogram is zeroed */
3091 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3092 	poll_threads();
3093 	CU_ASSERT(g_status == 0);
3094 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3095 
3096 	g_count = 0;
3097 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3098 
3099 	CU_ASSERT(g_count == 0);
3100 
3101 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3102 	CU_ASSERT(rc == 0);
3103 
3104 	spdk_delay_us(10);
3105 	stub_complete_io(1);
3106 	poll_threads();
3107 
3108 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3109 	CU_ASSERT(rc == 0);
3110 
3111 	spdk_delay_us(10);
3112 	stub_complete_io(1);
3113 	poll_threads();
3114 
3115 	/* Check if histogram gathered data from all I/O channels */
3116 	g_histogram = NULL;
3117 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3118 	poll_threads();
3119 	CU_ASSERT(g_status == 0);
3120 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3121 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3122 
3123 	g_count = 0;
3124 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3125 	CU_ASSERT(g_count == 2);
3126 
3127 	/* Disable histogram */
3128 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3129 	poll_threads();
3130 	CU_ASSERT(g_status == 0);
3131 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3132 
3133 	/* Try to run histogram commands on disabled bdev */
3134 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3135 	poll_threads();
3136 	CU_ASSERT(g_status == -EFAULT);
3137 
3138 	spdk_histogram_data_free(histogram);
3139 	spdk_put_io_channel(ch);
3140 	spdk_bdev_close(desc);
3141 	free_bdev(bdev);
3142 	spdk_bdev_finish(bdev_fini_cb, NULL);
3143 	poll_threads();
3144 }
3145 
3146 static void
3147 _bdev_compare(bool emulated)
3148 {
3149 	struct spdk_bdev *bdev;
3150 	struct spdk_bdev_desc *desc = NULL;
3151 	struct spdk_io_channel *ioch;
3152 	struct ut_expected_io *expected_io;
3153 	uint64_t offset, num_blocks;
3154 	uint32_t num_completed;
3155 	char aa_buf[512];
3156 	char bb_buf[512];
3157 	struct iovec compare_iov;
3158 	uint8_t io_type;
3159 	int rc;
3160 
3161 	if (emulated) {
3162 		io_type = SPDK_BDEV_IO_TYPE_READ;
3163 	} else {
3164 		io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3165 	}
3166 
3167 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3168 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3169 
3170 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3171 
3172 	spdk_bdev_initialize(bdev_init_cb, NULL);
3173 	fn_table.submit_request = stub_submit_request_get_buf;
3174 	bdev = allocate_bdev("bdev");
3175 
3176 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3177 	CU_ASSERT_EQUAL(rc, 0);
3178 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3179 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3180 	ioch = spdk_bdev_get_io_channel(desc);
3181 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3182 
3183 	fn_table.submit_request = stub_submit_request_get_buf;
3184 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3185 
3186 	offset = 50;
3187 	num_blocks = 1;
3188 	compare_iov.iov_base = aa_buf;
3189 	compare_iov.iov_len = sizeof(aa_buf);
3190 
3191 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
3192 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3193 
3194 	g_io_done = false;
3195 	g_compare_read_buf = aa_buf;
3196 	g_compare_read_buf_len = sizeof(aa_buf);
3197 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3198 	CU_ASSERT_EQUAL(rc, 0);
3199 	num_completed = stub_complete_io(1);
3200 	CU_ASSERT_EQUAL(num_completed, 1);
3201 	CU_ASSERT(g_io_done == true);
3202 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3203 
3204 	expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
3205 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3206 
3207 	g_io_done = false;
3208 	g_compare_read_buf = bb_buf;
3209 	g_compare_read_buf_len = sizeof(bb_buf);
3210 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3211 	CU_ASSERT_EQUAL(rc, 0);
3212 	num_completed = stub_complete_io(1);
3213 	CU_ASSERT_EQUAL(num_completed, 1);
3214 	CU_ASSERT(g_io_done == true);
3215 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3216 
3217 	spdk_put_io_channel(ioch);
3218 	spdk_bdev_close(desc);
3219 	free_bdev(bdev);
3220 	fn_table.submit_request = stub_submit_request;
3221 	spdk_bdev_finish(bdev_fini_cb, NULL);
3222 	poll_threads();
3223 
3224 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3225 
3226 	g_compare_read_buf = NULL;
3227 }
3228 
3229 static void
3230 bdev_compare(void)
3231 {
3232 	_bdev_compare(true);
3233 	_bdev_compare(false);
3234 }
3235 
3236 static void
3237 bdev_compare_and_write(void)
3238 {
3239 	struct spdk_bdev *bdev;
3240 	struct spdk_bdev_desc *desc = NULL;
3241 	struct spdk_io_channel *ioch;
3242 	struct ut_expected_io *expected_io;
3243 	uint64_t offset, num_blocks;
3244 	uint32_t num_completed;
3245 	char aa_buf[512];
3246 	char bb_buf[512];
3247 	char cc_buf[512];
3248 	char write_buf[512];
3249 	struct iovec compare_iov;
3250 	struct iovec write_iov;
3251 	int rc;
3252 
3253 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3254 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3255 	memset(cc_buf, 0xcc, sizeof(cc_buf));
3256 
3257 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
3258 
3259 	spdk_bdev_initialize(bdev_init_cb, NULL);
3260 	fn_table.submit_request = stub_submit_request_get_buf;
3261 	bdev = allocate_bdev("bdev");
3262 
3263 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3264 	CU_ASSERT_EQUAL(rc, 0);
3265 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3266 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3267 	ioch = spdk_bdev_get_io_channel(desc);
3268 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3269 
3270 	fn_table.submit_request = stub_submit_request_get_buf;
3271 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3272 
3273 	offset = 50;
3274 	num_blocks = 1;
3275 	compare_iov.iov_base = aa_buf;
3276 	compare_iov.iov_len = sizeof(aa_buf);
3277 	write_iov.iov_base = bb_buf;
3278 	write_iov.iov_len = sizeof(bb_buf);
3279 
3280 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3281 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3282 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
3283 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3284 
3285 	g_io_done = false;
3286 	g_compare_read_buf = aa_buf;
3287 	g_compare_read_buf_len = sizeof(aa_buf);
3288 	memset(write_buf, 0, sizeof(write_buf));
3289 	g_compare_write_buf = write_buf;
3290 	g_compare_write_buf_len = sizeof(write_buf);
3291 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3292 			offset, num_blocks, io_done, NULL);
3293 	/* Trigger range locking */
3294 	poll_threads();
3295 	CU_ASSERT_EQUAL(rc, 0);
3296 	num_completed = stub_complete_io(1);
3297 	CU_ASSERT_EQUAL(num_completed, 1);
3298 	CU_ASSERT(g_io_done == false);
3299 	num_completed = stub_complete_io(1);
3300 	/* Trigger range unlocking */
3301 	poll_threads();
3302 	CU_ASSERT_EQUAL(num_completed, 1);
3303 	CU_ASSERT(g_io_done == true);
3304 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3305 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
3306 
3307 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
3308 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3309 
3310 	g_io_done = false;
3311 	g_compare_read_buf = cc_buf;
3312 	g_compare_read_buf_len = sizeof(cc_buf);
3313 	memset(write_buf, 0, sizeof(write_buf));
3314 	g_compare_write_buf = write_buf;
3315 	g_compare_write_buf_len = sizeof(write_buf);
3316 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
3317 			offset, num_blocks, io_done, NULL);
3318 	/* Trigger range locking */
3319 	poll_threads();
3320 	CU_ASSERT_EQUAL(rc, 0);
3321 	num_completed = stub_complete_io(1);
3322 	/* Trigger range unlocking earlier because we expect error here */
3323 	poll_threads();
3324 	CU_ASSERT_EQUAL(num_completed, 1);
3325 	CU_ASSERT(g_io_done == true);
3326 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3327 	num_completed = stub_complete_io(1);
3328 	CU_ASSERT_EQUAL(num_completed, 0);
3329 
3330 	spdk_put_io_channel(ioch);
3331 	spdk_bdev_close(desc);
3332 	free_bdev(bdev);
3333 	fn_table.submit_request = stub_submit_request;
3334 	spdk_bdev_finish(bdev_fini_cb, NULL);
3335 	poll_threads();
3336 
3337 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3338 
3339 	g_compare_read_buf = NULL;
3340 	g_compare_write_buf = NULL;
3341 }
3342 
3343 static void
3344 bdev_write_zeroes(void)
3345 {
3346 	struct spdk_bdev *bdev;
3347 	struct spdk_bdev_desc *desc = NULL;
3348 	struct spdk_io_channel *ioch;
3349 	struct ut_expected_io *expected_io;
3350 	uint64_t offset, num_io_blocks, num_blocks;
3351 	uint32_t num_completed, num_requests;
3352 	int rc;
3353 
3354 	spdk_bdev_initialize(bdev_init_cb, NULL);
3355 	bdev = allocate_bdev("bdev");
3356 
3357 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3358 	CU_ASSERT_EQUAL(rc, 0);
3359 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3360 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3361 	ioch = spdk_bdev_get_io_channel(desc);
3362 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3363 
3364 	fn_table.submit_request = stub_submit_request;
3365 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3366 
3367 	/* First test that if the bdev supports write_zeroes, the request won't be split */
3368 	bdev->md_len = 0;
3369 	bdev->blocklen = 4096;
3370 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3371 
3372 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
3373 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3374 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3375 	CU_ASSERT_EQUAL(rc, 0);
3376 	num_completed = stub_complete_io(1);
3377 	CU_ASSERT_EQUAL(num_completed, 1);
3378 
3379 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
3380 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
3381 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
3382 	num_requests = 2;
3383 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
3384 
3385 	for (offset = 0; offset < num_requests; ++offset) {
3386 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3387 						   offset * num_io_blocks, num_io_blocks, 0);
3388 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3389 	}
3390 
3391 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3392 	CU_ASSERT_EQUAL(rc, 0);
3393 	num_completed = stub_complete_io(num_requests);
3394 	CU_ASSERT_EQUAL(num_completed, num_requests);
3395 
3396 	/* Check that the splitting is correct if bdev has interleaved metadata */
3397 	bdev->md_interleave = true;
3398 	bdev->md_len = 64;
3399 	bdev->blocklen = 4096 + 64;
3400 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
3401 
3402 	num_requests = offset = 0;
3403 	while (offset < num_blocks) {
3404 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
3405 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3406 						   offset, num_io_blocks, 0);
3407 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3408 		offset += num_io_blocks;
3409 		num_requests++;
3410 	}
3411 
3412 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3413 	CU_ASSERT_EQUAL(rc, 0);
3414 	num_completed = stub_complete_io(num_requests);
3415 	CU_ASSERT_EQUAL(num_completed, num_requests);
3416 	num_completed = stub_complete_io(num_requests);
3417 	assert(num_completed == 0);
3418 
3419 	/* Check the the same for separate metadata buffer */
3420 	bdev->md_interleave = false;
3421 	bdev->md_len = 64;
3422 	bdev->blocklen = 4096;
3423 
3424 	num_requests = offset = 0;
3425 	while (offset < num_blocks) {
3426 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
3427 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
3428 						   offset, num_io_blocks, 0);
3429 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
3430 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3431 		offset += num_io_blocks;
3432 		num_requests++;
3433 	}
3434 
3435 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
3436 	CU_ASSERT_EQUAL(rc, 0);
3437 	num_completed = stub_complete_io(num_requests);
3438 	CU_ASSERT_EQUAL(num_completed, num_requests);
3439 
3440 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
3441 	spdk_put_io_channel(ioch);
3442 	spdk_bdev_close(desc);
3443 	free_bdev(bdev);
3444 	spdk_bdev_finish(bdev_fini_cb, NULL);
3445 	poll_threads();
3446 }
3447 
3448 static void
3449 bdev_open_while_hotremove(void)
3450 {
3451 	struct spdk_bdev *bdev;
3452 	struct spdk_bdev_desc *desc[2] = {};
3453 	int rc;
3454 
3455 	bdev = allocate_bdev("bdev");
3456 
3457 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
3458 	CU_ASSERT(rc == 0);
3459 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
3460 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
3461 
3462 	spdk_bdev_unregister(bdev, NULL, NULL);
3463 
3464 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
3465 	CU_ASSERT(rc == -ENODEV);
3466 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
3467 
3468 	spdk_bdev_close(desc[0]);
3469 	free_bdev(bdev);
3470 }
3471 
3472 static void
3473 bdev_close_while_hotremove(void)
3474 {
3475 	struct spdk_bdev *bdev;
3476 	struct spdk_bdev_desc *desc = NULL;
3477 	int rc = 0;
3478 
3479 	bdev = allocate_bdev("bdev");
3480 
3481 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
3482 	CU_ASSERT_EQUAL(rc, 0);
3483 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3484 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3485 
3486 	/* Simulate hot-unplug by unregistering bdev */
3487 	g_event_type1 = 0xFF;
3488 	g_unregister_arg = NULL;
3489 	g_unregister_rc = -1;
3490 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
3491 	/* Close device while remove event is in flight */
3492 	spdk_bdev_close(desc);
3493 
3494 	/* Ensure that unregister callback is delayed */
3495 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
3496 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
3497 
3498 	poll_threads();
3499 
3500 	/* Event callback shall not be issued because device was closed */
3501 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
3502 	/* Unregister callback is issued */
3503 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
3504 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
3505 
3506 	free_bdev(bdev);
3507 }
3508 
3509 static void
3510 bdev_open_ext(void)
3511 {
3512 	struct spdk_bdev *bdev;
3513 	struct spdk_bdev_desc *desc1 = NULL;
3514 	struct spdk_bdev_desc *desc2 = NULL;
3515 	int rc = 0;
3516 
3517 	bdev = allocate_bdev("bdev");
3518 
3519 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
3520 	CU_ASSERT_EQUAL(rc, -EINVAL);
3521 
3522 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
3523 	CU_ASSERT_EQUAL(rc, 0);
3524 
3525 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
3526 	CU_ASSERT_EQUAL(rc, 0);
3527 
3528 	g_event_type1 = 0xFF;
3529 	g_event_type2 = 0xFF;
3530 
3531 	/* Simulate hot-unplug by unregistering bdev */
3532 	spdk_bdev_unregister(bdev, NULL, NULL);
3533 	poll_threads();
3534 
3535 	/* Check if correct events have been triggered in event callback fn */
3536 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
3537 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
3538 
3539 	free_bdev(bdev);
3540 	poll_threads();
3541 }
3542 
3543 struct timeout_io_cb_arg {
3544 	struct iovec iov;
3545 	uint8_t type;
3546 };
3547 
3548 static int
3549 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
3550 {
3551 	struct spdk_bdev_io *bdev_io;
3552 	int n = 0;
3553 
3554 	if (!ch) {
3555 		return -1;
3556 	}
3557 
3558 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
3559 		n++;
3560 	}
3561 
3562 	return n;
3563 }
3564 
3565 static void
3566 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
3567 {
3568 	struct timeout_io_cb_arg *ctx = cb_arg;
3569 
3570 	ctx->type = bdev_io->type;
3571 	ctx->iov.iov_base = bdev_io->iov.iov_base;
3572 	ctx->iov.iov_len = bdev_io->iov.iov_len;
3573 }
3574 
3575 static void
3576 bdev_set_io_timeout(void)
3577 {
3578 	struct spdk_bdev *bdev;
3579 	struct spdk_bdev_desc *desc = NULL;
3580 	struct spdk_io_channel *io_ch = NULL;
3581 	struct spdk_bdev_channel *bdev_ch = NULL;
3582 	struct timeout_io_cb_arg cb_arg;
3583 
3584 	spdk_bdev_initialize(bdev_init_cb, NULL);
3585 
3586 	bdev = allocate_bdev("bdev");
3587 
3588 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
3589 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3590 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3591 
3592 	io_ch = spdk_bdev_get_io_channel(desc);
3593 	CU_ASSERT(io_ch != NULL);
3594 
3595 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
3596 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
3597 
3598 	/* This is the part1.
3599 	 * We will check the bdev_ch->io_submitted list
3600 	 * TO make sure that it can link IOs and only the user submitted IOs
3601 	 */
3602 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
3603 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
3604 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
3605 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
3606 	stub_complete_io(1);
3607 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
3608 	stub_complete_io(1);
3609 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
3610 
3611 	/* Split IO */
3612 	bdev->optimal_io_boundary = 16;
3613 	bdev->split_on_optimal_io_boundary = true;
3614 
3615 	/* Now test that a single-vector command is split correctly.
3616 	 * Offset 14, length 8, payload 0xF000
3617 	 *  Child - Offset 14, length 2, payload 0xF000
3618 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
3619 	 *
3620 	 * Set up the expected values before calling spdk_bdev_read_blocks
3621 	 */
3622 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
3623 	/* We count all submitted IOs including IO that are generated by splitting. */
3624 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
3625 	stub_complete_io(1);
3626 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
3627 	stub_complete_io(1);
3628 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
3629 
3630 	/* Also include the reset IO */
3631 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
3632 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
3633 	poll_threads();
3634 	stub_complete_io(1);
3635 	poll_threads();
3636 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
3637 
3638 	/* This is part2
3639 	 * Test the desc timeout poller register
3640 	 */
3641 
3642 	/* Successfully set the timeout */
3643 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
3644 	CU_ASSERT(desc->io_timeout_poller != NULL);
3645 	CU_ASSERT(desc->timeout_in_sec == 30);
3646 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
3647 	CU_ASSERT(desc->cb_arg == &cb_arg);
3648 
3649 	/* Change the timeout limit */
3650 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
3651 	CU_ASSERT(desc->io_timeout_poller != NULL);
3652 	CU_ASSERT(desc->timeout_in_sec == 20);
3653 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
3654 	CU_ASSERT(desc->cb_arg == &cb_arg);
3655 
3656 	/* Disable the timeout */
3657 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
3658 	CU_ASSERT(desc->io_timeout_poller == NULL);
3659 
3660 	/* This the part3
3661 	 * We will test to catch timeout IO and check whether the IO is
3662 	 * the submitted one.
3663 	 */
3664 	memset(&cb_arg, 0, sizeof(cb_arg));
3665 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
3666 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
3667 
3668 	/* Don't reach the limit */
3669 	spdk_delay_us(15 * spdk_get_ticks_hz());
3670 	poll_threads();
3671 	CU_ASSERT(cb_arg.type == 0);
3672 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
3673 	CU_ASSERT(cb_arg.iov.iov_len == 0);
3674 
3675 	/* 15 + 15 = 30 reach the limit */
3676 	spdk_delay_us(15 * spdk_get_ticks_hz());
3677 	poll_threads();
3678 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
3679 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
3680 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
3681 	stub_complete_io(1);
3682 
3683 	/* Use the same split IO above and check the IO */
3684 	memset(&cb_arg, 0, sizeof(cb_arg));
3685 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
3686 
3687 	/* The first child complete in time */
3688 	spdk_delay_us(15 * spdk_get_ticks_hz());
3689 	poll_threads();
3690 	stub_complete_io(1);
3691 	CU_ASSERT(cb_arg.type == 0);
3692 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
3693 	CU_ASSERT(cb_arg.iov.iov_len == 0);
3694 
3695 	/* The second child reach the limit */
3696 	spdk_delay_us(15 * spdk_get_ticks_hz());
3697 	poll_threads();
3698 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
3699 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
3700 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
3701 	stub_complete_io(1);
3702 
3703 	/* Also include the reset IO */
3704 	memset(&cb_arg, 0, sizeof(cb_arg));
3705 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
3706 	spdk_delay_us(30 * spdk_get_ticks_hz());
3707 	poll_threads();
3708 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
3709 	stub_complete_io(1);
3710 	poll_threads();
3711 
3712 	spdk_put_io_channel(io_ch);
3713 	spdk_bdev_close(desc);
3714 	free_bdev(bdev);
3715 	spdk_bdev_finish(bdev_fini_cb, NULL);
3716 	poll_threads();
3717 }
3718 
3719 static void
3720 lba_range_overlap(void)
3721 {
3722 	struct lba_range r1, r2;
3723 
3724 	r1.offset = 100;
3725 	r1.length = 50;
3726 
3727 	r2.offset = 0;
3728 	r2.length = 1;
3729 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
3730 
3731 	r2.offset = 0;
3732 	r2.length = 100;
3733 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
3734 
3735 	r2.offset = 0;
3736 	r2.length = 110;
3737 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
3738 
3739 	r2.offset = 100;
3740 	r2.length = 10;
3741 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
3742 
3743 	r2.offset = 110;
3744 	r2.length = 20;
3745 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
3746 
3747 	r2.offset = 140;
3748 	r2.length = 150;
3749 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
3750 
3751 	r2.offset = 130;
3752 	r2.length = 200;
3753 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
3754 
3755 	r2.offset = 150;
3756 	r2.length = 100;
3757 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
3758 
3759 	r2.offset = 110;
3760 	r2.length = 0;
3761 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
3762 }
3763 
3764 static bool g_lock_lba_range_done;
3765 static bool g_unlock_lba_range_done;
3766 
3767 static void
3768 lock_lba_range_done(void *ctx, int status)
3769 {
3770 	g_lock_lba_range_done = true;
3771 }
3772 
3773 static void
3774 unlock_lba_range_done(void *ctx, int status)
3775 {
3776 	g_unlock_lba_range_done = true;
3777 }
3778 
3779 static void
3780 lock_lba_range_check_ranges(void)
3781 {
3782 	struct spdk_bdev *bdev;
3783 	struct spdk_bdev_desc *desc = NULL;
3784 	struct spdk_io_channel *io_ch;
3785 	struct spdk_bdev_channel *channel;
3786 	struct lba_range *range;
3787 	int ctx1;
3788 	int rc;
3789 
3790 	spdk_bdev_initialize(bdev_init_cb, NULL);
3791 
3792 	bdev = allocate_bdev("bdev0");
3793 
3794 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3795 	CU_ASSERT(rc == 0);
3796 	CU_ASSERT(desc != NULL);
3797 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3798 	io_ch = spdk_bdev_get_io_channel(desc);
3799 	CU_ASSERT(io_ch != NULL);
3800 	channel = spdk_io_channel_get_ctx(io_ch);
3801 
3802 	g_lock_lba_range_done = false;
3803 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3804 	CU_ASSERT(rc == 0);
3805 	poll_threads();
3806 
3807 	CU_ASSERT(g_lock_lba_range_done == true);
3808 	range = TAILQ_FIRST(&channel->locked_ranges);
3809 	SPDK_CU_ASSERT_FATAL(range != NULL);
3810 	CU_ASSERT(range->offset == 20);
3811 	CU_ASSERT(range->length == 10);
3812 	CU_ASSERT(range->owner_ch == channel);
3813 
3814 	/* Unlocks must exactly match a lock. */
3815 	g_unlock_lba_range_done = false;
3816 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
3817 	CU_ASSERT(rc == -EINVAL);
3818 	CU_ASSERT(g_unlock_lba_range_done == false);
3819 
3820 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3821 	CU_ASSERT(rc == 0);
3822 	spdk_delay_us(100);
3823 	poll_threads();
3824 
3825 	CU_ASSERT(g_unlock_lba_range_done == true);
3826 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3827 
3828 	spdk_put_io_channel(io_ch);
3829 	spdk_bdev_close(desc);
3830 	free_bdev(bdev);
3831 	spdk_bdev_finish(bdev_fini_cb, NULL);
3832 	poll_threads();
3833 }
3834 
3835 static void
3836 lock_lba_range_with_io_outstanding(void)
3837 {
3838 	struct spdk_bdev *bdev;
3839 	struct spdk_bdev_desc *desc = NULL;
3840 	struct spdk_io_channel *io_ch;
3841 	struct spdk_bdev_channel *channel;
3842 	struct lba_range *range;
3843 	char buf[4096];
3844 	int ctx1;
3845 	int rc;
3846 
3847 	spdk_bdev_initialize(bdev_init_cb, NULL);
3848 
3849 	bdev = allocate_bdev("bdev0");
3850 
3851 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3852 	CU_ASSERT(rc == 0);
3853 	CU_ASSERT(desc != NULL);
3854 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3855 	io_ch = spdk_bdev_get_io_channel(desc);
3856 	CU_ASSERT(io_ch != NULL);
3857 	channel = spdk_io_channel_get_ctx(io_ch);
3858 
3859 	g_io_done = false;
3860 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
3861 	CU_ASSERT(rc == 0);
3862 
3863 	g_lock_lba_range_done = false;
3864 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3865 	CU_ASSERT(rc == 0);
3866 	poll_threads();
3867 
3868 	/* The lock should immediately become valid, since there are no outstanding
3869 	 * write I/O.
3870 	 */
3871 	CU_ASSERT(g_io_done == false);
3872 	CU_ASSERT(g_lock_lba_range_done == true);
3873 	range = TAILQ_FIRST(&channel->locked_ranges);
3874 	SPDK_CU_ASSERT_FATAL(range != NULL);
3875 	CU_ASSERT(range->offset == 20);
3876 	CU_ASSERT(range->length == 10);
3877 	CU_ASSERT(range->owner_ch == channel);
3878 	CU_ASSERT(range->locked_ctx == &ctx1);
3879 
3880 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3881 	CU_ASSERT(rc == 0);
3882 	stub_complete_io(1);
3883 	spdk_delay_us(100);
3884 	poll_threads();
3885 
3886 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3887 
3888 	/* Now try again, but with a write I/O. */
3889 	g_io_done = false;
3890 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
3891 	CU_ASSERT(rc == 0);
3892 
3893 	g_lock_lba_range_done = false;
3894 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3895 	CU_ASSERT(rc == 0);
3896 	poll_threads();
3897 
3898 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
3899 	 * But note that the range should be on the channel's locked_list, to make sure no
3900 	 * new write I/O are started.
3901 	 */
3902 	CU_ASSERT(g_io_done == false);
3903 	CU_ASSERT(g_lock_lba_range_done == false);
3904 	range = TAILQ_FIRST(&channel->locked_ranges);
3905 	SPDK_CU_ASSERT_FATAL(range != NULL);
3906 	CU_ASSERT(range->offset == 20);
3907 	CU_ASSERT(range->length == 10);
3908 
3909 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
3910 	 * our callback was invoked).
3911 	 */
3912 	stub_complete_io(1);
3913 	spdk_delay_us(100);
3914 	poll_threads();
3915 	CU_ASSERT(g_io_done == true);
3916 	CU_ASSERT(g_lock_lba_range_done == true);
3917 
3918 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3919 	CU_ASSERT(rc == 0);
3920 	poll_threads();
3921 
3922 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
3923 
3924 	spdk_put_io_channel(io_ch);
3925 	spdk_bdev_close(desc);
3926 	free_bdev(bdev);
3927 	spdk_bdev_finish(bdev_fini_cb, NULL);
3928 	poll_threads();
3929 }
3930 
3931 static void
3932 lock_lba_range_overlapped(void)
3933 {
3934 	struct spdk_bdev *bdev;
3935 	struct spdk_bdev_desc *desc = NULL;
3936 	struct spdk_io_channel *io_ch;
3937 	struct spdk_bdev_channel *channel;
3938 	struct lba_range *range;
3939 	int ctx1;
3940 	int rc;
3941 
3942 	spdk_bdev_initialize(bdev_init_cb, NULL);
3943 
3944 	bdev = allocate_bdev("bdev0");
3945 
3946 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3947 	CU_ASSERT(rc == 0);
3948 	CU_ASSERT(desc != NULL);
3949 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3950 	io_ch = spdk_bdev_get_io_channel(desc);
3951 	CU_ASSERT(io_ch != NULL);
3952 	channel = spdk_io_channel_get_ctx(io_ch);
3953 
3954 	/* Lock range 20-29. */
3955 	g_lock_lba_range_done = false;
3956 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
3957 	CU_ASSERT(rc == 0);
3958 	poll_threads();
3959 
3960 	CU_ASSERT(g_lock_lba_range_done == true);
3961 	range = TAILQ_FIRST(&channel->locked_ranges);
3962 	SPDK_CU_ASSERT_FATAL(range != NULL);
3963 	CU_ASSERT(range->offset == 20);
3964 	CU_ASSERT(range->length == 10);
3965 
3966 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
3967 	 * 20-29.
3968 	 */
3969 	g_lock_lba_range_done = false;
3970 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
3971 	CU_ASSERT(rc == 0);
3972 	poll_threads();
3973 
3974 	CU_ASSERT(g_lock_lba_range_done == false);
3975 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
3976 	SPDK_CU_ASSERT_FATAL(range != NULL);
3977 	CU_ASSERT(range->offset == 25);
3978 	CU_ASSERT(range->length == 15);
3979 
3980 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
3981 	 * no longer overlaps with an active lock.
3982 	 */
3983 	g_unlock_lba_range_done = false;
3984 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
3985 	CU_ASSERT(rc == 0);
3986 	poll_threads();
3987 
3988 	CU_ASSERT(g_unlock_lba_range_done == true);
3989 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
3990 	range = TAILQ_FIRST(&channel->locked_ranges);
3991 	SPDK_CU_ASSERT_FATAL(range != NULL);
3992 	CU_ASSERT(range->offset == 25);
3993 	CU_ASSERT(range->length == 15);
3994 
3995 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
3996 	 * currently active 25-39 lock.
3997 	 */
3998 	g_lock_lba_range_done = false;
3999 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
4000 	CU_ASSERT(rc == 0);
4001 	poll_threads();
4002 
4003 	CU_ASSERT(g_lock_lba_range_done == true);
4004 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4005 	SPDK_CU_ASSERT_FATAL(range != NULL);
4006 	range = TAILQ_NEXT(range, tailq);
4007 	SPDK_CU_ASSERT_FATAL(range != NULL);
4008 	CU_ASSERT(range->offset == 40);
4009 	CU_ASSERT(range->length == 20);
4010 
4011 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
4012 	g_lock_lba_range_done = false;
4013 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
4014 	CU_ASSERT(rc == 0);
4015 	poll_threads();
4016 
4017 	CU_ASSERT(g_lock_lba_range_done == false);
4018 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4019 	SPDK_CU_ASSERT_FATAL(range != NULL);
4020 	CU_ASSERT(range->offset == 35);
4021 	CU_ASSERT(range->length == 10);
4022 
4023 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
4024 	 * the 40-59 lock is still active.
4025 	 */
4026 	g_unlock_lba_range_done = false;
4027 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
4028 	CU_ASSERT(rc == 0);
4029 	poll_threads();
4030 
4031 	CU_ASSERT(g_unlock_lba_range_done == true);
4032 	CU_ASSERT(g_lock_lba_range_done == false);
4033 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
4034 	SPDK_CU_ASSERT_FATAL(range != NULL);
4035 	CU_ASSERT(range->offset == 35);
4036 	CU_ASSERT(range->length == 10);
4037 
4038 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
4039 	 * no longer any active overlapping locks.
4040 	 */
4041 	g_unlock_lba_range_done = false;
4042 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
4043 	CU_ASSERT(rc == 0);
4044 	poll_threads();
4045 
4046 	CU_ASSERT(g_unlock_lba_range_done == true);
4047 	CU_ASSERT(g_lock_lba_range_done == true);
4048 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
4049 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
4050 	SPDK_CU_ASSERT_FATAL(range != NULL);
4051 	CU_ASSERT(range->offset == 35);
4052 	CU_ASSERT(range->length == 10);
4053 
4054 	/* Finally, unlock 35-44. */
4055 	g_unlock_lba_range_done = false;
4056 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
4057 	CU_ASSERT(rc == 0);
4058 	poll_threads();
4059 
4060 	CU_ASSERT(g_unlock_lba_range_done == true);
4061 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
4062 
4063 	spdk_put_io_channel(io_ch);
4064 	spdk_bdev_close(desc);
4065 	free_bdev(bdev);
4066 	spdk_bdev_finish(bdev_fini_cb, NULL);
4067 	poll_threads();
4068 }
4069 
4070 static void
4071 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4072 {
4073 	g_abort_done = true;
4074 	g_abort_status = bdev_io->internal.status;
4075 	spdk_bdev_free_io(bdev_io);
4076 }
4077 
4078 static void
4079 bdev_io_abort(void)
4080 {
4081 	struct spdk_bdev *bdev;
4082 	struct spdk_bdev_desc *desc = NULL;
4083 	struct spdk_io_channel *io_ch;
4084 	struct spdk_bdev_channel *channel;
4085 	struct spdk_bdev_mgmt_channel *mgmt_ch;
4086 	struct spdk_bdev_opts bdev_opts = {};
4087 	struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
4088 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
4089 	int rc;
4090 
4091 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4092 	bdev_opts.bdev_io_pool_size = 7;
4093 	bdev_opts.bdev_io_cache_size = 2;
4094 
4095 	rc = spdk_bdev_set_opts(&bdev_opts);
4096 	CU_ASSERT(rc == 0);
4097 	spdk_bdev_initialize(bdev_init_cb, NULL);
4098 
4099 	bdev = allocate_bdev("bdev0");
4100 
4101 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4102 	CU_ASSERT(rc == 0);
4103 	CU_ASSERT(desc != NULL);
4104 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4105 	io_ch = spdk_bdev_get_io_channel(desc);
4106 	CU_ASSERT(io_ch != NULL);
4107 	channel = spdk_io_channel_get_ctx(io_ch);
4108 	mgmt_ch = channel->shared_resource->mgmt_ch;
4109 
4110 	g_abort_done = false;
4111 
4112 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
4113 
4114 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4115 	CU_ASSERT(rc == -ENOTSUP);
4116 
4117 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
4118 
4119 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
4120 	CU_ASSERT(rc == 0);
4121 	CU_ASSERT(g_abort_done == true);
4122 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
4123 
4124 	/* Test the case that the target I/O was successfully aborted. */
4125 	g_io_done = false;
4126 
4127 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4128 	CU_ASSERT(rc == 0);
4129 	CU_ASSERT(g_io_done == false);
4130 
4131 	g_abort_done = false;
4132 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4133 
4134 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4135 	CU_ASSERT(rc == 0);
4136 	CU_ASSERT(g_io_done == true);
4137 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4138 	stub_complete_io(1);
4139 	CU_ASSERT(g_abort_done == true);
4140 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4141 
4142 	/* Test the case that the target I/O was not aborted because it completed
4143 	 * in the middle of execution of the abort.
4144 	 */
4145 	g_io_done = false;
4146 
4147 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
4148 	CU_ASSERT(rc == 0);
4149 	CU_ASSERT(g_io_done == false);
4150 
4151 	g_abort_done = false;
4152 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4153 
4154 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4155 	CU_ASSERT(rc == 0);
4156 	CU_ASSERT(g_io_done == false);
4157 
4158 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4159 	stub_complete_io(1);
4160 	CU_ASSERT(g_io_done == true);
4161 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4162 
4163 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
4164 	stub_complete_io(1);
4165 	CU_ASSERT(g_abort_done == true);
4166 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4167 
4168 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4169 
4170 	bdev->optimal_io_boundary = 16;
4171 	bdev->split_on_optimal_io_boundary = true;
4172 
4173 	/* Test that a single-vector command which is split is aborted correctly.
4174 	 * Offset 14, length 8, payload 0xF000
4175 	 *  Child - Offset 14, length 2, payload 0xF000
4176 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4177 	 */
4178 	g_io_done = false;
4179 
4180 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
4181 	CU_ASSERT(rc == 0);
4182 	CU_ASSERT(g_io_done == false);
4183 
4184 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
4185 
4186 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4187 
4188 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4189 	CU_ASSERT(rc == 0);
4190 	CU_ASSERT(g_io_done == true);
4191 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4192 	stub_complete_io(2);
4193 	CU_ASSERT(g_abort_done == true);
4194 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4195 
4196 	/* Test that a multi-vector command that needs to be split by strip and then
4197 	 * needs to be split is aborted correctly. Abort is requested before the second
4198 	 * child I/O was submitted. The parent I/O should complete with failure without
4199 	 * submitting the second child I/O.
4200 	 */
4201 	for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
4202 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
4203 		iov[i].iov_len = 512;
4204 	}
4205 
4206 	bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
4207 	g_io_done = false;
4208 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
4209 				    BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
4210 	CU_ASSERT(rc == 0);
4211 	CU_ASSERT(g_io_done == false);
4212 
4213 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
4214 
4215 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4216 
4217 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4218 	CU_ASSERT(rc == 0);
4219 	CU_ASSERT(g_io_done == true);
4220 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4221 	stub_complete_io(1);
4222 	CU_ASSERT(g_abort_done == true);
4223 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4224 
4225 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4226 
4227 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4228 
4229 	bdev->optimal_io_boundary = 16;
4230 	g_io_done = false;
4231 
4232 	/* Test that a ingle-vector command which is split is aborted correctly.
4233 	 * Differently from the above, the child abort request will be submitted
4234 	 * sequentially due to the capacity of spdk_bdev_io.
4235 	 */
4236 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
4237 	CU_ASSERT(rc == 0);
4238 	CU_ASSERT(g_io_done == false);
4239 
4240 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4241 
4242 	g_abort_done = false;
4243 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4244 
4245 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
4246 	CU_ASSERT(rc == 0);
4247 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
4248 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
4249 
4250 	stub_complete_io(1);
4251 	CU_ASSERT(g_io_done == true);
4252 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
4253 	stub_complete_io(3);
4254 	CU_ASSERT(g_abort_done == true);
4255 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4256 
4257 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4258 
4259 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
4260 
4261 	spdk_put_io_channel(io_ch);
4262 	spdk_bdev_close(desc);
4263 	free_bdev(bdev);
4264 	spdk_bdev_finish(bdev_fini_cb, NULL);
4265 	poll_threads();
4266 }
4267 
4268 static void
4269 bdev_set_options_test(void)
4270 {
4271 	struct spdk_bdev_opts bdev_opts = {};
4272 	int rc;
4273 
4274 	/* Case1: Do not set opts_size */
4275 	rc = spdk_bdev_set_opts(&bdev_opts);
4276 	CU_ASSERT(rc == -1);
4277 
4278 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
4279 	bdev_opts.bdev_io_pool_size = 4;
4280 	bdev_opts.bdev_io_cache_size = 2;
4281 	bdev_opts.small_buf_pool_size = 4;
4282 
4283 	/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
4284 	rc = spdk_bdev_set_opts(&bdev_opts);
4285 	CU_ASSERT(rc == -1);
4286 
4287 	/* Case 3: Do not set valid large_buf_pool_size */
4288 	bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
4289 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
4290 	rc = spdk_bdev_set_opts(&bdev_opts);
4291 	CU_ASSERT(rc == -1);
4292 
4293 	/* Case4: set valid large buf_pool_size */
4294 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
4295 	rc = spdk_bdev_set_opts(&bdev_opts);
4296 	CU_ASSERT(rc == 0);
4297 
4298 	/* Case5: Set different valid value for small and large buf pool */
4299 	bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
4300 	bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
4301 	rc = spdk_bdev_set_opts(&bdev_opts);
4302 	CU_ASSERT(rc == 0);
4303 }
4304 
4305 int
4306 main(int argc, char **argv)
4307 {
4308 	CU_pSuite		suite = NULL;
4309 	unsigned int		num_failures;
4310 
4311 	CU_set_error_action(CUEA_ABORT);
4312 	CU_initialize_registry();
4313 
4314 	suite = CU_add_suite("bdev", null_init, null_clean);
4315 
4316 	CU_ADD_TEST(suite, bytes_to_blocks_test);
4317 	CU_ADD_TEST(suite, num_blocks_test);
4318 	CU_ADD_TEST(suite, io_valid_test);
4319 	CU_ADD_TEST(suite, open_write_test);
4320 	CU_ADD_TEST(suite, alias_add_del_test);
4321 	CU_ADD_TEST(suite, get_device_stat_test);
4322 	CU_ADD_TEST(suite, bdev_io_types_test);
4323 	CU_ADD_TEST(suite, bdev_io_wait_test);
4324 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
4325 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
4326 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
4327 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
4328 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
4329 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
4330 	CU_ADD_TEST(suite, bdev_io_alignment);
4331 	CU_ADD_TEST(suite, bdev_histograms);
4332 	CU_ADD_TEST(suite, bdev_write_zeroes);
4333 	CU_ADD_TEST(suite, bdev_compare_and_write);
4334 	CU_ADD_TEST(suite, bdev_compare);
4335 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
4336 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
4337 	CU_ADD_TEST(suite, bdev_open_ext);
4338 	CU_ADD_TEST(suite, bdev_set_io_timeout);
4339 	CU_ADD_TEST(suite, lba_range_overlap);
4340 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
4341 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
4342 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
4343 	CU_ADD_TEST(suite, bdev_io_abort);
4344 	CU_ADD_TEST(suite, bdev_set_options_test);
4345 
4346 	allocate_cores(1);
4347 	allocate_threads(1);
4348 	set_thread(0);
4349 
4350 	CU_basic_set_mode(CU_BRM_VERBOSE);
4351 	CU_basic_run_tests();
4352 	num_failures = CU_get_number_of_failures();
4353 	CU_cleanup_registry();
4354 
4355 	free_threads();
4356 	free_cores();
4357 
4358 	return num_failures;
4359 }
4360