xref: /spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c (revision b02581a89058ebaebe03bd0e16e3b58adfe406c1)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2017 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk_internal/cunit.h"
8 
9 #include "common/lib/ut_multithread.c"
10 #include "unit/lib/json_mock.c"
11 
12 #include "spdk/config.h"
13 /* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
14 #undef SPDK_CONFIG_VTUNE
15 
16 #include "bdev/bdev.c"
17 
18 DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
19 DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
20 DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
21 	    "test_domain");
22 DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
23 	    (struct spdk_memory_domain *domain), 0);
24 DEFINE_STUB_V(spdk_accel_sequence_finish,
25 	      (struct spdk_accel_sequence *seq, spdk_accel_completion_cb cb_fn, void *cb_arg));
26 DEFINE_STUB_V(spdk_accel_sequence_abort, (struct spdk_accel_sequence *seq));
27 DEFINE_STUB_V(spdk_accel_sequence_reverse, (struct spdk_accel_sequence *seq));
28 DEFINE_STUB(spdk_accel_append_copy, int,
29 	    (struct spdk_accel_sequence **seq, struct spdk_io_channel *ch, struct iovec *dst_iovs,
30 	     uint32_t dst_iovcnt, struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
31 	     struct iovec *src_iovs, uint32_t src_iovcnt, struct spdk_memory_domain *src_domain,
32 	     void *src_domain_ctx, int flags, spdk_accel_step_cb cb_fn, void *cb_arg), 0);
33 DEFINE_STUB(spdk_accel_get_memory_domain, struct spdk_memory_domain *, (void), NULL);
34 
35 static bool g_memory_domain_pull_data_called;
36 static bool g_memory_domain_push_data_called;
37 static int g_accel_io_device;
38 
39 DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
40 int
41 spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
42 			     struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
43 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
44 {
45 	g_memory_domain_pull_data_called = true;
46 	HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
47 	cpl_cb(cpl_cb_arg, 0);
48 	return 0;
49 }
50 
51 DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
52 int
53 spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
54 			     struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
55 			     spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
56 {
57 	g_memory_domain_push_data_called = true;
58 	HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
59 	cpl_cb(cpl_cb_arg, 0);
60 	return 0;
61 }
62 
63 struct spdk_io_channel *
64 spdk_accel_get_io_channel(void)
65 {
66 	return spdk_get_io_channel(&g_accel_io_device);
67 }
68 
69 int g_status;
70 int g_count;
71 enum spdk_bdev_event_type g_event_type1;
72 enum spdk_bdev_event_type g_event_type2;
73 enum spdk_bdev_event_type g_event_type3;
74 enum spdk_bdev_event_type g_event_type4;
75 struct spdk_histogram_data *g_histogram;
76 void *g_unregister_arg;
77 int g_unregister_rc;
78 
79 void
80 spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
81 			 int *sc, int *sk, int *asc, int *ascq)
82 {
83 }
84 
85 static int
86 ut_accel_ch_create_cb(void *io_device, void *ctx)
87 {
88 	return 0;
89 }
90 
91 static void
92 ut_accel_ch_destroy_cb(void *io_device, void *ctx)
93 {
94 }
95 
96 static int
97 ut_bdev_setup(void)
98 {
99 	spdk_io_device_register(&g_accel_io_device, ut_accel_ch_create_cb,
100 				ut_accel_ch_destroy_cb, 0, NULL);
101 	return 0;
102 }
103 
104 static int
105 ut_bdev_teardown(void)
106 {
107 	spdk_io_device_unregister(&g_accel_io_device, NULL);
108 
109 	return 0;
110 }
111 
112 static int
113 stub_destruct(void *ctx)
114 {
115 	return 0;
116 }
117 
118 struct ut_expected_io {
119 	uint8_t				type;
120 	uint64_t			offset;
121 	uint64_t			src_offset;
122 	uint64_t			length;
123 	int				iovcnt;
124 	struct iovec			iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
125 	void				*md_buf;
126 	TAILQ_ENTRY(ut_expected_io)	link;
127 };
128 
129 struct bdev_ut_channel {
130 	TAILQ_HEAD(, spdk_bdev_io)	outstanding_io;
131 	uint32_t			outstanding_io_count;
132 	TAILQ_HEAD(, ut_expected_io)	expected_io;
133 };
134 
135 static bool g_io_done;
136 static struct spdk_bdev_io *g_bdev_io;
137 static enum spdk_bdev_io_status g_io_status;
138 static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
139 static uint32_t g_bdev_ut_io_device;
140 static struct bdev_ut_channel *g_bdev_ut_channel;
141 static void *g_compare_read_buf;
142 static uint32_t g_compare_read_buf_len;
143 static void *g_compare_write_buf;
144 static uint32_t g_compare_write_buf_len;
145 static void *g_compare_md_buf;
146 static bool g_abort_done;
147 static enum spdk_bdev_io_status g_abort_status;
148 static void *g_zcopy_read_buf;
149 static uint32_t g_zcopy_read_buf_len;
150 static void *g_zcopy_write_buf;
151 static uint32_t g_zcopy_write_buf_len;
152 static struct spdk_bdev_io *g_zcopy_bdev_io;
153 static uint64_t g_seek_data_offset;
154 static uint64_t g_seek_hole_offset;
155 static uint64_t g_seek_offset;
156 
157 static struct ut_expected_io *
158 ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
159 {
160 	struct ut_expected_io *expected_io;
161 
162 	expected_io = calloc(1, sizeof(*expected_io));
163 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
164 
165 	expected_io->type = type;
166 	expected_io->offset = offset;
167 	expected_io->length = length;
168 	expected_io->iovcnt = iovcnt;
169 
170 	return expected_io;
171 }
172 
173 static struct ut_expected_io *
174 ut_alloc_expected_copy_io(uint8_t type, uint64_t offset, uint64_t src_offset, uint64_t length)
175 {
176 	struct ut_expected_io *expected_io;
177 
178 	expected_io = calloc(1, sizeof(*expected_io));
179 	SPDK_CU_ASSERT_FATAL(expected_io != NULL);
180 
181 	expected_io->type = type;
182 	expected_io->offset = offset;
183 	expected_io->src_offset = src_offset;
184 	expected_io->length = length;
185 
186 	return expected_io;
187 }
188 
189 static void
190 ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
191 {
192 	expected_io->iov[pos].iov_base = base;
193 	expected_io->iov[pos].iov_len = len;
194 }
195 
196 static void
197 stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
198 {
199 	struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
200 	struct ut_expected_io *expected_io;
201 	struct iovec *iov, *expected_iov;
202 	struct spdk_bdev_io *bio_to_abort;
203 	int i;
204 
205 	g_bdev_io = bdev_io;
206 
207 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
208 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
209 
210 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
211 		CU_ASSERT(g_compare_read_buf_len == len);
212 		memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
213 		if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
214 			memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
215 			       bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
216 		}
217 	}
218 
219 	if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
220 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
221 
222 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
223 		CU_ASSERT(g_compare_write_buf_len == len);
224 		memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
225 	}
226 
227 	if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
228 		uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
229 
230 		CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
231 		CU_ASSERT(g_compare_read_buf_len == len);
232 		if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
233 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
234 		}
235 		if (bdev_io->u.bdev.md_buf &&
236 		    memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
237 			   bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
238 			g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
239 		}
240 	}
241 
242 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
243 		if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
244 			TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
245 				if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
246 					TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
247 					ch->outstanding_io_count--;
248 					spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
249 					break;
250 				}
251 			}
252 		}
253 	}
254 
255 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
256 		if (bdev_io->u.bdev.zcopy.start) {
257 			g_zcopy_bdev_io = bdev_io;
258 			if (bdev_io->u.bdev.zcopy.populate) {
259 				/* Start of a read */
260 				CU_ASSERT(g_zcopy_read_buf != NULL);
261 				CU_ASSERT(g_zcopy_read_buf_len > 0);
262 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
263 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
264 				bdev_io->u.bdev.iovcnt = 1;
265 			} else {
266 				/* Start of a write */
267 				CU_ASSERT(g_zcopy_write_buf != NULL);
268 				CU_ASSERT(g_zcopy_write_buf_len > 0);
269 				bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
270 				bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
271 				bdev_io->u.bdev.iovcnt = 1;
272 			}
273 		} else {
274 			if (bdev_io->u.bdev.zcopy.commit) {
275 				/* End of write */
276 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
277 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
278 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
279 				g_zcopy_write_buf = NULL;
280 				g_zcopy_write_buf_len = 0;
281 			} else {
282 				/* End of read */
283 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
284 				CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
285 				CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
286 				g_zcopy_read_buf = NULL;
287 				g_zcopy_read_buf_len = 0;
288 			}
289 		}
290 	}
291 
292 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
293 		bdev_io->u.bdev.seek.offset = g_seek_data_offset;
294 	}
295 
296 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) {
297 		bdev_io->u.bdev.seek.offset = g_seek_hole_offset;
298 	}
299 
300 	TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
301 	ch->outstanding_io_count++;
302 
303 	expected_io = TAILQ_FIRST(&ch->expected_io);
304 	if (expected_io == NULL) {
305 		return;
306 	}
307 	TAILQ_REMOVE(&ch->expected_io, expected_io, link);
308 
309 	if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
310 		CU_ASSERT(bdev_io->type == expected_io->type);
311 	}
312 
313 	if (expected_io->md_buf != NULL) {
314 		CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
315 	}
316 
317 	if (expected_io->length == 0) {
318 		free(expected_io);
319 		return;
320 	}
321 
322 	CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
323 	CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
324 	if (expected_io->type == SPDK_BDEV_IO_TYPE_COPY) {
325 		CU_ASSERT(expected_io->src_offset == bdev_io->u.bdev.copy.src_offset_blocks);
326 	}
327 
328 	if (expected_io->iovcnt == 0) {
329 		free(expected_io);
330 		/* UNMAP, WRITE_ZEROES, FLUSH and COPY don't have iovs, so we can just return now. */
331 		return;
332 	}
333 
334 	CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
335 	for (i = 0; i < expected_io->iovcnt; i++) {
336 		expected_iov = &expected_io->iov[i];
337 		if (bdev_io->internal.orig_iovcnt == 0) {
338 			iov = &bdev_io->u.bdev.iovs[i];
339 		} else {
340 			iov = bdev_io->internal.orig_iovs;
341 		}
342 		CU_ASSERT(iov->iov_len == expected_iov->iov_len);
343 		CU_ASSERT(iov->iov_base == expected_iov->iov_base);
344 	}
345 
346 	free(expected_io);
347 }
348 
349 static void
350 stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
351 			       struct spdk_bdev_io *bdev_io, bool success)
352 {
353 	CU_ASSERT(success == true);
354 
355 	stub_submit_request(_ch, bdev_io);
356 }
357 
358 static void
359 stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
360 {
361 	spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
362 			     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
363 }
364 
365 static uint32_t
366 stub_complete_io(uint32_t num_to_complete)
367 {
368 	struct bdev_ut_channel *ch = g_bdev_ut_channel;
369 	struct spdk_bdev_io *bdev_io;
370 	static enum spdk_bdev_io_status io_status;
371 	uint32_t num_completed = 0;
372 
373 	while (num_completed < num_to_complete) {
374 		if (TAILQ_EMPTY(&ch->outstanding_io)) {
375 			break;
376 		}
377 		bdev_io = TAILQ_FIRST(&ch->outstanding_io);
378 		TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
379 		ch->outstanding_io_count--;
380 		io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
381 			    g_io_exp_status;
382 		spdk_bdev_io_complete(bdev_io, io_status);
383 		num_completed++;
384 	}
385 
386 	return num_completed;
387 }
388 
389 static struct spdk_io_channel *
390 bdev_ut_get_io_channel(void *ctx)
391 {
392 	return spdk_get_io_channel(&g_bdev_ut_io_device);
393 }
394 
395 static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
396 	[SPDK_BDEV_IO_TYPE_READ]		= true,
397 	[SPDK_BDEV_IO_TYPE_WRITE]		= true,
398 	[SPDK_BDEV_IO_TYPE_COMPARE]		= true,
399 	[SPDK_BDEV_IO_TYPE_UNMAP]		= true,
400 	[SPDK_BDEV_IO_TYPE_FLUSH]		= true,
401 	[SPDK_BDEV_IO_TYPE_RESET]		= true,
402 	[SPDK_BDEV_IO_TYPE_NVME_ADMIN]		= true,
403 	[SPDK_BDEV_IO_TYPE_NVME_IO]		= true,
404 	[SPDK_BDEV_IO_TYPE_NVME_IO_MD]		= true,
405 	[SPDK_BDEV_IO_TYPE_WRITE_ZEROES]	= true,
406 	[SPDK_BDEV_IO_TYPE_ZCOPY]		= true,
407 	[SPDK_BDEV_IO_TYPE_ABORT]		= true,
408 	[SPDK_BDEV_IO_TYPE_SEEK_HOLE]		= true,
409 	[SPDK_BDEV_IO_TYPE_SEEK_DATA]		= true,
410 	[SPDK_BDEV_IO_TYPE_COPY]		= true,
411 };
412 
413 static void
414 ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
415 {
416 	g_io_types_supported[io_type] = enable;
417 }
418 
419 static bool
420 stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
421 {
422 	return g_io_types_supported[io_type];
423 }
424 
425 static struct spdk_bdev_fn_table fn_table = {
426 	.destruct = stub_destruct,
427 	.submit_request = stub_submit_request,
428 	.get_io_channel = bdev_ut_get_io_channel,
429 	.io_type_supported = stub_io_type_supported,
430 };
431 
432 static int
433 bdev_ut_create_ch(void *io_device, void *ctx_buf)
434 {
435 	struct bdev_ut_channel *ch = ctx_buf;
436 
437 	CU_ASSERT(g_bdev_ut_channel == NULL);
438 	g_bdev_ut_channel = ch;
439 
440 	TAILQ_INIT(&ch->outstanding_io);
441 	ch->outstanding_io_count = 0;
442 	TAILQ_INIT(&ch->expected_io);
443 	return 0;
444 }
445 
446 static void
447 bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
448 {
449 	CU_ASSERT(g_bdev_ut_channel != NULL);
450 	g_bdev_ut_channel = NULL;
451 }
452 
453 struct spdk_bdev_module bdev_ut_if;
454 
455 static int
456 bdev_ut_module_init(void)
457 {
458 	spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
459 				sizeof(struct bdev_ut_channel), NULL);
460 	spdk_bdev_module_init_done(&bdev_ut_if);
461 	return 0;
462 }
463 
464 static void
465 bdev_ut_module_fini(void)
466 {
467 	spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
468 }
469 
470 struct spdk_bdev_module bdev_ut_if = {
471 	.name = "bdev_ut",
472 	.module_init = bdev_ut_module_init,
473 	.module_fini = bdev_ut_module_fini,
474 	.async_init = true,
475 };
476 
477 static void vbdev_ut_examine_config(struct spdk_bdev *bdev);
478 static void vbdev_ut_examine_disk(struct spdk_bdev *bdev);
479 
480 static int
481 vbdev_ut_module_init(void)
482 {
483 	return 0;
484 }
485 
486 static void
487 vbdev_ut_module_fini(void)
488 {
489 }
490 
491 struct spdk_bdev_module vbdev_ut_if = {
492 	.name = "vbdev_ut",
493 	.module_init = vbdev_ut_module_init,
494 	.module_fini = vbdev_ut_module_fini,
495 	.examine_config = vbdev_ut_examine_config,
496 	.examine_disk = vbdev_ut_examine_disk,
497 };
498 
499 SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
500 SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
501 
502 struct ut_examine_ctx {
503 	void (*examine_config)(struct spdk_bdev *bdev);
504 	void (*examine_disk)(struct spdk_bdev *bdev);
505 	uint32_t examine_config_count;
506 	uint32_t examine_disk_count;
507 };
508 
509 static void
510 vbdev_ut_examine_config(struct spdk_bdev *bdev)
511 {
512 	struct ut_examine_ctx *ctx = bdev->ctxt;
513 
514 	if (ctx != NULL) {
515 		ctx->examine_config_count++;
516 		if (ctx->examine_config != NULL) {
517 			ctx->examine_config(bdev);
518 		}
519 	}
520 
521 	spdk_bdev_module_examine_done(&vbdev_ut_if);
522 }
523 
524 static void
525 vbdev_ut_examine_disk(struct spdk_bdev *bdev)
526 {
527 	struct ut_examine_ctx *ctx = bdev->ctxt;
528 
529 	if (ctx != NULL) {
530 		ctx->examine_disk_count++;
531 		if (ctx->examine_disk != NULL) {
532 			ctx->examine_disk(bdev);
533 		}
534 	}
535 
536 	spdk_bdev_module_examine_done(&vbdev_ut_if);
537 }
538 
539 static void
540 bdev_init_cb(void *arg, int rc)
541 {
542 	CU_ASSERT(rc == 0);
543 }
544 
545 static void
546 bdev_fini_cb(void *arg)
547 {
548 }
549 
550 static void
551 ut_init_bdev(struct spdk_bdev_opts *opts)
552 {
553 	int rc;
554 
555 	if (opts != NULL) {
556 		rc = spdk_bdev_set_opts(opts);
557 		CU_ASSERT(rc == 0);
558 	}
559 	rc = spdk_iobuf_initialize();
560 	CU_ASSERT(rc == 0);
561 	spdk_bdev_initialize(bdev_init_cb, NULL);
562 	poll_threads();
563 }
564 
565 static void
566 ut_fini_bdev(void)
567 {
568 	spdk_bdev_finish(bdev_fini_cb, NULL);
569 	spdk_iobuf_finish(bdev_fini_cb, NULL);
570 	poll_threads();
571 }
572 
573 static struct spdk_bdev *
574 allocate_bdev_ctx(char *name, void *ctx)
575 {
576 	struct spdk_bdev *bdev;
577 	int rc;
578 
579 	bdev = calloc(1, sizeof(*bdev));
580 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
581 
582 	bdev->ctxt = ctx;
583 	bdev->name = name;
584 	bdev->fn_table = &fn_table;
585 	bdev->module = &bdev_ut_if;
586 	bdev->blockcnt = 1024;
587 	bdev->blocklen = 512;
588 
589 	spdk_uuid_generate(&bdev->uuid);
590 
591 	rc = spdk_bdev_register(bdev);
592 	poll_threads();
593 	CU_ASSERT(rc == 0);
594 
595 	return bdev;
596 }
597 
598 static struct spdk_bdev *
599 allocate_bdev(char *name)
600 {
601 	return allocate_bdev_ctx(name, NULL);
602 }
603 
604 static struct spdk_bdev *
605 allocate_vbdev(char *name)
606 {
607 	struct spdk_bdev *bdev;
608 	int rc;
609 
610 	bdev = calloc(1, sizeof(*bdev));
611 	SPDK_CU_ASSERT_FATAL(bdev != NULL);
612 
613 	bdev->name = name;
614 	bdev->fn_table = &fn_table;
615 	bdev->module = &vbdev_ut_if;
616 	bdev->blockcnt = 1024;
617 	bdev->blocklen = 512;
618 
619 	rc = spdk_bdev_register(bdev);
620 	poll_threads();
621 	CU_ASSERT(rc == 0);
622 
623 	return bdev;
624 }
625 
626 static void
627 free_bdev(struct spdk_bdev *bdev)
628 {
629 	spdk_bdev_unregister(bdev, NULL, NULL);
630 	poll_threads();
631 	memset(bdev, 0xFF, sizeof(*bdev));
632 	free(bdev);
633 }
634 
635 static void
636 free_vbdev(struct spdk_bdev *bdev)
637 {
638 	spdk_bdev_unregister(bdev, NULL, NULL);
639 	poll_threads();
640 	memset(bdev, 0xFF, sizeof(*bdev));
641 	free(bdev);
642 }
643 
644 static void
645 get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
646 {
647 	const char *bdev_name;
648 
649 	CU_ASSERT(bdev != NULL);
650 	CU_ASSERT(rc == 0);
651 	bdev_name = spdk_bdev_get_name(bdev);
652 	CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
653 
654 	free(stat);
655 
656 	*(bool *)cb_arg = true;
657 }
658 
659 static void
660 bdev_unregister_cb(void *cb_arg, int rc)
661 {
662 	g_unregister_arg = cb_arg;
663 	g_unregister_rc = rc;
664 }
665 
666 static void
667 bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
668 {
669 }
670 
671 static void
672 bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
673 {
674 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
675 
676 	g_event_type1 = type;
677 	if (SPDK_BDEV_EVENT_REMOVE == type) {
678 		spdk_bdev_close(desc);
679 	}
680 }
681 
682 static void
683 bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
684 {
685 	struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
686 
687 	g_event_type2 = type;
688 	if (SPDK_BDEV_EVENT_REMOVE == type) {
689 		spdk_bdev_close(desc);
690 	}
691 }
692 
693 static void
694 bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
695 {
696 	g_event_type3 = type;
697 }
698 
699 static void
700 bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
701 {
702 	g_event_type4 = type;
703 }
704 
705 static void
706 bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
707 {
708 	g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io);
709 	spdk_bdev_free_io(bdev_io);
710 }
711 
712 static void
713 get_device_stat_test(void)
714 {
715 	struct spdk_bdev *bdev;
716 	struct spdk_bdev_io_stat *stat;
717 	bool done;
718 
719 	bdev = allocate_bdev("bdev0");
720 	stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
721 	if (stat == NULL) {
722 		free_bdev(bdev);
723 		return;
724 	}
725 
726 	done = false;
727 	spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
728 	while (!done) { poll_threads(); }
729 
730 	free_bdev(bdev);
731 }
732 
733 static void
734 open_write_test(void)
735 {
736 	struct spdk_bdev *bdev[9];
737 	struct spdk_bdev_desc *desc[9] = {};
738 	int rc;
739 
740 	ut_init_bdev(NULL);
741 
742 	/*
743 	 * Create a tree of bdevs to test various open w/ write cases.
744 	 *
745 	 * bdev0 through bdev3 are physical block devices, such as NVMe
746 	 * namespaces or Ceph block devices.
747 	 *
748 	 * bdev4 is a virtual bdev with multiple base bdevs.  This models
749 	 * caching or RAID use cases.
750 	 *
751 	 * bdev5 through bdev7 are all virtual bdevs with the same base
752 	 * bdev (except bdev7). This models partitioning or logical volume
753 	 * use cases.
754 	 *
755 	 * bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
756 	 * (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
757 	 * models caching, RAID, partitioning or logical volumes use cases.
758 	 *
759 	 * bdev8 is a virtual bdev with multiple base bdevs, but these
760 	 * base bdevs are themselves virtual bdevs.
761 	 *
762 	 *                bdev8
763 	 *                  |
764 	 *            +----------+
765 	 *            |          |
766 	 *          bdev4      bdev5   bdev6   bdev7
767 	 *            |          |       |       |
768 	 *        +---+---+      +---+   +   +---+---+
769 	 *        |       |           \  |  /         \
770 	 *      bdev0   bdev1          bdev2         bdev3
771 	 */
772 
773 	bdev[0] = allocate_bdev("bdev0");
774 	rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
775 	CU_ASSERT(rc == 0);
776 
777 	bdev[1] = allocate_bdev("bdev1");
778 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
779 	CU_ASSERT(rc == 0);
780 
781 	bdev[2] = allocate_bdev("bdev2");
782 	rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
783 	CU_ASSERT(rc == 0);
784 
785 	bdev[3] = allocate_bdev("bdev3");
786 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
787 	CU_ASSERT(rc == 0);
788 
789 	bdev[4] = allocate_vbdev("bdev4");
790 	rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
791 	CU_ASSERT(rc == 0);
792 
793 	bdev[5] = allocate_vbdev("bdev5");
794 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
795 	CU_ASSERT(rc == 0);
796 
797 	bdev[6] = allocate_vbdev("bdev6");
798 
799 	bdev[7] = allocate_vbdev("bdev7");
800 
801 	bdev[8] = allocate_vbdev("bdev8");
802 
803 	/* Open bdev0 read-only.  This should succeed. */
804 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
805 	CU_ASSERT(rc == 0);
806 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
807 	CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
808 	spdk_bdev_close(desc[0]);
809 
810 	/*
811 	 * Open bdev1 read/write.  This should fail since bdev1 has been claimed
812 	 * by a vbdev module.
813 	 */
814 	rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
815 	CU_ASSERT(rc == -EPERM);
816 
817 	/*
818 	 * Open bdev4 read/write.  This should fail since bdev3 has been claimed
819 	 * by a vbdev module.
820 	 */
821 	rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
822 	CU_ASSERT(rc == -EPERM);
823 
824 	/* Open bdev4 read-only.  This should succeed. */
825 	rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
826 	CU_ASSERT(rc == 0);
827 	SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
828 	CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
829 	spdk_bdev_close(desc[4]);
830 
831 	/*
832 	 * Open bdev8 read/write.  This should succeed since it is a leaf
833 	 * bdev.
834 	 */
835 	rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
836 	CU_ASSERT(rc == 0);
837 	SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
838 	CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
839 	spdk_bdev_close(desc[8]);
840 
841 	/*
842 	 * Open bdev5 read/write.  This should fail since bdev4 has been claimed
843 	 * by a vbdev module.
844 	 */
845 	rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
846 	CU_ASSERT(rc == -EPERM);
847 
848 	/* Open bdev4 read-only.  This should succeed. */
849 	rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
850 	CU_ASSERT(rc == 0);
851 	SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
852 	CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
853 	spdk_bdev_close(desc[5]);
854 
855 	free_vbdev(bdev[8]);
856 
857 	free_vbdev(bdev[5]);
858 	free_vbdev(bdev[6]);
859 	free_vbdev(bdev[7]);
860 
861 	free_vbdev(bdev[4]);
862 
863 	free_bdev(bdev[0]);
864 	free_bdev(bdev[1]);
865 	free_bdev(bdev[2]);
866 	free_bdev(bdev[3]);
867 
868 	ut_fini_bdev();
869 }
870 
871 static void
872 claim_test(void)
873 {
874 	struct spdk_bdev *bdev;
875 	struct spdk_bdev_desc *desc, *open_desc;
876 	int rc;
877 	uint32_t count;
878 
879 	ut_init_bdev(NULL);
880 
881 	/*
882 	 * A vbdev that uses a read-only bdev may need it to remain read-only.
883 	 * To do so, it opens the bdev read-only, then claims it without
884 	 * passing a spdk_bdev_desc.
885 	 */
886 	bdev = allocate_bdev("bdev0");
887 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
888 	CU_ASSERT(rc == 0);
889 	CU_ASSERT(desc->write == false);
890 
891 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
892 	CU_ASSERT(rc == 0);
893 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
894 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
895 
896 	/* There should be only one open descriptor and it should still be ro */
897 	count = 0;
898 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
899 		CU_ASSERT(open_desc == desc);
900 		CU_ASSERT(!open_desc->write);
901 		count++;
902 	}
903 	CU_ASSERT(count == 1);
904 
905 	/* A read-only bdev is upgraded to read-write if desc is passed. */
906 	spdk_bdev_module_release_bdev(bdev);
907 	rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
908 	CU_ASSERT(rc == 0);
909 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
910 	CU_ASSERT(bdev->internal.claim.v1.module == &bdev_ut_if);
911 
912 	/* There should be only one open descriptor and it should be rw */
913 	count = 0;
914 	TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
915 		CU_ASSERT(open_desc == desc);
916 		CU_ASSERT(open_desc->write);
917 		count++;
918 	}
919 	CU_ASSERT(count == 1);
920 
921 	spdk_bdev_close(desc);
922 	free_bdev(bdev);
923 	ut_fini_bdev();
924 }
925 
926 static void
927 bytes_to_blocks_test(void)
928 {
929 	struct spdk_bdev bdev;
930 	uint64_t offset_blocks, num_blocks;
931 
932 	memset(&bdev, 0, sizeof(bdev));
933 
934 	bdev.blocklen = 512;
935 
936 	/* All parameters valid */
937 	offset_blocks = 0;
938 	num_blocks = 0;
939 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
940 	CU_ASSERT(offset_blocks == 1);
941 	CU_ASSERT(num_blocks == 2);
942 
943 	/* Offset not a block multiple */
944 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
945 
946 	/* Length not a block multiple */
947 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
948 
949 	/* In case blocklen not the power of two */
950 	bdev.blocklen = 100;
951 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
952 	CU_ASSERT(offset_blocks == 1);
953 	CU_ASSERT(num_blocks == 2);
954 
955 	/* Offset not a block multiple */
956 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
957 
958 	/* Length not a block multiple */
959 	CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
960 }
961 
962 static void
963 num_blocks_test(void)
964 {
965 	struct spdk_bdev *bdev;
966 	struct spdk_bdev_desc *desc = NULL;
967 	int rc;
968 
969 	ut_init_bdev(NULL);
970 	bdev = allocate_bdev("num_blocks");
971 
972 	spdk_bdev_notify_blockcnt_change(bdev, 50);
973 
974 	/* Growing block number */
975 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 70) == 0);
976 	/* Shrinking block number */
977 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 30) == 0);
978 
979 	rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
980 	CU_ASSERT(rc == 0);
981 	SPDK_CU_ASSERT_FATAL(desc != NULL);
982 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
983 
984 	/* Growing block number */
985 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 80) == 0);
986 	/* Shrinking block number */
987 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 20) != 0);
988 
989 	g_event_type1 = 0xFF;
990 	/* Growing block number */
991 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 90) == 0);
992 
993 	poll_threads();
994 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
995 
996 	g_event_type1 = 0xFF;
997 	/* Growing block number and closing */
998 	CU_ASSERT(spdk_bdev_notify_blockcnt_change(bdev, 100) == 0);
999 
1000 	spdk_bdev_close(desc);
1001 	free_bdev(bdev);
1002 	ut_fini_bdev();
1003 
1004 	poll_threads();
1005 
1006 	/* Callback is not called for closed device */
1007 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
1008 }
1009 
1010 static void
1011 io_valid_test(void)
1012 {
1013 	struct spdk_bdev bdev;
1014 
1015 	memset(&bdev, 0, sizeof(bdev));
1016 
1017 	bdev.blocklen = 512;
1018 	spdk_spin_init(&bdev.internal.spinlock);
1019 
1020 	spdk_bdev_notify_blockcnt_change(&bdev, 100);
1021 
1022 	/* All parameters valid */
1023 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
1024 
1025 	/* Last valid block */
1026 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
1027 
1028 	/* Offset past end of bdev */
1029 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
1030 
1031 	/* Offset + length past end of bdev */
1032 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
1033 
1034 	/* Offset near end of uint64_t range (2^64 - 1) */
1035 	CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
1036 
1037 	spdk_spin_destroy(&bdev.internal.spinlock);
1038 }
1039 
1040 static void
1041 alias_add_del_test(void)
1042 {
1043 	struct spdk_bdev *bdev[3];
1044 	int rc;
1045 
1046 	ut_init_bdev(NULL);
1047 
1048 	/* Creating and registering bdevs */
1049 	bdev[0] = allocate_bdev("bdev0");
1050 	SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
1051 
1052 	bdev[1] = allocate_bdev("bdev1");
1053 	SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
1054 
1055 	bdev[2] = allocate_bdev("bdev2");
1056 	SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
1057 
1058 	poll_threads();
1059 
1060 	/*
1061 	 * Trying adding an alias identical to name.
1062 	 * Alias is identical to name, so it can not be added to aliases list
1063 	 */
1064 	rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
1065 	CU_ASSERT(rc == -EEXIST);
1066 
1067 	/*
1068 	 * Trying to add empty alias,
1069 	 * this one should fail
1070 	 */
1071 	rc = spdk_bdev_alias_add(bdev[0], NULL);
1072 	CU_ASSERT(rc == -EINVAL);
1073 
1074 	/* Trying adding same alias to two different registered bdevs */
1075 
1076 	/* Alias is used first time, so this one should pass */
1077 	rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
1078 	CU_ASSERT(rc == 0);
1079 
1080 	/* Alias was added to another bdev, so this one should fail */
1081 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
1082 	CU_ASSERT(rc == -EEXIST);
1083 
1084 	/* Alias is used first time, so this one should pass */
1085 	rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
1086 	CU_ASSERT(rc == 0);
1087 
1088 	/* Trying removing an alias from registered bdevs */
1089 
1090 	/* Alias is not on a bdev aliases list, so this one should fail */
1091 	rc = spdk_bdev_alias_del(bdev[0], "not existing");
1092 	CU_ASSERT(rc == -ENOENT);
1093 
1094 	/* Alias is present on a bdev aliases list, so this one should pass */
1095 	rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
1096 	CU_ASSERT(rc == 0);
1097 
1098 	/* Alias is present on a bdev aliases list, so this one should pass */
1099 	rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
1100 	CU_ASSERT(rc == 0);
1101 
1102 	/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
1103 	rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
1104 	CU_ASSERT(rc != 0);
1105 
1106 	/* Trying to del all alias from empty alias list */
1107 	spdk_bdev_alias_del_all(bdev[2]);
1108 	SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
1109 
1110 	/* Trying to del all alias from non-empty alias list */
1111 	rc = spdk_bdev_alias_add(bdev[2], "alias0");
1112 	CU_ASSERT(rc == 0);
1113 	rc = spdk_bdev_alias_add(bdev[2], "alias1");
1114 	CU_ASSERT(rc == 0);
1115 	spdk_bdev_alias_del_all(bdev[2]);
1116 	CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
1117 
1118 	/* Unregister and free bdevs */
1119 	spdk_bdev_unregister(bdev[0], NULL, NULL);
1120 	spdk_bdev_unregister(bdev[1], NULL, NULL);
1121 	spdk_bdev_unregister(bdev[2], NULL, NULL);
1122 
1123 	poll_threads();
1124 
1125 	free(bdev[0]);
1126 	free(bdev[1]);
1127 	free(bdev[2]);
1128 
1129 	ut_fini_bdev();
1130 }
1131 
1132 static void
1133 io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1134 {
1135 	g_io_done = true;
1136 	g_io_status = bdev_io->internal.status;
1137 	if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
1138 	    (bdev_io->u.bdev.zcopy.start)) {
1139 		g_zcopy_bdev_io = bdev_io;
1140 	} else {
1141 		spdk_bdev_free_io(bdev_io);
1142 		g_zcopy_bdev_io = NULL;
1143 	}
1144 }
1145 
1146 struct bdev_ut_io_wait_entry {
1147 	struct spdk_bdev_io_wait_entry	entry;
1148 	struct spdk_io_channel		*io_ch;
1149 	struct spdk_bdev_desc		*desc;
1150 	bool				submitted;
1151 };
1152 
1153 static void
1154 io_wait_cb(void *arg)
1155 {
1156 	struct bdev_ut_io_wait_entry *entry = arg;
1157 	int rc;
1158 
1159 	rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
1160 	CU_ASSERT(rc == 0);
1161 	entry->submitted = true;
1162 }
1163 
1164 static void
1165 bdev_io_types_test(void)
1166 {
1167 	struct spdk_bdev *bdev;
1168 	struct spdk_bdev_desc *desc = NULL;
1169 	struct spdk_io_channel *io_ch;
1170 	struct spdk_bdev_opts bdev_opts = {};
1171 	int rc;
1172 
1173 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1174 	bdev_opts.bdev_io_pool_size = 4;
1175 	bdev_opts.bdev_io_cache_size = 2;
1176 	ut_init_bdev(&bdev_opts);
1177 
1178 	bdev = allocate_bdev("bdev0");
1179 
1180 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1181 	CU_ASSERT(rc == 0);
1182 	poll_threads();
1183 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1184 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1185 	io_ch = spdk_bdev_get_io_channel(desc);
1186 	CU_ASSERT(io_ch != NULL);
1187 
1188 	/* WRITE and WRITE ZEROES are not supported */
1189 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
1190 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
1191 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
1192 	CU_ASSERT(rc == -ENOTSUP);
1193 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
1194 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
1195 
1196 	/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
1197 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
1198 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
1199 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
1200 	rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1201 	CU_ASSERT(rc == -ENOTSUP);
1202 	rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
1203 	CU_ASSERT(rc == -ENOTSUP);
1204 	rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
1205 	CU_ASSERT(rc == -ENOTSUP);
1206 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
1207 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
1208 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
1209 
1210 	spdk_put_io_channel(io_ch);
1211 	spdk_bdev_close(desc);
1212 	free_bdev(bdev);
1213 	ut_fini_bdev();
1214 }
1215 
1216 static void
1217 bdev_io_wait_test(void)
1218 {
1219 	struct spdk_bdev *bdev;
1220 	struct spdk_bdev_desc *desc = NULL;
1221 	struct spdk_io_channel *io_ch;
1222 	struct spdk_bdev_opts bdev_opts = {};
1223 	struct bdev_ut_io_wait_entry io_wait_entry;
1224 	struct bdev_ut_io_wait_entry io_wait_entry2;
1225 	int rc;
1226 
1227 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1228 	bdev_opts.bdev_io_pool_size = 4;
1229 	bdev_opts.bdev_io_cache_size = 2;
1230 	ut_init_bdev(&bdev_opts);
1231 
1232 	bdev = allocate_bdev("bdev0");
1233 
1234 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1235 	CU_ASSERT(rc == 0);
1236 	poll_threads();
1237 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1238 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1239 	io_ch = spdk_bdev_get_io_channel(desc);
1240 	CU_ASSERT(io_ch != NULL);
1241 
1242 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1243 	CU_ASSERT(rc == 0);
1244 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1245 	CU_ASSERT(rc == 0);
1246 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1247 	CU_ASSERT(rc == 0);
1248 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1249 	CU_ASSERT(rc == 0);
1250 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1251 
1252 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
1253 	CU_ASSERT(rc == -ENOMEM);
1254 
1255 	io_wait_entry.entry.bdev = bdev;
1256 	io_wait_entry.entry.cb_fn = io_wait_cb;
1257 	io_wait_entry.entry.cb_arg = &io_wait_entry;
1258 	io_wait_entry.io_ch = io_ch;
1259 	io_wait_entry.desc = desc;
1260 	io_wait_entry.submitted = false;
1261 	/* Cannot use the same io_wait_entry for two different calls. */
1262 	memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
1263 	io_wait_entry2.entry.cb_arg = &io_wait_entry2;
1264 
1265 	/* Queue two I/O waits. */
1266 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
1267 	CU_ASSERT(rc == 0);
1268 	CU_ASSERT(io_wait_entry.submitted == false);
1269 	rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
1270 	CU_ASSERT(rc == 0);
1271 	CU_ASSERT(io_wait_entry2.submitted == false);
1272 
1273 	stub_complete_io(1);
1274 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1275 	CU_ASSERT(io_wait_entry.submitted == true);
1276 	CU_ASSERT(io_wait_entry2.submitted == false);
1277 
1278 	stub_complete_io(1);
1279 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
1280 	CU_ASSERT(io_wait_entry2.submitted == true);
1281 
1282 	stub_complete_io(4);
1283 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1284 
1285 	spdk_put_io_channel(io_ch);
1286 	spdk_bdev_close(desc);
1287 	free_bdev(bdev);
1288 	ut_fini_bdev();
1289 }
1290 
1291 static void
1292 bdev_io_spans_split_test(void)
1293 {
1294 	struct spdk_bdev bdev;
1295 	struct spdk_bdev_io bdev_io;
1296 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
1297 
1298 	memset(&bdev, 0, sizeof(bdev));
1299 	bdev_io.u.bdev.iovs = iov;
1300 
1301 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1302 	bdev.optimal_io_boundary = 0;
1303 	bdev.max_segment_size = 0;
1304 	bdev.max_num_segments = 0;
1305 	bdev_io.bdev = &bdev;
1306 
1307 	/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
1308 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1309 
1310 	bdev.split_on_optimal_io_boundary = true;
1311 	bdev.optimal_io_boundary = 32;
1312 	bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
1313 
1314 	/* RESETs are not based on LBAs - so this should return false. */
1315 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1316 
1317 	bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
1318 	bdev_io.u.bdev.offset_blocks = 0;
1319 	bdev_io.u.bdev.num_blocks = 32;
1320 
1321 	/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
1322 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1323 
1324 	bdev_io.u.bdev.num_blocks = 33;
1325 
1326 	/* This I/O spans a boundary. */
1327 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1328 
1329 	bdev_io.u.bdev.num_blocks = 32;
1330 	bdev.max_segment_size = 512 * 32;
1331 	bdev.max_num_segments = 1;
1332 	bdev_io.u.bdev.iovcnt = 1;
1333 	iov[0].iov_len = 512;
1334 
1335 	/* Does not cross and exceed max_size or max_segs */
1336 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1337 
1338 	bdev.split_on_optimal_io_boundary = false;
1339 	bdev.max_segment_size = 512;
1340 	bdev.max_num_segments = 1;
1341 	bdev_io.u.bdev.iovcnt = 2;
1342 
1343 	/* Exceed max_segs */
1344 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1345 
1346 	bdev.max_num_segments = 2;
1347 	iov[0].iov_len = 513;
1348 	iov[1].iov_len = 512;
1349 
1350 	/* Exceed max_sizes */
1351 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1352 
1353 	bdev.max_segment_size = 0;
1354 	bdev.write_unit_size = 32;
1355 	bdev.split_on_write_unit = true;
1356 	bdev_io.type = SPDK_BDEV_IO_TYPE_WRITE;
1357 
1358 	/* This I/O is one write unit */
1359 	CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
1360 
1361 	bdev_io.u.bdev.num_blocks = 32 * 2;
1362 
1363 	/* This I/O is more than one write unit */
1364 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1365 
1366 	bdev_io.u.bdev.offset_blocks = 1;
1367 	bdev_io.u.bdev.num_blocks = 32;
1368 
1369 	/* This I/O is not aligned to write unit size */
1370 	CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
1371 }
1372 
1373 static void
1374 bdev_io_boundary_split_test(void)
1375 {
1376 	struct spdk_bdev *bdev;
1377 	struct spdk_bdev_desc *desc = NULL;
1378 	struct spdk_io_channel *io_ch;
1379 	struct spdk_bdev_opts bdev_opts = {};
1380 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
1381 	struct ut_expected_io *expected_io;
1382 	void *md_buf = (void *)0xFF000000;
1383 	uint64_t i;
1384 	int rc;
1385 
1386 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
1387 	bdev_opts.bdev_io_pool_size = 512;
1388 	bdev_opts.bdev_io_cache_size = 64;
1389 	ut_init_bdev(&bdev_opts);
1390 
1391 	bdev = allocate_bdev("bdev0");
1392 
1393 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
1394 	CU_ASSERT(rc == 0);
1395 	SPDK_CU_ASSERT_FATAL(desc != NULL);
1396 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
1397 	io_ch = spdk_bdev_get_io_channel(desc);
1398 	CU_ASSERT(io_ch != NULL);
1399 
1400 	bdev->optimal_io_boundary = 16;
1401 	bdev->split_on_optimal_io_boundary = false;
1402 
1403 	g_io_done = false;
1404 
1405 	/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
1406 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
1407 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
1408 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1409 
1410 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
1411 	CU_ASSERT(rc == 0);
1412 	CU_ASSERT(g_io_done == false);
1413 
1414 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1415 	stub_complete_io(1);
1416 	CU_ASSERT(g_io_done == true);
1417 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1418 
1419 	bdev->split_on_optimal_io_boundary = true;
1420 	bdev->md_interleave = false;
1421 	bdev->md_len = 8;
1422 
1423 	/* Now test that a single-vector command is split correctly.
1424 	 * Offset 14, length 8, payload 0xF000
1425 	 *  Child - Offset 14, length 2, payload 0xF000
1426 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
1427 	 *
1428 	 * Set up the expected values before calling spdk_bdev_read_blocks
1429 	 */
1430 	g_io_done = false;
1431 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
1432 	expected_io->md_buf = md_buf;
1433 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
1434 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1435 
1436 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
1437 	expected_io->md_buf = md_buf + 2 * 8;
1438 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
1439 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1440 
1441 	/* spdk_bdev_read_blocks will submit the first child immediately. */
1442 	rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
1443 					   14, 8, io_done, NULL);
1444 	CU_ASSERT(rc == 0);
1445 	CU_ASSERT(g_io_done == false);
1446 
1447 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1448 	stub_complete_io(2);
1449 	CU_ASSERT(g_io_done == true);
1450 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1451 
1452 	/* Now set up a more complex, multi-vector command that needs to be split,
1453 	 *  including splitting iovecs.
1454 	 */
1455 	iov[0].iov_base = (void *)0x10000;
1456 	iov[0].iov_len = 512;
1457 	iov[1].iov_base = (void *)0x20000;
1458 	iov[1].iov_len = 20 * 512;
1459 	iov[2].iov_base = (void *)0x30000;
1460 	iov[2].iov_len = 11 * 512;
1461 
1462 	g_io_done = false;
1463 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
1464 	expected_io->md_buf = md_buf;
1465 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
1466 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
1467 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1468 
1469 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
1470 	expected_io->md_buf = md_buf + 2 * 8;
1471 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
1472 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1473 
1474 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
1475 	expected_io->md_buf = md_buf + 18 * 8;
1476 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
1477 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
1478 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1479 
1480 	rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
1481 					     14, 32, io_done, NULL);
1482 	CU_ASSERT(rc == 0);
1483 	CU_ASSERT(g_io_done == false);
1484 
1485 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
1486 	stub_complete_io(3);
1487 	CU_ASSERT(g_io_done == true);
1488 
1489 	/* Test multi vector command that needs to be split by strip and then needs to be
1490 	 * split further due to the capacity of child iovs.
1491 	 */
1492 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
1493 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1494 		iov[i].iov_len = 512;
1495 	}
1496 
1497 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1498 	g_io_done = false;
1499 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1500 					   SPDK_BDEV_IO_NUM_CHILD_IOV);
1501 	expected_io->md_buf = md_buf;
1502 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1503 		ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
1504 	}
1505 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1506 
1507 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1508 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
1509 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1510 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1511 		ut_expected_io_set_iov(expected_io, i,
1512 				       (void *)((i + 1 + SPDK_BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
1513 	}
1514 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1515 
1516 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1517 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
1518 	CU_ASSERT(rc == 0);
1519 	CU_ASSERT(g_io_done == false);
1520 
1521 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1522 	stub_complete_io(1);
1523 	CU_ASSERT(g_io_done == false);
1524 
1525 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1526 	stub_complete_io(1);
1527 	CU_ASSERT(g_io_done == true);
1528 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1529 
1530 	/* Test multi vector command that needs to be split by strip and then needs to be
1531 	 * split further due to the capacity of child iovs. In this case, the length of
1532 	 * the rest of iovec array with an I/O boundary is the multiple of block size.
1533 	 */
1534 
1535 	/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
1536 	 * is SPDK_BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
1537 	 */
1538 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1539 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1540 		iov[i].iov_len = 512;
1541 	}
1542 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1543 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1544 		iov[i].iov_len = 256;
1545 	}
1546 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1547 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
1548 
1549 	/* Add an extra iovec to trigger split */
1550 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1551 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1552 
1553 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1554 	g_io_done = false;
1555 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1556 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV);
1557 	expected_io->md_buf = md_buf;
1558 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1559 		ut_expected_io_set_iov(expected_io, i,
1560 				       (void *)((i + 1) * 0x10000), 512);
1561 	}
1562 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
1563 		ut_expected_io_set_iov(expected_io, i,
1564 				       (void *)((i + 1) * 0x10000), 256);
1565 	}
1566 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1567 
1568 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1569 					   1, 1);
1570 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1571 	ut_expected_io_set_iov(expected_io, 0,
1572 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
1573 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1574 
1575 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1576 					   1, 1);
1577 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1578 	ut_expected_io_set_iov(expected_io, 0,
1579 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1580 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1581 
1582 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
1583 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1584 	CU_ASSERT(rc == 0);
1585 	CU_ASSERT(g_io_done == false);
1586 
1587 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1588 	stub_complete_io(1);
1589 	CU_ASSERT(g_io_done == false);
1590 
1591 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1592 	stub_complete_io(2);
1593 	CU_ASSERT(g_io_done == true);
1594 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1595 
1596 	/* Test multi vector command that needs to be split by strip and then needs to be
1597 	 * split further due to the capacity of child iovs, the child request offset should
1598 	 * be rewind to last aligned offset and go success without error.
1599 	 */
1600 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1601 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1602 		iov[i].iov_len = 512;
1603 	}
1604 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1605 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1606 
1607 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1608 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1609 
1610 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1611 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1612 
1613 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1614 	g_io_done = false;
1615 	g_io_status = 0;
1616 	/* The first expected io should be start from offset 0 to SPDK_BDEV_IO_NUM_CHILD_IOV - 1 */
1617 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
1618 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1619 	expected_io->md_buf = md_buf;
1620 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1621 		ut_expected_io_set_iov(expected_io, i,
1622 				       (void *)((i + 1) * 0x10000), 512);
1623 	}
1624 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1625 	/* The second expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV - 1 to SPDK_BDEV_IO_NUM_CHILD_IOV */
1626 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1627 					   1, 2);
1628 	expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
1629 	ut_expected_io_set_iov(expected_io, 0,
1630 			       (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
1631 	ut_expected_io_set_iov(expected_io, 1,
1632 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
1633 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1634 	/* The third expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV to SPDK_BDEV_IO_NUM_CHILD_IOV + 1 */
1635 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1636 					   1, 1);
1637 	expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
1638 	ut_expected_io_set_iov(expected_io, 0,
1639 			       (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
1640 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1641 
1642 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
1643 					    0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1644 	CU_ASSERT(rc == 0);
1645 	CU_ASSERT(g_io_done == false);
1646 
1647 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1648 	stub_complete_io(1);
1649 	CU_ASSERT(g_io_done == false);
1650 
1651 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
1652 	stub_complete_io(2);
1653 	CU_ASSERT(g_io_done == true);
1654 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1655 
1656 	/* Test multi vector command that needs to be split due to the IO boundary and
1657 	 * the capacity of child iovs. Especially test the case when the command is
1658 	 * split due to the capacity of child iovs, the tail address is not aligned with
1659 	 * block size and is rewinded to the aligned address.
1660 	 *
1661 	 * The iovecs used in read request is complex but is based on the data
1662 	 * collected in the real issue. We change the base addresses but keep the lengths
1663 	 * not to loose the credibility of the test.
1664 	 */
1665 	bdev->optimal_io_boundary = 128;
1666 	g_io_done = false;
1667 	g_io_status = 0;
1668 
1669 	for (i = 0; i < 31; i++) {
1670 		iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
1671 		iov[i].iov_len = 1024;
1672 	}
1673 	iov[31].iov_base = (void *)0xFEED1F00000;
1674 	iov[31].iov_len = 32768;
1675 	iov[32].iov_base = (void *)0xFEED2000000;
1676 	iov[32].iov_len = 160;
1677 	iov[33].iov_base = (void *)0xFEED2100000;
1678 	iov[33].iov_len = 4096;
1679 	iov[34].iov_base = (void *)0xFEED2200000;
1680 	iov[34].iov_len = 4096;
1681 	iov[35].iov_base = (void *)0xFEED2300000;
1682 	iov[35].iov_len = 4096;
1683 	iov[36].iov_base = (void *)0xFEED2400000;
1684 	iov[36].iov_len = 4096;
1685 	iov[37].iov_base = (void *)0xFEED2500000;
1686 	iov[37].iov_len = 4096;
1687 	iov[38].iov_base = (void *)0xFEED2600000;
1688 	iov[38].iov_len = 4096;
1689 	iov[39].iov_base = (void *)0xFEED2700000;
1690 	iov[39].iov_len = 4096;
1691 	iov[40].iov_base = (void *)0xFEED2800000;
1692 	iov[40].iov_len = 4096;
1693 	iov[41].iov_base = (void *)0xFEED2900000;
1694 	iov[41].iov_len = 4096;
1695 	iov[42].iov_base = (void *)0xFEED2A00000;
1696 	iov[42].iov_len = 4096;
1697 	iov[43].iov_base = (void *)0xFEED2B00000;
1698 	iov[43].iov_len = 12288;
1699 	iov[44].iov_base = (void *)0xFEED2C00000;
1700 	iov[44].iov_len = 8192;
1701 	iov[45].iov_base = (void *)0xFEED2F00000;
1702 	iov[45].iov_len = 4096;
1703 	iov[46].iov_base = (void *)0xFEED3000000;
1704 	iov[46].iov_len = 4096;
1705 	iov[47].iov_base = (void *)0xFEED3100000;
1706 	iov[47].iov_len = 4096;
1707 	iov[48].iov_base = (void *)0xFEED3200000;
1708 	iov[48].iov_len = 24576;
1709 	iov[49].iov_base = (void *)0xFEED3300000;
1710 	iov[49].iov_len = 16384;
1711 	iov[50].iov_base = (void *)0xFEED3400000;
1712 	iov[50].iov_len = 12288;
1713 	iov[51].iov_base = (void *)0xFEED3500000;
1714 	iov[51].iov_len = 4096;
1715 	iov[52].iov_base = (void *)0xFEED3600000;
1716 	iov[52].iov_len = 4096;
1717 	iov[53].iov_base = (void *)0xFEED3700000;
1718 	iov[53].iov_len = 4096;
1719 	iov[54].iov_base = (void *)0xFEED3800000;
1720 	iov[54].iov_len = 28672;
1721 	iov[55].iov_base = (void *)0xFEED3900000;
1722 	iov[55].iov_len = 20480;
1723 	iov[56].iov_base = (void *)0xFEED3A00000;
1724 	iov[56].iov_len = 4096;
1725 	iov[57].iov_base = (void *)0xFEED3B00000;
1726 	iov[57].iov_len = 12288;
1727 	iov[58].iov_base = (void *)0xFEED3C00000;
1728 	iov[58].iov_len = 4096;
1729 	iov[59].iov_base = (void *)0xFEED3D00000;
1730 	iov[59].iov_len = 4096;
1731 	iov[60].iov_base = (void *)0xFEED3E00000;
1732 	iov[60].iov_len = 352;
1733 
1734 	/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
1735 	 * of child iovs,
1736 	 */
1737 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
1738 	expected_io->md_buf = md_buf;
1739 	for (i = 0; i < 32; i++) {
1740 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1741 	}
1742 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1743 
1744 	/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
1745 	 * split by the IO boundary requirement.
1746 	 */
1747 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
1748 	expected_io->md_buf = md_buf + 126 * 8;
1749 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
1750 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
1751 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1752 
1753 	/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
1754 	 * the first 864 bytes of iov[46] split by the IO boundary requirement.
1755 	 */
1756 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
1757 	expected_io->md_buf = md_buf + 128 * 8;
1758 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
1759 			       iov[33].iov_len - 864);
1760 	ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
1761 	ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
1762 	ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
1763 	ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
1764 	ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
1765 	ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
1766 	ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
1767 	ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
1768 	ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
1769 	ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
1770 	ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
1771 	ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
1772 	ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
1773 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1774 
1775 	/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
1776 	 * first 864 bytes of iov[52] split by the IO boundary requirement.
1777 	 */
1778 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
1779 	expected_io->md_buf = md_buf + 256 * 8;
1780 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
1781 			       iov[46].iov_len - 864);
1782 	ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
1783 	ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
1784 	ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
1785 	ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
1786 	ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
1787 	ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
1788 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1789 
1790 	/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
1791 	 * the first 4096 bytes of iov[57] split by the IO boundary requirement.
1792 	 */
1793 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
1794 	expected_io->md_buf = md_buf + 384 * 8;
1795 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
1796 			       iov[52].iov_len - 864);
1797 	ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
1798 	ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
1799 	ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
1800 	ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
1801 	ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
1802 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1803 
1804 	/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
1805 	 * to the first 3936 bytes of iov[58] split by the capacity of child iovs.
1806 	 */
1807 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
1808 	expected_io->md_buf = md_buf + 512 * 8;
1809 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
1810 			       iov[57].iov_len - 4960);
1811 	ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
1812 	ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
1813 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1814 
1815 	/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
1816 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
1817 	expected_io->md_buf = md_buf + 542 * 8;
1818 	ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
1819 			       iov[59].iov_len - 3936);
1820 	ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
1821 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1822 
1823 	rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
1824 					    0, 543, io_done, NULL);
1825 	CU_ASSERT(rc == 0);
1826 	CU_ASSERT(g_io_done == false);
1827 
1828 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1829 	stub_complete_io(1);
1830 	CU_ASSERT(g_io_done == false);
1831 
1832 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1833 	stub_complete_io(5);
1834 	CU_ASSERT(g_io_done == false);
1835 
1836 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1837 	stub_complete_io(1);
1838 	CU_ASSERT(g_io_done == true);
1839 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
1840 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1841 
1842 	/* Test a WRITE_ZEROES that would span an I/O boundary.  WRITE_ZEROES should not be
1843 	 * split, so test that.
1844 	 */
1845 	bdev->optimal_io_boundary = 15;
1846 	g_io_done = false;
1847 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
1848 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1849 
1850 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
1851 	CU_ASSERT(rc == 0);
1852 	CU_ASSERT(g_io_done == false);
1853 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1854 	stub_complete_io(1);
1855 	CU_ASSERT(g_io_done == true);
1856 
1857 	/* Test an UNMAP.  This should also not be split. */
1858 	bdev->optimal_io_boundary = 16;
1859 	g_io_done = false;
1860 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
1861 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1862 
1863 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
1864 	CU_ASSERT(rc == 0);
1865 	CU_ASSERT(g_io_done == false);
1866 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1867 	stub_complete_io(1);
1868 	CU_ASSERT(g_io_done == true);
1869 
1870 	/* Test a FLUSH.  This should also not be split. */
1871 	bdev->optimal_io_boundary = 16;
1872 	g_io_done = false;
1873 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
1874 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1875 
1876 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
1877 	CU_ASSERT(rc == 0);
1878 	CU_ASSERT(g_io_done == false);
1879 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1880 	stub_complete_io(1);
1881 	CU_ASSERT(g_io_done == true);
1882 
1883 	/* Test a COPY.  This should also not be split. */
1884 	bdev->optimal_io_boundary = 15;
1885 	g_io_done = false;
1886 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
1887 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1888 
1889 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
1890 	CU_ASSERT(rc == 0);
1891 	CU_ASSERT(g_io_done == false);
1892 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1893 	stub_complete_io(1);
1894 	CU_ASSERT(g_io_done == true);
1895 
1896 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
1897 
1898 	/* Children requests return an error status */
1899 	bdev->optimal_io_boundary = 16;
1900 	iov[0].iov_base = (void *)0x10000;
1901 	iov[0].iov_len = 512 * 64;
1902 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1903 	g_io_done = false;
1904 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1905 
1906 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
1907 	CU_ASSERT(rc == 0);
1908 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
1909 	stub_complete_io(4);
1910 	CU_ASSERT(g_io_done == false);
1911 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
1912 	stub_complete_io(1);
1913 	CU_ASSERT(g_io_done == true);
1914 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1915 
1916 	/* Test if a multi vector command terminated with failure before continuing
1917 	 * splitting process when one of child I/O failed.
1918 	 * The multi vector command is as same as the above that needs to be split by strip
1919 	 * and then needs to be split further due to the capacity of child iovs.
1920 	 */
1921 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
1922 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1923 		iov[i].iov_len = 512;
1924 	}
1925 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
1926 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
1927 
1928 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
1929 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
1930 
1931 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
1932 	iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
1933 
1934 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
1935 
1936 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
1937 	g_io_done = false;
1938 	g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1939 
1940 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
1941 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
1942 	CU_ASSERT(rc == 0);
1943 	CU_ASSERT(g_io_done == false);
1944 
1945 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
1946 	stub_complete_io(1);
1947 	CU_ASSERT(g_io_done == true);
1948 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
1949 
1950 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
1951 
1952 	/* for this test we will create the following conditions to hit the code path where
1953 	 * we are trying to send and IO following a split that has no iovs because we had to
1954 	 * trim them for alignment reasons.
1955 	 *
1956 	 * - 16K boundary, our IO will start at offset 0 with a length of 0x4200
1957 	 * - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
1958 	 *   position 30 and overshoot by 0x2e.
1959 	 * - That means we'll send the IO and loop back to pick up the remaining bytes at
1960 	 *   child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
1961 	 *   which eliniates that vector so we just send the first split IO with 30 vectors
1962 	 *   and let the completion pick up the last 2 vectors.
1963 	 */
1964 	bdev->optimal_io_boundary = 32;
1965 	bdev->split_on_optimal_io_boundary = true;
1966 	g_io_done = false;
1967 
1968 	/* Init all parent IOVs to 0x212 */
1969 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
1970 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
1971 		iov[i].iov_len = 0x212;
1972 	}
1973 
1974 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
1975 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
1976 	/* expect 0-29 to be 1:1 with the parent iov */
1977 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
1978 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
1979 	}
1980 
1981 	/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
1982 	 * where 0x1e is the amount we overshot the 16K boundary
1983 	 */
1984 	ut_expected_io_set_iov(expected_io, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
1985 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
1986 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
1987 
1988 	/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
1989 	 * shortened that take it to the next boundary and then a final one to get us to
1990 	 * 0x4200 bytes for the IO.
1991 	 */
1992 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1993 					   SPDK_BDEV_IO_NUM_CHILD_IOV, 2);
1994 	/* position 30 picked up the remaining bytes to the next boundary */
1995 	ut_expected_io_set_iov(expected_io, 0,
1996 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
1997 
1998 	/* position 31 picked the the rest of the transfer to get us to 0x4200 */
1999 	ut_expected_io_set_iov(expected_io, 1,
2000 			       (void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
2001 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2002 
2003 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, 0,
2004 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
2005 	CU_ASSERT(rc == 0);
2006 	CU_ASSERT(g_io_done == false);
2007 
2008 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2009 	stub_complete_io(1);
2010 	CU_ASSERT(g_io_done == false);
2011 
2012 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2013 	stub_complete_io(1);
2014 	CU_ASSERT(g_io_done == true);
2015 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2016 
2017 	spdk_put_io_channel(io_ch);
2018 	spdk_bdev_close(desc);
2019 	free_bdev(bdev);
2020 	ut_fini_bdev();
2021 }
2022 
2023 static void
2024 bdev_io_max_size_and_segment_split_test(void)
2025 {
2026 	struct spdk_bdev *bdev;
2027 	struct spdk_bdev_desc *desc = NULL;
2028 	struct spdk_io_channel *io_ch;
2029 	struct spdk_bdev_opts bdev_opts = {};
2030 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2031 	struct ut_expected_io *expected_io;
2032 	uint64_t i;
2033 	int rc;
2034 
2035 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2036 	bdev_opts.bdev_io_pool_size = 512;
2037 	bdev_opts.bdev_io_cache_size = 64;
2038 	bdev_opts.opts_size = sizeof(bdev_opts);
2039 	ut_init_bdev(&bdev_opts);
2040 
2041 	bdev = allocate_bdev("bdev0");
2042 
2043 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2044 	CU_ASSERT(rc == 0);
2045 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2046 	io_ch = spdk_bdev_get_io_channel(desc);
2047 	CU_ASSERT(io_ch != NULL);
2048 
2049 	bdev->split_on_optimal_io_boundary = false;
2050 	bdev->optimal_io_boundary = 0;
2051 
2052 	/* Case 0 max_num_segments == 0.
2053 	 * but segment size 2 * 512 > 512
2054 	 */
2055 	bdev->max_segment_size = 512;
2056 	bdev->max_num_segments = 0;
2057 	g_io_done = false;
2058 
2059 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2060 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2061 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2062 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2063 
2064 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2065 	CU_ASSERT(rc == 0);
2066 	CU_ASSERT(g_io_done == false);
2067 
2068 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2069 	stub_complete_io(1);
2070 	CU_ASSERT(g_io_done == true);
2071 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2072 
2073 	/* Case 1 max_segment_size == 0
2074 	 * but iov num 2 > 1.
2075 	 */
2076 	bdev->max_segment_size = 0;
2077 	bdev->max_num_segments = 1;
2078 	g_io_done = false;
2079 
2080 	iov[0].iov_base = (void *)0x10000;
2081 	iov[0].iov_len = 512;
2082 	iov[1].iov_base = (void *)0x20000;
2083 	iov[1].iov_len = 8 * 512;
2084 
2085 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2086 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
2087 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2088 
2089 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
2090 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
2091 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2092 
2093 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
2094 	CU_ASSERT(rc == 0);
2095 	CU_ASSERT(g_io_done == false);
2096 
2097 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2098 	stub_complete_io(2);
2099 	CU_ASSERT(g_io_done == true);
2100 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2101 
2102 	/* Test that a non-vector command is split correctly.
2103 	 * Set up the expected values before calling spdk_bdev_read_blocks
2104 	 */
2105 	bdev->max_segment_size = 512;
2106 	bdev->max_num_segments = 1;
2107 	g_io_done = false;
2108 
2109 	/* Child IO 0 */
2110 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
2111 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2112 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2113 
2114 	/* Child IO 1 */
2115 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2116 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
2117 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2118 
2119 	/* spdk_bdev_read_blocks will submit the first child immediately. */
2120 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
2121 	CU_ASSERT(rc == 0);
2122 	CU_ASSERT(g_io_done == false);
2123 
2124 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2125 	stub_complete_io(2);
2126 	CU_ASSERT(g_io_done == true);
2127 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2128 
2129 	/* Now set up a more complex, multi-vector command that needs to be split,
2130 	 * including splitting iovecs.
2131 	 */
2132 	bdev->max_segment_size = 2 * 512;
2133 	bdev->max_num_segments = 1;
2134 	g_io_done = false;
2135 
2136 	iov[0].iov_base = (void *)0x10000;
2137 	iov[0].iov_len = 2 * 512;
2138 	iov[1].iov_base = (void *)0x20000;
2139 	iov[1].iov_len = 4 * 512;
2140 	iov[2].iov_base = (void *)0x30000;
2141 	iov[2].iov_len = 6 * 512;
2142 
2143 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2144 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
2145 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2146 
2147 	/* Split iov[1].size to 2 iov entries then split the segments */
2148 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2149 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
2150 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2151 
2152 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
2153 	ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
2154 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2155 
2156 	/* Split iov[2].size to 3 iov entries then split the segments */
2157 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
2158 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
2159 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2160 
2161 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
2162 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
2163 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2164 
2165 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
2166 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
2167 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2168 
2169 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
2170 	CU_ASSERT(rc == 0);
2171 	CU_ASSERT(g_io_done == false);
2172 
2173 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
2174 	stub_complete_io(6);
2175 	CU_ASSERT(g_io_done == true);
2176 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2177 
2178 	/* Test multi vector command that needs to be split by strip and then needs to be
2179 	 * split further due to the capacity of parent IO child iovs.
2180 	 */
2181 	bdev->max_segment_size = 512;
2182 	bdev->max_num_segments = 1;
2183 	g_io_done = false;
2184 
2185 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2186 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2187 		iov[i].iov_len = 512 * 2;
2188 	}
2189 
2190 	/* Each input iov.size is split into 2 iovs,
2191 	 * half of the input iov can fill all child iov entries of a single IO.
2192 	 */
2193 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i++) {
2194 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
2195 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2196 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2197 
2198 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
2199 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2200 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2201 	}
2202 
2203 	/* The remaining iov is split in the second round */
2204 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2205 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
2206 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
2207 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2208 
2209 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
2210 		ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
2211 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2212 	}
2213 
2214 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2215 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
2216 	CU_ASSERT(rc == 0);
2217 	CU_ASSERT(g_io_done == false);
2218 
2219 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2220 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2221 	CU_ASSERT(g_io_done == false);
2222 
2223 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2224 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2225 	CU_ASSERT(g_io_done == true);
2226 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2227 
2228 	/* A wrong case, a child IO that is divided does
2229 	 * not meet the principle of multiples of block size,
2230 	 * and exits with error
2231 	 */
2232 	bdev->max_segment_size = 512;
2233 	bdev->max_num_segments = 1;
2234 	g_io_done = false;
2235 
2236 	iov[0].iov_base = (void *)0x10000;
2237 	iov[0].iov_len = 512 + 256;
2238 	iov[1].iov_base = (void *)0x20000;
2239 	iov[1].iov_len = 256;
2240 
2241 	/* iov[0] is split to 512 and 256.
2242 	 * 256 is less than a block size, and it is found
2243 	 * in the next round of split that it is the first child IO smaller than
2244 	 * the block size, so the error exit
2245 	 */
2246 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
2247 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
2248 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2249 
2250 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
2251 	CU_ASSERT(rc == 0);
2252 	CU_ASSERT(g_io_done == false);
2253 
2254 	/* First child IO is OK */
2255 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2256 	stub_complete_io(1);
2257 	CU_ASSERT(g_io_done == true);
2258 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2259 
2260 	/* error exit */
2261 	stub_complete_io(1);
2262 	CU_ASSERT(g_io_done == true);
2263 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
2264 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2265 
2266 	/* Test multi vector command that needs to be split by strip and then needs to be
2267 	 * split further due to the capacity of child iovs.
2268 	 *
2269 	 * In this case, the last two iovs need to be split, but it will exceed the capacity
2270 	 * of child iovs, so it needs to wait until the first batch completed.
2271 	 */
2272 	bdev->max_segment_size = 512;
2273 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2274 	g_io_done = false;
2275 
2276 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2277 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2278 		iov[i].iov_len = 512;
2279 	}
2280 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
2281 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2282 		iov[i].iov_len = 512 * 2;
2283 	}
2284 
2285 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2286 					   SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
2287 	/* 0 ~ (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
2288 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2289 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2290 	}
2291 	/* (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) is split */
2292 	ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
2293 	ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
2294 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2295 
2296 	/* Child iov entries exceed the max num of parent IO so split it in next round */
2297 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 2, 2);
2298 	ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
2299 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
2300 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2301 
2302 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
2303 				    SPDK_BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
2304 	CU_ASSERT(rc == 0);
2305 	CU_ASSERT(g_io_done == false);
2306 
2307 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2308 	stub_complete_io(1);
2309 	CU_ASSERT(g_io_done == false);
2310 
2311 	/* Next round */
2312 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2313 	stub_complete_io(1);
2314 	CU_ASSERT(g_io_done == true);
2315 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2316 
2317 	/* This case is similar to the previous one, but the io composed of
2318 	 * the last few entries of child iov is not enough for a blocklen, so they
2319 	 * cannot be put into this IO, but wait until the next time.
2320 	 */
2321 	bdev->max_segment_size = 512;
2322 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2323 	g_io_done = false;
2324 
2325 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2326 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2327 		iov[i].iov_len = 512;
2328 	}
2329 
2330 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2331 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2332 		iov[i].iov_len = 128;
2333 	}
2334 
2335 	/* First child iovcnt is't SPDK_BDEV_IO_NUM_CHILD_IOV but SPDK_BDEV_IO_NUM_CHILD_IOV - 2.
2336 	 * Because the left 2 iov is not enough for a blocklen.
2337 	 */
2338 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
2339 					   SPDK_BDEV_IO_NUM_CHILD_IOV - 2, SPDK_BDEV_IO_NUM_CHILD_IOV - 2);
2340 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2341 		ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
2342 	}
2343 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2344 
2345 	/* The second child io waits until the end of the first child io before executing.
2346 	 * Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
2347 	 * SPDK_BDEV_IO_NUM_CHILD_IOV - 2 to SPDK_BDEV_IO_NUM_CHILD_IOV + 2
2348 	 */
2349 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
2350 					   1, 4);
2351 	ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
2352 	ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
2353 	ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
2354 	ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
2355 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2356 
2357 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2358 				    SPDK_BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
2359 	CU_ASSERT(rc == 0);
2360 	CU_ASSERT(g_io_done == false);
2361 
2362 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2363 	stub_complete_io(1);
2364 	CU_ASSERT(g_io_done == false);
2365 
2366 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2367 	stub_complete_io(1);
2368 	CU_ASSERT(g_io_done == true);
2369 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2370 
2371 	/* A very complicated case. Each sg entry exceeds max_segment_size and
2372 	 * needs to be split. At the same time, child io must be a multiple of blocklen.
2373 	 * At the same time, child iovcnt exceeds parent iovcnt.
2374 	 */
2375 	bdev->max_segment_size = 512 + 128;
2376 	bdev->max_num_segments = 3;
2377 	g_io_done = false;
2378 
2379 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
2380 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2381 		iov[i].iov_len = 512 + 256;
2382 	}
2383 
2384 	for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
2385 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2386 		iov[i].iov_len = 512 + 128;
2387 	}
2388 
2389 	/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
2390 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2391 	 * Generate 9 child IOs.
2392 	 */
2393 	for (i = 0; i < 3; i++) {
2394 		uint32_t j = i * 4;
2395 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
2396 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2397 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2398 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2399 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2400 
2401 		/* Child io must be a multiple of blocklen
2402 		 * iov[j + 2] must be split. If the third entry is also added,
2403 		 * the multiple of blocklen cannot be guaranteed. But it still
2404 		 * occupies one iov entry of the parent child iov.
2405 		 */
2406 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
2407 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2408 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2409 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2410 
2411 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
2412 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2413 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2414 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2415 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2416 	}
2417 
2418 	/* Child iov position at 27, the 10th child IO
2419 	 * iov entry index is 3 * 4 and offset is 3 * 6
2420 	 */
2421 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
2422 	ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
2423 	ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
2424 	ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
2425 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2426 
2427 	/* Child iov position at 30, the 11th child IO */
2428 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
2429 	ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
2430 	ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
2431 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2432 
2433 	/* The 2nd split round and iovpos is 0, the 12th child IO */
2434 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
2435 	ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
2436 	ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
2437 	ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
2438 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2439 
2440 	/* Consume 9 child IOs and 27 child iov entries.
2441 	 * Consume 4 parent IO iov entries per for() round and 6 block size.
2442 	 * Parent IO iov index start from 16 and block offset start from 24
2443 	 */
2444 	for (i = 0; i < 3; i++) {
2445 		uint32_t j = i * 4 + 16;
2446 		uint32_t offset = i * 6 + 24;
2447 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
2448 		ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
2449 		ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
2450 		ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
2451 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2452 
2453 		/* Child io must be a multiple of blocklen
2454 		 * iov[j + 2] must be split. If the third entry is also added,
2455 		 * the multiple of blocklen cannot be guaranteed. But it still
2456 		 * occupies one iov entry of the parent child iov.
2457 		 */
2458 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
2459 		ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
2460 		ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
2461 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2462 
2463 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
2464 		ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
2465 		ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
2466 		ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
2467 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2468 	}
2469 
2470 	/* The 22th child IO, child iov position at 30 */
2471 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
2472 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
2473 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2474 
2475 	/* The third round */
2476 	/* Here is the 23nd child IO and child iovpos is 0 */
2477 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
2478 	ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
2479 	ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
2480 	ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
2481 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2482 
2483 	/* The 24th child IO */
2484 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
2485 	ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
2486 	ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
2487 	ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
2488 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2489 
2490 	/* The 25th child IO */
2491 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
2492 	ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
2493 	ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
2494 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2495 
2496 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
2497 				    50, io_done, NULL);
2498 	CU_ASSERT(rc == 0);
2499 	CU_ASSERT(g_io_done == false);
2500 
2501 	/* Parent IO supports up to 32 child iovs, so it is calculated that
2502 	 * a maximum of 11 IOs can be split at a time, and the
2503 	 * splitting will continue after the first batch is over.
2504 	 */
2505 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2506 	stub_complete_io(11);
2507 	CU_ASSERT(g_io_done == false);
2508 
2509 	/* The 2nd round */
2510 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
2511 	stub_complete_io(11);
2512 	CU_ASSERT(g_io_done == false);
2513 
2514 	/* The last round */
2515 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2516 	stub_complete_io(3);
2517 	CU_ASSERT(g_io_done == true);
2518 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2519 
2520 	/* Test an WRITE_ZEROES.  This should also not be split. */
2521 	bdev->max_segment_size = 512;
2522 	bdev->max_num_segments = 1;
2523 	g_io_done = false;
2524 
2525 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
2526 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2527 
2528 	rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
2529 	CU_ASSERT(rc == 0);
2530 	CU_ASSERT(g_io_done == false);
2531 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2532 	stub_complete_io(1);
2533 	CU_ASSERT(g_io_done == true);
2534 
2535 	/* Test an UNMAP.  This should also not be split. */
2536 	g_io_done = false;
2537 
2538 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
2539 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2540 
2541 	rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
2542 	CU_ASSERT(rc == 0);
2543 	CU_ASSERT(g_io_done == false);
2544 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2545 	stub_complete_io(1);
2546 	CU_ASSERT(g_io_done == true);
2547 
2548 	/* Test a FLUSH.  This should also not be split. */
2549 	g_io_done = false;
2550 
2551 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
2552 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2553 
2554 	rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
2555 	CU_ASSERT(rc == 0);
2556 	CU_ASSERT(g_io_done == false);
2557 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2558 	stub_complete_io(1);
2559 	CU_ASSERT(g_io_done == true);
2560 
2561 	/* Test a COPY.  This should also not be split. */
2562 	g_io_done = false;
2563 
2564 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
2565 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2566 
2567 	rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
2568 	CU_ASSERT(rc == 0);
2569 	CU_ASSERT(g_io_done == false);
2570 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2571 	stub_complete_io(1);
2572 	CU_ASSERT(g_io_done == true);
2573 
2574 	/* Test that IOs are split on max_rw_size */
2575 	bdev->max_rw_size = 2;
2576 	bdev->max_segment_size = 0;
2577 	bdev->max_num_segments = 0;
2578 	g_io_done = false;
2579 
2580 	/* 5 blocks in a contiguous buffer */
2581 	iov[0].iov_base = (void *)0x10000;
2582 	iov[0].iov_len = 5 * 512;
2583 
2584 	/* First: offset=0, num_blocks=2 */
2585 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 2, 1);
2586 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 2 * 512);
2587 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2588 	/* Second: offset=2, num_blocks=2 */
2589 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2, 2, 1);
2590 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + 2 * 512, 2 * 512);
2591 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2592 	/* Third: offset=4, num_blocks=1 */
2593 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 4, 1, 1);
2594 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + 4 * 512, 512);
2595 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2596 
2597 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 0, 5, io_done, NULL);
2598 	CU_ASSERT(rc == 0);
2599 	CU_ASSERT(g_io_done == false);
2600 
2601 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2602 	stub_complete_io(3);
2603 	CU_ASSERT(g_io_done == true);
2604 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2605 
2606 	/* Check splitting on both max_rw_size + max_num_segments */
2607 	bdev->max_rw_size = 2;
2608 	bdev->max_num_segments = 2;
2609 	bdev->max_segment_size = 0;
2610 	g_io_done = false;
2611 
2612 	/* 5 blocks split across 4 iovs */
2613 	iov[0].iov_base = (void *)0x10000;
2614 	iov[0].iov_len = 3 * 512;
2615 	iov[1].iov_base = (void *)0x20000;
2616 	iov[1].iov_len = 256;
2617 	iov[2].iov_base = (void *)0x30000;
2618 	iov[2].iov_len = 256;
2619 	iov[3].iov_base = (void *)0x40000;
2620 	iov[3].iov_len = 512;
2621 
2622 	/* First: offset=0, num_blocks=2, iovcnt=1 */
2623 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 2, 1);
2624 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 2 * 512);
2625 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2626 	/* Second: offset=2, num_blocks=1, iovcnt=1 (max_segment_size prevents from submitting
2627 	 * the rest of iov[0], and iov[1]+iov[2])
2628 	 */
2629 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2, 1, 1);
2630 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + 2 * 512, 512);
2631 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2632 	/* Third: offset=3, num_blocks=1, iovcnt=2 (iov[1]+iov[2]) */
2633 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 3, 1, 2);
2634 	ut_expected_io_set_iov(expected_io, 0, (void *)0x20000, 256);
2635 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 256);
2636 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2637 	/* Fourth: offset=4, num_blocks=1, iovcnt=1 (iov[3]) */
2638 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 4, 1, 1);
2639 	ut_expected_io_set_iov(expected_io, 0, (void *)0x40000, 512);
2640 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2641 
2642 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 4, 0, 5, io_done, NULL);
2643 	CU_ASSERT(rc == 0);
2644 	CU_ASSERT(g_io_done == false);
2645 
2646 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2647 	stub_complete_io(4);
2648 	CU_ASSERT(g_io_done == true);
2649 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2650 
2651 	/* Check splitting on both max_rw_size + max_segment_size */
2652 	bdev->max_rw_size = 2;
2653 	bdev->max_segment_size = 512;
2654 	bdev->max_num_segments = 0;
2655 	g_io_done = false;
2656 
2657 	/* 6 blocks in a contiguous buffer */
2658 	iov[0].iov_base = (void *)0x10000;
2659 	iov[0].iov_len = 6 * 512;
2660 
2661 	/* We expect 3 IOs each with 2 blocks and 2 iovs */
2662 	for (i = 0; i < 3; ++i) {
2663 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 2, 2);
2664 		ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + i * 2 * 512, 512);
2665 		ut_expected_io_set_iov(expected_io, 1, (void *)0x10000 + i * 2 * 512 + 512, 512);
2666 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2667 	}
2668 
2669 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 0, 6, io_done, NULL);
2670 	CU_ASSERT(rc == 0);
2671 	CU_ASSERT(g_io_done == false);
2672 
2673 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2674 	stub_complete_io(3);
2675 	CU_ASSERT(g_io_done == true);
2676 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2677 
2678 	/* Check splitting on max_rw_size limited by SPDK_BDEV_IO_NUM_CHILD_IOV */
2679 	bdev->max_rw_size = 1;
2680 	bdev->max_segment_size = 0;
2681 	bdev->max_num_segments = 0;
2682 	g_io_done = false;
2683 
2684 	/* SPDK_BDEV_IO_NUM_CHILD_IOV + 1 blocks */
2685 	iov[0].iov_base = (void *)0x10000;
2686 	iov[0].iov_len = (SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 512;
2687 
2688 	/* We expect SPDK_BDEV_IO_NUM_CHILD_IOV + 1 IOs each with a single iov */
2689 	for (i = 0; i < 3; ++i) {
2690 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i, 1, 1);
2691 		ut_expected_io_set_iov(expected_io, 0, (void *)0x10000 + i * 512, 512);
2692 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2693 	}
2694 
2695 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
2696 	CU_ASSERT(rc == 0);
2697 	CU_ASSERT(g_io_done == false);
2698 
2699 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
2700 	stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
2701 	CU_ASSERT(g_io_done == false);
2702 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2703 	stub_complete_io(1);
2704 	CU_ASSERT(g_io_done == true);
2705 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2706 
2707 	spdk_put_io_channel(io_ch);
2708 	spdk_bdev_close(desc);
2709 	free_bdev(bdev);
2710 	ut_fini_bdev();
2711 }
2712 
2713 static void
2714 bdev_io_mix_split_test(void)
2715 {
2716 	struct spdk_bdev *bdev;
2717 	struct spdk_bdev_desc *desc = NULL;
2718 	struct spdk_io_channel *io_ch;
2719 	struct spdk_bdev_opts bdev_opts = {};
2720 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
2721 	struct ut_expected_io *expected_io;
2722 	uint64_t i;
2723 	int rc;
2724 
2725 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2726 	bdev_opts.bdev_io_pool_size = 512;
2727 	bdev_opts.bdev_io_cache_size = 64;
2728 	ut_init_bdev(&bdev_opts);
2729 
2730 	bdev = allocate_bdev("bdev0");
2731 
2732 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
2733 	CU_ASSERT(rc == 0);
2734 	SPDK_CU_ASSERT_FATAL(desc != NULL);
2735 	io_ch = spdk_bdev_get_io_channel(desc);
2736 	CU_ASSERT(io_ch != NULL);
2737 
2738 	/* First case optimal_io_boundary == max_segment_size * max_num_segments */
2739 	bdev->split_on_optimal_io_boundary = true;
2740 	bdev->optimal_io_boundary = 16;
2741 
2742 	bdev->max_segment_size = 512;
2743 	bdev->max_num_segments = 16;
2744 	g_io_done = false;
2745 
2746 	/* IO crossing the IO boundary requires split
2747 	 * Total 2 child IOs.
2748 	 */
2749 
2750 	/* The 1st child IO split the segment_size to multiple segment entry */
2751 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
2752 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
2753 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
2754 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2755 
2756 	/* The 2nd child IO split the segment_size to multiple segment entry */
2757 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
2758 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
2759 	ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
2760 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2761 
2762 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
2763 	CU_ASSERT(rc == 0);
2764 	CU_ASSERT(g_io_done == false);
2765 
2766 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2767 	stub_complete_io(2);
2768 	CU_ASSERT(g_io_done == true);
2769 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2770 
2771 	/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
2772 	bdev->max_segment_size = 15 * 512;
2773 	bdev->max_num_segments = 1;
2774 	g_io_done = false;
2775 
2776 	/* IO crossing the IO boundary requires split.
2777 	 * The 1st child IO segment size exceeds the max_segment_size,
2778 	 * So 1st child IO will be split to multiple segment entry.
2779 	 * Then it split to 2 child IOs because of the max_num_segments.
2780 	 * Total 3 child IOs.
2781 	 */
2782 
2783 	/* The first 2 IOs are in an IO boundary.
2784 	 * Because the optimal_io_boundary > max_segment_size * max_num_segments
2785 	 * So it split to the first 2 IOs.
2786 	 */
2787 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
2788 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
2789 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2790 
2791 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
2792 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
2793 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2794 
2795 	/* The 3rd Child IO is because of the io boundary */
2796 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2797 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2798 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2799 
2800 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2801 	CU_ASSERT(rc == 0);
2802 	CU_ASSERT(g_io_done == false);
2803 
2804 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2805 	stub_complete_io(3);
2806 	CU_ASSERT(g_io_done == true);
2807 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2808 
2809 	/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
2810 	bdev->max_segment_size = 17 * 512;
2811 	bdev->max_num_segments = 1;
2812 	g_io_done = false;
2813 
2814 	/* IO crossing the IO boundary requires split.
2815 	 * Child IO does not split.
2816 	 * Total 2 child IOs.
2817 	 */
2818 
2819 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
2820 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
2821 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2822 
2823 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
2824 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
2825 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2826 
2827 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
2828 	CU_ASSERT(rc == 0);
2829 	CU_ASSERT(g_io_done == false);
2830 
2831 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
2832 	stub_complete_io(2);
2833 	CU_ASSERT(g_io_done == true);
2834 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2835 
2836 	/* Now set up a more complex, multi-vector command that needs to be split,
2837 	 * including splitting iovecs.
2838 	 * optimal_io_boundary < max_segment_size * max_num_segments
2839 	 */
2840 	bdev->max_segment_size = 3 * 512;
2841 	bdev->max_num_segments = 6;
2842 	g_io_done = false;
2843 
2844 	iov[0].iov_base = (void *)0x10000;
2845 	iov[0].iov_len = 4 * 512;
2846 	iov[1].iov_base = (void *)0x20000;
2847 	iov[1].iov_len = 4 * 512;
2848 	iov[2].iov_base = (void *)0x30000;
2849 	iov[2].iov_len = 10 * 512;
2850 
2851 	/* IO crossing the IO boundary requires split.
2852 	 * The 1st child IO segment size exceeds the max_segment_size and after
2853 	 * splitting segment_size, the num_segments exceeds max_num_segments.
2854 	 * So 1st child IO will be split to 2 child IOs.
2855 	 * Total 3 child IOs.
2856 	 */
2857 
2858 	/* The first 2 IOs are in an IO boundary.
2859 	 * After splitting segment size the segment num exceeds.
2860 	 * So it splits to 2 child IOs.
2861 	 */
2862 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
2863 	ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
2864 	ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
2865 	ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
2866 	ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
2867 	ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
2868 	ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
2869 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2870 
2871 	/* The 2nd child IO has the left segment entry */
2872 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
2873 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
2874 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2875 
2876 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
2877 	ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
2878 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2879 
2880 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
2881 	CU_ASSERT(rc == 0);
2882 	CU_ASSERT(g_io_done == false);
2883 
2884 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
2885 	stub_complete_io(3);
2886 	CU_ASSERT(g_io_done == true);
2887 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2888 
2889 	/* A very complicated case. Each sg entry exceeds max_segment_size
2890 	 * and split on io boundary.
2891 	 * optimal_io_boundary < max_segment_size * max_num_segments
2892 	 */
2893 	bdev->max_segment_size = 3 * 512;
2894 	bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
2895 	g_io_done = false;
2896 
2897 	for (i = 0; i < 20; i++) {
2898 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
2899 		iov[i].iov_len = 512 * 4;
2900 	}
2901 
2902 	/* IO crossing the IO boundary requires split.
2903 	 * 80 block length can split 5 child IOs base on offset and IO boundary.
2904 	 * Each iov entry needs to be split to 2 entries because of max_segment_size
2905 	 * Total 5 child IOs.
2906 	 */
2907 
2908 	/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
2909 	 * So each child IO occupies 8 child iov entries.
2910 	 */
2911 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
2912 	for (i = 0; i < 4; i++) {
2913 		int iovcnt = i * 2;
2914 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2915 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2916 	}
2917 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2918 
2919 	/* 2nd child IO and total 16 child iov entries of parent IO */
2920 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
2921 	for (i = 4; i < 8; i++) {
2922 		int iovcnt = (i - 4) * 2;
2923 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2924 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2925 	}
2926 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2927 
2928 	/* 3rd child IO and total 24 child iov entries of parent IO */
2929 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
2930 	for (i = 8; i < 12; i++) {
2931 		int iovcnt = (i - 8) * 2;
2932 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2933 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2934 	}
2935 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2936 
2937 	/* 4th child IO and total 32 child iov entries of parent IO */
2938 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
2939 	for (i = 12; i < 16; i++) {
2940 		int iovcnt = (i - 12) * 2;
2941 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2942 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2943 	}
2944 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2945 
2946 	/* 5th child IO and because of the child iov entry it should be split
2947 	 * in next round.
2948 	 */
2949 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
2950 	for (i = 16; i < 20; i++) {
2951 		int iovcnt = (i - 16) * 2;
2952 		ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
2953 		ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
2954 	}
2955 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
2956 
2957 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
2958 	CU_ASSERT(rc == 0);
2959 	CU_ASSERT(g_io_done == false);
2960 
2961 	/* First split round */
2962 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
2963 	stub_complete_io(4);
2964 	CU_ASSERT(g_io_done == false);
2965 
2966 	/* Second split round */
2967 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
2968 	stub_complete_io(1);
2969 	CU_ASSERT(g_io_done == true);
2970 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
2971 
2972 	spdk_put_io_channel(io_ch);
2973 	spdk_bdev_close(desc);
2974 	free_bdev(bdev);
2975 	ut_fini_bdev();
2976 }
2977 
2978 static void
2979 bdev_io_split_with_io_wait(void)
2980 {
2981 	struct spdk_bdev *bdev;
2982 	struct spdk_bdev_desc *desc = NULL;
2983 	struct spdk_io_channel *io_ch;
2984 	struct spdk_bdev_channel *channel;
2985 	struct spdk_bdev_mgmt_channel *mgmt_ch;
2986 	struct spdk_bdev_opts bdev_opts = {};
2987 	struct iovec iov[3];
2988 	struct ut_expected_io *expected_io;
2989 	int rc;
2990 
2991 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
2992 	bdev_opts.bdev_io_pool_size = 2;
2993 	bdev_opts.bdev_io_cache_size = 1;
2994 	ut_init_bdev(&bdev_opts);
2995 
2996 	bdev = allocate_bdev("bdev0");
2997 
2998 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
2999 	CU_ASSERT(rc == 0);
3000 	CU_ASSERT(desc != NULL);
3001 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3002 	io_ch = spdk_bdev_get_io_channel(desc);
3003 	CU_ASSERT(io_ch != NULL);
3004 	channel = spdk_io_channel_get_ctx(io_ch);
3005 	mgmt_ch = channel->shared_resource->mgmt_ch;
3006 
3007 	bdev->optimal_io_boundary = 16;
3008 	bdev->split_on_optimal_io_boundary = true;
3009 
3010 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
3011 	CU_ASSERT(rc == 0);
3012 
3013 	/* Now test that a single-vector command is split correctly.
3014 	 * Offset 14, length 8, payload 0xF000
3015 	 *  Child - Offset 14, length 2, payload 0xF000
3016 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
3017 	 *
3018 	 * Set up the expected values before calling spdk_bdev_read_blocks
3019 	 */
3020 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
3021 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
3022 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3023 
3024 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
3025 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
3026 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3027 
3028 	/* The following children will be submitted sequentially due to the capacity of
3029 	 * spdk_bdev_io.
3030 	 */
3031 
3032 	/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
3033 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
3034 	CU_ASSERT(rc == 0);
3035 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
3036 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3037 
3038 	/* Completing the first read I/O will submit the first child */
3039 	stub_complete_io(1);
3040 	CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
3041 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3042 
3043 	/* Completing the first child will submit the second child */
3044 	stub_complete_io(1);
3045 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3046 
3047 	/* Complete the second child I/O.  This should result in our callback getting
3048 	 * invoked since the parent I/O is now complete.
3049 	 */
3050 	stub_complete_io(1);
3051 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3052 
3053 	/* Now set up a more complex, multi-vector command that needs to be split,
3054 	 *  including splitting iovecs.
3055 	 */
3056 	iov[0].iov_base = (void *)0x10000;
3057 	iov[0].iov_len = 512;
3058 	iov[1].iov_base = (void *)0x20000;
3059 	iov[1].iov_len = 20 * 512;
3060 	iov[2].iov_base = (void *)0x30000;
3061 	iov[2].iov_len = 11 * 512;
3062 
3063 	g_io_done = false;
3064 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
3065 	ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
3066 	ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
3067 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3068 
3069 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
3070 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
3071 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3072 
3073 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
3074 	ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
3075 	ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
3076 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3077 
3078 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
3079 	CU_ASSERT(rc == 0);
3080 	CU_ASSERT(g_io_done == false);
3081 
3082 	/* The following children will be submitted sequentially due to the capacity of
3083 	 * spdk_bdev_io.
3084 	 */
3085 
3086 	/* Completing the first child will submit the second child */
3087 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3088 	stub_complete_io(1);
3089 	CU_ASSERT(g_io_done == false);
3090 
3091 	/* Completing the second child will submit the third child */
3092 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3093 	stub_complete_io(1);
3094 	CU_ASSERT(g_io_done == false);
3095 
3096 	/* Completing the third child will result in our callback getting invoked
3097 	 * since the parent I/O is now complete.
3098 	 */
3099 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
3100 	stub_complete_io(1);
3101 	CU_ASSERT(g_io_done == true);
3102 
3103 	CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
3104 
3105 	spdk_put_io_channel(io_ch);
3106 	spdk_bdev_close(desc);
3107 	free_bdev(bdev);
3108 	ut_fini_bdev();
3109 }
3110 
3111 static void
3112 bdev_io_write_unit_split_test(void)
3113 {
3114 	struct spdk_bdev *bdev;
3115 	struct spdk_bdev_desc *desc = NULL;
3116 	struct spdk_io_channel *io_ch;
3117 	struct spdk_bdev_opts bdev_opts = {};
3118 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 4];
3119 	struct ut_expected_io *expected_io;
3120 	uint64_t i;
3121 	int rc;
3122 
3123 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3124 	bdev_opts.bdev_io_pool_size = 512;
3125 	bdev_opts.bdev_io_cache_size = 64;
3126 	ut_init_bdev(&bdev_opts);
3127 
3128 	bdev = allocate_bdev("bdev0");
3129 
3130 	rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
3131 	CU_ASSERT(rc == 0);
3132 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3133 	io_ch = spdk_bdev_get_io_channel(desc);
3134 	CU_ASSERT(io_ch != NULL);
3135 
3136 	/* Write I/O 2x larger than write_unit_size should get split into 2 I/Os */
3137 	bdev->write_unit_size = 32;
3138 	bdev->split_on_write_unit = true;
3139 	g_io_done = false;
3140 
3141 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 32, 1);
3142 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 32 * 512);
3143 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3144 
3145 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 32, 1);
3146 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 32 * 512), 32 * 512);
3147 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3148 
3149 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3150 	CU_ASSERT(rc == 0);
3151 	CU_ASSERT(g_io_done == false);
3152 
3153 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3154 	stub_complete_io(2);
3155 	CU_ASSERT(g_io_done == true);
3156 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3157 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3158 
3159 	/* Same as above but with optimal_io_boundary < write_unit_size - the I/O should be split
3160 	 * based on write_unit_size, not optimal_io_boundary */
3161 	bdev->split_on_optimal_io_boundary = true;
3162 	bdev->optimal_io_boundary = 16;
3163 	g_io_done = false;
3164 
3165 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
3166 	CU_ASSERT(rc == 0);
3167 	CU_ASSERT(g_io_done == false);
3168 
3169 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3170 	stub_complete_io(2);
3171 	CU_ASSERT(g_io_done == true);
3172 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3173 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3174 
3175 	/* Write I/O should fail if it is smaller than write_unit_size */
3176 	g_io_done = false;
3177 
3178 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 31, io_done, NULL);
3179 	CU_ASSERT(rc == 0);
3180 	CU_ASSERT(g_io_done == false);
3181 
3182 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3183 	poll_threads();
3184 	CU_ASSERT(g_io_done == true);
3185 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3186 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3187 
3188 	/* Same for I/O not aligned to write_unit_size */
3189 	g_io_done = false;
3190 
3191 	rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 1, 32, io_done, NULL);
3192 	CU_ASSERT(rc == 0);
3193 	CU_ASSERT(g_io_done == false);
3194 
3195 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3196 	poll_threads();
3197 	CU_ASSERT(g_io_done == true);
3198 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3199 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3200 
3201 	/* Write should fail if it needs to be split but there are not enough iovs to submit
3202 	 * an entire write unit */
3203 	bdev->write_unit_size = SPDK_COUNTOF(iov) / 2;
3204 	g_io_done = false;
3205 
3206 	for (i = 0; i < SPDK_COUNTOF(iov); i++) {
3207 		iov[i].iov_base = (void *)(0x1000 + 512 * i);
3208 		iov[i].iov_len = 512;
3209 	}
3210 
3211 	rc = spdk_bdev_writev_blocks(desc, io_ch, iov, SPDK_COUNTOF(iov), 0, SPDK_COUNTOF(iov),
3212 				     io_done, NULL);
3213 	CU_ASSERT(rc == 0);
3214 	CU_ASSERT(g_io_done == false);
3215 
3216 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3217 	poll_threads();
3218 	CU_ASSERT(g_io_done == true);
3219 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
3220 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
3221 
3222 	spdk_put_io_channel(io_ch);
3223 	spdk_bdev_close(desc);
3224 	free_bdev(bdev);
3225 	ut_fini_bdev();
3226 }
3227 
3228 static void
3229 bdev_io_alignment(void)
3230 {
3231 	struct spdk_bdev *bdev;
3232 	struct spdk_bdev_desc *desc = NULL;
3233 	struct spdk_io_channel *io_ch;
3234 	struct spdk_bdev_opts bdev_opts = {};
3235 	int rc;
3236 	void *buf = NULL;
3237 	struct iovec iovs[2];
3238 	int iovcnt;
3239 	uint64_t alignment;
3240 
3241 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3242 	bdev_opts.bdev_io_pool_size = 20;
3243 	bdev_opts.bdev_io_cache_size = 2;
3244 	ut_init_bdev(&bdev_opts);
3245 
3246 	fn_table.submit_request = stub_submit_request_get_buf;
3247 	bdev = allocate_bdev("bdev0");
3248 
3249 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3250 	CU_ASSERT(rc == 0);
3251 	CU_ASSERT(desc != NULL);
3252 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3253 	io_ch = spdk_bdev_get_io_channel(desc);
3254 	CU_ASSERT(io_ch != NULL);
3255 
3256 	/* Create aligned buffer */
3257 	rc = posix_memalign(&buf, 4096, 8192);
3258 	SPDK_CU_ASSERT_FATAL(rc == 0);
3259 
3260 	/* Pass aligned single buffer with no alignment required */
3261 	alignment = 1;
3262 	bdev->required_alignment = spdk_u32log2(alignment);
3263 
3264 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3265 	CU_ASSERT(rc == 0);
3266 	stub_complete_io(1);
3267 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3268 				    alignment));
3269 
3270 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
3271 	CU_ASSERT(rc == 0);
3272 	stub_complete_io(1);
3273 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3274 				    alignment));
3275 
3276 	/* Pass unaligned single buffer with no alignment required */
3277 	alignment = 1;
3278 	bdev->required_alignment = spdk_u32log2(alignment);
3279 
3280 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3281 	CU_ASSERT(rc == 0);
3282 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3283 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3284 	stub_complete_io(1);
3285 
3286 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3287 	CU_ASSERT(rc == 0);
3288 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3289 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
3290 	stub_complete_io(1);
3291 
3292 	/* Pass unaligned single buffer with 512 alignment required */
3293 	alignment = 512;
3294 	bdev->required_alignment = spdk_u32log2(alignment);
3295 
3296 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3297 	CU_ASSERT(rc == 0);
3298 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3299 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3300 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3301 				    alignment));
3302 	stub_complete_io(1);
3303 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3304 
3305 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
3306 	CU_ASSERT(rc == 0);
3307 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3308 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3309 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3310 				    alignment));
3311 	stub_complete_io(1);
3312 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3313 
3314 	/* Pass unaligned single buffer with 4096 alignment required */
3315 	alignment = 4096;
3316 	bdev->required_alignment = spdk_u32log2(alignment);
3317 
3318 	rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3319 	CU_ASSERT(rc == 0);
3320 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3321 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3322 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3323 				    alignment));
3324 	stub_complete_io(1);
3325 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3326 
3327 	rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
3328 	CU_ASSERT(rc == 0);
3329 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
3330 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3331 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3332 				    alignment));
3333 	stub_complete_io(1);
3334 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3335 
3336 	/* Pass aligned iovs with no alignment required */
3337 	alignment = 1;
3338 	bdev->required_alignment = spdk_u32log2(alignment);
3339 
3340 	iovcnt = 1;
3341 	iovs[0].iov_base = buf;
3342 	iovs[0].iov_len = 512;
3343 
3344 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3345 	CU_ASSERT(rc == 0);
3346 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3347 	stub_complete_io(1);
3348 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3349 
3350 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3351 	CU_ASSERT(rc == 0);
3352 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3353 	stub_complete_io(1);
3354 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3355 
3356 	/* Pass unaligned iovs with no alignment required */
3357 	alignment = 1;
3358 	bdev->required_alignment = spdk_u32log2(alignment);
3359 
3360 	iovcnt = 2;
3361 	iovs[0].iov_base = buf + 16;
3362 	iovs[0].iov_len = 256;
3363 	iovs[1].iov_base = buf + 16 + 256 + 32;
3364 	iovs[1].iov_len = 256;
3365 
3366 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3367 	CU_ASSERT(rc == 0);
3368 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3369 	stub_complete_io(1);
3370 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3371 
3372 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3373 	CU_ASSERT(rc == 0);
3374 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3375 	stub_complete_io(1);
3376 	CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
3377 
3378 	/* Pass unaligned iov with 2048 alignment required */
3379 	alignment = 2048;
3380 	bdev->required_alignment = spdk_u32log2(alignment);
3381 
3382 	iovcnt = 2;
3383 	iovs[0].iov_base = buf + 16;
3384 	iovs[0].iov_len = 256;
3385 	iovs[1].iov_base = buf + 16 + 256 + 32;
3386 	iovs[1].iov_len = 256;
3387 
3388 	rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3389 	CU_ASSERT(rc == 0);
3390 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3391 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3392 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3393 				    alignment));
3394 	stub_complete_io(1);
3395 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3396 
3397 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3398 	CU_ASSERT(rc == 0);
3399 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
3400 	CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
3401 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3402 				    alignment));
3403 	stub_complete_io(1);
3404 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3405 
3406 	/* Pass iov without allocated buffer without alignment required */
3407 	alignment = 1;
3408 	bdev->required_alignment = spdk_u32log2(alignment);
3409 
3410 	iovcnt = 1;
3411 	iovs[0].iov_base = NULL;
3412 	iovs[0].iov_len = 0;
3413 
3414 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3415 	CU_ASSERT(rc == 0);
3416 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3417 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3418 				    alignment));
3419 	stub_complete_io(1);
3420 
3421 	/* Pass iov without allocated buffer with 1024 alignment required */
3422 	alignment = 1024;
3423 	bdev->required_alignment = spdk_u32log2(alignment);
3424 
3425 	iovcnt = 1;
3426 	iovs[0].iov_base = NULL;
3427 	iovs[0].iov_len = 0;
3428 
3429 	rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
3430 	CU_ASSERT(rc == 0);
3431 	CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
3432 	CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
3433 				    alignment));
3434 	stub_complete_io(1);
3435 
3436 	spdk_put_io_channel(io_ch);
3437 	spdk_bdev_close(desc);
3438 	free_bdev(bdev);
3439 	fn_table.submit_request = stub_submit_request;
3440 	ut_fini_bdev();
3441 
3442 	free(buf);
3443 }
3444 
3445 static void
3446 bdev_io_alignment_with_boundary(void)
3447 {
3448 	struct spdk_bdev *bdev;
3449 	struct spdk_bdev_desc *desc = NULL;
3450 	struct spdk_io_channel *io_ch;
3451 	struct spdk_bdev_opts bdev_opts = {};
3452 	int rc;
3453 	void *buf = NULL;
3454 	struct iovec iovs[2];
3455 	int iovcnt;
3456 	uint64_t alignment;
3457 
3458 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
3459 	bdev_opts.bdev_io_pool_size = 20;
3460 	bdev_opts.bdev_io_cache_size = 2;
3461 	bdev_opts.opts_size = sizeof(bdev_opts);
3462 	ut_init_bdev(&bdev_opts);
3463 
3464 	fn_table.submit_request = stub_submit_request_get_buf;
3465 	bdev = allocate_bdev("bdev0");
3466 
3467 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
3468 	CU_ASSERT(rc == 0);
3469 	CU_ASSERT(desc != NULL);
3470 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3471 	io_ch = spdk_bdev_get_io_channel(desc);
3472 	CU_ASSERT(io_ch != NULL);
3473 
3474 	/* Create aligned buffer */
3475 	rc = posix_memalign(&buf, 4096, 131072);
3476 	SPDK_CU_ASSERT_FATAL(rc == 0);
3477 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3478 
3479 	/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
3480 	alignment = 512;
3481 	bdev->required_alignment = spdk_u32log2(alignment);
3482 	bdev->optimal_io_boundary = 2;
3483 	bdev->split_on_optimal_io_boundary = true;
3484 
3485 	iovcnt = 1;
3486 	iovs[0].iov_base = NULL;
3487 	iovs[0].iov_len = 512 * 3;
3488 
3489 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3490 	CU_ASSERT(rc == 0);
3491 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3492 	stub_complete_io(2);
3493 
3494 	/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
3495 	alignment = 512;
3496 	bdev->required_alignment = spdk_u32log2(alignment);
3497 	bdev->optimal_io_boundary = 16;
3498 	bdev->split_on_optimal_io_boundary = true;
3499 
3500 	iovcnt = 1;
3501 	iovs[0].iov_base = NULL;
3502 	iovs[0].iov_len = 512 * 16;
3503 
3504 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
3505 	CU_ASSERT(rc == 0);
3506 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3507 	stub_complete_io(2);
3508 
3509 	/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
3510 	alignment = 512;
3511 	bdev->required_alignment = spdk_u32log2(alignment);
3512 	bdev->optimal_io_boundary = 128;
3513 	bdev->split_on_optimal_io_boundary = true;
3514 
3515 	iovcnt = 1;
3516 	iovs[0].iov_base = buf + 16;
3517 	iovs[0].iov_len = 512 * 160;
3518 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3519 	CU_ASSERT(rc == 0);
3520 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3521 	stub_complete_io(2);
3522 
3523 	/* 512 * 3 with 2 IO boundary */
3524 	alignment = 512;
3525 	bdev->required_alignment = spdk_u32log2(alignment);
3526 	bdev->optimal_io_boundary = 2;
3527 	bdev->split_on_optimal_io_boundary = true;
3528 
3529 	iovcnt = 2;
3530 	iovs[0].iov_base = buf + 16;
3531 	iovs[0].iov_len = 512;
3532 	iovs[1].iov_base = buf + 16 + 512 + 32;
3533 	iovs[1].iov_len = 1024;
3534 
3535 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3536 	CU_ASSERT(rc == 0);
3537 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3538 	stub_complete_io(2);
3539 
3540 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
3541 	CU_ASSERT(rc == 0);
3542 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
3543 	stub_complete_io(2);
3544 
3545 	/* 512 * 64 with 32 IO boundary */
3546 	bdev->optimal_io_boundary = 32;
3547 	iovcnt = 2;
3548 	iovs[0].iov_base = buf + 16;
3549 	iovs[0].iov_len = 16384;
3550 	iovs[1].iov_base = buf + 16 + 16384 + 32;
3551 	iovs[1].iov_len = 16384;
3552 
3553 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3554 	CU_ASSERT(rc == 0);
3555 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3556 	stub_complete_io(3);
3557 
3558 	rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
3559 	CU_ASSERT(rc == 0);
3560 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
3561 	stub_complete_io(3);
3562 
3563 	/* 512 * 160 with 32 IO boundary */
3564 	iovcnt = 1;
3565 	iovs[0].iov_base = buf + 16;
3566 	iovs[0].iov_len = 16384 + 65536;
3567 
3568 	rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
3569 	CU_ASSERT(rc == 0);
3570 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
3571 	stub_complete_io(6);
3572 
3573 	spdk_put_io_channel(io_ch);
3574 	spdk_bdev_close(desc);
3575 	free_bdev(bdev);
3576 	fn_table.submit_request = stub_submit_request;
3577 	ut_fini_bdev();
3578 
3579 	free(buf);
3580 }
3581 
3582 static void
3583 histogram_status_cb(void *cb_arg, int status)
3584 {
3585 	g_status = status;
3586 }
3587 
3588 static void
3589 histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3590 {
3591 	g_status = status;
3592 	g_histogram = histogram;
3593 }
3594 
3595 static void
3596 histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
3597 		   uint64_t total, uint64_t so_far)
3598 {
3599 	g_count += count;
3600 }
3601 
3602 static void
3603 histogram_channel_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
3604 {
3605 	spdk_histogram_data_fn cb_fn = cb_arg;
3606 
3607 	g_status = status;
3608 
3609 	if (status == 0) {
3610 		spdk_histogram_data_iterate(histogram, cb_fn, NULL);
3611 	}
3612 }
3613 
3614 static void
3615 bdev_histograms(void)
3616 {
3617 	struct spdk_bdev *bdev;
3618 	struct spdk_bdev_desc *desc = NULL;
3619 	struct spdk_io_channel *ch;
3620 	struct spdk_histogram_data *histogram;
3621 	uint8_t buf[4096];
3622 	int rc;
3623 
3624 	ut_init_bdev(NULL);
3625 
3626 	bdev = allocate_bdev("bdev");
3627 
3628 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3629 	CU_ASSERT(rc == 0);
3630 	CU_ASSERT(desc != NULL);
3631 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3632 
3633 	ch = spdk_bdev_get_io_channel(desc);
3634 	CU_ASSERT(ch != NULL);
3635 
3636 	/* Enable histogram */
3637 	g_status = -1;
3638 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
3639 	poll_threads();
3640 	CU_ASSERT(g_status == 0);
3641 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3642 
3643 	/* Allocate histogram */
3644 	histogram = spdk_histogram_data_alloc();
3645 	SPDK_CU_ASSERT_FATAL(histogram != NULL);
3646 
3647 	/* Check if histogram is zeroed */
3648 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3649 	poll_threads();
3650 	CU_ASSERT(g_status == 0);
3651 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3652 
3653 	g_count = 0;
3654 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3655 
3656 	CU_ASSERT(g_count == 0);
3657 
3658 	rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3659 	CU_ASSERT(rc == 0);
3660 
3661 	spdk_delay_us(10);
3662 	stub_complete_io(1);
3663 	poll_threads();
3664 
3665 	rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
3666 	CU_ASSERT(rc == 0);
3667 
3668 	spdk_delay_us(10);
3669 	stub_complete_io(1);
3670 	poll_threads();
3671 
3672 	/* Check if histogram gathered data from all I/O channels */
3673 	g_histogram = NULL;
3674 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3675 	poll_threads();
3676 	CU_ASSERT(g_status == 0);
3677 	CU_ASSERT(bdev->internal.histogram_enabled == true);
3678 	SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
3679 
3680 	g_count = 0;
3681 	spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
3682 	CU_ASSERT(g_count == 2);
3683 
3684 	g_count = 0;
3685 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, histogram_io_count);
3686 	CU_ASSERT(g_status == 0);
3687 	CU_ASSERT(g_count == 2);
3688 
3689 	/* Disable histogram */
3690 	spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
3691 	poll_threads();
3692 	CU_ASSERT(g_status == 0);
3693 	CU_ASSERT(bdev->internal.histogram_enabled == false);
3694 
3695 	/* Try to run histogram commands on disabled bdev */
3696 	spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
3697 	poll_threads();
3698 	CU_ASSERT(g_status == -EFAULT);
3699 
3700 	spdk_bdev_channel_get_histogram(ch, histogram_channel_data_cb, NULL);
3701 	CU_ASSERT(g_status == -EFAULT);
3702 
3703 	spdk_histogram_data_free(histogram);
3704 	spdk_put_io_channel(ch);
3705 	spdk_bdev_close(desc);
3706 	free_bdev(bdev);
3707 	ut_fini_bdev();
3708 }
3709 
3710 static void
3711 _bdev_compare(bool emulated)
3712 {
3713 	struct spdk_bdev *bdev;
3714 	struct spdk_bdev_desc *desc = NULL;
3715 	struct spdk_io_channel *ioch;
3716 	struct ut_expected_io *expected_io;
3717 	uint64_t offset, num_blocks;
3718 	uint32_t num_completed;
3719 	char aa_buf[512];
3720 	char bb_buf[512];
3721 	struct iovec compare_iov;
3722 	uint8_t expected_io_type;
3723 	int rc;
3724 
3725 	if (emulated) {
3726 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3727 	} else {
3728 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3729 	}
3730 
3731 	memset(aa_buf, 0xaa, sizeof(aa_buf));
3732 	memset(bb_buf, 0xbb, sizeof(bb_buf));
3733 
3734 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3735 
3736 	ut_init_bdev(NULL);
3737 	fn_table.submit_request = stub_submit_request_get_buf;
3738 	bdev = allocate_bdev("bdev");
3739 
3740 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3741 	CU_ASSERT_EQUAL(rc, 0);
3742 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3743 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3744 	ioch = spdk_bdev_get_io_channel(desc);
3745 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3746 
3747 	fn_table.submit_request = stub_submit_request_get_buf;
3748 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3749 
3750 	offset = 50;
3751 	num_blocks = 1;
3752 	compare_iov.iov_base = aa_buf;
3753 	compare_iov.iov_len = sizeof(aa_buf);
3754 
3755 	/* 1. successful comparev */
3756 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3757 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3758 
3759 	g_io_done = false;
3760 	g_compare_read_buf = aa_buf;
3761 	g_compare_read_buf_len = sizeof(aa_buf);
3762 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3763 	CU_ASSERT_EQUAL(rc, 0);
3764 	num_completed = stub_complete_io(1);
3765 	CU_ASSERT_EQUAL(num_completed, 1);
3766 	CU_ASSERT(g_io_done == true);
3767 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3768 
3769 	/* 2. miscompare comparev */
3770 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3771 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3772 
3773 	g_io_done = false;
3774 	g_compare_read_buf = bb_buf;
3775 	g_compare_read_buf_len = sizeof(bb_buf);
3776 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3777 	CU_ASSERT_EQUAL(rc, 0);
3778 	num_completed = stub_complete_io(1);
3779 	CU_ASSERT_EQUAL(num_completed, 1);
3780 	CU_ASSERT(g_io_done == true);
3781 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3782 
3783 	/* 3. successful compare */
3784 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3785 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3786 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3787 
3788 	g_io_done = false;
3789 	g_compare_read_buf = aa_buf;
3790 	g_compare_read_buf_len = sizeof(aa_buf);
3791 	rc = spdk_bdev_compare_blocks(desc, ioch, aa_buf, offset, num_blocks, io_done, NULL);
3792 	CU_ASSERT_EQUAL(rc, 0);
3793 	num_completed = stub_complete_io(1);
3794 	CU_ASSERT_EQUAL(num_completed, 1);
3795 	CU_ASSERT(g_io_done == true);
3796 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3797 
3798 	/* 4. miscompare compare */
3799 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3800 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3801 
3802 	g_io_done = false;
3803 	g_compare_read_buf = bb_buf;
3804 	g_compare_read_buf_len = sizeof(bb_buf);
3805 	rc = spdk_bdev_compare_blocks(desc, ioch, aa_buf, offset, num_blocks, io_done, NULL);
3806 	CU_ASSERT_EQUAL(rc, 0);
3807 	num_completed = stub_complete_io(1);
3808 	CU_ASSERT_EQUAL(num_completed, 1);
3809 	CU_ASSERT(g_io_done == true);
3810 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3811 
3812 	spdk_put_io_channel(ioch);
3813 	spdk_bdev_close(desc);
3814 	free_bdev(bdev);
3815 	fn_table.submit_request = stub_submit_request;
3816 	ut_fini_bdev();
3817 
3818 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3819 
3820 	g_compare_read_buf = NULL;
3821 }
3822 
3823 static void
3824 _bdev_compare_with_md(bool emulated)
3825 {
3826 	struct spdk_bdev *bdev;
3827 	struct spdk_bdev_desc *desc = NULL;
3828 	struct spdk_io_channel *ioch;
3829 	struct ut_expected_io *expected_io;
3830 	uint64_t offset, num_blocks;
3831 	uint32_t num_completed;
3832 	char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3833 	char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
3834 	char buf_miscompare[1024 /* 2 * blocklen */];
3835 	char md_buf[16];
3836 	char md_buf_miscompare[16];
3837 	struct iovec compare_iov;
3838 	uint8_t expected_io_type;
3839 	int rc;
3840 
3841 	if (emulated) {
3842 		expected_io_type = SPDK_BDEV_IO_TYPE_READ;
3843 	} else {
3844 		expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
3845 	}
3846 
3847 	memset(buf, 0xaa, sizeof(buf));
3848 	memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
3849 	/* make last md different */
3850 	memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
3851 	memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
3852 	memset(md_buf, 0xaa, 16);
3853 	memset(md_buf_miscompare, 0xbb, 16);
3854 
3855 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
3856 
3857 	ut_init_bdev(NULL);
3858 	fn_table.submit_request = stub_submit_request_get_buf;
3859 	bdev = allocate_bdev("bdev");
3860 
3861 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
3862 	CU_ASSERT_EQUAL(rc, 0);
3863 	SPDK_CU_ASSERT_FATAL(desc != NULL);
3864 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
3865 	ioch = spdk_bdev_get_io_channel(desc);
3866 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
3867 
3868 	fn_table.submit_request = stub_submit_request_get_buf;
3869 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3870 
3871 	offset = 50;
3872 	num_blocks = 2;
3873 
3874 	/* interleaved md & data */
3875 	bdev->md_interleave = true;
3876 	bdev->md_len = 8;
3877 	bdev->blocklen = 512 + 8;
3878 	compare_iov.iov_base = buf;
3879 	compare_iov.iov_len = sizeof(buf);
3880 
3881 	/* 1. successful compare with md interleaved */
3882 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3883 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3884 
3885 	g_io_done = false;
3886 	g_compare_read_buf = buf;
3887 	g_compare_read_buf_len = sizeof(buf);
3888 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3889 	CU_ASSERT_EQUAL(rc, 0);
3890 	num_completed = stub_complete_io(1);
3891 	CU_ASSERT_EQUAL(num_completed, 1);
3892 	CU_ASSERT(g_io_done == true);
3893 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3894 
3895 	/* 2. miscompare with md interleaved */
3896 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3897 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3898 
3899 	g_io_done = false;
3900 	g_compare_read_buf = buf_interleaved_miscompare;
3901 	g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
3902 	rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
3903 	CU_ASSERT_EQUAL(rc, 0);
3904 	num_completed = stub_complete_io(1);
3905 	CU_ASSERT_EQUAL(num_completed, 1);
3906 	CU_ASSERT(g_io_done == true);
3907 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3908 
3909 	/* Separate data & md buffers */
3910 	bdev->md_interleave = false;
3911 	bdev->blocklen = 512;
3912 	compare_iov.iov_base = buf;
3913 	compare_iov.iov_len = 1024;
3914 
3915 	/* 3. successful compare with md separated */
3916 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3917 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3918 
3919 	g_io_done = false;
3920 	g_compare_read_buf = buf;
3921 	g_compare_read_buf_len = 1024;
3922 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
3923 	g_compare_md_buf = md_buf;
3924 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3925 					       offset, num_blocks, io_done, NULL);
3926 	CU_ASSERT_EQUAL(rc, 0);
3927 	num_completed = stub_complete_io(1);
3928 	CU_ASSERT_EQUAL(num_completed, 1);
3929 	CU_ASSERT(g_io_done == true);
3930 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
3931 
3932 	/* 4. miscompare with md separated where md buf is different */
3933 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3934 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3935 
3936 	g_io_done = false;
3937 	g_compare_read_buf = buf;
3938 	g_compare_read_buf_len = 1024;
3939 	g_compare_md_buf = md_buf_miscompare;
3940 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3941 					       offset, num_blocks, io_done, NULL);
3942 	CU_ASSERT_EQUAL(rc, 0);
3943 	num_completed = stub_complete_io(1);
3944 	CU_ASSERT_EQUAL(num_completed, 1);
3945 	CU_ASSERT(g_io_done == true);
3946 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3947 
3948 	/* 5. miscompare with md separated where buf is different */
3949 	expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
3950 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
3951 
3952 	g_io_done = false;
3953 	g_compare_read_buf = buf_miscompare;
3954 	g_compare_read_buf_len = sizeof(buf_miscompare);
3955 	g_compare_md_buf = md_buf;
3956 	rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
3957 					       offset, num_blocks, io_done, NULL);
3958 	CU_ASSERT_EQUAL(rc, 0);
3959 	num_completed = stub_complete_io(1);
3960 	CU_ASSERT_EQUAL(num_completed, 1);
3961 	CU_ASSERT(g_io_done == true);
3962 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
3963 
3964 	bdev->md_len = 0;
3965 	g_compare_md_buf = NULL;
3966 
3967 	spdk_put_io_channel(ioch);
3968 	spdk_bdev_close(desc);
3969 	free_bdev(bdev);
3970 	fn_table.submit_request = stub_submit_request;
3971 	ut_fini_bdev();
3972 
3973 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
3974 
3975 	g_compare_read_buf = NULL;
3976 }
3977 
3978 static void
3979 bdev_compare(void)
3980 {
3981 	_bdev_compare(false);
3982 	_bdev_compare_with_md(false);
3983 }
3984 
3985 static void
3986 bdev_compare_emulated(void)
3987 {
3988 	_bdev_compare(true);
3989 	_bdev_compare_with_md(true);
3990 }
3991 
3992 static void
3993 bdev_compare_and_write(void)
3994 {
3995 	struct spdk_bdev *bdev;
3996 	struct spdk_bdev_desc *desc = NULL;
3997 	struct spdk_io_channel *ioch;
3998 	struct ut_expected_io *expected_io;
3999 	uint64_t offset, num_blocks;
4000 	uint32_t num_completed;
4001 	char aa_buf[512];
4002 	char bb_buf[512];
4003 	char cc_buf[512];
4004 	char write_buf[512];
4005 	struct iovec compare_iov;
4006 	struct iovec write_iov;
4007 	int rc;
4008 
4009 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4010 	memset(bb_buf, 0xbb, sizeof(bb_buf));
4011 	memset(cc_buf, 0xcc, sizeof(cc_buf));
4012 
4013 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
4014 
4015 	ut_init_bdev(NULL);
4016 	fn_table.submit_request = stub_submit_request_get_buf;
4017 	bdev = allocate_bdev("bdev");
4018 
4019 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4020 	CU_ASSERT_EQUAL(rc, 0);
4021 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4022 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4023 	ioch = spdk_bdev_get_io_channel(desc);
4024 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4025 
4026 	fn_table.submit_request = stub_submit_request_get_buf;
4027 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4028 
4029 	offset = 50;
4030 	num_blocks = 1;
4031 	compare_iov.iov_base = aa_buf;
4032 	compare_iov.iov_len = sizeof(aa_buf);
4033 	write_iov.iov_base = bb_buf;
4034 	write_iov.iov_len = sizeof(bb_buf);
4035 
4036 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
4037 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4038 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
4039 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4040 
4041 	g_io_done = false;
4042 	g_compare_read_buf = aa_buf;
4043 	g_compare_read_buf_len = sizeof(aa_buf);
4044 	memset(write_buf, 0, sizeof(write_buf));
4045 	g_compare_write_buf = write_buf;
4046 	g_compare_write_buf_len = sizeof(write_buf);
4047 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
4048 			offset, num_blocks, io_done, NULL);
4049 	/* Trigger range locking */
4050 	poll_threads();
4051 	CU_ASSERT_EQUAL(rc, 0);
4052 	num_completed = stub_complete_io(1);
4053 	CU_ASSERT_EQUAL(num_completed, 1);
4054 	CU_ASSERT(g_io_done == false);
4055 	num_completed = stub_complete_io(1);
4056 	/* Trigger range unlocking */
4057 	poll_threads();
4058 	CU_ASSERT_EQUAL(num_completed, 1);
4059 	CU_ASSERT(g_io_done == true);
4060 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4061 	CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
4062 
4063 	/* Test miscompare */
4064 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
4065 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4066 
4067 	g_io_done = false;
4068 	g_compare_read_buf = cc_buf;
4069 	g_compare_read_buf_len = sizeof(cc_buf);
4070 	memset(write_buf, 0, sizeof(write_buf));
4071 	g_compare_write_buf = write_buf;
4072 	g_compare_write_buf_len = sizeof(write_buf);
4073 	rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
4074 			offset, num_blocks, io_done, NULL);
4075 	/* Trigger range locking */
4076 	poll_threads();
4077 	CU_ASSERT_EQUAL(rc, 0);
4078 	num_completed = stub_complete_io(1);
4079 	/* Trigger range unlocking earlier because we expect error here */
4080 	poll_threads();
4081 	CU_ASSERT_EQUAL(num_completed, 1);
4082 	CU_ASSERT(g_io_done == true);
4083 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
4084 	num_completed = stub_complete_io(1);
4085 	CU_ASSERT_EQUAL(num_completed, 0);
4086 
4087 	spdk_put_io_channel(ioch);
4088 	spdk_bdev_close(desc);
4089 	free_bdev(bdev);
4090 	fn_table.submit_request = stub_submit_request;
4091 	ut_fini_bdev();
4092 
4093 	g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
4094 
4095 	g_compare_read_buf = NULL;
4096 	g_compare_write_buf = NULL;
4097 }
4098 
4099 static void
4100 bdev_write_zeroes(void)
4101 {
4102 	struct spdk_bdev *bdev;
4103 	struct spdk_bdev_desc *desc = NULL;
4104 	struct spdk_io_channel *ioch;
4105 	struct ut_expected_io *expected_io;
4106 	uint64_t offset, num_io_blocks, num_blocks;
4107 	uint32_t num_completed, num_requests;
4108 	int rc;
4109 
4110 	ut_init_bdev(NULL);
4111 	bdev = allocate_bdev("bdev");
4112 
4113 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4114 	CU_ASSERT_EQUAL(rc, 0);
4115 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4116 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4117 	ioch = spdk_bdev_get_io_channel(desc);
4118 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4119 
4120 	fn_table.submit_request = stub_submit_request;
4121 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4122 
4123 	/* First test that if the bdev supports write_zeroes, the request won't be split */
4124 	bdev->md_len = 0;
4125 	bdev->blocklen = 4096;
4126 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
4127 
4128 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
4129 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4130 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4131 	CU_ASSERT_EQUAL(rc, 0);
4132 	num_completed = stub_complete_io(1);
4133 	CU_ASSERT_EQUAL(num_completed, 1);
4134 
4135 	/* Check that if write zeroes is not supported it'll be replaced by regular writes */
4136 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
4137 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4138 	num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
4139 	num_requests = 2;
4140 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
4141 
4142 	for (offset = 0; offset < num_requests; ++offset) {
4143 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4144 						   offset * num_io_blocks, num_io_blocks, 0);
4145 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4146 	}
4147 
4148 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4149 	CU_ASSERT_EQUAL(rc, 0);
4150 	num_completed = stub_complete_io(num_requests);
4151 	CU_ASSERT_EQUAL(num_completed, num_requests);
4152 
4153 	/* Check that the splitting is correct if bdev has interleaved metadata */
4154 	bdev->md_interleave = true;
4155 	bdev->md_len = 64;
4156 	bdev->blocklen = 4096 + 64;
4157 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4158 	num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
4159 
4160 	num_requests = offset = 0;
4161 	while (offset < num_blocks) {
4162 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
4163 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4164 						   offset, num_io_blocks, 0);
4165 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4166 		offset += num_io_blocks;
4167 		num_requests++;
4168 	}
4169 
4170 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4171 	CU_ASSERT_EQUAL(rc, 0);
4172 	num_completed = stub_complete_io(num_requests);
4173 	CU_ASSERT_EQUAL(num_completed, num_requests);
4174 	num_completed = stub_complete_io(num_requests);
4175 	assert(num_completed == 0);
4176 
4177 	/* Check the the same for separate metadata buffer */
4178 	bdev->md_interleave = false;
4179 	bdev->md_len = 64;
4180 	bdev->blocklen = 4096;
4181 	bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
4182 
4183 	num_requests = offset = 0;
4184 	while (offset < num_blocks) {
4185 		num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
4186 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
4187 						   offset, num_io_blocks, 0);
4188 		expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
4189 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4190 		offset += num_io_blocks;
4191 		num_requests++;
4192 	}
4193 
4194 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
4195 	CU_ASSERT_EQUAL(rc, 0);
4196 	num_completed = stub_complete_io(num_requests);
4197 	CU_ASSERT_EQUAL(num_completed, num_requests);
4198 
4199 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
4200 	spdk_put_io_channel(ioch);
4201 	spdk_bdev_close(desc);
4202 	free_bdev(bdev);
4203 	ut_fini_bdev();
4204 }
4205 
4206 static void
4207 bdev_zcopy_write(void)
4208 {
4209 	struct spdk_bdev *bdev;
4210 	struct spdk_bdev_desc *desc = NULL;
4211 	struct spdk_io_channel *ioch;
4212 	struct ut_expected_io *expected_io;
4213 	uint64_t offset, num_blocks;
4214 	uint32_t num_completed;
4215 	char aa_buf[512];
4216 	struct iovec iov;
4217 	int rc;
4218 	const bool populate = false;
4219 	const bool commit = true;
4220 
4221 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4222 
4223 	ut_init_bdev(NULL);
4224 	bdev = allocate_bdev("bdev");
4225 
4226 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4227 	CU_ASSERT_EQUAL(rc, 0);
4228 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4229 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4230 	ioch = spdk_bdev_get_io_channel(desc);
4231 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4232 
4233 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4234 
4235 	offset = 50;
4236 	num_blocks = 1;
4237 	iov.iov_base = NULL;
4238 	iov.iov_len = 0;
4239 
4240 	g_zcopy_read_buf = (void *) 0x1122334455667788UL;
4241 	g_zcopy_read_buf_len = (uint32_t) -1;
4242 	/* Do a zcopy start for a write (populate=false) */
4243 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4244 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4245 	g_io_done = false;
4246 	g_zcopy_write_buf = aa_buf;
4247 	g_zcopy_write_buf_len = sizeof(aa_buf);
4248 	g_zcopy_bdev_io = NULL;
4249 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4250 	CU_ASSERT_EQUAL(rc, 0);
4251 	num_completed = stub_complete_io(1);
4252 	CU_ASSERT_EQUAL(num_completed, 1);
4253 	CU_ASSERT(g_io_done == true);
4254 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4255 	/* Check that the iov has been set up */
4256 	CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
4257 	CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
4258 	/* Check that the bdev_io has been saved */
4259 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4260 	/* Now do the zcopy end for a write (commit=true) */
4261 	g_io_done = false;
4262 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4263 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4264 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4265 	CU_ASSERT_EQUAL(rc, 0);
4266 	num_completed = stub_complete_io(1);
4267 	CU_ASSERT_EQUAL(num_completed, 1);
4268 	CU_ASSERT(g_io_done == true);
4269 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4270 	/* Check the g_zcopy are reset by io_done */
4271 	CU_ASSERT(g_zcopy_write_buf == NULL);
4272 	CU_ASSERT(g_zcopy_write_buf_len == 0);
4273 	/* Check that io_done has freed the g_zcopy_bdev_io */
4274 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4275 
4276 	/* Check the zcopy read buffer has not been touched which
4277 	 * ensures that the correct buffers were used.
4278 	 */
4279 	CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
4280 	CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
4281 
4282 	spdk_put_io_channel(ioch);
4283 	spdk_bdev_close(desc);
4284 	free_bdev(bdev);
4285 	ut_fini_bdev();
4286 }
4287 
4288 static void
4289 bdev_zcopy_read(void)
4290 {
4291 	struct spdk_bdev *bdev;
4292 	struct spdk_bdev_desc *desc = NULL;
4293 	struct spdk_io_channel *ioch;
4294 	struct ut_expected_io *expected_io;
4295 	uint64_t offset, num_blocks;
4296 	uint32_t num_completed;
4297 	char aa_buf[512];
4298 	struct iovec iov;
4299 	int rc;
4300 	const bool populate = true;
4301 	const bool commit = false;
4302 
4303 	memset(aa_buf, 0xaa, sizeof(aa_buf));
4304 
4305 	ut_init_bdev(NULL);
4306 	bdev = allocate_bdev("bdev");
4307 
4308 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
4309 	CU_ASSERT_EQUAL(rc, 0);
4310 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4311 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4312 	ioch = spdk_bdev_get_io_channel(desc);
4313 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
4314 
4315 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
4316 
4317 	offset = 50;
4318 	num_blocks = 1;
4319 	iov.iov_base = NULL;
4320 	iov.iov_len = 0;
4321 
4322 	g_zcopy_write_buf = (void *) 0x1122334455667788UL;
4323 	g_zcopy_write_buf_len = (uint32_t) -1;
4324 
4325 	/* Do a zcopy start for a read (populate=true) */
4326 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4327 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4328 	g_io_done = false;
4329 	g_zcopy_read_buf = aa_buf;
4330 	g_zcopy_read_buf_len = sizeof(aa_buf);
4331 	g_zcopy_bdev_io = NULL;
4332 	rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
4333 	CU_ASSERT_EQUAL(rc, 0);
4334 	num_completed = stub_complete_io(1);
4335 	CU_ASSERT_EQUAL(num_completed, 1);
4336 	CU_ASSERT(g_io_done == true);
4337 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4338 	/* Check that the iov has been set up */
4339 	CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
4340 	CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
4341 	/* Check that the bdev_io has been saved */
4342 	CU_ASSERT(g_zcopy_bdev_io != NULL);
4343 
4344 	/* Now do the zcopy end for a read (commit=false) */
4345 	g_io_done = false;
4346 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
4347 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
4348 	rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
4349 	CU_ASSERT_EQUAL(rc, 0);
4350 	num_completed = stub_complete_io(1);
4351 	CU_ASSERT_EQUAL(num_completed, 1);
4352 	CU_ASSERT(g_io_done == true);
4353 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
4354 	/* Check the g_zcopy are reset by io_done */
4355 	CU_ASSERT(g_zcopy_read_buf == NULL);
4356 	CU_ASSERT(g_zcopy_read_buf_len == 0);
4357 	/* Check that io_done has freed the g_zcopy_bdev_io */
4358 	CU_ASSERT(g_zcopy_bdev_io == NULL);
4359 
4360 	/* Check the zcopy write buffer has not been touched which
4361 	 * ensures that the correct buffers were used.
4362 	 */
4363 	CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
4364 	CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
4365 
4366 	spdk_put_io_channel(ioch);
4367 	spdk_bdev_close(desc);
4368 	free_bdev(bdev);
4369 	ut_fini_bdev();
4370 }
4371 
4372 static void
4373 bdev_open_while_hotremove(void)
4374 {
4375 	struct spdk_bdev *bdev;
4376 	struct spdk_bdev_desc *desc[2] = {};
4377 	int rc;
4378 
4379 	bdev = allocate_bdev("bdev");
4380 
4381 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
4382 	CU_ASSERT(rc == 0);
4383 	SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
4384 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
4385 
4386 	spdk_bdev_unregister(bdev, NULL, NULL);
4387 	/* Bdev unregister is handled asynchronously. Poll thread to complete. */
4388 	poll_threads();
4389 
4390 	rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
4391 	CU_ASSERT(rc == -ENODEV);
4392 	SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
4393 
4394 	spdk_bdev_close(desc[0]);
4395 	free_bdev(bdev);
4396 }
4397 
4398 static void
4399 bdev_close_while_hotremove(void)
4400 {
4401 	struct spdk_bdev *bdev;
4402 	struct spdk_bdev_desc *desc = NULL;
4403 	int rc = 0;
4404 
4405 	bdev = allocate_bdev("bdev");
4406 
4407 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
4408 	CU_ASSERT_EQUAL(rc, 0);
4409 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4410 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4411 
4412 	/* Simulate hot-unplug by unregistering bdev */
4413 	g_event_type1 = 0xFF;
4414 	g_unregister_arg = NULL;
4415 	g_unregister_rc = -1;
4416 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4417 	/* Close device while remove event is in flight */
4418 	spdk_bdev_close(desc);
4419 
4420 	/* Ensure that unregister callback is delayed */
4421 	CU_ASSERT_EQUAL(g_unregister_arg, NULL);
4422 	CU_ASSERT_EQUAL(g_unregister_rc, -1);
4423 
4424 	poll_threads();
4425 
4426 	/* Event callback shall not be issued because device was closed */
4427 	CU_ASSERT_EQUAL(g_event_type1, 0xFF);
4428 	/* Unregister callback is issued */
4429 	CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
4430 	CU_ASSERT_EQUAL(g_unregister_rc, 0);
4431 
4432 	free_bdev(bdev);
4433 }
4434 
4435 static void
4436 bdev_open_ext_test(void)
4437 {
4438 	struct spdk_bdev *bdev;
4439 	struct spdk_bdev_desc *desc1 = NULL;
4440 	struct spdk_bdev_desc *desc2 = NULL;
4441 	int rc = 0;
4442 
4443 	bdev = allocate_bdev("bdev");
4444 
4445 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4446 	CU_ASSERT_EQUAL(rc, -EINVAL);
4447 
4448 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4449 	CU_ASSERT_EQUAL(rc, 0);
4450 
4451 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4452 	CU_ASSERT_EQUAL(rc, 0);
4453 
4454 	g_event_type1 = 0xFF;
4455 	g_event_type2 = 0xFF;
4456 
4457 	/* Simulate hot-unplug by unregistering bdev */
4458 	spdk_bdev_unregister(bdev, NULL, NULL);
4459 	poll_threads();
4460 
4461 	/* Check if correct events have been triggered in event callback fn */
4462 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4463 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4464 
4465 	free_bdev(bdev);
4466 	poll_threads();
4467 }
4468 
4469 static void
4470 bdev_open_ext_unregister(void)
4471 {
4472 	struct spdk_bdev *bdev;
4473 	struct spdk_bdev_desc *desc1 = NULL;
4474 	struct spdk_bdev_desc *desc2 = NULL;
4475 	struct spdk_bdev_desc *desc3 = NULL;
4476 	struct spdk_bdev_desc *desc4 = NULL;
4477 	int rc = 0;
4478 
4479 	bdev = allocate_bdev("bdev");
4480 
4481 	rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
4482 	CU_ASSERT_EQUAL(rc, -EINVAL);
4483 
4484 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
4485 	CU_ASSERT_EQUAL(rc, 0);
4486 
4487 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
4488 	CU_ASSERT_EQUAL(rc, 0);
4489 
4490 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
4491 	CU_ASSERT_EQUAL(rc, 0);
4492 
4493 	rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
4494 	CU_ASSERT_EQUAL(rc, 0);
4495 
4496 	g_event_type1 = 0xFF;
4497 	g_event_type2 = 0xFF;
4498 	g_event_type3 = 0xFF;
4499 	g_event_type4 = 0xFF;
4500 
4501 	g_unregister_arg = NULL;
4502 	g_unregister_rc = -1;
4503 
4504 	/* Simulate hot-unplug by unregistering bdev */
4505 	spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
4506 
4507 	/*
4508 	 * Unregister is handled asynchronously and event callback
4509 	 * (i.e., above bdev_open_cbN) will be called.
4510 	 * For bdev_open_cb3 and bdev_open_cb4, it is intended to not
4511 	 * close the desc3 and desc4 so that the bdev is not closed.
4512 	 */
4513 	poll_threads();
4514 
4515 	/* Check if correct events have been triggered in event callback fn */
4516 	CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
4517 	CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
4518 	CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
4519 	CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
4520 
4521 	/* Check that unregister callback is delayed */
4522 	CU_ASSERT(g_unregister_arg == NULL);
4523 	CU_ASSERT(g_unregister_rc == -1);
4524 
4525 	/*
4526 	 * Explicitly close desc3. As desc4 is still opened there, the
4527 	 * unergister callback is still delayed to execute.
4528 	 */
4529 	spdk_bdev_close(desc3);
4530 	CU_ASSERT(g_unregister_arg == NULL);
4531 	CU_ASSERT(g_unregister_rc == -1);
4532 
4533 	/*
4534 	 * Explicitly close desc4 to trigger the ongoing bdev unregister
4535 	 * operation after last desc is closed.
4536 	 */
4537 	spdk_bdev_close(desc4);
4538 
4539 	/* Poll the thread for the async unregister operation */
4540 	poll_threads();
4541 
4542 	/* Check that unregister callback is executed */
4543 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
4544 	CU_ASSERT(g_unregister_rc == 0);
4545 
4546 	free_bdev(bdev);
4547 	poll_threads();
4548 }
4549 
4550 struct timeout_io_cb_arg {
4551 	struct iovec iov;
4552 	uint8_t type;
4553 };
4554 
4555 static int
4556 bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
4557 {
4558 	struct spdk_bdev_io *bdev_io;
4559 	int n = 0;
4560 
4561 	if (!ch) {
4562 		return -1;
4563 	}
4564 
4565 	TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
4566 		n++;
4567 	}
4568 
4569 	return n;
4570 }
4571 
4572 static void
4573 bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
4574 {
4575 	struct timeout_io_cb_arg *ctx = cb_arg;
4576 
4577 	ctx->type = bdev_io->type;
4578 	ctx->iov.iov_base = bdev_io->iov.iov_base;
4579 	ctx->iov.iov_len = bdev_io->iov.iov_len;
4580 }
4581 
4582 static void
4583 bdev_set_io_timeout(void)
4584 {
4585 	struct spdk_bdev *bdev;
4586 	struct spdk_bdev_desc *desc = NULL;
4587 	struct spdk_io_channel *io_ch = NULL;
4588 	struct spdk_bdev_channel *bdev_ch = NULL;
4589 	struct timeout_io_cb_arg cb_arg;
4590 
4591 	ut_init_bdev(NULL);
4592 	bdev = allocate_bdev("bdev");
4593 
4594 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4595 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4596 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4597 
4598 	io_ch = spdk_bdev_get_io_channel(desc);
4599 	CU_ASSERT(io_ch != NULL);
4600 
4601 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4602 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4603 
4604 	/* This is the part1.
4605 	 * We will check the bdev_ch->io_submitted list
4606 	 * TO make sure that it can link IOs and only the user submitted IOs
4607 	 */
4608 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4609 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4610 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4611 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4612 	stub_complete_io(1);
4613 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4614 	stub_complete_io(1);
4615 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4616 
4617 	/* Split IO */
4618 	bdev->optimal_io_boundary = 16;
4619 	bdev->split_on_optimal_io_boundary = true;
4620 
4621 	/* Now test that a single-vector command is split correctly.
4622 	 * Offset 14, length 8, payload 0xF000
4623 	 *  Child - Offset 14, length 2, payload 0xF000
4624 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
4625 	 *
4626 	 * Set up the expected values before calling spdk_bdev_read_blocks
4627 	 */
4628 	CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4629 	/* We count all submitted IOs including IO that are generated by splitting. */
4630 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
4631 	stub_complete_io(1);
4632 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4633 	stub_complete_io(1);
4634 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4635 
4636 	/* Also include the reset IO */
4637 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4638 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4639 	poll_threads();
4640 	stub_complete_io(1);
4641 	poll_threads();
4642 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4643 
4644 	/* This is part2
4645 	 * Test the desc timeout poller register
4646 	 */
4647 
4648 	/* Successfully set the timeout */
4649 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4650 	CU_ASSERT(desc->io_timeout_poller != NULL);
4651 	CU_ASSERT(desc->timeout_in_sec == 30);
4652 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4653 	CU_ASSERT(desc->cb_arg == &cb_arg);
4654 
4655 	/* Change the timeout limit */
4656 	CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4657 	CU_ASSERT(desc->io_timeout_poller != NULL);
4658 	CU_ASSERT(desc->timeout_in_sec == 20);
4659 	CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
4660 	CU_ASSERT(desc->cb_arg == &cb_arg);
4661 
4662 	/* Disable the timeout */
4663 	CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
4664 	CU_ASSERT(desc->io_timeout_poller == NULL);
4665 
4666 	/* This the part3
4667 	 * We will test to catch timeout IO and check whether the IO is
4668 	 * the submitted one.
4669 	 */
4670 	memset(&cb_arg, 0, sizeof(cb_arg));
4671 	CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
4672 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
4673 
4674 	/* Don't reach the limit */
4675 	spdk_delay_us(15 * spdk_get_ticks_hz());
4676 	poll_threads();
4677 	CU_ASSERT(cb_arg.type == 0);
4678 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4679 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4680 
4681 	/* 15 + 15 = 30 reach the limit */
4682 	spdk_delay_us(15 * spdk_get_ticks_hz());
4683 	poll_threads();
4684 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4685 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
4686 	CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
4687 	stub_complete_io(1);
4688 
4689 	/* Use the same split IO above and check the IO */
4690 	memset(&cb_arg, 0, sizeof(cb_arg));
4691 	CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
4692 
4693 	/* The first child complete in time */
4694 	spdk_delay_us(15 * spdk_get_ticks_hz());
4695 	poll_threads();
4696 	stub_complete_io(1);
4697 	CU_ASSERT(cb_arg.type == 0);
4698 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
4699 	CU_ASSERT(cb_arg.iov.iov_len == 0);
4700 
4701 	/* The second child reach the limit */
4702 	spdk_delay_us(15 * spdk_get_ticks_hz());
4703 	poll_threads();
4704 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
4705 	CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
4706 	CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
4707 	stub_complete_io(1);
4708 
4709 	/* Also include the reset IO */
4710 	memset(&cb_arg, 0, sizeof(cb_arg));
4711 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4712 	spdk_delay_us(30 * spdk_get_ticks_hz());
4713 	poll_threads();
4714 	CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
4715 	stub_complete_io(1);
4716 	poll_threads();
4717 
4718 	spdk_put_io_channel(io_ch);
4719 	spdk_bdev_close(desc);
4720 	free_bdev(bdev);
4721 	ut_fini_bdev();
4722 }
4723 
4724 static void
4725 bdev_set_qd_sampling(void)
4726 {
4727 	struct spdk_bdev *bdev;
4728 	struct spdk_bdev_desc *desc = NULL;
4729 	struct spdk_io_channel *io_ch = NULL;
4730 	struct spdk_bdev_channel *bdev_ch = NULL;
4731 	struct timeout_io_cb_arg cb_arg;
4732 
4733 	ut_init_bdev(NULL);
4734 	bdev = allocate_bdev("bdev");
4735 
4736 	CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
4737 	SPDK_CU_ASSERT_FATAL(desc != NULL);
4738 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4739 
4740 	io_ch = spdk_bdev_get_io_channel(desc);
4741 	CU_ASSERT(io_ch != NULL);
4742 
4743 	bdev_ch = spdk_io_channel_get_ctx(io_ch);
4744 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
4745 
4746 	/* This is the part1.
4747 	 * We will check the bdev_ch->io_submitted list
4748 	 * TO make sure that it can link IOs and only the user submitted IOs
4749 	 */
4750 	CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
4751 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4752 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4753 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
4754 	stub_complete_io(1);
4755 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4756 	stub_complete_io(1);
4757 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
4758 
4759 	/* This is the part2.
4760 	 * Test the bdev's qd poller register
4761 	 */
4762 	/* 1st Successfully set the qd sampling period */
4763 	spdk_bdev_set_qd_sampling_period(bdev, 10);
4764 	CU_ASSERT(bdev->internal.new_period == 10);
4765 	CU_ASSERT(bdev->internal.period == 10);
4766 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4767 	poll_threads();
4768 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4769 
4770 	/* 2nd Change the qd sampling period */
4771 	spdk_bdev_set_qd_sampling_period(bdev, 20);
4772 	CU_ASSERT(bdev->internal.new_period == 20);
4773 	CU_ASSERT(bdev->internal.period == 10);
4774 	CU_ASSERT(bdev->internal.qd_desc != NULL);
4775 	poll_threads();
4776 	CU_ASSERT(bdev->internal.qd_poller != NULL);
4777 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4778 
4779 	/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
4780 	spdk_delay_us(20);
4781 	poll_thread_times(0, 1);
4782 	CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
4783 	spdk_bdev_set_qd_sampling_period(bdev, 30);
4784 	CU_ASSERT(bdev->internal.new_period == 30);
4785 	CU_ASSERT(bdev->internal.period == 20);
4786 	poll_threads();
4787 	CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
4788 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4789 
4790 	/* 4th Disable the qd sampling period */
4791 	spdk_bdev_set_qd_sampling_period(bdev, 0);
4792 	CU_ASSERT(bdev->internal.new_period == 0);
4793 	CU_ASSERT(bdev->internal.period == 30);
4794 	poll_threads();
4795 	CU_ASSERT(bdev->internal.qd_poller == NULL);
4796 	CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
4797 	CU_ASSERT(bdev->internal.qd_desc == NULL);
4798 
4799 	/* This is the part3.
4800 	 * We will test the submitted IO and reset works
4801 	 * properly with the qd sampling.
4802 	 */
4803 	memset(&cb_arg, 0, sizeof(cb_arg));
4804 	spdk_bdev_set_qd_sampling_period(bdev, 1);
4805 	poll_threads();
4806 
4807 	CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
4808 	CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
4809 
4810 	/* Also include the reset IO */
4811 	memset(&cb_arg, 0, sizeof(cb_arg));
4812 	CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
4813 	poll_threads();
4814 
4815 	/* Close the desc */
4816 	spdk_put_io_channel(io_ch);
4817 	spdk_bdev_close(desc);
4818 
4819 	/* Complete the submitted IO and reset */
4820 	stub_complete_io(2);
4821 	poll_threads();
4822 
4823 	free_bdev(bdev);
4824 	ut_fini_bdev();
4825 }
4826 
4827 static void
4828 lba_range_overlap(void)
4829 {
4830 	struct lba_range r1, r2;
4831 
4832 	r1.offset = 100;
4833 	r1.length = 50;
4834 
4835 	r2.offset = 0;
4836 	r2.length = 1;
4837 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4838 
4839 	r2.offset = 0;
4840 	r2.length = 100;
4841 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4842 
4843 	r2.offset = 0;
4844 	r2.length = 110;
4845 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4846 
4847 	r2.offset = 100;
4848 	r2.length = 10;
4849 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4850 
4851 	r2.offset = 110;
4852 	r2.length = 20;
4853 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4854 
4855 	r2.offset = 140;
4856 	r2.length = 150;
4857 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4858 
4859 	r2.offset = 130;
4860 	r2.length = 200;
4861 	CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
4862 
4863 	r2.offset = 150;
4864 	r2.length = 100;
4865 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4866 
4867 	r2.offset = 110;
4868 	r2.length = 0;
4869 	CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
4870 }
4871 
4872 static bool g_lock_lba_range_done;
4873 static bool g_unlock_lba_range_done;
4874 
4875 static void
4876 lock_lba_range_done(struct lba_range *range, void *ctx, int status)
4877 {
4878 	g_lock_lba_range_done = true;
4879 }
4880 
4881 static void
4882 unlock_lba_range_done(struct lba_range *range, void *ctx, int status)
4883 {
4884 	g_unlock_lba_range_done = true;
4885 }
4886 
4887 static void
4888 lock_lba_range_check_ranges(void)
4889 {
4890 	struct spdk_bdev *bdev;
4891 	struct spdk_bdev_desc *desc = NULL;
4892 	struct spdk_io_channel *io_ch;
4893 	struct spdk_bdev_channel *channel;
4894 	struct lba_range *range;
4895 	int ctx1;
4896 	int rc;
4897 
4898 	ut_init_bdev(NULL);
4899 	bdev = allocate_bdev("bdev0");
4900 
4901 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4902 	CU_ASSERT(rc == 0);
4903 	CU_ASSERT(desc != NULL);
4904 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4905 	io_ch = spdk_bdev_get_io_channel(desc);
4906 	CU_ASSERT(io_ch != NULL);
4907 	channel = spdk_io_channel_get_ctx(io_ch);
4908 
4909 	g_lock_lba_range_done = false;
4910 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4911 	CU_ASSERT(rc == 0);
4912 	poll_threads();
4913 
4914 	CU_ASSERT(g_lock_lba_range_done == true);
4915 	range = TAILQ_FIRST(&channel->locked_ranges);
4916 	SPDK_CU_ASSERT_FATAL(range != NULL);
4917 	CU_ASSERT(range->offset == 20);
4918 	CU_ASSERT(range->length == 10);
4919 	CU_ASSERT(range->owner_ch == channel);
4920 
4921 	/* Unlocks must exactly match a lock. */
4922 	g_unlock_lba_range_done = false;
4923 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
4924 	CU_ASSERT(rc == -EINVAL);
4925 	CU_ASSERT(g_unlock_lba_range_done == false);
4926 
4927 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
4928 	CU_ASSERT(rc == 0);
4929 	spdk_delay_us(100);
4930 	poll_threads();
4931 
4932 	CU_ASSERT(g_unlock_lba_range_done == true);
4933 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4934 
4935 	spdk_put_io_channel(io_ch);
4936 	spdk_bdev_close(desc);
4937 	free_bdev(bdev);
4938 	ut_fini_bdev();
4939 }
4940 
4941 static void
4942 lock_lba_range_with_io_outstanding(void)
4943 {
4944 	struct spdk_bdev *bdev;
4945 	struct spdk_bdev_desc *desc = NULL;
4946 	struct spdk_io_channel *io_ch;
4947 	struct spdk_bdev_channel *channel;
4948 	struct lba_range *range;
4949 	char buf[4096];
4950 	int ctx1;
4951 	int rc;
4952 
4953 	ut_init_bdev(NULL);
4954 	bdev = allocate_bdev("bdev0");
4955 
4956 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
4957 	CU_ASSERT(rc == 0);
4958 	CU_ASSERT(desc != NULL);
4959 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
4960 	io_ch = spdk_bdev_get_io_channel(desc);
4961 	CU_ASSERT(io_ch != NULL);
4962 	channel = spdk_io_channel_get_ctx(io_ch);
4963 
4964 	g_io_done = false;
4965 	rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4966 	CU_ASSERT(rc == 0);
4967 
4968 	g_lock_lba_range_done = false;
4969 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4970 	CU_ASSERT(rc == 0);
4971 	poll_threads();
4972 
4973 	/* The lock should immediately become valid, since there are no outstanding
4974 	 * write I/O.
4975 	 */
4976 	CU_ASSERT(g_io_done == false);
4977 	CU_ASSERT(g_lock_lba_range_done == true);
4978 	range = TAILQ_FIRST(&channel->locked_ranges);
4979 	SPDK_CU_ASSERT_FATAL(range != NULL);
4980 	CU_ASSERT(range->offset == 20);
4981 	CU_ASSERT(range->length == 10);
4982 	CU_ASSERT(range->owner_ch == channel);
4983 	CU_ASSERT(range->locked_ctx == &ctx1);
4984 
4985 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
4986 	CU_ASSERT(rc == 0);
4987 	stub_complete_io(1);
4988 	spdk_delay_us(100);
4989 	poll_threads();
4990 
4991 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
4992 
4993 	/* Now try again, but with a write I/O. */
4994 	g_io_done = false;
4995 	rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
4996 	CU_ASSERT(rc == 0);
4997 
4998 	g_lock_lba_range_done = false;
4999 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
5000 	CU_ASSERT(rc == 0);
5001 	poll_threads();
5002 
5003 	/* The lock should not be fully valid yet, since a write I/O is outstanding.
5004 	 * But note that the range should be on the channel's locked_list, to make sure no
5005 	 * new write I/O are started.
5006 	 */
5007 	CU_ASSERT(g_io_done == false);
5008 	CU_ASSERT(g_lock_lba_range_done == false);
5009 	range = TAILQ_FIRST(&channel->locked_ranges);
5010 	SPDK_CU_ASSERT_FATAL(range != NULL);
5011 	CU_ASSERT(range->offset == 20);
5012 	CU_ASSERT(range->length == 10);
5013 
5014 	/* Complete the write I/O.  This should make the lock valid (checked by confirming
5015 	 * our callback was invoked).
5016 	 */
5017 	stub_complete_io(1);
5018 	spdk_delay_us(100);
5019 	poll_threads();
5020 	CU_ASSERT(g_io_done == true);
5021 	CU_ASSERT(g_lock_lba_range_done == true);
5022 
5023 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
5024 	CU_ASSERT(rc == 0);
5025 	poll_threads();
5026 
5027 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5028 
5029 	spdk_put_io_channel(io_ch);
5030 	spdk_bdev_close(desc);
5031 	free_bdev(bdev);
5032 	ut_fini_bdev();
5033 }
5034 
5035 static void
5036 lock_lba_range_overlapped(void)
5037 {
5038 	struct spdk_bdev *bdev;
5039 	struct spdk_bdev_desc *desc = NULL;
5040 	struct spdk_io_channel *io_ch;
5041 	struct spdk_bdev_channel *channel;
5042 	struct lba_range *range;
5043 	int ctx1;
5044 	int rc;
5045 
5046 	ut_init_bdev(NULL);
5047 	bdev = allocate_bdev("bdev0");
5048 
5049 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5050 	CU_ASSERT(rc == 0);
5051 	CU_ASSERT(desc != NULL);
5052 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5053 	io_ch = spdk_bdev_get_io_channel(desc);
5054 	CU_ASSERT(io_ch != NULL);
5055 	channel = spdk_io_channel_get_ctx(io_ch);
5056 
5057 	/* Lock range 20-29. */
5058 	g_lock_lba_range_done = false;
5059 	rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
5060 	CU_ASSERT(rc == 0);
5061 	poll_threads();
5062 
5063 	CU_ASSERT(g_lock_lba_range_done == true);
5064 	range = TAILQ_FIRST(&channel->locked_ranges);
5065 	SPDK_CU_ASSERT_FATAL(range != NULL);
5066 	CU_ASSERT(range->offset == 20);
5067 	CU_ASSERT(range->length == 10);
5068 
5069 	/* Try to lock range 25-39.  It should not lock immediately, since it overlaps with
5070 	 * 20-29.
5071 	 */
5072 	g_lock_lba_range_done = false;
5073 	rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
5074 	CU_ASSERT(rc == 0);
5075 	poll_threads();
5076 
5077 	CU_ASSERT(g_lock_lba_range_done == false);
5078 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
5079 	SPDK_CU_ASSERT_FATAL(range != NULL);
5080 	CU_ASSERT(range->offset == 25);
5081 	CU_ASSERT(range->length == 15);
5082 
5083 	/* Unlock 20-29.  This should result in range 25-39 now getting locked since it
5084 	 * no longer overlaps with an active lock.
5085 	 */
5086 	g_unlock_lba_range_done = false;
5087 	rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
5088 	CU_ASSERT(rc == 0);
5089 	poll_threads();
5090 
5091 	CU_ASSERT(g_unlock_lba_range_done == true);
5092 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
5093 	range = TAILQ_FIRST(&channel->locked_ranges);
5094 	SPDK_CU_ASSERT_FATAL(range != NULL);
5095 	CU_ASSERT(range->offset == 25);
5096 	CU_ASSERT(range->length == 15);
5097 
5098 	/* Lock 40-59.  This should immediately lock since it does not overlap with the
5099 	 * currently active 25-39 lock.
5100 	 */
5101 	g_lock_lba_range_done = false;
5102 	rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
5103 	CU_ASSERT(rc == 0);
5104 	poll_threads();
5105 
5106 	CU_ASSERT(g_lock_lba_range_done == true);
5107 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
5108 	SPDK_CU_ASSERT_FATAL(range != NULL);
5109 	range = TAILQ_NEXT(range, tailq);
5110 	SPDK_CU_ASSERT_FATAL(range != NULL);
5111 	CU_ASSERT(range->offset == 40);
5112 	CU_ASSERT(range->length == 20);
5113 
5114 	/* Try to lock 35-44.  Note that this overlaps with both 25-39 and 40-59. */
5115 	g_lock_lba_range_done = false;
5116 	rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
5117 	CU_ASSERT(rc == 0);
5118 	poll_threads();
5119 
5120 	CU_ASSERT(g_lock_lba_range_done == false);
5121 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
5122 	SPDK_CU_ASSERT_FATAL(range != NULL);
5123 	CU_ASSERT(range->offset == 35);
5124 	CU_ASSERT(range->length == 10);
5125 
5126 	/* Unlock 25-39.  Make sure that 35-44 is still in the pending list, since
5127 	 * the 40-59 lock is still active.
5128 	 */
5129 	g_unlock_lba_range_done = false;
5130 	rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
5131 	CU_ASSERT(rc == 0);
5132 	poll_threads();
5133 
5134 	CU_ASSERT(g_unlock_lba_range_done == true);
5135 	CU_ASSERT(g_lock_lba_range_done == false);
5136 	range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
5137 	SPDK_CU_ASSERT_FATAL(range != NULL);
5138 	CU_ASSERT(range->offset == 35);
5139 	CU_ASSERT(range->length == 10);
5140 
5141 	/* Unlock 40-59.  This should result in 35-44 now getting locked, since there are
5142 	 * no longer any active overlapping locks.
5143 	 */
5144 	g_unlock_lba_range_done = false;
5145 	rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
5146 	CU_ASSERT(rc == 0);
5147 	poll_threads();
5148 
5149 	CU_ASSERT(g_unlock_lba_range_done == true);
5150 	CU_ASSERT(g_lock_lba_range_done == true);
5151 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
5152 	range = TAILQ_FIRST(&bdev->internal.locked_ranges);
5153 	SPDK_CU_ASSERT_FATAL(range != NULL);
5154 	CU_ASSERT(range->offset == 35);
5155 	CU_ASSERT(range->length == 10);
5156 
5157 	/* Finally, unlock 35-44. */
5158 	g_unlock_lba_range_done = false;
5159 	rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
5160 	CU_ASSERT(rc == 0);
5161 	poll_threads();
5162 
5163 	CU_ASSERT(g_unlock_lba_range_done == true);
5164 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
5165 
5166 	spdk_put_io_channel(io_ch);
5167 	spdk_bdev_close(desc);
5168 	free_bdev(bdev);
5169 	ut_fini_bdev();
5170 }
5171 
5172 static void
5173 bdev_quiesce_done(void *ctx, int status)
5174 {
5175 	g_lock_lba_range_done = true;
5176 }
5177 
5178 static void
5179 bdev_unquiesce_done(void *ctx, int status)
5180 {
5181 	g_unlock_lba_range_done = true;
5182 }
5183 
5184 static void
5185 bdev_quiesce_done_unquiesce(void *ctx, int status)
5186 {
5187 	struct spdk_bdev *bdev = ctx;
5188 	int rc;
5189 
5190 	g_lock_lba_range_done = true;
5191 
5192 	rc = spdk_bdev_unquiesce(bdev, &bdev_ut_if, bdev_unquiesce_done, NULL);
5193 	CU_ASSERT(rc == 0);
5194 }
5195 
5196 static void
5197 bdev_quiesce(void)
5198 {
5199 	struct spdk_bdev *bdev;
5200 	struct spdk_bdev_desc *desc = NULL;
5201 	struct spdk_io_channel *io_ch;
5202 	struct spdk_bdev_channel *channel;
5203 	struct lba_range *range;
5204 	struct spdk_bdev_io *bdev_io;
5205 	int ctx1;
5206 	int rc;
5207 
5208 	ut_init_bdev(NULL);
5209 	bdev = allocate_bdev("bdev0");
5210 
5211 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5212 	CU_ASSERT(rc == 0);
5213 	CU_ASSERT(desc != NULL);
5214 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5215 	io_ch = spdk_bdev_get_io_channel(desc);
5216 	CU_ASSERT(io_ch != NULL);
5217 	channel = spdk_io_channel_get_ctx(io_ch);
5218 
5219 	g_lock_lba_range_done = false;
5220 	rc = spdk_bdev_quiesce(bdev, &bdev_ut_if, bdev_quiesce_done, &ctx1);
5221 	CU_ASSERT(rc == 0);
5222 	poll_threads();
5223 
5224 	CU_ASSERT(g_lock_lba_range_done == true);
5225 	range = TAILQ_FIRST(&channel->locked_ranges);
5226 	SPDK_CU_ASSERT_FATAL(range != NULL);
5227 	CU_ASSERT(range->offset == 0);
5228 	CU_ASSERT(range->length == bdev->blockcnt);
5229 	CU_ASSERT(range->owner_ch == NULL);
5230 	range = TAILQ_FIRST(&bdev_ut_if.internal.quiesced_ranges);
5231 	SPDK_CU_ASSERT_FATAL(range != NULL);
5232 	CU_ASSERT(range->offset == 0);
5233 	CU_ASSERT(range->length == bdev->blockcnt);
5234 	CU_ASSERT(range->owner_ch == NULL);
5235 
5236 	g_unlock_lba_range_done = false;
5237 	rc = spdk_bdev_unquiesce(bdev, &bdev_ut_if, bdev_unquiesce_done, &ctx1);
5238 	CU_ASSERT(rc == 0);
5239 	spdk_delay_us(100);
5240 	poll_threads();
5241 
5242 	CU_ASSERT(g_unlock_lba_range_done == true);
5243 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5244 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5245 
5246 	g_lock_lba_range_done = false;
5247 	rc = spdk_bdev_quiesce_range(bdev, &bdev_ut_if, 20, 10, bdev_quiesce_done, &ctx1);
5248 	CU_ASSERT(rc == 0);
5249 	poll_threads();
5250 
5251 	CU_ASSERT(g_lock_lba_range_done == true);
5252 	range = TAILQ_FIRST(&channel->locked_ranges);
5253 	SPDK_CU_ASSERT_FATAL(range != NULL);
5254 	CU_ASSERT(range->offset == 20);
5255 	CU_ASSERT(range->length == 10);
5256 	CU_ASSERT(range->owner_ch == NULL);
5257 	range = TAILQ_FIRST(&bdev_ut_if.internal.quiesced_ranges);
5258 	SPDK_CU_ASSERT_FATAL(range != NULL);
5259 	CU_ASSERT(range->offset == 20);
5260 	CU_ASSERT(range->length == 10);
5261 	CU_ASSERT(range->owner_ch == NULL);
5262 
5263 	/* Unlocks must exactly match a lock. */
5264 	g_unlock_lba_range_done = false;
5265 	rc = spdk_bdev_unquiesce_range(bdev, &bdev_ut_if, 20, 1, bdev_unquiesce_done, &ctx1);
5266 	CU_ASSERT(rc == -EINVAL);
5267 	CU_ASSERT(g_unlock_lba_range_done == false);
5268 
5269 	rc = spdk_bdev_unquiesce_range(bdev, &bdev_ut_if, 20, 10, bdev_unquiesce_done, &ctx1);
5270 	CU_ASSERT(rc == 0);
5271 	spdk_delay_us(100);
5272 	poll_threads();
5273 
5274 	CU_ASSERT(g_unlock_lba_range_done == true);
5275 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5276 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5277 
5278 	/* Test unquiesce from quiesce cb */
5279 	g_lock_lba_range_done = false;
5280 	g_unlock_lba_range_done = false;
5281 	rc = spdk_bdev_quiesce(bdev, &bdev_ut_if, bdev_quiesce_done_unquiesce, bdev);
5282 	CU_ASSERT(rc == 0);
5283 	poll_threads();
5284 
5285 	CU_ASSERT(g_lock_lba_range_done == true);
5286 	CU_ASSERT(g_unlock_lba_range_done == true);
5287 
5288 	/* Test quiesce with read I/O */
5289 	g_lock_lba_range_done = false;
5290 	g_unlock_lba_range_done = false;
5291 	g_io_done = false;
5292 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 20, 1, io_done, &ctx1);
5293 	CU_ASSERT(rc == 0);
5294 
5295 	rc = spdk_bdev_quiesce(bdev, &bdev_ut_if, bdev_quiesce_done, &ctx1);
5296 	CU_ASSERT(rc == 0);
5297 	poll_threads();
5298 
5299 	CU_ASSERT(g_io_done == false);
5300 	CU_ASSERT(g_lock_lba_range_done == false);
5301 	range = TAILQ_FIRST(&channel->locked_ranges);
5302 	SPDK_CU_ASSERT_FATAL(range != NULL);
5303 
5304 	stub_complete_io(1);
5305 	spdk_delay_us(100);
5306 	poll_threads();
5307 	CU_ASSERT(g_io_done == true);
5308 	CU_ASSERT(g_lock_lba_range_done == true);
5309 	CU_ASSERT(TAILQ_EMPTY(&channel->io_locked));
5310 
5311 	g_io_done = false;
5312 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 20, 1, io_done, &ctx1);
5313 	CU_ASSERT(rc == 0);
5314 
5315 	bdev_io = TAILQ_FIRST(&channel->io_locked);
5316 	SPDK_CU_ASSERT_FATAL(bdev_io != NULL);
5317 	CU_ASSERT(bdev_io->u.bdev.offset_blocks == 20);
5318 	CU_ASSERT(bdev_io->u.bdev.num_blocks == 1);
5319 
5320 	rc = spdk_bdev_unquiesce(bdev, &bdev_ut_if, bdev_unquiesce_done, &ctx1);
5321 	CU_ASSERT(rc == 0);
5322 	spdk_delay_us(100);
5323 	poll_threads();
5324 
5325 	CU_ASSERT(g_unlock_lba_range_done == true);
5326 	CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
5327 	CU_ASSERT(TAILQ_EMPTY(&bdev_ut_if.internal.quiesced_ranges));
5328 
5329 	CU_ASSERT(TAILQ_EMPTY(&channel->io_locked));
5330 	spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
5331 	poll_threads();
5332 	CU_ASSERT(g_io_done == true);
5333 
5334 	spdk_put_io_channel(io_ch);
5335 	spdk_bdev_close(desc);
5336 	free_bdev(bdev);
5337 	ut_fini_bdev();
5338 }
5339 
5340 static void
5341 abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
5342 {
5343 	g_abort_done = true;
5344 	g_abort_status = bdev_io->internal.status;
5345 	spdk_bdev_free_io(bdev_io);
5346 }
5347 
5348 static void
5349 bdev_io_abort(void)
5350 {
5351 	struct spdk_bdev *bdev;
5352 	struct spdk_bdev_desc *desc = NULL;
5353 	struct spdk_io_channel *io_ch;
5354 	struct spdk_bdev_channel *channel;
5355 	struct spdk_bdev_mgmt_channel *mgmt_ch;
5356 	struct spdk_bdev_opts bdev_opts = {};
5357 	struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
5358 	uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
5359 	int rc;
5360 
5361 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5362 	bdev_opts.bdev_io_pool_size = 7;
5363 	bdev_opts.bdev_io_cache_size = 2;
5364 	ut_init_bdev(&bdev_opts);
5365 
5366 	bdev = allocate_bdev("bdev0");
5367 
5368 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5369 	CU_ASSERT(rc == 0);
5370 	CU_ASSERT(desc != NULL);
5371 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5372 	io_ch = spdk_bdev_get_io_channel(desc);
5373 	CU_ASSERT(io_ch != NULL);
5374 	channel = spdk_io_channel_get_ctx(io_ch);
5375 	mgmt_ch = channel->shared_resource->mgmt_ch;
5376 
5377 	g_abort_done = false;
5378 
5379 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
5380 
5381 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5382 	CU_ASSERT(rc == -ENOTSUP);
5383 
5384 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
5385 
5386 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
5387 	CU_ASSERT(rc == 0);
5388 	CU_ASSERT(g_abort_done == true);
5389 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
5390 
5391 	/* Test the case that the target I/O was successfully aborted. */
5392 	g_io_done = false;
5393 
5394 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5395 	CU_ASSERT(rc == 0);
5396 	CU_ASSERT(g_io_done == false);
5397 
5398 	g_abort_done = false;
5399 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5400 
5401 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5402 	CU_ASSERT(rc == 0);
5403 	CU_ASSERT(g_io_done == true);
5404 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5405 	stub_complete_io(1);
5406 	CU_ASSERT(g_abort_done == true);
5407 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5408 
5409 	/* Test the case that the target I/O was not aborted because it completed
5410 	 * in the middle of execution of the abort.
5411 	 */
5412 	g_io_done = false;
5413 
5414 	rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
5415 	CU_ASSERT(rc == 0);
5416 	CU_ASSERT(g_io_done == false);
5417 
5418 	g_abort_done = false;
5419 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5420 
5421 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5422 	CU_ASSERT(rc == 0);
5423 	CU_ASSERT(g_io_done == false);
5424 
5425 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5426 	stub_complete_io(1);
5427 	CU_ASSERT(g_io_done == true);
5428 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5429 
5430 	g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
5431 	stub_complete_io(1);
5432 	CU_ASSERT(g_abort_done == true);
5433 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5434 
5435 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5436 
5437 	bdev->optimal_io_boundary = 16;
5438 	bdev->split_on_optimal_io_boundary = true;
5439 
5440 	/* Test that a single-vector command which is split is aborted correctly.
5441 	 * Offset 14, length 8, payload 0xF000
5442 	 *  Child - Offset 14, length 2, payload 0xF000
5443 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5444 	 */
5445 	g_io_done = false;
5446 
5447 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
5448 	CU_ASSERT(rc == 0);
5449 	CU_ASSERT(g_io_done == false);
5450 
5451 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5452 
5453 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5454 
5455 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5456 	CU_ASSERT(rc == 0);
5457 	CU_ASSERT(g_io_done == true);
5458 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5459 	stub_complete_io(2);
5460 	CU_ASSERT(g_abort_done == true);
5461 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5462 
5463 	/* Test that a multi-vector command that needs to be split by strip and then
5464 	 * needs to be split is aborted correctly. Abort is requested before the second
5465 	 * child I/O was submitted. The parent I/O should complete with failure without
5466 	 * submitting the second child I/O.
5467 	 */
5468 	for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
5469 		iov[i].iov_base = (void *)((i + 1) * 0x10000);
5470 		iov[i].iov_len = 512;
5471 	}
5472 
5473 	bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
5474 	g_io_done = false;
5475 	rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
5476 				    SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
5477 	CU_ASSERT(rc == 0);
5478 	CU_ASSERT(g_io_done == false);
5479 
5480 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5481 
5482 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5483 
5484 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5485 	CU_ASSERT(rc == 0);
5486 	CU_ASSERT(g_io_done == true);
5487 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5488 	stub_complete_io(1);
5489 	CU_ASSERT(g_abort_done == true);
5490 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5491 
5492 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5493 
5494 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5495 
5496 	bdev->optimal_io_boundary = 16;
5497 	g_io_done = false;
5498 
5499 	/* Test that a ingle-vector command which is split is aborted correctly.
5500 	 * Differently from the above, the child abort request will be submitted
5501 	 * sequentially due to the capacity of spdk_bdev_io.
5502 	 */
5503 	rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
5504 	CU_ASSERT(rc == 0);
5505 	CU_ASSERT(g_io_done == false);
5506 
5507 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5508 
5509 	g_abort_done = false;
5510 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5511 
5512 	rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
5513 	CU_ASSERT(rc == 0);
5514 	CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
5515 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
5516 
5517 	stub_complete_io(1);
5518 	CU_ASSERT(g_io_done == true);
5519 	CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
5520 	stub_complete_io(3);
5521 	CU_ASSERT(g_abort_done == true);
5522 	CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
5523 
5524 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5525 
5526 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5527 
5528 	spdk_put_io_channel(io_ch);
5529 	spdk_bdev_close(desc);
5530 	free_bdev(bdev);
5531 	ut_fini_bdev();
5532 }
5533 
5534 static void
5535 bdev_unmap(void)
5536 {
5537 	struct spdk_bdev *bdev;
5538 	struct spdk_bdev_desc *desc = NULL;
5539 	struct spdk_io_channel *ioch;
5540 	struct spdk_bdev_channel *bdev_ch;
5541 	struct ut_expected_io *expected_io;
5542 	struct spdk_bdev_opts bdev_opts = {};
5543 	uint32_t i, num_outstanding;
5544 	uint64_t offset, num_blocks, max_unmap_blocks, num_children;
5545 	int rc;
5546 
5547 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5548 	bdev_opts.bdev_io_pool_size = 512;
5549 	bdev_opts.bdev_io_cache_size = 64;
5550 	ut_init_bdev(&bdev_opts);
5551 
5552 	bdev = allocate_bdev("bdev");
5553 
5554 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5555 	CU_ASSERT_EQUAL(rc, 0);
5556 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5557 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5558 	ioch = spdk_bdev_get_io_channel(desc);
5559 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5560 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5561 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5562 
5563 	fn_table.submit_request = stub_submit_request;
5564 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5565 
5566 	/* Case 1: First test the request won't be split */
5567 	num_blocks = 32;
5568 
5569 	g_io_done = false;
5570 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
5571 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5572 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5573 	CU_ASSERT_EQUAL(rc, 0);
5574 	CU_ASSERT(g_io_done == false);
5575 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5576 	stub_complete_io(1);
5577 	CU_ASSERT(g_io_done == true);
5578 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5579 
5580 	/* Case 2: Test the split with 2 children requests */
5581 	bdev->max_unmap = 8;
5582 	bdev->max_unmap_segments = 2;
5583 	max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
5584 	num_blocks = max_unmap_blocks * 2;
5585 	offset = 0;
5586 
5587 	g_io_done = false;
5588 	for (i = 0; i < 2; i++) {
5589 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5590 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5591 		offset += max_unmap_blocks;
5592 	}
5593 
5594 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5595 	CU_ASSERT_EQUAL(rc, 0);
5596 	CU_ASSERT(g_io_done == false);
5597 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5598 	stub_complete_io(2);
5599 	CU_ASSERT(g_io_done == true);
5600 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5601 
5602 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5603 	num_children = 15;
5604 	num_blocks = max_unmap_blocks * num_children;
5605 	g_io_done = false;
5606 	offset = 0;
5607 	for (i = 0; i < num_children; i++) {
5608 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
5609 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5610 		offset += max_unmap_blocks;
5611 	}
5612 
5613 	rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5614 	CU_ASSERT_EQUAL(rc, 0);
5615 	CU_ASSERT(g_io_done == false);
5616 
5617 	while (num_children > 0) {
5618 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5619 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5620 		stub_complete_io(num_outstanding);
5621 		num_children -= num_outstanding;
5622 	}
5623 	CU_ASSERT(g_io_done == true);
5624 
5625 	spdk_put_io_channel(ioch);
5626 	spdk_bdev_close(desc);
5627 	free_bdev(bdev);
5628 	ut_fini_bdev();
5629 }
5630 
5631 static void
5632 bdev_write_zeroes_split_test(void)
5633 {
5634 	struct spdk_bdev *bdev;
5635 	struct spdk_bdev_desc *desc = NULL;
5636 	struct spdk_io_channel *ioch;
5637 	struct spdk_bdev_channel *bdev_ch;
5638 	struct ut_expected_io *expected_io;
5639 	struct spdk_bdev_opts bdev_opts = {};
5640 	uint32_t i, num_outstanding;
5641 	uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
5642 	int rc;
5643 
5644 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
5645 	bdev_opts.bdev_io_pool_size = 512;
5646 	bdev_opts.bdev_io_cache_size = 64;
5647 	ut_init_bdev(&bdev_opts);
5648 
5649 	bdev = allocate_bdev("bdev");
5650 
5651 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
5652 	CU_ASSERT_EQUAL(rc, 0);
5653 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5654 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5655 	ioch = spdk_bdev_get_io_channel(desc);
5656 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
5657 	bdev_ch = spdk_io_channel_get_ctx(ioch);
5658 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
5659 
5660 	fn_table.submit_request = stub_submit_request;
5661 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
5662 
5663 	/* Case 1: First test the request won't be split */
5664 	num_blocks = 32;
5665 
5666 	g_io_done = false;
5667 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
5668 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5669 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5670 	CU_ASSERT_EQUAL(rc, 0);
5671 	CU_ASSERT(g_io_done == false);
5672 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5673 	stub_complete_io(1);
5674 	CU_ASSERT(g_io_done == true);
5675 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5676 
5677 	/* Case 2: Test the split with 2 children requests */
5678 	max_write_zeroes_blocks = 8;
5679 	bdev->max_write_zeroes = max_write_zeroes_blocks;
5680 	num_blocks = max_write_zeroes_blocks * 2;
5681 	offset = 0;
5682 
5683 	g_io_done = false;
5684 	for (i = 0; i < 2; i++) {
5685 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5686 						   0);
5687 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5688 		offset += max_write_zeroes_blocks;
5689 	}
5690 
5691 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5692 	CU_ASSERT_EQUAL(rc, 0);
5693 	CU_ASSERT(g_io_done == false);
5694 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5695 	stub_complete_io(2);
5696 	CU_ASSERT(g_io_done == true);
5697 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5698 
5699 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
5700 	num_children = 15;
5701 	num_blocks = max_write_zeroes_blocks * num_children;
5702 	g_io_done = false;
5703 	offset = 0;
5704 	for (i = 0; i < num_children; i++) {
5705 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
5706 						   0);
5707 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5708 		offset += max_write_zeroes_blocks;
5709 	}
5710 
5711 	rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
5712 	CU_ASSERT_EQUAL(rc, 0);
5713 	CU_ASSERT(g_io_done == false);
5714 
5715 	while (num_children > 0) {
5716 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
5717 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
5718 		stub_complete_io(num_outstanding);
5719 		num_children -= num_outstanding;
5720 	}
5721 	CU_ASSERT(g_io_done == true);
5722 
5723 	spdk_put_io_channel(ioch);
5724 	spdk_bdev_close(desc);
5725 	free_bdev(bdev);
5726 	ut_fini_bdev();
5727 }
5728 
5729 static void
5730 bdev_set_options_test(void)
5731 {
5732 	struct spdk_bdev_opts bdev_opts = {};
5733 	int rc;
5734 
5735 	/* Case1: Do not set opts_size */
5736 	rc = spdk_bdev_set_opts(&bdev_opts);
5737 	CU_ASSERT(rc == -1);
5738 }
5739 
5740 static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
5741 
5742 static int
5743 test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
5744 		int array_size)
5745 {
5746 	if (array_size > 0 && domains) {
5747 		domains[0] = g_bdev_memory_domain;
5748 	}
5749 
5750 	return 1;
5751 }
5752 
5753 static void
5754 bdev_get_memory_domains(void)
5755 {
5756 	struct spdk_bdev_fn_table fn_table = {
5757 		.get_memory_domains = test_bdev_get_supported_dma_device_types_op
5758 	};
5759 	struct spdk_bdev bdev = { .fn_table = &fn_table };
5760 	struct spdk_memory_domain *domains[2] = {};
5761 	int rc;
5762 
5763 	/* bdev is NULL */
5764 	rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
5765 	CU_ASSERT(rc == -EINVAL);
5766 
5767 	/* domains is NULL */
5768 	rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
5769 	CU_ASSERT(rc == 1);
5770 
5771 	/* array size is 0 */
5772 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
5773 	CU_ASSERT(rc == 1);
5774 
5775 	/* get_supported_dma_device_types op is set */
5776 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5777 	CU_ASSERT(rc == 1);
5778 	CU_ASSERT(domains[0] == g_bdev_memory_domain);
5779 
5780 	/* get_supported_dma_device_types op is not set */
5781 	fn_table.get_memory_domains = NULL;
5782 	rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
5783 	CU_ASSERT(rc == 0);
5784 }
5785 
5786 static void
5787 _bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
5788 {
5789 	struct spdk_bdev *bdev;
5790 	struct spdk_bdev_desc *desc = NULL;
5791 	struct spdk_io_channel *io_ch;
5792 	char io_buf[512];
5793 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5794 	struct ut_expected_io *expected_io;
5795 	int rc;
5796 
5797 	ut_init_bdev(NULL);
5798 
5799 	bdev = allocate_bdev("bdev0");
5800 	bdev->md_interleave = false;
5801 	bdev->md_len = 8;
5802 
5803 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5804 	CU_ASSERT(rc == 0);
5805 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5806 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5807 	io_ch = spdk_bdev_get_io_channel(desc);
5808 	CU_ASSERT(io_ch != NULL);
5809 
5810 	/* read */
5811 	g_io_done = false;
5812 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
5813 	if (ext_io_opts) {
5814 		expected_io->md_buf = ext_io_opts->metadata;
5815 	}
5816 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5817 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5818 
5819 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5820 
5821 	CU_ASSERT(rc == 0);
5822 	CU_ASSERT(g_io_done == false);
5823 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5824 	stub_complete_io(1);
5825 	CU_ASSERT(g_io_done == true);
5826 
5827 	/* write */
5828 	g_io_done = false;
5829 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
5830 	if (ext_io_opts) {
5831 		expected_io->md_buf = ext_io_opts->metadata;
5832 	}
5833 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
5834 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5835 
5836 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
5837 
5838 	CU_ASSERT(rc == 0);
5839 	CU_ASSERT(g_io_done == false);
5840 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
5841 	stub_complete_io(1);
5842 	CU_ASSERT(g_io_done == true);
5843 
5844 	spdk_put_io_channel(io_ch);
5845 	spdk_bdev_close(desc);
5846 	free_bdev(bdev);
5847 	ut_fini_bdev();
5848 
5849 }
5850 
5851 static void
5852 bdev_io_ext(void)
5853 {
5854 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5855 		.metadata = (void *)0xFF000000,
5856 		.size = sizeof(ext_io_opts)
5857 	};
5858 
5859 	_bdev_io_ext(&ext_io_opts);
5860 }
5861 
5862 static void
5863 bdev_io_ext_no_opts(void)
5864 {
5865 	_bdev_io_ext(NULL);
5866 }
5867 
5868 static void
5869 bdev_io_ext_invalid_opts(void)
5870 {
5871 	struct spdk_bdev *bdev;
5872 	struct spdk_bdev_desc *desc = NULL;
5873 	struct spdk_io_channel *io_ch;
5874 	char io_buf[512];
5875 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5876 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5877 		.metadata = (void *)0xFF000000,
5878 		.size = sizeof(ext_io_opts)
5879 	};
5880 	int rc;
5881 
5882 	ut_init_bdev(NULL);
5883 
5884 	bdev = allocate_bdev("bdev0");
5885 	bdev->md_interleave = false;
5886 	bdev->md_len = 8;
5887 
5888 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5889 	CU_ASSERT(rc == 0);
5890 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5891 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5892 	io_ch = spdk_bdev_get_io_channel(desc);
5893 	CU_ASSERT(io_ch != NULL);
5894 
5895 	/* Test invalid ext_opts size */
5896 	ext_io_opts.size = 0;
5897 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5898 	CU_ASSERT(rc == -EINVAL);
5899 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5900 	CU_ASSERT(rc == -EINVAL);
5901 
5902 	ext_io_opts.size = sizeof(ext_io_opts) * 2;
5903 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5904 	CU_ASSERT(rc == -EINVAL);
5905 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5906 	CU_ASSERT(rc == -EINVAL);
5907 
5908 	ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
5909 			   sizeof(ext_io_opts.metadata) - 1;
5910 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5911 	CU_ASSERT(rc == -EINVAL);
5912 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
5913 	CU_ASSERT(rc == -EINVAL);
5914 
5915 	spdk_put_io_channel(io_ch);
5916 	spdk_bdev_close(desc);
5917 	free_bdev(bdev);
5918 	ut_fini_bdev();
5919 }
5920 
5921 static void
5922 bdev_io_ext_split(void)
5923 {
5924 	struct spdk_bdev *bdev;
5925 	struct spdk_bdev_desc *desc = NULL;
5926 	struct spdk_io_channel *io_ch;
5927 	char io_buf[512];
5928 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
5929 	struct ut_expected_io *expected_io;
5930 	struct spdk_bdev_ext_io_opts ext_io_opts = {
5931 		.metadata = (void *)0xFF000000,
5932 		.size = sizeof(ext_io_opts)
5933 	};
5934 	int rc;
5935 
5936 	ut_init_bdev(NULL);
5937 
5938 	bdev = allocate_bdev("bdev0");
5939 	bdev->md_interleave = false;
5940 	bdev->md_len = 8;
5941 
5942 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
5943 	CU_ASSERT(rc == 0);
5944 	SPDK_CU_ASSERT_FATAL(desc != NULL);
5945 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
5946 	io_ch = spdk_bdev_get_io_channel(desc);
5947 	CU_ASSERT(io_ch != NULL);
5948 
5949 	/* Check that IO request with ext_opts and metadata is split correctly
5950 	 * Offset 14, length 8, payload 0xF000
5951 	 *  Child - Offset 14, length 2, payload 0xF000
5952 	 *  Child - Offset 16, length 6, payload 0xF000 + 2 * 512
5953 	 */
5954 	bdev->optimal_io_boundary = 16;
5955 	bdev->split_on_optimal_io_boundary = true;
5956 	bdev->md_interleave = false;
5957 	bdev->md_len = 8;
5958 
5959 	iov.iov_base = (void *)0xF000;
5960 	iov.iov_len = 4096;
5961 	memset(&ext_io_opts, 0, sizeof(ext_io_opts));
5962 	ext_io_opts.metadata = (void *)0xFF000000;
5963 	ext_io_opts.size = sizeof(ext_io_opts);
5964 	g_io_done = false;
5965 
5966 	/* read */
5967 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
5968 	expected_io->md_buf = ext_io_opts.metadata;
5969 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5970 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5971 
5972 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
5973 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5974 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5975 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5976 
5977 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5978 	CU_ASSERT(rc == 0);
5979 	CU_ASSERT(g_io_done == false);
5980 
5981 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
5982 	stub_complete_io(2);
5983 	CU_ASSERT(g_io_done == true);
5984 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
5985 
5986 	/* write */
5987 	g_io_done = false;
5988 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
5989 	expected_io->md_buf = ext_io_opts.metadata;
5990 	ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
5991 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5992 
5993 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
5994 	expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
5995 	ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
5996 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
5997 
5998 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
5999 	CU_ASSERT(rc == 0);
6000 	CU_ASSERT(g_io_done == false);
6001 
6002 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
6003 	stub_complete_io(2);
6004 	CU_ASSERT(g_io_done == true);
6005 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6006 
6007 	spdk_put_io_channel(io_ch);
6008 	spdk_bdev_close(desc);
6009 	free_bdev(bdev);
6010 	ut_fini_bdev();
6011 }
6012 
6013 static void
6014 bdev_io_ext_bounce_buffer(void)
6015 {
6016 	struct spdk_bdev *bdev;
6017 	struct spdk_bdev_desc *desc = NULL;
6018 	struct spdk_io_channel *io_ch;
6019 	char io_buf[512];
6020 	struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
6021 	struct ut_expected_io *expected_io, *aux_io;
6022 	struct spdk_bdev_ext_io_opts ext_io_opts = {
6023 		.metadata = (void *)0xFF000000,
6024 		.size = sizeof(ext_io_opts)
6025 	};
6026 	int rc;
6027 
6028 	ut_init_bdev(NULL);
6029 
6030 	bdev = allocate_bdev("bdev0");
6031 	bdev->md_interleave = false;
6032 	bdev->md_len = 8;
6033 
6034 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6035 	CU_ASSERT(rc == 0);
6036 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6037 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6038 	io_ch = spdk_bdev_get_io_channel(desc);
6039 	CU_ASSERT(io_ch != NULL);
6040 
6041 	/* Verify data pull/push
6042 	 * bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
6043 	ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
6044 
6045 	/* read */
6046 	g_io_done = false;
6047 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
6048 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6049 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6050 
6051 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6052 
6053 	CU_ASSERT(rc == 0);
6054 	CU_ASSERT(g_io_done == false);
6055 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6056 	stub_complete_io(1);
6057 	CU_ASSERT(g_memory_domain_push_data_called == true);
6058 	CU_ASSERT(g_io_done == true);
6059 
6060 	/* write */
6061 	g_io_done = false;
6062 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6063 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6064 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6065 
6066 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6067 
6068 	CU_ASSERT(rc == 0);
6069 	CU_ASSERT(g_memory_domain_pull_data_called == true);
6070 	CU_ASSERT(g_io_done == false);
6071 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6072 	stub_complete_io(1);
6073 	CU_ASSERT(g_io_done == true);
6074 
6075 	/* Verify the request is queued after receiving ENOMEM from pull */
6076 	g_io_done = false;
6077 	aux_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6078 	ut_expected_io_set_iov(aux_io, 0, iov.iov_base, iov.iov_len);
6079 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, aux_io, link);
6080 	rc = spdk_bdev_writev_blocks(desc, io_ch, &iov, 1, 32, 14, io_done, NULL);
6081 	CU_ASSERT(rc == 0);
6082 	CU_ASSERT(g_io_done == false);
6083 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6084 
6085 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6086 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6087 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6088 
6089 	MOCK_SET(spdk_memory_domain_pull_data, -ENOMEM);
6090 	rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6091 	CU_ASSERT(rc == 0);
6092 	CU_ASSERT(g_io_done == false);
6093 	/* The second IO has been queued */
6094 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6095 
6096 	MOCK_CLEAR(spdk_memory_domain_pull_data);
6097 	g_memory_domain_pull_data_called = false;
6098 	stub_complete_io(1);
6099 	CU_ASSERT(g_io_done == true);
6100 	CU_ASSERT(g_memory_domain_pull_data_called == true);
6101 	/* The second IO should be submitted now */
6102 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6103 	g_io_done = false;
6104 	stub_complete_io(1);
6105 	CU_ASSERT(g_io_done == true);
6106 
6107 	/* Verify the request is queued after receiving ENOMEM from push */
6108 	g_io_done = false;
6109 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
6110 	ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
6111 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6112 
6113 	MOCK_SET(spdk_memory_domain_push_data, -ENOMEM);
6114 	rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
6115 	CU_ASSERT(rc == 0);
6116 	CU_ASSERT(g_io_done == false);
6117 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6118 
6119 	aux_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
6120 	ut_expected_io_set_iov(aux_io, 0, iov.iov_base, iov.iov_len);
6121 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, aux_io, link);
6122 	rc = spdk_bdev_writev_blocks(desc, io_ch, &iov, 1, 32, 14, io_done, NULL);
6123 	CU_ASSERT(rc == 0);
6124 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
6125 
6126 	stub_complete_io(1);
6127 	/* The IO isn't done yet, it's still waiting on push */
6128 	CU_ASSERT(g_io_done == false);
6129 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6130 	MOCK_CLEAR(spdk_memory_domain_push_data);
6131 	g_memory_domain_push_data_called = false;
6132 	/* Completing the second IO should also trigger push on the first one */
6133 	stub_complete_io(1);
6134 	CU_ASSERT(g_io_done == true);
6135 	CU_ASSERT(g_memory_domain_push_data_called == true);
6136 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6137 
6138 	spdk_put_io_channel(io_ch);
6139 	spdk_bdev_close(desc);
6140 	free_bdev(bdev);
6141 	ut_fini_bdev();
6142 }
6143 
6144 static void
6145 bdev_register_uuid_alias(void)
6146 {
6147 	struct spdk_bdev *bdev, *second;
6148 	char uuid[SPDK_UUID_STRING_LEN];
6149 	int rc;
6150 
6151 	ut_init_bdev(NULL);
6152 	bdev = allocate_bdev("bdev0");
6153 
6154 	/* Make sure an UUID was generated  */
6155 	CU_ASSERT_FALSE(spdk_uuid_is_null(&bdev->uuid));
6156 
6157 	/* Check that an UUID alias was registered */
6158 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
6159 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6160 
6161 	/* Unregister the bdev */
6162 	spdk_bdev_unregister(bdev, NULL, NULL);
6163 	poll_threads();
6164 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
6165 
6166 	/* Check the same, but this time register the bdev with non-zero UUID */
6167 	rc = spdk_bdev_register(bdev);
6168 	CU_ASSERT_EQUAL(rc, 0);
6169 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6170 
6171 	/* Unregister the bdev */
6172 	spdk_bdev_unregister(bdev, NULL, NULL);
6173 	poll_threads();
6174 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
6175 
6176 	/* Regiser the bdev using UUID as the name */
6177 	bdev->name = uuid;
6178 	rc = spdk_bdev_register(bdev);
6179 	CU_ASSERT_EQUAL(rc, 0);
6180 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6181 
6182 	/* Unregister the bdev */
6183 	spdk_bdev_unregister(bdev, NULL, NULL);
6184 	poll_threads();
6185 	CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
6186 
6187 	/* Check that it's not possible to register two bdevs with the same UUIDs */
6188 	bdev->name = "bdev0";
6189 	second = allocate_bdev("bdev1");
6190 	spdk_uuid_copy(&bdev->uuid, &second->uuid);
6191 	rc = spdk_bdev_register(bdev);
6192 	CU_ASSERT_EQUAL(rc, -EEXIST);
6193 
6194 	/* Regenerate the UUID and re-check */
6195 	spdk_uuid_generate(&bdev->uuid);
6196 	rc = spdk_bdev_register(bdev);
6197 	CU_ASSERT_EQUAL(rc, 0);
6198 
6199 	/* And check that both bdevs can be retrieved through their UUIDs */
6200 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
6201 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
6202 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
6203 	CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
6204 
6205 	free_bdev(second);
6206 	free_bdev(bdev);
6207 	ut_fini_bdev();
6208 }
6209 
6210 static void
6211 bdev_unregister_by_name(void)
6212 {
6213 	struct spdk_bdev *bdev;
6214 	int rc;
6215 
6216 	bdev = allocate_bdev("bdev");
6217 
6218 	g_event_type1 = 0xFF;
6219 	g_unregister_arg = NULL;
6220 	g_unregister_rc = -1;
6221 
6222 	rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6223 	CU_ASSERT(rc == -ENODEV);
6224 
6225 	rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6226 	CU_ASSERT(rc == -ENODEV);
6227 
6228 	rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
6229 	CU_ASSERT(rc == 0);
6230 
6231 	/* Check that unregister callback is delayed */
6232 	CU_ASSERT(g_unregister_arg == NULL);
6233 	CU_ASSERT(g_unregister_rc == -1);
6234 
6235 	poll_threads();
6236 
6237 	/* Event callback shall not be issued because device was closed */
6238 	CU_ASSERT(g_event_type1 == 0xFF);
6239 	/* Unregister callback is issued */
6240 	CU_ASSERT(g_unregister_arg == (void *)0x12345678);
6241 	CU_ASSERT(g_unregister_rc == 0);
6242 
6243 	free_bdev(bdev);
6244 }
6245 
6246 static int
6247 count_bdevs(void *ctx, struct spdk_bdev *bdev)
6248 {
6249 	int *count = ctx;
6250 
6251 	(*count)++;
6252 
6253 	return 0;
6254 }
6255 
6256 static void
6257 for_each_bdev_test(void)
6258 {
6259 	struct spdk_bdev *bdev[8];
6260 	int rc, count;
6261 
6262 	bdev[0] = allocate_bdev("bdev0");
6263 	bdev[0]->internal.status = SPDK_BDEV_STATUS_REMOVING;
6264 
6265 	bdev[1] = allocate_bdev("bdev1");
6266 	rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
6267 	CU_ASSERT(rc == 0);
6268 
6269 	bdev[2] = allocate_bdev("bdev2");
6270 
6271 	bdev[3] = allocate_bdev("bdev3");
6272 	rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
6273 	CU_ASSERT(rc == 0);
6274 
6275 	bdev[4] = allocate_bdev("bdev4");
6276 
6277 	bdev[5] = allocate_bdev("bdev5");
6278 	rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
6279 	CU_ASSERT(rc == 0);
6280 
6281 	bdev[6] = allocate_bdev("bdev6");
6282 
6283 	bdev[7] = allocate_bdev("bdev7");
6284 
6285 	count = 0;
6286 	rc = spdk_for_each_bdev(&count, count_bdevs);
6287 	CU_ASSERT(rc == 0);
6288 	CU_ASSERT(count == 7);
6289 
6290 	count = 0;
6291 	rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
6292 	CU_ASSERT(rc == 0);
6293 	CU_ASSERT(count == 4);
6294 
6295 	bdev[0]->internal.status = SPDK_BDEV_STATUS_READY;
6296 	free_bdev(bdev[0]);
6297 	free_bdev(bdev[1]);
6298 	free_bdev(bdev[2]);
6299 	free_bdev(bdev[3]);
6300 	free_bdev(bdev[4]);
6301 	free_bdev(bdev[5]);
6302 	free_bdev(bdev[6]);
6303 	free_bdev(bdev[7]);
6304 }
6305 
6306 static void
6307 bdev_seek_test(void)
6308 {
6309 	struct spdk_bdev *bdev;
6310 	struct spdk_bdev_desc *desc = NULL;
6311 	struct spdk_io_channel *io_ch;
6312 	int rc;
6313 
6314 	ut_init_bdev(NULL);
6315 	poll_threads();
6316 
6317 	bdev = allocate_bdev("bdev0");
6318 
6319 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6320 	CU_ASSERT(rc == 0);
6321 	poll_threads();
6322 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6323 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6324 	io_ch = spdk_bdev_get_io_channel(desc);
6325 	CU_ASSERT(io_ch != NULL);
6326 
6327 	/* Seek data not supported */
6328 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false);
6329 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6330 	CU_ASSERT(rc == 0);
6331 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6332 	poll_threads();
6333 	CU_ASSERT(g_seek_offset == 0);
6334 
6335 	/* Seek hole not supported */
6336 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false);
6337 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6338 	CU_ASSERT(rc == 0);
6339 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6340 	poll_threads();
6341 	CU_ASSERT(g_seek_offset == UINT64_MAX);
6342 
6343 	/* Seek data supported */
6344 	g_seek_data_offset = 12345;
6345 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true);
6346 	rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
6347 	CU_ASSERT(rc == 0);
6348 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6349 	stub_complete_io(1);
6350 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6351 	CU_ASSERT(g_seek_offset == 12345);
6352 
6353 	/* Seek hole supported */
6354 	g_seek_hole_offset = 67890;
6355 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true);
6356 	rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
6357 	CU_ASSERT(rc == 0);
6358 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6359 	stub_complete_io(1);
6360 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6361 	CU_ASSERT(g_seek_offset == 67890);
6362 
6363 	spdk_put_io_channel(io_ch);
6364 	spdk_bdev_close(desc);
6365 	free_bdev(bdev);
6366 	ut_fini_bdev();
6367 }
6368 
6369 static void
6370 bdev_copy(void)
6371 {
6372 	struct spdk_bdev *bdev;
6373 	struct spdk_bdev_desc *desc = NULL;
6374 	struct spdk_io_channel *ioch;
6375 	struct ut_expected_io *expected_io;
6376 	uint64_t src_offset, num_blocks;
6377 	uint32_t num_completed;
6378 	int rc;
6379 
6380 	ut_init_bdev(NULL);
6381 	bdev = allocate_bdev("bdev");
6382 
6383 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6384 	CU_ASSERT_EQUAL(rc, 0);
6385 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6386 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6387 	ioch = spdk_bdev_get_io_channel(desc);
6388 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6389 
6390 	fn_table.submit_request = stub_submit_request;
6391 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6392 
6393 	/* First test that if the bdev supports copy, the request won't be split */
6394 	bdev->md_len = 0;
6395 	bdev->blocklen = 512;
6396 	num_blocks = 128;
6397 	src_offset = bdev->blockcnt - num_blocks;
6398 
6399 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6400 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6401 
6402 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6403 	CU_ASSERT_EQUAL(rc, 0);
6404 	num_completed = stub_complete_io(1);
6405 	CU_ASSERT_EQUAL(num_completed, 1);
6406 
6407 	/* Check that if copy is not supported it'll still work */
6408 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset, num_blocks, 0);
6409 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6410 	expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, num_blocks, 0);
6411 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6412 
6413 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6414 
6415 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6416 	CU_ASSERT_EQUAL(rc, 0);
6417 	num_completed = stub_complete_io(1);
6418 	CU_ASSERT_EQUAL(num_completed, 1);
6419 	num_completed = stub_complete_io(1);
6420 	CU_ASSERT_EQUAL(num_completed, 1);
6421 
6422 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6423 	spdk_put_io_channel(ioch);
6424 	spdk_bdev_close(desc);
6425 	free_bdev(bdev);
6426 	ut_fini_bdev();
6427 }
6428 
6429 static void
6430 bdev_copy_split_test(void)
6431 {
6432 	struct spdk_bdev *bdev;
6433 	struct spdk_bdev_desc *desc = NULL;
6434 	struct spdk_io_channel *ioch;
6435 	struct spdk_bdev_channel *bdev_ch;
6436 	struct ut_expected_io *expected_io;
6437 	struct spdk_bdev_opts bdev_opts = {};
6438 	uint32_t i, num_outstanding;
6439 	uint64_t offset, src_offset, num_blocks, max_copy_blocks, num_children;
6440 	int rc;
6441 
6442 	spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
6443 	bdev_opts.bdev_io_pool_size = 512;
6444 	bdev_opts.bdev_io_cache_size = 64;
6445 	rc = spdk_bdev_set_opts(&bdev_opts);
6446 	CU_ASSERT(rc == 0);
6447 
6448 	ut_init_bdev(NULL);
6449 	bdev = allocate_bdev("bdev");
6450 
6451 	rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
6452 	CU_ASSERT_EQUAL(rc, 0);
6453 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6454 	CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
6455 	ioch = spdk_bdev_get_io_channel(desc);
6456 	SPDK_CU_ASSERT_FATAL(ioch != NULL);
6457 	bdev_ch = spdk_io_channel_get_ctx(ioch);
6458 	CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
6459 
6460 	fn_table.submit_request = stub_submit_request;
6461 	g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
6462 
6463 	/* Case 1: First test the request won't be split */
6464 	num_blocks = 32;
6465 	src_offset = bdev->blockcnt - num_blocks;
6466 
6467 	g_io_done = false;
6468 	expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
6469 	TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6470 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6471 	CU_ASSERT_EQUAL(rc, 0);
6472 	CU_ASSERT(g_io_done == false);
6473 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
6474 	stub_complete_io(1);
6475 	CU_ASSERT(g_io_done == true);
6476 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6477 
6478 	/* Case 2: Test the split with 2 children requests */
6479 	max_copy_blocks = 8;
6480 	bdev->max_copy = max_copy_blocks;
6481 	num_children = 2;
6482 	num_blocks = max_copy_blocks * num_children;
6483 	offset = 0;
6484 	src_offset = bdev->blockcnt - num_blocks;
6485 
6486 	g_io_done = false;
6487 	for (i = 0; i < num_children; i++) {
6488 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6489 							src_offset + offset, max_copy_blocks);
6490 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6491 		offset += max_copy_blocks;
6492 	}
6493 
6494 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6495 	CU_ASSERT_EQUAL(rc, 0);
6496 	CU_ASSERT(g_io_done == false);
6497 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_children);
6498 	stub_complete_io(num_children);
6499 	CU_ASSERT(g_io_done == true);
6500 	CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
6501 
6502 	/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
6503 	num_children = 15;
6504 	num_blocks = max_copy_blocks * num_children;
6505 	offset = 0;
6506 	src_offset = bdev->blockcnt - num_blocks;
6507 
6508 	g_io_done = false;
6509 	for (i = 0; i < num_children; i++) {
6510 		expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
6511 							src_offset + offset, max_copy_blocks);
6512 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6513 		offset += max_copy_blocks;
6514 	}
6515 
6516 	rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
6517 	CU_ASSERT_EQUAL(rc, 0);
6518 	CU_ASSERT(g_io_done == false);
6519 
6520 	while (num_children > 0) {
6521 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6522 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6523 		stub_complete_io(num_outstanding);
6524 		num_children -= num_outstanding;
6525 	}
6526 	CU_ASSERT(g_io_done == true);
6527 
6528 	/* Case 4: Same test scenario as the case 2 but the configuration is different.
6529 	 * Copy is not supported.
6530 	 */
6531 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
6532 
6533 	num_children = 2;
6534 	max_copy_blocks = spdk_bdev_get_max_copy(bdev);
6535 	num_blocks = max_copy_blocks * num_children;
6536 	src_offset = bdev->blockcnt - num_blocks;
6537 	offset = 0;
6538 
6539 	g_io_done = false;
6540 	for (i = 0; i < num_children; i++) {
6541 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, src_offset,
6542 						   max_copy_blocks, 0);
6543 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6544 		src_offset += max_copy_blocks;
6545 	}
6546 	for (i = 0; i < num_children; i++) {
6547 		expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset,
6548 						   max_copy_blocks, 0);
6549 		TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
6550 		offset += max_copy_blocks;
6551 	}
6552 
6553 	src_offset = bdev->blockcnt - num_blocks;
6554 	offset = 0;
6555 
6556 	rc = spdk_bdev_copy_blocks(desc, ioch, offset, src_offset, num_blocks, io_done, NULL);
6557 	CU_ASSERT_EQUAL(rc, 0);
6558 	CU_ASSERT(g_io_done == false);
6559 
6560 	while (num_children > 0) {
6561 		num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
6562 
6563 		/* One copy request is split into one read and one write requests. */
6564 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6565 		stub_complete_io(num_outstanding);
6566 		CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
6567 		stub_complete_io(num_outstanding);
6568 
6569 		num_children -= num_outstanding;
6570 	}
6571 	CU_ASSERT(g_io_done == true);
6572 
6573 	ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
6574 
6575 	spdk_put_io_channel(ioch);
6576 	spdk_bdev_close(desc);
6577 	free_bdev(bdev);
6578 	ut_fini_bdev();
6579 }
6580 
6581 static void
6582 examine_claim_v1(struct spdk_bdev *bdev)
6583 {
6584 	int rc;
6585 
6586 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &vbdev_ut_if);
6587 	CU_ASSERT(rc == 0);
6588 }
6589 
6590 static void
6591 examine_no_lock_held(struct spdk_bdev *bdev)
6592 {
6593 	CU_ASSERT(!spdk_spin_held(&g_bdev_mgr.spinlock));
6594 	CU_ASSERT(!spdk_spin_held(&bdev->internal.spinlock));
6595 }
6596 
6597 struct examine_claim_v2_ctx {
6598 	struct ut_examine_ctx examine_ctx;
6599 	enum spdk_bdev_claim_type claim_type;
6600 	struct spdk_bdev_desc *desc;
6601 };
6602 
6603 static void
6604 examine_claim_v2(struct spdk_bdev *bdev)
6605 {
6606 	struct examine_claim_v2_ctx *ctx = bdev->ctxt;
6607 	int rc;
6608 
6609 	rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, NULL, &ctx->desc);
6610 	CU_ASSERT(rc == 0);
6611 
6612 	rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, &vbdev_ut_if);
6613 	CU_ASSERT(rc == 0);
6614 }
6615 
6616 static void
6617 examine_locks(void)
6618 {
6619 	struct spdk_bdev *bdev;
6620 	struct ut_examine_ctx ctx = { 0 };
6621 	struct examine_claim_v2_ctx v2_ctx;
6622 
6623 	/* Without any claims, one code path is taken */
6624 	ctx.examine_config = examine_no_lock_held;
6625 	ctx.examine_disk = examine_no_lock_held;
6626 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6627 	CU_ASSERT(ctx.examine_config_count == 1);
6628 	CU_ASSERT(ctx.examine_disk_count == 1);
6629 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6630 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6631 	free_bdev(bdev);
6632 
6633 	/* Exercise another path that is taken when examine_config() takes a v1 claim. */
6634 	memset(&ctx, 0, sizeof(ctx));
6635 	ctx.examine_config = examine_claim_v1;
6636 	ctx.examine_disk = examine_no_lock_held;
6637 	bdev = allocate_bdev_ctx("bdev0", &ctx);
6638 	CU_ASSERT(ctx.examine_config_count == 1);
6639 	CU_ASSERT(ctx.examine_disk_count == 1);
6640 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
6641 	CU_ASSERT(bdev->internal.claim.v1.module == &vbdev_ut_if);
6642 	spdk_bdev_module_release_bdev(bdev);
6643 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6644 	CU_ASSERT(bdev->internal.claim.v1.module == NULL);
6645 	free_bdev(bdev);
6646 
6647 	/* Exercise the final path that comes with v2 claims. */
6648 	memset(&v2_ctx, 0, sizeof(v2_ctx));
6649 	v2_ctx.examine_ctx.examine_config = examine_claim_v2;
6650 	v2_ctx.examine_ctx.examine_disk = examine_no_lock_held;
6651 	v2_ctx.claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
6652 	bdev = allocate_bdev_ctx("bdev0", &v2_ctx);
6653 	CU_ASSERT(v2_ctx.examine_ctx.examine_config_count == 1);
6654 	CU_ASSERT(v2_ctx.examine_ctx.examine_disk_count == 1);
6655 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6656 	spdk_bdev_close(v2_ctx.desc);
6657 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6658 	free_bdev(bdev);
6659 }
6660 
6661 #define UT_ASSERT_CLAIM_V2_COUNT(bdev, expect) \
6662 	do { \
6663 		uint32_t len = 0; \
6664 		struct spdk_bdev_module_claim *claim; \
6665 		TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) { \
6666 			len++; \
6667 		} \
6668 		CU_ASSERT(len == expect); \
6669 	} while (0)
6670 
6671 static void
6672 claim_v2_rwo(void)
6673 {
6674 	struct spdk_bdev *bdev;
6675 	struct spdk_bdev_desc *desc;
6676 	struct spdk_bdev_desc *desc2;
6677 	struct spdk_bdev_claim_opts opts;
6678 	int rc;
6679 
6680 	bdev = allocate_bdev("bdev0");
6681 
6682 	/* Claim without options */
6683 	desc = NULL;
6684 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6685 	CU_ASSERT(rc == 0);
6686 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6687 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6688 					      &bdev_ut_if);
6689 	CU_ASSERT(rc == 0);
6690 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6691 	CU_ASSERT(desc->claim != NULL);
6692 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6693 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6694 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6695 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6696 
6697 	/* Release the claim by closing the descriptor */
6698 	spdk_bdev_close(desc);
6699 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6700 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6701 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6702 
6703 	/* Claim with options */
6704 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6705 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6706 	desc = NULL;
6707 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6708 	CU_ASSERT(rc == 0);
6709 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6710 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6711 					      &bdev_ut_if);
6712 	CU_ASSERT(rc == 0);
6713 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6714 	CU_ASSERT(desc->claim != NULL);
6715 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6716 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6717 	memset(&opts, 0, sizeof(opts));
6718 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6719 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6720 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6721 
6722 	/* The claim blocks new writers. */
6723 	desc2 = NULL;
6724 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6725 	CU_ASSERT(rc == -EPERM);
6726 	CU_ASSERT(desc2 == NULL);
6727 
6728 	/* New readers are allowed */
6729 	desc2 = NULL;
6730 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6731 	CU_ASSERT(rc == 0);
6732 	CU_ASSERT(desc2 != NULL);
6733 	CU_ASSERT(!desc2->write);
6734 
6735 	/* No new v2 RWO claims are allowed */
6736 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6737 					      &bdev_ut_if);
6738 	CU_ASSERT(rc == -EPERM);
6739 
6740 	/* No new v2 ROM claims are allowed */
6741 	CU_ASSERT(!desc2->write);
6742 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6743 					      &bdev_ut_if);
6744 	CU_ASSERT(rc == -EPERM);
6745 	CU_ASSERT(!desc2->write);
6746 
6747 	/* No new v2 RWM claims are allowed */
6748 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6749 	opts.shared_claim_key = (uint64_t)&opts;
6750 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6751 					      &bdev_ut_if);
6752 	CU_ASSERT(rc == -EPERM);
6753 	CU_ASSERT(!desc2->write);
6754 
6755 	/* No new v1 claims are allowed */
6756 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6757 	CU_ASSERT(rc == -EPERM);
6758 
6759 	/* None of the above changed the existing claim */
6760 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6761 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6762 
6763 	/* Closing the first descriptor now allows a new claim and it is promoted to rw. */
6764 	spdk_bdev_close(desc);
6765 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6766 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6767 	CU_ASSERT(!desc2->write);
6768 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6769 					      &bdev_ut_if);
6770 	CU_ASSERT(rc == 0);
6771 	CU_ASSERT(desc2->claim != NULL);
6772 	CU_ASSERT(desc2->write);
6773 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
6774 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6775 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6776 	spdk_bdev_close(desc2);
6777 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6778 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6779 
6780 	/* Cannot claim with a key */
6781 	desc = NULL;
6782 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6783 	CU_ASSERT(rc == 0);
6784 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6785 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6786 	opts.shared_claim_key = (uint64_t)&opts;
6787 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, &opts,
6788 					      &bdev_ut_if);
6789 	CU_ASSERT(rc == -EINVAL);
6790 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6791 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6792 	spdk_bdev_close(desc);
6793 
6794 	/* Clean up */
6795 	free_bdev(bdev);
6796 }
6797 
6798 static void
6799 claim_v2_rom(void)
6800 {
6801 	struct spdk_bdev *bdev;
6802 	struct spdk_bdev_desc *desc;
6803 	struct spdk_bdev_desc *desc2;
6804 	struct spdk_bdev_claim_opts opts;
6805 	int rc;
6806 
6807 	bdev = allocate_bdev("bdev0");
6808 
6809 	/* Claim without options */
6810 	desc = NULL;
6811 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6812 	CU_ASSERT(rc == 0);
6813 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6814 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6815 					      &bdev_ut_if);
6816 	CU_ASSERT(rc == 0);
6817 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6818 	CU_ASSERT(desc->claim != NULL);
6819 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6820 	CU_ASSERT(strcmp(desc->claim->name, "") == 0);
6821 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6822 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6823 
6824 	/* Release the claim by closing the descriptor */
6825 	spdk_bdev_close(desc);
6826 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6827 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6828 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6829 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6830 
6831 	/* Claim with options */
6832 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6833 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6834 	desc = NULL;
6835 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6836 	CU_ASSERT(rc == 0);
6837 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6838 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6839 					      &bdev_ut_if);
6840 	CU_ASSERT(rc == 0);
6841 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6842 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6843 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6844 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6845 	memset(&opts, 0, sizeof(opts));
6846 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6847 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6848 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6849 
6850 	/* The claim blocks new writers. */
6851 	desc2 = NULL;
6852 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6853 	CU_ASSERT(rc == -EPERM);
6854 	CU_ASSERT(desc2 == NULL);
6855 
6856 	/* New readers are allowed */
6857 	desc2 = NULL;
6858 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6859 	CU_ASSERT(rc == 0);
6860 	CU_ASSERT(desc2 != NULL);
6861 	CU_ASSERT(!desc2->write);
6862 
6863 	/* No new v2 RWO claims are allowed */
6864 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6865 					      &bdev_ut_if);
6866 	CU_ASSERT(rc == -EPERM);
6867 
6868 	/* No new v2 RWM claims are allowed */
6869 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6870 	opts.shared_claim_key = (uint64_t)&opts;
6871 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6872 					      &bdev_ut_if);
6873 	CU_ASSERT(rc == -EPERM);
6874 	CU_ASSERT(!desc2->write);
6875 
6876 	/* No new v1 claims are allowed */
6877 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
6878 	CU_ASSERT(rc == -EPERM);
6879 
6880 	/* None of the above messed up the existing claim */
6881 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6882 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6883 
6884 	/* New v2 ROM claims are allowed and the descriptor stays read-only. */
6885 	CU_ASSERT(!desc2->write);
6886 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6887 					      &bdev_ut_if);
6888 	CU_ASSERT(rc == 0);
6889 	CU_ASSERT(!desc2->write);
6890 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6891 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
6892 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
6893 
6894 	/* Claim remains when closing the first descriptor */
6895 	spdk_bdev_close(desc);
6896 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
6897 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
6898 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
6899 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6900 
6901 	/* Claim removed when closing the other descriptor */
6902 	spdk_bdev_close(desc2);
6903 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6904 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6905 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6906 
6907 	/* Cannot claim with a key */
6908 	desc = NULL;
6909 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
6910 	CU_ASSERT(rc == 0);
6911 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6912 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6913 	opts.shared_claim_key = (uint64_t)&opts;
6914 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, &opts,
6915 					      &bdev_ut_if);
6916 	CU_ASSERT(rc == -EINVAL);
6917 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6918 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6919 	spdk_bdev_close(desc);
6920 
6921 	/* Cannot claim with a read-write descriptor */
6922 	desc = NULL;
6923 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6924 	CU_ASSERT(rc == 0);
6925 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6926 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6927 					      &bdev_ut_if);
6928 	CU_ASSERT(rc == -EINVAL);
6929 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6930 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6931 	spdk_bdev_close(desc);
6932 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
6933 
6934 	/* Clean up */
6935 	free_bdev(bdev);
6936 }
6937 
6938 static void
6939 claim_v2_rwm(void)
6940 {
6941 	struct spdk_bdev *bdev;
6942 	struct spdk_bdev_desc *desc;
6943 	struct spdk_bdev_desc *desc2;
6944 	struct spdk_bdev_claim_opts opts;
6945 	char good_key, bad_key;
6946 	int rc;
6947 
6948 	bdev = allocate_bdev("bdev0");
6949 
6950 	/* Claim without options should fail */
6951 	desc = NULL;
6952 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
6953 	CU_ASSERT(rc == 0);
6954 	SPDK_CU_ASSERT_FATAL(desc != NULL);
6955 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, NULL,
6956 					      &bdev_ut_if);
6957 	CU_ASSERT(rc == -EINVAL);
6958 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
6959 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 0);
6960 	CU_ASSERT(desc->claim == NULL);
6961 
6962 	/* Claim with options */
6963 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
6964 	snprintf(opts.name, sizeof(opts.name), "%s", "claim with options");
6965 	opts.shared_claim_key = (uint64_t)&good_key;
6966 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
6967 					      &bdev_ut_if);
6968 	CU_ASSERT(rc == 0);
6969 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
6970 	SPDK_CU_ASSERT_FATAL(desc->claim != NULL);
6971 	CU_ASSERT(desc->claim->module == &bdev_ut_if);
6972 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6973 	memset(&opts, 0, sizeof(opts));
6974 	CU_ASSERT(strcmp(desc->claim->name, "claim with options") == 0);
6975 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
6976 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
6977 
6978 	/* The claim blocks new writers. */
6979 	desc2 = NULL;
6980 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
6981 	CU_ASSERT(rc == -EPERM);
6982 	CU_ASSERT(desc2 == NULL);
6983 
6984 	/* New readers are allowed */
6985 	desc2 = NULL;
6986 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc2);
6987 	CU_ASSERT(rc == 0);
6988 	CU_ASSERT(desc2 != NULL);
6989 	CU_ASSERT(!desc2->write);
6990 
6991 	/* No new v2 RWO claims are allowed */
6992 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE, NULL,
6993 					      &bdev_ut_if);
6994 	CU_ASSERT(rc == -EPERM);
6995 
6996 	/* No new v2 ROM claims are allowed and the descriptor stays read-only. */
6997 	CU_ASSERT(!desc2->write);
6998 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE, NULL,
6999 					      &bdev_ut_if);
7000 	CU_ASSERT(rc == -EPERM);
7001 	CU_ASSERT(!desc2->write);
7002 
7003 	/* No new v1 claims are allowed */
7004 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7005 	CU_ASSERT(rc == -EPERM);
7006 
7007 	/* No new v2 RWM claims are allowed if the key does not match */
7008 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7009 	opts.shared_claim_key = (uint64_t)&bad_key;
7010 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7011 					      &bdev_ut_if);
7012 	CU_ASSERT(rc == -EPERM);
7013 	CU_ASSERT(!desc2->write);
7014 
7015 	/* None of the above messed up the existing claim */
7016 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc->claim);
7017 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7018 
7019 	/* New v2 RWM claims are allowed and the descriptor is promoted if the key matches. */
7020 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7021 	opts.shared_claim_key = (uint64_t)&good_key;
7022 	CU_ASSERT(!desc2->write);
7023 	rc = spdk_bdev_module_claim_bdev_desc(desc2, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7024 					      &bdev_ut_if);
7025 	CU_ASSERT(rc == 0);
7026 	CU_ASSERT(desc2->write);
7027 	CU_ASSERT(TAILQ_NEXT(desc->claim, link) == desc2->claim);
7028 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 2);
7029 
7030 	/* Claim remains when closing the first descriptor */
7031 	spdk_bdev_close(desc);
7032 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
7033 	CU_ASSERT(!TAILQ_EMPTY(&bdev->internal.open_descs));
7034 	CU_ASSERT(TAILQ_FIRST(&bdev->internal.claim.v2.claims) == desc2->claim);
7035 	UT_ASSERT_CLAIM_V2_COUNT(bdev, 1);
7036 
7037 	/* Claim removed when closing the other descriptor */
7038 	spdk_bdev_close(desc2);
7039 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7040 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
7041 
7042 	/* Cannot claim without a key */
7043 	desc = NULL;
7044 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
7045 	CU_ASSERT(rc == 0);
7046 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7047 	spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7048 	rc = spdk_bdev_module_claim_bdev_desc(desc, SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED, &opts,
7049 					      &bdev_ut_if);
7050 	CU_ASSERT(rc == -EINVAL);
7051 	spdk_bdev_close(desc);
7052 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7053 	CU_ASSERT(TAILQ_EMPTY(&bdev->internal.open_descs));
7054 
7055 	/* Clean up */
7056 	free_bdev(bdev);
7057 }
7058 
7059 static void
7060 claim_v2_existing_writer(void)
7061 {
7062 	struct spdk_bdev *bdev;
7063 	struct spdk_bdev_desc *desc;
7064 	struct spdk_bdev_desc *desc2;
7065 	struct spdk_bdev_claim_opts opts;
7066 	enum spdk_bdev_claim_type type;
7067 	enum spdk_bdev_claim_type types[] = {
7068 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
7069 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
7070 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
7071 	};
7072 	size_t i;
7073 	int rc;
7074 
7075 	bdev = allocate_bdev("bdev0");
7076 
7077 	desc = NULL;
7078 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
7079 	CU_ASSERT(rc == 0);
7080 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7081 	desc2 = NULL;
7082 	rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc2);
7083 	CU_ASSERT(rc == 0);
7084 	SPDK_CU_ASSERT_FATAL(desc2 != NULL);
7085 
7086 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
7087 		type = types[i];
7088 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7089 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
7090 			opts.shared_claim_key = (uint64_t)&opts;
7091 		}
7092 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
7093 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
7094 			CU_ASSERT(rc == -EINVAL);
7095 		} else {
7096 			CU_ASSERT(rc == -EPERM);
7097 		}
7098 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7099 		rc = spdk_bdev_module_claim_bdev_desc(desc2, type, &opts, &bdev_ut_if);
7100 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE) {
7101 			CU_ASSERT(rc == -EINVAL);
7102 		} else {
7103 			CU_ASSERT(rc == -EPERM);
7104 		}
7105 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE);
7106 	}
7107 
7108 	spdk_bdev_close(desc);
7109 	spdk_bdev_close(desc2);
7110 
7111 	/* Clean up */
7112 	free_bdev(bdev);
7113 }
7114 
7115 static void
7116 claim_v2_existing_v1(void)
7117 {
7118 	struct spdk_bdev *bdev;
7119 	struct spdk_bdev_desc *desc;
7120 	struct spdk_bdev_claim_opts opts;
7121 	enum spdk_bdev_claim_type type;
7122 	enum spdk_bdev_claim_type types[] = {
7123 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
7124 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
7125 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
7126 	};
7127 	size_t i;
7128 	int rc;
7129 
7130 	bdev = allocate_bdev("bdev0");
7131 
7132 	rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7133 	CU_ASSERT(rc == 0);
7134 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
7135 
7136 	desc = NULL;
7137 	rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
7138 	CU_ASSERT(rc == 0);
7139 	SPDK_CU_ASSERT_FATAL(desc != NULL);
7140 
7141 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
7142 		type = types[i];
7143 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7144 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
7145 			opts.shared_claim_key = (uint64_t)&opts;
7146 		}
7147 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
7148 		CU_ASSERT(rc == -EPERM);
7149 		CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
7150 	}
7151 
7152 	spdk_bdev_module_release_bdev(bdev);
7153 	spdk_bdev_close(desc);
7154 
7155 	/* Clean up */
7156 	free_bdev(bdev);
7157 }
7158 
7159 static void
7160 claim_v1_existing_v2(void)
7161 {
7162 	struct spdk_bdev *bdev;
7163 	struct spdk_bdev_desc *desc;
7164 	struct spdk_bdev_claim_opts opts;
7165 	enum spdk_bdev_claim_type type;
7166 	enum spdk_bdev_claim_type types[] = {
7167 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE,
7168 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED,
7169 		SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE
7170 	};
7171 	size_t i;
7172 	int rc;
7173 
7174 	bdev = allocate_bdev("bdev0");
7175 
7176 	for (i = 0; i < SPDK_COUNTOF(types); i++) {
7177 		type = types[i];
7178 
7179 		desc = NULL;
7180 		rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
7181 		CU_ASSERT(rc == 0);
7182 		SPDK_CU_ASSERT_FATAL(desc != NULL);
7183 
7184 		/* Get a v2 claim */
7185 		spdk_bdev_claim_opts_init(&opts, sizeof(opts));
7186 		if (type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED) {
7187 			opts.shared_claim_key = (uint64_t)&opts;
7188 		}
7189 		rc = spdk_bdev_module_claim_bdev_desc(desc, type, &opts, &bdev_ut_if);
7190 		CU_ASSERT(rc == 0);
7191 
7192 		/* Fail to get a v1 claim */
7193 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7194 		CU_ASSERT(rc == -EPERM);
7195 
7196 		spdk_bdev_close(desc);
7197 
7198 		/* Now v1 succeeds */
7199 		rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
7200 		CU_ASSERT(rc == 0)
7201 		spdk_bdev_module_release_bdev(bdev);
7202 	}
7203 
7204 	/* Clean up */
7205 	free_bdev(bdev);
7206 }
7207 
7208 static void ut_examine_claimed_config0(struct spdk_bdev *bdev);
7209 static void ut_examine_claimed_disk0(struct spdk_bdev *bdev);
7210 static void ut_examine_claimed_config1(struct spdk_bdev *bdev);
7211 static void ut_examine_claimed_disk1(struct spdk_bdev *bdev);
7212 
7213 #define UT_MAX_EXAMINE_MODS 2
7214 struct spdk_bdev_module examine_claimed_mods[UT_MAX_EXAMINE_MODS] = {
7215 	{
7216 		.name = "vbdev_ut_examine0",
7217 		.module_init = vbdev_ut_module_init,
7218 		.module_fini = vbdev_ut_module_fini,
7219 		.examine_config = ut_examine_claimed_config0,
7220 		.examine_disk = ut_examine_claimed_disk0,
7221 	},
7222 	{
7223 		.name = "vbdev_ut_examine1",
7224 		.module_init = vbdev_ut_module_init,
7225 		.module_fini = vbdev_ut_module_fini,
7226 		.examine_config = ut_examine_claimed_config1,
7227 		.examine_disk = ut_examine_claimed_disk1,
7228 	}
7229 };
7230 
7231 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed0, &examine_claimed_mods[0])
7232 SPDK_BDEV_MODULE_REGISTER(bdev_ut_claimed1, &examine_claimed_mods[1])
7233 
7234 struct ut_examine_claimed_ctx {
7235 	uint32_t examine_config_count;
7236 	uint32_t examine_disk_count;
7237 
7238 	/* Claim type to take, with these options */
7239 	enum spdk_bdev_claim_type claim_type;
7240 	struct spdk_bdev_claim_opts claim_opts;
7241 
7242 	/* Expected return value from spdk_bdev_module_claim_bdev_desc() */
7243 	int expect_claim_err;
7244 
7245 	/* Descriptor used for a claim */
7246 	struct spdk_bdev_desc *desc;
7247 } examine_claimed_ctx[UT_MAX_EXAMINE_MODS];
7248 
7249 bool ut_testing_examine_claimed;
7250 
7251 static void
7252 reset_examine_claimed_ctx(void)
7253 {
7254 	struct ut_examine_claimed_ctx *ctx;
7255 	uint32_t i;
7256 
7257 	for (i = 0; i < SPDK_COUNTOF(examine_claimed_ctx); i++) {
7258 		ctx = &examine_claimed_ctx[i];
7259 		if (ctx->desc != NULL) {
7260 			spdk_bdev_close(ctx->desc);
7261 		}
7262 		memset(ctx, 0, sizeof(*ctx));
7263 		spdk_bdev_claim_opts_init(&ctx->claim_opts, sizeof(ctx->claim_opts));
7264 	}
7265 }
7266 
7267 static void
7268 examine_claimed_config(struct spdk_bdev *bdev, uint32_t modnum)
7269 {
7270 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
7271 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
7272 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
7273 	int rc;
7274 
7275 	if (!ut_testing_examine_claimed) {
7276 		spdk_bdev_module_examine_done(module);
7277 		return;
7278 	}
7279 
7280 	ctx->examine_config_count++;
7281 
7282 	if (ctx->claim_type != SPDK_BDEV_CLAIM_NONE) {
7283 		rc = spdk_bdev_open_ext(bdev->name, false, bdev_ut_event_cb, &ctx->claim_opts,
7284 					&ctx->desc);
7285 		CU_ASSERT(rc == 0);
7286 
7287 		rc = spdk_bdev_module_claim_bdev_desc(ctx->desc, ctx->claim_type, NULL, module);
7288 		CU_ASSERT(rc == ctx->expect_claim_err);
7289 	}
7290 	spdk_bdev_module_examine_done(module);
7291 }
7292 
7293 static void
7294 ut_examine_claimed_config0(struct spdk_bdev *bdev)
7295 {
7296 	examine_claimed_config(bdev, 0);
7297 }
7298 
7299 static void
7300 ut_examine_claimed_config1(struct spdk_bdev *bdev)
7301 {
7302 	examine_claimed_config(bdev, 1);
7303 }
7304 
7305 static void
7306 examine_claimed_disk(struct spdk_bdev *bdev, uint32_t modnum)
7307 {
7308 	SPDK_CU_ASSERT_FATAL(modnum < UT_MAX_EXAMINE_MODS);
7309 	struct spdk_bdev_module *module = &examine_claimed_mods[modnum];
7310 	struct ut_examine_claimed_ctx *ctx = &examine_claimed_ctx[modnum];
7311 
7312 	if (!ut_testing_examine_claimed) {
7313 		spdk_bdev_module_examine_done(module);
7314 		return;
7315 	}
7316 
7317 	ctx->examine_disk_count++;
7318 
7319 	spdk_bdev_module_examine_done(module);
7320 }
7321 
7322 static void
7323 ut_examine_claimed_disk0(struct spdk_bdev *bdev)
7324 {
7325 	examine_claimed_disk(bdev, 0);
7326 }
7327 
7328 static void
7329 ut_examine_claimed_disk1(struct spdk_bdev *bdev)
7330 {
7331 	examine_claimed_disk(bdev, 1);
7332 }
7333 
7334 static void
7335 examine_claimed(void)
7336 {
7337 	struct spdk_bdev *bdev;
7338 	struct spdk_bdev_module *mod = examine_claimed_mods;
7339 	struct ut_examine_claimed_ctx *ctx = examine_claimed_ctx;
7340 
7341 	ut_testing_examine_claimed = true;
7342 	reset_examine_claimed_ctx();
7343 
7344 	/*
7345 	 * With one module claiming, both modules' examine_config should be called, but only the
7346 	 * claiming module's examine_disk should be called.
7347 	 */
7348 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7349 	bdev = allocate_bdev("bdev0");
7350 	CU_ASSERT(ctx[0].examine_config_count == 1);
7351 	CU_ASSERT(ctx[0].examine_disk_count == 1);
7352 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
7353 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
7354 	CU_ASSERT(ctx[1].examine_config_count == 1);
7355 	CU_ASSERT(ctx[1].examine_disk_count == 0);
7356 	CU_ASSERT(ctx[1].desc == NULL);
7357 	reset_examine_claimed_ctx();
7358 	free_bdev(bdev);
7359 
7360 	/*
7361 	 * With two modules claiming, both modules' examine_config and examine_disk should be
7362 	 * called.
7363 	 */
7364 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7365 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7366 	bdev = allocate_bdev("bdev0");
7367 	CU_ASSERT(ctx[0].examine_config_count == 1);
7368 	CU_ASSERT(ctx[0].examine_disk_count == 1);
7369 	SPDK_CU_ASSERT_FATAL(ctx[0].desc != NULL);
7370 	CU_ASSERT(ctx[0].desc->claim->module == &mod[0]);
7371 	CU_ASSERT(ctx[1].examine_config_count == 1);
7372 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7373 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7374 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7375 	reset_examine_claimed_ctx();
7376 	free_bdev(bdev);
7377 
7378 	/*
7379 	 * If two vbdev modules try to claim with conflicting claim types, the module that was added
7380 	 * last wins. The winner gets the claim and is the only one that has its examine_disk
7381 	 * callback invoked.
7382 	 */
7383 	ctx[0].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE;
7384 	ctx[0].expect_claim_err = -EPERM;
7385 	ctx[1].claim_type = SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE;
7386 	bdev = allocate_bdev("bdev0");
7387 	CU_ASSERT(ctx[0].examine_config_count == 1);
7388 	CU_ASSERT(ctx[0].examine_disk_count == 0);
7389 	CU_ASSERT(ctx[1].examine_config_count == 1);
7390 	CU_ASSERT(ctx[1].examine_disk_count == 1);
7391 	SPDK_CU_ASSERT_FATAL(ctx[1].desc != NULL);
7392 	CU_ASSERT(ctx[1].desc->claim->module == &mod[1]);
7393 	CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
7394 	reset_examine_claimed_ctx();
7395 	free_bdev(bdev);
7396 
7397 	ut_testing_examine_claimed = false;
7398 }
7399 
7400 int
7401 main(int argc, char **argv)
7402 {
7403 	CU_pSuite		suite = NULL;
7404 	unsigned int		num_failures;
7405 
7406 	CU_initialize_registry();
7407 
7408 	suite = CU_add_suite("bdev", ut_bdev_setup, ut_bdev_teardown);
7409 
7410 	CU_ADD_TEST(suite, bytes_to_blocks_test);
7411 	CU_ADD_TEST(suite, num_blocks_test);
7412 	CU_ADD_TEST(suite, io_valid_test);
7413 	CU_ADD_TEST(suite, open_write_test);
7414 	CU_ADD_TEST(suite, claim_test);
7415 	CU_ADD_TEST(suite, alias_add_del_test);
7416 	CU_ADD_TEST(suite, get_device_stat_test);
7417 	CU_ADD_TEST(suite, bdev_io_types_test);
7418 	CU_ADD_TEST(suite, bdev_io_wait_test);
7419 	CU_ADD_TEST(suite, bdev_io_spans_split_test);
7420 	CU_ADD_TEST(suite, bdev_io_boundary_split_test);
7421 	CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
7422 	CU_ADD_TEST(suite, bdev_io_mix_split_test);
7423 	CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
7424 	CU_ADD_TEST(suite, bdev_io_write_unit_split_test);
7425 	CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
7426 	CU_ADD_TEST(suite, bdev_io_alignment);
7427 	CU_ADD_TEST(suite, bdev_histograms);
7428 	CU_ADD_TEST(suite, bdev_write_zeroes);
7429 	CU_ADD_TEST(suite, bdev_compare_and_write);
7430 	CU_ADD_TEST(suite, bdev_compare);
7431 	CU_ADD_TEST(suite, bdev_compare_emulated);
7432 	CU_ADD_TEST(suite, bdev_zcopy_write);
7433 	CU_ADD_TEST(suite, bdev_zcopy_read);
7434 	CU_ADD_TEST(suite, bdev_open_while_hotremove);
7435 	CU_ADD_TEST(suite, bdev_close_while_hotremove);
7436 	CU_ADD_TEST(suite, bdev_open_ext_test);
7437 	CU_ADD_TEST(suite, bdev_open_ext_unregister);
7438 	CU_ADD_TEST(suite, bdev_set_io_timeout);
7439 	CU_ADD_TEST(suite, bdev_set_qd_sampling);
7440 	CU_ADD_TEST(suite, lba_range_overlap);
7441 	CU_ADD_TEST(suite, lock_lba_range_check_ranges);
7442 	CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
7443 	CU_ADD_TEST(suite, lock_lba_range_overlapped);
7444 	CU_ADD_TEST(suite, bdev_quiesce);
7445 	CU_ADD_TEST(suite, bdev_io_abort);
7446 	CU_ADD_TEST(suite, bdev_unmap);
7447 	CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
7448 	CU_ADD_TEST(suite, bdev_set_options_test);
7449 	CU_ADD_TEST(suite, bdev_get_memory_domains);
7450 	CU_ADD_TEST(suite, bdev_io_ext);
7451 	CU_ADD_TEST(suite, bdev_io_ext_no_opts);
7452 	CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
7453 	CU_ADD_TEST(suite, bdev_io_ext_split);
7454 	CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
7455 	CU_ADD_TEST(suite, bdev_register_uuid_alias);
7456 	CU_ADD_TEST(suite, bdev_unregister_by_name);
7457 	CU_ADD_TEST(suite, for_each_bdev_test);
7458 	CU_ADD_TEST(suite, bdev_seek_test);
7459 	CU_ADD_TEST(suite, bdev_copy);
7460 	CU_ADD_TEST(suite, bdev_copy_split_test);
7461 	CU_ADD_TEST(suite, examine_locks);
7462 	CU_ADD_TEST(suite, claim_v2_rwo);
7463 	CU_ADD_TEST(suite, claim_v2_rom);
7464 	CU_ADD_TEST(suite, claim_v2_rwm);
7465 	CU_ADD_TEST(suite, claim_v2_existing_writer);
7466 	CU_ADD_TEST(suite, claim_v2_existing_v1);
7467 	CU_ADD_TEST(suite, claim_v1_existing_v2);
7468 	CU_ADD_TEST(suite, examine_claimed);
7469 
7470 	allocate_cores(1);
7471 	allocate_threads(1);
7472 	set_thread(0);
7473 
7474 	num_failures = spdk_ut_run_tests(argc, argv, NULL);
7475 	CU_cleanup_registry();
7476 
7477 	free_threads();
7478 	free_cores();
7479 
7480 	return num_failures;
7481 }
7482